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The Burnside Ring and Equivariant Stable
Cohomotopy for Infinite Groups

Wolfgang Lück

0. Introduction

The basic notions of the Burnside ring and of equivariant stable cohomotopy
have been defined and investigated in detail for finite groups. The purpose of this
article is to discuss how these can be generalized to infinite (discrete) groups. The
guideline will be the related notion of the representation ring which allows sev-
eral generalizations to infinite groups, each of which reflects one aspect of the
original notion for finite groups. Analogously we will present several possible
generalizations of the Burnside ring for finite groups to infinite (discrete) groups.
There seems to be no general answer to the question which generalization is the
right one. The answer depends on the choice of the background problem such
as universal additive properties, induction theory, equivariant stable homotopy
theory, representation theory, completion theorems and so on. For finite groups
the representation ring and the Burnside ring are related to all these topics si-
multaneously and for infinite groups the notion seems to split up into different
ones which fall together for finite groups but not in general.

The following table summarizes in the first column the possible generalizations
to infinite groups of the representation ring RF (G) with coefficients in a field F
of characteristic zero. In the second column we list the analogous generalizations
for the Burnside ring. In the third column we give key words for their main
property, relevance or application. Explanations will follow in the main body of
the text.

Received April 8, 2005.
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RF (G) A(G) key words

K0(FG) A(G) universal additive
invariant, equivariant
Euler characteristic

Swf (G;F ) A(G) induction theory,
Green functors

Rcov,F (G) :=
colimH∈SubFIN (G)RF (H)

Acov(G) :=
colimH∈SubFIN (G)A(H)

collecting all values for
finite subgroups with
respect to induction

Rinv,F (G) :=
invlimH∈SubFIN (G)RF (H)

Ainv(G) :=
invlimH∈SubFIN (G)A(H)

collecting all values for
finite subgroups with
respect to restriction

K0
G(EG) Aho(G) := π0

G(EG) completion theorems,
equivariant vector
bundles

KG
0 (EG) πG

0 (EG) representation theory,
Baum-Connes Conjec-
ture, equivariant ho-
motopy theory

The various rings are linked by the following diagram of ring homomorphisms

Aho(G) = π0
G(EG)

edgeG

//

ψ0
G(EG)

²²

Ainv(G)

P G
inv

²²

A(G)
T G

oo

P
G

²²

Rinv,Q(G)

c

²²

Swf (G;Q)
SG,Q
oo

c
²²

K0
G(EG)

edgeG

//Rinv,C(G) Swf (G;C)
SG,C
oo

where c denotes the obvious change of coefficients homomorphisms and the other
maps will be explained later.
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We will also define various pairings which are summarized in the following
diagram which reflects their compatibilities.

A(G)×A(G)
µG

A //

P
G×P G

²²

T G×id

KKKKKKKKKKKK

%%KKKKKKKKKKKK

A(G)

P G

²²

QG
A

%%KKKKKKKKKKKKKKKKKKKKKKKKKKK

Swf (G;Q)×K0(QG)
µG

K //

SG,Q

%%LLLLLLLLLLLLLLLLLLLLLLLLL
K0(QG)

QG
K

LLLLLLLLLLLL

%%LLLLLLLLLLLLLLAinv(G)×A(G)
νG

A //

P G
inv×(P G

cov◦(V G)−1)
²²

Z

id

²²
Rinv,Q(G)×Rcov,Q(G)

νG
R //

W G,Q

eeLLLLLLLLLLLLLLLLLLLLLLLLL

Z

(0.1)

In Section 1 we give a brief survey about the Burnside ring A(G) of a finite
group G in order to motivate the generalizations. In Sections 2, 3 and 4 we treat
the finite-G-set-version of the Burnside Ring A(G), the inverse-limit-version of the
Burnside ring Ainv(G) and the covariant Burnside group A(G). These definitions
are rather straightforward. The most sophisticated version of the Burnside ring
for infinite groups is the zero-th equivariant stable cohomotopy π0

G(EG) of the
classifying space EG for proper G-actions. It will be constructed in Section 6
after we have explained the notion of an equivariant cohomology theory with
multiplicative structure in Section 5. One of the main result of this paper is

Theorem 6.5 Equivariant stable cohomotopy π∗? defines an equivariant co-
homology theory with multiplicative structure for finite proper equivariant CW -
complexes. For every finite subgroup H of the group G the abelian groups πn

G(G/H)
and πn

H are isomorphic for every n ∈ Z and the rings π0
G(G/H) and π0

H = A(H)
are isomorphic.

An important test in the future will be whether the version of the Segal Con-
jecture for infinite groups discussed in Section 8 is true.

The papers is organized as follows:

1. Review of the Burnside Ring for Finite Groups
2. The Finite-G-Set-Version of the Burnside Ring
3. The Inverse-Limit-Version of the Burnside Ring
4. The Covariant Burnside Group
5. Equivariant Cohomology Theories
6. Equivariant Stable Cohomotopy in Terms of Real Vector Bundles
7. The Homotopy Theoretic Burnside Ring
8. The Segal Conjecture for Infinite Groups

References
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1. Review of the Burnside Ring for Finite Groups

In this section we give a brief review of the definition, properties and applica-
tions of the Burnside ring for finite groups in order to motivate our definitions
for infinite groups.

Definition 1.1. (Burnside ring of a finite group). The isomorphism classes
of finite G-sets form a commutative associative semi-ring with unit under disjoint
union and cartesian product. The Burnside ring A(G) is the Grothendieck ring
associated to this semi-ring.

As abelian group the Burnside ring A(G) is the free abelian group with the
set {G/H | (H) ∈ ccs(G)} as basis, where ccs(G) denotes the set of conjugacy
classes of subgroups of G. The zero element is represented by the empty set, the
unit is represented by G/G. The interesting feature of the Burnside ring is its
multiplicative structure.

Given a group homomorphism f : G0 → G1 of finite groups, restriction with f
defines a ring homomorphism f∗ : A(G1) → A(G0). Thus A(G) becomes a con-
travariant functor from the category of finite groups to the category of commu-
tative rings. Induction defines a homomorphism of abelian groups f∗ : A(G0) →
A(G1), [S] 7→ [G1 ×f S], which is not compatible with the multiplication. Thus
A(G) becomes a becomes a covariant functor from the category of finite groups
to the category of abelian groups.

1.1. The Character Map and the Burnside Ring Congruences. Let G
be a finite group. Let ccs(G) be the set of conjugacy classes (H) of subgroups
H ⊆ G. Define the character map

charG : A(G)→
∏

(H)∈ccs(G)

Z(1.2)

by sending the class of a finite G-set S to the numbers {|SH | | (H) ∈ ccs(G)}.
This is an injective ring homomorphism whose image can be described by the so
called Burnside ring congruences which we explain next.

In the sequel we denote for a subgroup H ⊆ G by NGH its normalizer {g ∈
G | g−1Hg = H}, by CGH = {g ∈ G | gh = hg for h ∈ H} its centralizer, by
WGH its Weyl group NGH/H and by [G : H] its index. Let pH : NGH → WGH
be the canonical projection. Denote for a cyclic group C by Gen(C) the set of
its generators. We conclude from [46, Proposition 1.3.5]

Theorem 1.3 (Burnside ring congruences for finite groups). An element {x(H)} ∈∏
(H)∈ccs(G) Z lies in the image of the injective character map charG defined in
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(1.2) if and only if we have for every (H) ∈ ccs(G)
∑

(C)∈ccs(WGH)
C cyclic

|Gen(C)| · [WGH : NWGHC] · x(p−1
H (C)) ≡ 0 mod |WGH|.

Example 1.4 (A(Z/p). Let p be a prime and let G be the cyclic group Z/p of
order p. Then A(G) is the free abelian group generated by [G] and [G/G]. The
multiplication is determined by the fact that [G/G] is the unit and [G]·[G] = p·[G].
There is exactly one non-trivial Burnside ring congruence, namely the one for
H = {1} which in the notation of Theorem 1.3 is

x(1) ≡ x(G) mod p.

1.2. The Equivariant Euler Characteristic. Next we recall the notion of a
G-CW -complex.

Definition 1.5 (G-CW -complex). Let G be a group. A G-CW -complex X is a
G-space together with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊂ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃

n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e., a set
C ⊆ X is closed if and only if C ∩Xn is closed in Xn for all n ≥ 0) and Xn is
obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional cells,
i.e., there exists a G-pushout

∐
i∈In

G/Hi × Sn−1

‘
i∈In

qn
i−−−−−−→ Xn−1y

y
∐

i∈In
G/Hi ×Dn −−−−−−→‘

i∈In
Qn

i

Xn

A G-CW -complex X is called finite if it is built by finitely many equivariant
cells G/H×Dn and is called cocompact if G\X is compact. The conditions finite
and cocompact are equivalent for a G-CW -complex. Provided that G is finite, X
is compact if and only if X is cocompact A G-map f : X → Y of G-CW -complexes
is called cellular if f(Xn) ⊆ Yn holds for all n.

Definition 1.6 (Equivariant Euler Characteristic). Let G be a finite group and
X be a finite G-CW -complex. Define its equivariant Euler characteristic

χG(X) ∈ A(G)

by

χG(X) :=
∞∑

n=0

(−1)n ·
∑

i∈In

[G/Hi]

after choices of the G-pushouts as in Definition 1.5.
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This definition is independent of the choice of the G-pushouts by the next
result. The elementary proofs of the next two results are left to the reader. We
denote by XH and X>H respectively the subspace of X consisting of elements
x ∈ X whose isotropy group Gx satisfies H ⊆ Gx and H ( Gx respectively.

Lemma 1.7. Let G be a finite group.

(i) Let X be a finite G-CW -complex. Then

χG(X) =
∑

(H)∈ccs(G)

χ
(
WHG\(XH , X>H)

) · [G/H],

where χ denotes the classical (non-equivariant) Euler characteristic;
(ii) If X and Y are G-homotopy equivalent finite G-CW -complexes, then

χG(X) = χG(Y );

(iii) If
X0

i0−−−−→ X1

i2

y
y

X2 −−−−→ X
is a G-pushout of finite G-CW -complexes such that i1 is an inclusion of
finite G-CW -complexes and i2 is cellular, then

χG(X) = χG(X1) + χG(X1)− χG(X0);

(iv) If X and Y are finite G-CW -complexes, then X × Y with the diagonal
G-action is a finite G-CW -complex and

χG(X × Y ) = χG(X) · χG(Y );

(v) The image of χG(X) under the character map charG of (1.2) is given by
the collection of classical (non-equivariant) Euler characteristics {χ(XH) |
(H) ∈ ccs(G)}.

An equivariant additive invariant for finite G-CW -complexes is a pair (A, a)
consisting of an abelian group and an assignment a which associates to every
finite G-CW -complex X an element a(X) ∈ A such that a(∅) = 0, G-homotopy
invariance and additivity hold, i.e., the obvious versions of assertions (ii) and
(iii) appearing in Lemma 1.7 are true. An equivariant additive invariant (U, u) is
called universal if for every equivariant additive invariant (A, a) there is precisely
one homomorphism of abelian groups φ : U → A such that φ(u(X)) = a(X)
holds for every finite G-CW -complex X. Obviously (U, u) is (up to unique iso-
morphism) unique if it exists.

Theorem 1.8 (The universal equivariant additive invariant). Let G be a finite
group. The pair (A(G), χG) is the universal equivariant additive invariant for
finite G-CW -complexes.
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1.3. The Equivariant Lefschetz Class. The notion of an equivariant Euler
characteristic can be extended to the notion of an equivariant Lefschetz class as
follows.

Definition 1.9. Let G be a finite group and X be a finite G-CW -complex. We
define the equivariant Lefschetz class of a cellular G-selfmap f : X → X

ΛG(f)∈A(G)

by
ΛG(f) =

∑

(H)∈ccs(G)

Λ
(
WGH\(fH , f>H)

) · [G/H],

where Λ(WGH\(fH , f>H)) ∈ Z is the classical Lefschetz number of the endomor-
phism WGH\(fH , f>H) of the pair of finite CW -complexes WGH\(XH , X>H)
induced by f .

Obviously ΛG(id : X → X) agrees with χG(X). The elementary proof of the
next result is left to the reader.

Lemma 1.10. Let G be a finite group.

(i) If f and g are G-homotopic G-selfmaps of a finite G-CW -complex X,
then

ΛG(f) = ΛG(g);
(ii) Let

X0
i1−−−−→ X1

i2

y
y

X2 −−−−→ X
be a G-pushout of finite G-CW -complexes such that i1 is an inclusion of
finite G-CW -complexes and i2 is cellular. Let fi : Xi → Xi for i = 0, 1, 2
and f : X → X be G-selfmaps compatible with this G-pushout. Then

ΛG(f) = ΛG(f1) + ΛG(f2)− ΛG(f0);

(iii) Let X and Y be finite G-CW -complexes and f : X → X and g : Y → Y
be G-selfmaps. Then

ΛG(f × g) = χG(X) · ΛG(g) + χG(Y ) · ΛG(f);

(iv) Let f : X → Y and g : Y → X be G-maps of finite G-CW -complexes.
Then

ΛG(f ◦ g) = ΛG(g ◦ f);
(v) The image of ΛG(f) under the character map charG of (1.2) is given by

the collection of classical (non-equivariant) Lefschetz numbers {Λ(fH) |
(H) ∈ ccs(G)}.
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One can also give a universal property characterizing the equivariant Lefschetz
class (see [22]).

The equivariant Lefschetz class has also the following homotopy theoretic
meaning.

Definition 1.11. A G-homotopy representation X is a finite-dimensional G-
CW -complex such that for each subgroup H ⊆ G the fixed point set XH is ho-
motopy equivalent to a sphere Sn(H) for n(H) the dimension of the CW -complex
XH .

An example is the unit sphere SV in an orthogonal representation V of G.
Denote by [X, X]G the set of G-homotopy classes of G-maps X → X. The proof
of the next theorem can be found in [24, Theorem 3.4 on page 139] and is a
consequence of the equivariant Hopf Theorem (see for instance [46, page 213],
[49, II.4], [21]).

Theorem 1.12. Let X be a G-homotopy representation of the finite group G.
Suppose that

(i) Every subgroup H ⊆ G occurs as isotropy group of X;
(ii) dim(XG) ≥ 1;
(iii) The group G is nilpotent or for every subgroup H ⊆ G we have dim(X>H)+

2 ≤ dim(XH).

Then the following map is an bijection of monoids, where the monoid structure
on the source comes from the composition and the one on the target from the
multiplication

degG : [X, X]G
∼=−→ A(G), [f ] 7→ (ΛG(f)− 1) · (χG(X)− 1).

We mention that the image of the element degG(f) for a self-G-map of a G-
homotopy representation under the character map charG of (1.2) is given by the
collection of (non-equivariant) degrees {deg(fH) | (H) ∈ ccs(G)}.

1.4. The Burnside Ring and Equivariant Stable Cohomotopy. Let X
and Y be two finite pointed G-CW -complexes. Pointed means that we have
specified an element in its 0-skeleton which is fixed under the G-action. If V is a
real G-representation, let SV be its one-point compactification. We will use the
point at infinity as base point for SV . If V is an orthogonal representation, i.e.,
comes with an G-invariant scalar product, then SV is G-homeomorphic to the
unit sphere S(V ⊕R). Given two pointed G-CW -complexes X and Y with base
points x and y, define their one-point-union X ∨ Y to be the pointed G-CW -
complex X × {y} ∪ {x} × Y ⊆ X × Y and their smash product X ∧ Y to be the
pointed G-CW -complex X × Y/X ∨ Y .
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We briefly introduce equivariant stable homotopy groups following the ap-
proach due to tom Dieck [49, II.6].

If V and W are two complex G-representations, we write V ≤ W if there exists
a complex G-representation U and a linear G-isomorphism φ : U ⊕ V → W . If
φ : U ⊕ V → W is a linear G-isomorphism, define a map

bV,W : [SV ∧X, SV ∧ Y ]G → [SW ∧X, SW ∧ Y ]G

by the composition

[SV ∧X, SV ∧ Y ]G u1−→ [SU ∧ SV ∧X, SU ∧ SV ∧ Y ]G

u2−→ [SU⊕V ∧X, SU⊕V ∧ Y ]G u3−→ [SW ∧X, SW ∧ Y ]G,

where the map u1 is given by [f ] 7→ [idSU ∧f ], the map u2 comes from the obvious
G-homeomorphism SU⊕V

∼=−→ SU∧SV induced by the inclusion V ⊕W → SV ∧SW

and the map u3 from the G-homeomorphism Sφ : SU⊕V
∼=−→ SW . Any two linear

G-isomorphisms φ0, φ1 : V1 → V2 between two complex G-representations are
isotopic as linear G-isomorphisms. (This is not true for real G-representations.)
This implies that the map bV,W is indeed independent of the choice of U and φ.
One easily checks that bV2,V1 ◦ bV0,V1 = bV0,V2 holds for complex G-representations
V0, V1 and V2 satisfying V0 ≤ V1 and V1 ≤ V2.

Let I be the set of complex G-representations with underlying complex vector
space Cn for some n. (Notice that the collections of all complex G-representations
does not form a set.) Define on the disjoint union

∐

V ∈I

[SV ∧X, SV ∧ Y ]G

an equivalence relation by calling [f ] ∈ [SV ∧ X, SV ∧ Y ]G and [g] ∈ [SW ∧
X, SW ∧ Y ]G equivalent if there exists a representation U ∈ I with V ≤ U and
W ≤ U such that bV,U ([f ]) = bW,U ([g]) holds. Let ωG

0 (X, Y ) for two pointed
G-CW -complexes X and Y be the set of equivalence classes.

If V is any complex G-representation (not necessarily in I) and f : SV ∧X →
SV ∧ Y is any G-map, there exists an element W ∈ I with V ≤ W and we get
an element in ωG

0 (X, Y ) by bV,W ([f ]). This element is independent of the choice
of W and also denoted by [f ] ∈ ωG

0 (X, Y ).

One can define the structure of an abelian group on the set ωG
0 (X, Y ) as follows.

Consider elements x, y ∈ ωG
0 (X, Y ). We can choose an element of the shape

C ⊕ U in I for C equipped with the trivial G-action and G-maps f, g : SC⊕U ∧
X → SC⊕U ∧ Y representing x and y. Now using the standard pinching map
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∇ : SC → SC ∨ SC one defines x + y as the class of the G-map

SC⊕U ∧X
∼=−→ SC ∧ SU ∧X

∇∧id
SU ∧ idX−−−−−−−−−→ (SC ∨ SC) ∧ SU ∧X

∼=−→ (SC∧SU ∧X)∨(SC∧SU ∧X)
∼=−→ (SC⊕U ∧X)∨(SC⊕U ∧X)

f∨g−−→ SC⊕U ∧Y.

The inverse of x is defined by the class of

SC⊕U ∧X
∼=−→ SC ∧ SU ∧X

d∧f−−→ SC ∧ SU ∧ Y
∼=−→ SC⊕U ∧ Y

where d : SC → SC is any pointed map of degree −1. This is indeed independent
of the choices of U , f and g.

We define the abelian groups

ωG
n (X, Y ) = ωG

0 (Sn ∧X, Y ) n ≥ 0;
ωG

n (X, Y ) = ωG
0 (X, S−nY ) n ≤ 0;

ωn
G(X, Y ) = ωG−n(X, Y ) n ∈ Z;

Obviously ωG
n (X, Y ) is functorial, namely contravariant in X and covariant in Y .

Let X and Y be (unpointed) G-CW -complexes. Let X+ and Y+ be the pointed
G-CW -complexes obtained from X and Y by adjoining a disjoint base point.
Denote by {•} the one-point-space. Define abelian groups

πG
n (Y ) = ωG

n ({•}+, Y+) n ∈ Z;
πn

G(X) = ωn
G(X+, {•}+) n ∈ Z;

πG
n = πG

n ({•}) n ∈ Z;
πn

G = πG−n n ∈ Z.

The abelian group πG
0 = π0

G becomes a ring by the composition of maps. The
abelian groups πG

n (Y ) define covariant functors in Y and are called the equivariant
stable homotopy groups of Y . The abelian groups πn

G(X) define contravariant
functors in X and are called the equivariant stable cohomotopy groups of X.

We emphasize that our input in πn
G and πG

n are unpointed G-CW -complexes.
This is later consistent with our constructions for infinite groups, where all G-
CW -spaces must be proper and therefore have empty G-fixed point sets and
cannot have base points.

Theorem 1.12 implies the following result due to Segal [41].

Theorem 1.13. The isomorphism degG appearing in Theorem 1.12 induces an
isomorphism of rings

degG : π0
G

∼=−→ A(G).

For a more sophisticated and detailed construction of and more information
about the equivariant stable homotopy category we refer for instance to [17], [23].
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1.5. The Segal Conjecture for Finite Groups. The equivariant stable co-
homotopy groups πn

G(X) are modules over the ring π0
G = A(G), the module

structure is given by composition of maps. The augmentation homomorphism
εG : A(G) → Z is the ring homomorphism sending the class of a finite set S to |S|
which is just the component belonging to the trivial subgroup of the character
map defined in (1.2). The augmentation ideal IG ⊆ A(G) is the kernel of the
augmentation homomorphism εG.

For an (unpointed) CW -complex X we denote by πn
s (X) the (non-equivariant)

stable cohomotopy group of X+. This is in the previous notation for equivariant
stable cohomotopy the same as πn

{1}(X) for {1} the trivial group. If X is a finite
G-CW -complex, we can consider πn

s (EG×G X). Since πn
G(X) is a A(G)-module,

we can also consider its IG-adic completion denoted by πn
G(X)ÎG

. The following
result is due to Carlsson [8].

Theorem 1.14 (Segal Conjecture for finite groups). The Segal Conjecture for
finite groups G is true, i.e., for every finite group G and finite G-CW -complex
X there is an isomorphism

πn
G(X)ÎG

∼=−→ πn
s (EG×G X).

In particular we get in the case X = {•} and n = 0 an isomorphism

A(G)ÎG

∼=−→ π0
s(BG).(1.15)

Thus the Burnside ring is linked via its IG-adic completion to the stable coho-
motopy of the classifying space BG of a finite group G.

Example 1.16 (Segal Conjecture for Z/p). Let G be the cyclic group Z/p of
order p. We have computed A(G) in Example 1.4. If we put x = [G]− p · [G/G],
then the augmentation ideal is generated by x. Since

x2 = ([G]− p)2 = [G]2 − 2p · [G] + p2 = (−p) · x,

we get xn = (−p)n−1x and hence In
G = pn−1 · IG for n ∈ Z, n ≥ 1. This implies

A(G)ÎG
= invlimn→∞Z⊕ IG/In

G = Z× Zp̂,

where Zp̂ denotes the ring of p-adic integers.

1.6. The Burnside Ring as a Green Functor. Let R be an associative com-
mutative ring with unit. Let FGINJ be the category of finite groups with in-
jective group homomorphisms as morphisms. Let M : FGINJ → R-MODULES

be a bifunctor, i.e., a pair (M∗,M∗) consisting of a covariant functor M∗ and a
contravariant functor M∗ from FGINJ to R-MODULES which agree on objects.
We will often denote for an injective group homomorphism f : H → G the map
M∗(f) : M(H) → M(G) by indf and the map M∗(f) : M(G) → M(H) by resf

and write indG
H = indf and resH

G = resf if f is an inclusion of groups. We call
such a bifunctor M a Mackey functor with values in R-modules if
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(i) For an inner automorphism c(g) : G → G we have M∗(c(g)) = id: M(G) →
M(G);

(ii) For an isomorphism of groups f : G
∼=−→ H the composites resf ◦ indf and

indf ◦ resf are the identity;
(iii) Double coset formula

We have for two subgroups H, K ⊂ G

resK
G ◦ indG

H =
∑

KgH∈K\G/H

indc(g) : H∩g−1Kg→K ◦ resH∩g−1Kg
H ,

where c(g) is conjugation with g, i.e., c(g)(h) = ghg−1.

Let φ : R → S be a homomorphism of associative commutative rings with unit.
Let M be a Mackey functor with values in R-modules and let N and P be Mackey
functors with values in S-modules. A pairing with respect to φ is a family of maps

m(H) : M(H)×N(H) → P (H), (x, y) 7→ m(H)(x, y) =: x · y,

where H runs through the finite groups and we require the following properties
for all injective group homomorphisms f : H → K of finite groups:

(x1 + x2) · y = x1 · y + x2 · y for x1, x2 ∈ M(H), y ∈ N(H);
x · (y1 + y2) = x · y1 + x · y2 for x ∈ M(H), y1, y2 ∈ N(H);
(rx) · y = φ(r)(x · y) for r ∈ R, x ∈ M(H), y ∈ N(H);
x · sy = s(x · y) for s ∈ S, x ∈ M(H), y ∈ N(H);
resf (x · y) = resf (x) · resf (y) for x ∈ M(K), y ∈ N(K);
indf (x) · y = indf (x · resf (y)) for x ∈ M(H), y ∈ N(K);
x · indf (y) = indf (resf (x) · y) for x ∈ M(K), y ∈ N(H).

A Green functor with values in R-modules is a Mackey functor U together
with a pairing with respect to id : R → R and elements 1H ∈ U(H) for each finite
group H such that for each finite group H the pairing U(H) × U(H) → U(H)
induces the structure of an R-algebra on U(H) with unit 1H and for any morphism
f : H → K in FGINJ the map U∗(f) : U(K) → U(H) is a homomorphism of R-
algebras with unit. Let U be a Green functor with values in R-modules and M
be a Mackey functor with values in S-modules. A (left) U -module structure on
M with respect to the ring homomorphism φ : R → S is a pairing such that any
of the maps U(H) × M(H) → M(H) induces the structure of a (left) module
over the R-algebra U(H) on the R-module φ∗M(H) which is obtained from the
S-module M(H) by rx := φ(r)x for r ∈ R and x ∈ M(H).

Theorem 1.17. (i) The Burnside ring defines a Green functor with values
in Z-modules;

(ii) If M is a Mackey functor with values in R-modules, then M is in a
canonical way a module over the Green functor given by the Burnside
ring with respect to the canonical ring homomorphism φ : Z→ R.
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Proof. (i) Let f : H → G be an injective homomorphism of groups. Define
indf : A(H) → A(G) by sending the class of a finite H-set S to the class of
the finite G-set G×f S. Define resf : A(G) → A(H) by considering a finite G-set
as an H-set by restriction with f . One easily verifies that the axioms of a Green
functor with values in Z-modules are satisfied.
(ii) We have to specify for any finite group G a pairing m(G) : A(G)×M(G) →
M(G). This is done by the formula

m(G)

(∑

i

ni · [G/Hi], x

)
:=

∑

i

ni · indG
Hi
◦ resHi

G (x).

One easily verifies that the axioms of a module over the Green functor given by
the Burnside ring are satisfied. ¤

Theorem 1.17 is the main reason why the Burnside ring plays an important
role in induction theory. Induction theory addresses the question whether one can
compute the values of a Mackey functor on a finite group by its values on a certain
class of subgroups such as the family of cyclic or hyperelementary groups. Typical
examples of such Mackey functors are the representation ring RF (G) or algebraic
K and L-groups Kn(RG) and Ln(RG) of groups rings. The applications require
among other things a good understanding of the prime ideals of the Burnside
ring. For more information about induction theory for finite groups we refer to
the fundamental papers by Dress [11], [12] and for instance to [46, Chapter 6].
Induction theory for infinite groups is developed in [5].

As an illustration we give an example how the Green-functor mechanism works.

Example 1.18 (Artin’s Theorem). Let RQ(G) be the rational representation
ring of the finite group G. For any finite cyclic group C one can construct an
element

θC ∈ RQ(C)

which is uniquely determined by the property that its character function sends a
generator of C to |C| and every other element of C to zero.

Let G be a finite group. Let Q be the trivial 1-dimensional rational G-
representation. It is not hard to check by a calculation with characters that

|G| · [Q] =
∑

C⊂G
C cyclic

indH
C θC .(1.19)

Assigning to a finite group G the rational representation ring RQ(G) inherits
the structure of a Green functor with values in Z-modules by induction and
restriction. Suppose that M is a Mackey functor with values in Z-modules which
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is a module over the Green functor RQ. Then for every finite group G the cokernel
of the map ⊕

C⊂G
C cyclic

indG
C :

⊕

C⊂G
C cyclic

M(C) → M(G)

is annihilated by multiplication with |G|. This follows from the following calcu-
lation for x ∈ M(G) based on (1.19) and the axioms of a Green functor and a
module over it

|G| · x = (|G| · [Q]) · x =
∑

C⊂G
C cyclic

indH
C (θC) · x =

∑

C⊂G
C cyclic

indH
C (θC · resC

H x).

Examples for M are algebraic K- and L-groups Kn(RG) and Ln(RG) for any ring
R with Q ⊆ R. We may also take M to be RF for any field F of characteristic
zero and then the statement above is Artin’s Theorem (see [43, Theorem 26 on
page 97].

1.7. The Burnside Ring and Rational Representations. Let RQ(G) be the
representation ring of finite-dimensional rational G-representation. Given a finite
G-set S, let Q[S] be the rational G-representation given by the Q-vector space
with the set S as basis. The next result is due to Segal [40].

Theorem 1.20. (The Burnside ring and the rational representation ring
for finite groups). Let G be a finite group. We obtain a ring homomorphism

PG : A(G) → RQ(G), [S] 7→ [Q[S]].

It is rationally surjective. If G is a p-group for some prime p, it is surjective. It
is bijective if and only if G is cyclic.

1.8. The Burnside Ring and Homotopy Representations. We have intro-
duced the notion of a G-homotopy representation in Definition 1.11. The join of
two G-homotopy representations is again a G-homotopy representation. We call
two G-homotopy representations X and Y stably G-homotopy equivalent if for
some G-homotopy representation Z the joins X ∗ Z and Y ∗ Z are G-homotopy
equivalent. The stable G-homotopy classes of G-homotopy representations to-
gether with the join define an abelian semi-group. The G-homotopy represen-
tation group V (G) is the associated Grothendieck group. It may be viewed as
the homotopy version of the representation ring. Taking the unit sphere yields a
group homomorphism RR(G) → V (G).

The dimension function of a G-homotopy representation X

dim(X) ∈
∏

(H)∈ccs(G)

Z
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associates to the conjugacy class (H) of a subgroup H ⊆ G the dimension of XH .
The question which elements in

∏
(H)∈ccs(G) Z occur as dim(X) is studied for

instance in [47], [48], [49, III.5] and [50]. Define V (G, dim) by the exact sequence

0 → V (G, dim) → V (G) dim−−→
∏

(H)∈ccs(G)

Z.

Let Pic(A(G)) be the Picard group of the Burnside ring, i.e., the abelian group
of projective A(G)-modules of rank one with respect to the tensor product. The
next result is taken from [50, 6.5].

Theorem 1.21 (V (G, dim) and the Picard group of A(G)). There is an isomor-
phism

V (G, dim)
∼=−→ Pic(A(G)).

Further references about the Burnside ring of finite groups are [7], [10],[15],
[16], [19], [20], [36], [45], [52].

2. The Finite-G-Set-Version of the Burnside Ring

From now on G can be any (discrete) group and need not be finite anymore.
Next we give a first definition of the Burnside ring for infinite groups.

Definition 2.1. (The finite-G-set-version of the Burnside ring). The
isomorphism classes of finite G-sets form a commutative associative semi-ring
with unit under the disjoint union and the cartesian product. The finite-G-set-
version of the Burnside ring A(G) is the Grothendieck ring associated to this
semi-ring.

To avoid any confusion, we emphasize that finite G-set means a finite set with
a G-action. This definition is word by word the same as given for a finite group
in Definition 1.1.

Given a group homomorphism f : G0 → G1 of groups, restriction with f defines
a ring homomorphism f∗ : A(G1) → A(G0). Thus A(G) becomes a contravariant
functor from the category of groups to the category of commutative rings. Pro-
vided that the image of f has finite index, induction defines a homomorphism of
abelian groups f∗ : A(G0) → A(G1), [S] 7→ [G1 ×f S], which is not compatible
with the multiplication.

2.1. Character Theory and Burnside Congruences for the Finite-G-Set-
Version. The definition of the character map (1.2) also makes sense for infinite
groups and we denote it by
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charG : A(G)→
∏

(H)∈ccs(G)

Z, [S] 7→ (|SH |)(H).(2.2)

Given a group homomorphism f : G0 → G1, define a ring homomorphism

f∗ :
∏

(H1)∈ccs(G1)

Z→
∏

(H0)∈ccs(G0)

Z(2.3)

by sending {x(H1)} to {x(f(H0))}. One easily checks

Lemma 2.4. The following diagram of commutative rings with unit commutes
for every group homomorphism f : G0 → G1

A(G1)
char

G1−−−−→ ∏
(H1)∈ccs(G1) Z

f∗
y

yf∗

A(G0) −−−−→
char

G0

∏
(H0)∈ccs(G0) Z

Theorem 2.5 (Burnside ring congruences for A(G)). The character map charG

is an injective ring homomorphism.

Already the composition

A(G) char
G

−−−→
∏

(H)∈ccs(G)

Z pr−→
∏

(H)∈ccs(G)
[G:H]<∞

Z

for pr the obvious projection is injective.

An element x = {x(H)} ∈ ∏
(H)∈ccs(G) Z lies in the image of the character map

charG defined in (2.2) if and only if it satisfies the following two conditions:

(i) There exists a normal subgroup Kx ⊆ G of finite index such that x(H) =
x(H ·Kx) holds for all H ⊆ G, where H ·Kx is the subgroup {hk | h ∈
H, k ∈ Kx};

(ii) We have for every (H) ∈ ccs(G) with [G : H] < ∞:
∑

(C)∈ccs(WGH)
C cyclic

|Gen(C)| · [WGH : NWGHC] · x(p−1
H (C)) ≡ 0 mod |WGH|,

where pH : NGH → WGH is the obvious projection.

Proof. Obviously charG is a ring homomorphism.

Suppose that x ∈ A(G) lies in the kernel of charG. For any finite G-set the
intersection of all its isotropy groups is a normal subgroup of finite index in G.
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Hence we can find an epimorphism px : G → Qx onto a finite group Qx and
x ∈ A(Qx) such that x lies in the image of p∗x : A(Qx) → A(G). Since the map

p∗x :
∏

(H)∈ccs(Qx)

Z →
∏

(K)∈ccs(G)

Z

is obviously injective and the character map charQx is injective by Theorem 1.3,
we conclude x = 0. Hence charG is injective.

Suppose that y lies in the image of charG. Choose x ∈ A(G) with charG(x) = y.
As explained above we can find an epimorphism px : G → Qx onto a finite group
Qx and x ∈ A(Qx) such that p∗x : A(Qx) → A(G) maps x to x. Then Condition (i)
is satisfied by Lemma 2.4 if we take Kx to be the kernel of px. Condition (ii)
holds for x since the proof of Theorem 1.3 carries though word by word to the
case, where G is possibly infinite but H ⊆ G is required to have finite index in
G and hence WGH is finite.

We conclude that charG(x) = 0 if and only if pr ◦charG(x) = 0 holds. Hence
pr ◦charG is injective.

Now suppose that x = {y(H)} ∈ ∏
(H)∈ccs(G) Z satisfies Condition (i) and

Condition (ii). Let Qx = G/Kx and let px : G → Qx be the projection. In the
sequel we abbreviate Q = Qx and p = px. Then Condition (i) ensures that x lies
in the image of the injective map

p∗ :
∏

(H)∈ccs(Q)

Z→
∏

(K)∈ccs(G)

Z.

Let y ∈ ∏
(H)∈ccs(Q) Z be such a preimage. Because of Lemma 2.4 it suffices to

prove that y lies in the image of the character map

charQ : A(Q) →
∏

(H)∈ccs(Q)

Z.

By Theorem 1.3 this is true if and only if for every subgroup K ⊆ Q the congru-
ence ∑

(C)∈ccs(WQK)
C cyclic

|Gen(C)| · [WQK : NWQKC] · y
(
pQ

K)−1(C)
)
≡ 0 mod |WQK|

holds, where pQ
K : NQK → WGK is the projection. Fix a subgroup K ⊆ Q.

Put H = p−1(K) ⊆ G. The epimorphism p : G → Q induces an isomorphism
p : WGH

∼=−→ WQK. Condition (ii) applied to x and H yields
∑

(C)∈ccs(WGH)
C cyclic

|Gen(C)| · [WGH : NWGHC] · x(p−1
H (C)) ≡ 0 mod |WGH|.
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For any cyclic subgroup C ⊆ WGH we obtain a cyclic subgroup p(C) ⊆ WQK
and we have

|Gen(C)|= |Gen(p(C))|;
[WGH : NWGHC] = [WQK : NWQKp(C)];

x
(
p−1

H (C)
)
= y

(
(pQ

K)−1(p(C))
)

.

Now the desired congruence for y follows. This finishes the proof of Theorem 2.5.
¤

Example 2.6 (A of the integers). Consider the infinite cyclic group Z. Any
subgroup of finite index is of the form nZ for some n ∈ Z, n ≥ 1. As an abelian
group A(Z) is generated by the classes [Z/nZ] for n ∈ Z, n ≥ 1. The condition (ii)
appearing in Theorem 2.5 reduces to the condition that for every subgroup nZ
for n ∈ Z, n ≥ 1 the congruence

∑

m∈Z,m≥1,m|n
φ

( n

m

)
· x(m) ≡ 0 mod n

holds, where φ is the Euler function, whose value φ(k) is |Gen(Z/kZ)|. The
condition (i) reduces to the condition that there exists nx ∈ Z, nx ≥ 1 such that
for all m ∈ Z, m ≥ 1 we have x(mZ) = x(gcd(m,nx)Z), where gcd(m,nx) is the
greatest common divisor of m and nx.

Remark 2.7 (The completion Â(G) of A(G)). We call a G-set almost finite if
each isotropy group has finite index and for every positive integer n the number
of orbits G/H in S with [G : H] ≤ n is finite. A G-set S is almost finite if and
only if for every subgroup H ⊆ G of finite index the H-fixed point set SH is finite
and S is the union

⋃
(H)∈ccs(G)
[G:H]<∞

SH . Of course every finite G-set S is almost finite.

The disjoint union and the cartesian product with the diagonal G-action of two
almost finite G-sets is again almost finite. Define Â(G) as the Grothendieck ring
of the semi-ring of almost finite G-sets under the disjoint union and the cartesian
product. There is an obvious inclusion of rings A(G) → Â(G). We can define as
before a character map

ĉhar
G

: Â(G)→
∏

(H)∈ccs(G)
[G:H]<∞

Z, [S] 7→ (|SH |)(H).(2.8)

We leave it to the reader to check that ĉhar
G

is injective, and that an element x
in

∏
(H)∈ccs(G)
[G:H]<∞

Z lies in its image if and only if x satisfies condition (ii) appearing

in Theorem 2.5.

Dress and Siebeneicher [13] analyze Â(G) for profinite groups G and put it
into relation with the Witt vector construction. They also explain that Â(G) is a
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completion of A(G). The ring Â(Z) is studied and put in relation to the necklace
algebra, λ-rings and the universal ring of Witt vectors in [14].

2.2. The Finite-G-Set-Version and the Equivariant Euler Characteristic
and the Equivariant Lefschetz Class. The results of Sections 1.2 and 1.3
carry over to A(G) if one considers only finite G-CW -complexes X whose isotropy
group all have finite index in G. But this is not really new since for any such
G-CW -complex X there is a subgroup H ⊆ G, namely the intersection of all
isotropy groups, such that H is normal, has finite index in G and acts trivially
on X. Thus X is a finite Q-CW -complex for the finite group Q = G/H and all
these invariant are obtained from the one over Q by applying the obvious ring
homomorphism A(Q) = A(Q) → A(G) to the invariants already defined over the
finite group Q.

2.3. The Finite-G-Set-Version as a Green Functor. The notions and results
of Subsection 1.6 carry over to the finite-G-set-version A(G) for an infinite group
G, we replace the category FGINJ by the category GRIFI whose objects are groups
and whose morphisms are injective group homomorphisms whose image has finite
index in the target. However, for infinite groups this does not seem to be the
right approach to induction theory. The approach presented in Bartels-Lück [5] is
more useful. It is based on classifying spaces for families and aims at reducing the
family of subgroups, for instance from all finite subgroups to all hyperelementary
finite subgroups or from all virtually cyclic subgroups to the family of subgroups
which admit an epimorphism to a hyperelementary group and whose kernel is
trivial or infinite cyclic.

2.4. The Finite-G-Set-Version and the Swan Ring. Let R be a commuta-
tive ring. Let Swf (G;R) be the abelian group which is generated by the RG-
isomorphisms classes of RG-modules which are finitely generated free over R
with the relations [M0] − [M1] − [M2] = 0 for any short exact RG-sequence
0 → M0 → M1 → M2 → 0 of such RG-modules. It becomes a commutative
ring, the so called Swan ring Swf (G;R), by the tensor product ⊗R. If G is finite
and F is a field, then Swf (G;F ) is the same as the representation ring RF (G) of
(finite-dimensional) G-representations over K.

Let G0(RG) be the abelian group which is generated by the RG-isomorphism
classes of finitely generated RG-modules with the relations [M0]−[M1]−[M2] = 0
for any short exact RG-sequence 0 → M0 → M1 → M2 → 0 of such RG-modules.
There is an obvious map

φ : Swf (G;R) → G0(RG)

of abelian groups. It is an isomorphism if G is finite and R is a principal ideal
domain. This follows from [9, Theorem 38.42 on page 22].
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We obtain a ring homomorphism

P
G : A(G) → Swf (G;Q), [S] 7→ [R[S]],(2.9)

where R[S] is the finitely generated free R-module with the finite set S as basis
and becomes a RG-module by the G-action on S.

Theorem 1.20 does not carry over to A(G) for infinite groups. For instance,
the determinant induces a surjective homomorphism

det : Sw(Z;Q) → Q∗, [V ] 7→ det(lt : V → V ),

where lt is left multiplication with a fixed generator t ∈ Z. Given a finite Z-set S,
the map lt : Q[S] → Q[S] satisfies (lt)n = id for some n ≥ 1 and hence the image
of the composition det ◦PZ is contained in {±1}. Therefore the map P

Z of (2.9)
is not rationally surjective.

2.5. Maximal Residually Finite Quotients. Let G be a group. Denote by G0

the intersection of all normal subgroups of finite index. This is a normal subgroup.
Let p : G → G/G0 be the projection. Recall that G is called residually finite if
for every element g ∈ G with g 6= 1 there exists a homomorphism onto a finite
group which sends g to an element different from 1. If G is countable, then G is
residually finite if and only if G0 is trivial. The projection p : G → Gmrf := G/G0

is the projection onto the maximal residually finite quotient of G, i.e., Gmrf is
residually finite and every epimorphism f : G → Q onto a residually finite group

Q factorizes through p into a composition G
p−→ Gmrf

f−→ Q. If G is a finitely
generated subgroup of GLn(F ) for some field F , then G is residually finite (see
[35], [51, Theorem 4.2]). Hence for every finitely generated group G each G-
representation V with coefficients in a field F is obtained by restriction with
p : G → Gmrf from a Gmrf -representation. In particular every G-representation
with coefficient in a field F is trivial if G is finitely generated and Gmrf is trivial.

One easily checks that

p∗ : A(Gmrf)
∼=−→ A(G)

is an isomorphism. In particular we have A(G) = Z if Gmrf is trivial. If G is
finitely generated, then

p∗ : Swf (Gmrf ;F )
∼=−→ Swf (G;F )

is an isomorphism. In particular we have Swf (G;F ) = Z if G is finitely generated
and Gmrf is trivial.

Example 2.10 (A(Z/p∞) and Swf (Z/p∞;Q)). Let Z/p∞ be the Prüfer group,
i.e., the colimit of the directed system of injections of abelian groups Z/p →
Z/p2 → Z/p3 → · · · . It can be identified with both Q/Z(p) and Z[1/p]/Z. We
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want to show that the following diagram is commutative and consists of isomor-
phisms

A({1}) = Z p∗−−−−→∼= A(Z/p∞)

P
{1}

y∼= P
Z/p∞

y∼=

Swf ({1};Q) = Z p∗−−−−→∼= Swf (Z/p∞;Q)

where p : Z/p∞ → {1} is the projection. Obviously the diagram commutes and
the left vertical arrow is bijective. Hence it remains to show that the horizontal
arrows are bijective.

Let f : Z/p∞ → Q be any epimorphism onto a finite group. Since Z/p∞ is
abelian, Q is a finite abelian group. Since any element in Z/pn has p-power order,
we conclude from the definition of Z/p∞ as a colimit that Q is a finite abelian
p-group. Since Q is p-divisible, the quotient Q must be p-divisible. Therefore
Q must be trivial. Hence (Z/p∞)mrf is trivial and the upper horizontal arrow is
bijective.

In order to show that the lower horizontal arrow is bijective, it suffices to
show that every (finite-dimensional) rational Z/p∞-representation V is trivial. It
is enough to show that for every subgroup Z/pm its restriction resim V for the
inclusion im : Z/pm → Z/p∞ is trivial. For this purpose choose a positive integer
n such that dimQ(V ) < (p−1) ·pn. Consider the rational Z/pm+n-representation
resim+n V . Let pm+n

k : Z/pm+n → Z/pk be the canonical projection. Let Q(pk)
be the rational Z/pk-representation given by adjoining a primitive pk-th root of
unity to Q. Then the dimension of Q(pk) is (p − 1) · pk−1. A complete system
of representatives for the isomorphism classes of irreducible rational Z/pm+n-
representations is {respm+n

k
Q(pk) | k = 0, 1, 2, . . .m + n}. Since dimQ(V ) <

(p− 1) · pn, there exists a rational Z/pn-representation with W with resim+n V ∼=
respm+n

n
W . Hence we get an isomorphism of rational Z/pm-representations

resim V ∼= resim,m+n ◦ respm+n
n

W

where im,m+n : Z/pm → Z/pm+n is the inclusion. Since the composition pm+n
n ◦

im,m+n is trivial, the rational Z/pm-representation resim V is trivial.

It is not true that

Swf (Z/p∞;C) → Swf ({1};C) = Z

is bijective because Swf (Z/p∞;C) has infinite rank as abelian group (see Exam-
ple 3.16).
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3. The Inverse-Limit-Version of the Burnside Ring

In this section we present the inverse-limit-definition of the Burnside ring for
infinite groups.

The orbit category Or(G) has as objects homogeneous spaces G/H and as
morphisms G-maps. Let Sub(G) be the category whose objects are subgroups
H of G. For two subgroups H and K of G denote by conhomG(H, K) the set
of group homomorphisms f : H → K, for which there exists an element g ∈ G
with gHg−1 ⊂ K such that f is given by conjugation with g, i.e., f = c(g) : H →
K, h 7→ ghg−1. Notice that c(g) = c(g′) holds for two elements g, g′ ∈ G
with gHg−1 ⊂ K and g′H(g′)−1 ⊂ K if and only if g−1g′ lies in the centralizer
CGH = {g ∈ G | gh = hg for all h ∈ H} of H in G. The group of inner
automorphisms of K acts on conhomG(H, K) from the left by composition. Define
the set of morphisms

morSub(G)(H, K) := inn(K)\ conhomG(H, K).

There is a natural projection pr : Or(G) → Sub(G) which sends a homogeneous
space G/H to H. Given a G-map f : G/H → G/K, we can choose an element
g ∈ G with gHg−1 ⊂ K and f(g′H) = g′g−1K. Then pr(f) is represented by
c(g) : H → K. Notice that morSub(G)(H, K) can be identified with the quotient
morOr(G)(G/H, G/K)/CGH, where g ∈ CGH acts on morOr(G)(G/H, G/K) by
composition with Rg−1 : G/H → G/H, g′H 7→ g′g−1H. We mention as illustra-
tion that for abelian G the set of morphisms morSub(G)(H, K) is empty if H is
not a subgroup of K, and consists of precisely one element given by the inclusion
H → K if H is a subgroup in K.

Denote by OrFIN (G) ⊂ Or(G) and SubFIN (G) ⊂ Sub(G) the full subcate-
gories, whose objects G/H and H are given by finite subgroups H ⊂ G.

Definition 3.1. (The inverse-limit-version of the Burnside ring). The
inverse-limit-version of the Burnside ring Ainv(G) is defined to be the commutative
ring with unit given by the inverse limit of the contravariant functor

A(?) : SubFIN (G) → RINGS, H 7→ A(H).

Since inner automorphisms induce the identity on A(H), the contravariant
functor appearing in the definition above is well-defined.

Consider a group homomorphism f : G0 → G1. We obtain a covariant func-
tor SubFIN (f) : SubFIN (G0) → SubFIN (G1) sending an object H to f(H). A
morphism u : H → K given by c(g) : H → K for some g ∈ G with gHg−1 ⊆ K
is sent to the morphism given by c(f(g)) : f(H) → f(K). There is an obvious
transformation from the composite of the functor A(?) : SubFIN (G1) → RINGS

with SubFIN (f) to the functor Ainv(?) : SubFIN (G0) → RINGS. It is given for an
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object H ∈ SubFIN (G0) by the ring homomorphism A(f(H)) → A(H) induced
by the group homomorphism f |H : H → f(H). Thus we obtain a ring homomor-
phism Ainv(f) : Ainv(G1) → Ainv(G0). So Ainv becomes a contravariant functor
GROUPS → RINGS.

Definition 3.1 reduces to the one for finite groups presented in Subsection 1
since for a finite group G the object G ∈ SubFIN (G) is a terminal object.

There is an obvious ring homomorphism, natural in G,

TG : A(G)→Ainv(G)(3.2)

which is induced from the various ring homomorphisms A(iH) : A(G) → A(H) =
A(H) for the inclusions iH : H → G for each finite subgroup H ⊆ G. The
following examples show that it is neither injective nor surjective in general.

3.1. Some Computations of the Inverse-Limit-Version.

Example 3.3 (Ainv(G) for torsionfree G). Suppose that G is torsionfree. Then
SubFIN (G) is the trivial category with precisely one object and one morphisms.
This implies that the projection pr : G → {1} induces a ring isomorphism

Ainv(pr) : Ainv({1}) = Z
∼=−→ Ainv(G).

In particular we conclude from Example 2.6 that the canonical ring homomor-
phism

TZ : A(Z) → Ainv(Z)

of (3.2) is not injective.

Example 3.4 (Groups with appropriate maximal finite subgroups). Let G be
a discrete group which is not torsionfree. Consider the following assertions con-
cerning G:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal
finite subgroup;

(NM) If M ⊆ G is maximal finite, then NGM = M .

The conditions (M) and (NM) imply the following: Let H be a non-trivial
finite subgroup of G. Then there is a unique maximal finite subgroup MH with
H ⊆ MH and the set of morphisms in SubFIN (G) from H to MH consists of
precisely one element which is represented by the inclusion H → MH . Let {Mi |
i ∈ I} be a complete set of representatives of the conjugacy classes of maximal
finite subgroups of G. Denote by ji : Mi → G, ki : {1} → Mi and k : {1} → G the
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inclusions. Then we obtain a short exact sequence

0 → Ainv(G)
Ainv(j{1})×

Q
i∈I Ainv(ji)−−−−−−−−−−−−−−−−→ Ainv({1})×

∏

i∈I

Ainv(Mi)

∆−Qi∈I Ainv(ki)−−−−−−−−−−−→
∏

i∈I

Ainv({1} → 0,

where ∆: Ainv({1} →
∏

i∈I Ainv({1} is the diagonal embedding. If we define
Ãinv(G) as the kernel of Ainv(G) → Ainv({1}), this gives an isomorphism

Ãinv(G)
Q

i∈I
gAinv(ji)−−−−−−−−→

∏

i∈I

Ãinv(Mi).

Here are some examples of groups Q which satisfy conditions (M) and (NM):

• Extensions 1 → Zn → G → F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn.
The conditions (M) and (NM) are satisfied by [33, Lemma 6.3].

• Fuchsian groups F

See for instance [33, Lemma 4.5]). In [33] the larger class of cocompact
planar groups (sometimes also called cocompact NEC-groups) is treated.

• Finitely generated one-relator groups G

Let G = 〈(qi)i∈I | r〉 be a presentation with one relation. Let F be the
free group with basis {qi | i ∈ I}. Then r is an element in F . There
exists an element s ∈ F and an integer m ≥ 1 such that r = sm, the
cyclic subgroup C generated by the class s ∈ Q represented by s has
order m, any finite subgroup of G is subconjugated to C and for any
q ∈ Q the implication q−1Cq ∩ C 6= 1 ⇒ q ∈ C holds. These claims
follow from [34, Propositions 5.17, 5.18 and 5.19 in II.5 on pages 107
and 108]. Hence Q satisfies (M) and (NM) and the inclusion i : C → G
induces an isomorphism

Ainv(i) : Ainv(G)
∼=−→ Ainv(C).

Example 3.5 (Olshanskii’s group). There is for any prime number p > 1075

an infinite finitely generated group G all of whose proper subgroups are finite
of order p [37]. Obviously G contains no subgroup of finite index. Hence the
inclusion i : {1} → G induces an isomorphism

A(i) : A(G) → A({1}) = Z

(see Subsection 2.5). Let H be a finite non-trivial subgroup of G. Then H is
isomorphic to Z/p and agrees with its normalizer. So the conditions appearing
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in Example 3.4 are satisfied. Hence we obtain an isomorphism

Ãinv(G)
∼=−→

∏

(H)∈ccsf (G)
H 6={1}

Ãinv(Z/p),

where ccsf (G) is the set of conjugacy classes of finite subgroups. This implies
that the natural map

TG : A(G)
∼=−→ Ainv(G)

of (3.2) is not surjective.

Example 3.6 (Extensions of Zn with Z/p as quotient). Suppose that G can be
written as an extension 1 → A → G → Z/p → 1 for some fixed prime number
p and for A = Zn for some integer n ≥ 0 and that G is not torsionfree. The
conjugation action of G on the normal subgroup A yields the structure of a
Z[Z/p]-module on A. Every non-trivial element g ∈ G of finite order G has order
p and satisfies

NG〈g〉 = CG〈g〉 = AZ/p × 〈g〉.
In particular the conjugation action of NG〈g〉 on 〈g〉 is trivial. There is a bijection

µ : H1(Z/p;A)
∼=−→ ccsf (G),

where H1(Z/p;A) is the first cohomology of Z/p with coefficients in the Z[Z/p]-
module A. If we fix an element g ∈ G of order p and a generator s ∈ Z/p, the
bijection µ sends [u] ∈ H1(Z/p;A) to (〈ug〉) of the cyclic group 〈ug〉 of order p
if [u] ∈ H1(Z/p;A) is represented by the element u in the kernel of the second
differential A → A, a 7→ ∑p−1

i=0 si · a. Hence we obtain an exact sequence

0 → Ainv(G) → Ainv({1})×
∏

H1(Z/p;A)

Ainv(Z/p) →
∏

H1(Z/p;A)

Ainv({1}) → 0

This gives an isomorphism

Ãinv(G)
∼=−→

∏

H1(Z/p;A)

Ã(Z/p).

3.2. Character Theory and Burnside Congruences for the Inverse-Limit-
Version. Next we define a character map for infinite groups G and determine
its image generalizing Theorem 1.3.

Let ccsf (G) be the set of conjugacy classes (H) of finite subgroups H ⊆ G.
Given a group homomorphism f : G0 → G1, let ccsf (G0) → ccsf (G1) be the map
sending the G0-conjugacy class of a finite subgroup H ⊆ G0 to the G1-conjugacy
class of f(H) ⊆ G1. We obtain a covariant functor

ccs : SubFIN (G) → SETS, H 7→ ccs(H).
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For each finite subgroup H ⊆ G the inclusion H → G induces a map ccs(H) →
ccsf (G) sending (K) to (K). These fit together to a bijection of sets

φG : colimH∈SubFIN (G) ccs(H)
∼=−→ ccsf (G).(3.7)

One easily checks that φG is well-defined and surjective. Next we show injectivity.
Consider two elements x0 and x1 in the source of φG with φG(x0) = φG(x1). For
i = 0, 1 we can choose an object Hi ∈ SubFIN (G) and an element (Ki) ∈ ccsf (Hi)
such that the structure map of the colimit for the object (Hi) sends (Ki) to
xi. Then φG(x0) = φG(x1) means that the subgroups K0 and K1 of G are
conjugated in G. Hence we can find g ∈ G with gK0g

−1 = K1. The morphism
K0 → H0 induced by the inclusion yields a map ccs(K0) → ccs(H0) sending (K0)
to (K0). The morphism K0 → H1 induced by the conjugation homomorphism
c(g) : K0 → H1 yields a map ccs(K0) → ccs(H1) sending (K0) to (K1). This
implies x0 = x1.

By the universal property of the colimit we obtain an isomorphism of abelian
groups

(3.8) ψG : map
(
colimH∈SubFIN (G) ccs(H),Z

)

∼=−→ invlim(H)∈SubFIN (G) map(ccs(H);Z).

Define the character map

charG
inv : Ainv(G)→

∏

(H)∈ccsf (G)

Z(3.9)

to be the map for which the composition with the isomorphism

∏

(H)∈ccsf (G)

Z = map(ccsf (G),Z)
map(φG,id)−−−−−−−→ map

(
colimH∈SubFIN (G) ccs(H),Z

)

ψG

−−→ invlimH∈SubFIN (G) map(ccs(H),Z)

is the map

Ainv(G) = invlimH∈SubFIN (G) map(ccs(H),Z)
invlimH∈SubFIN (G) charH

−−−−−−−−−−−−−−−−→
invlimH∈SubFIN (G) map(ccs(H);Z),

where charH : A(H) → map(ccs(H),Z) is the map defined in (1.2).

Theorem 3.10 (Burnside ring congruences for Ainv(G)). Let x be an element in∏
(H)∈ccsf (G) Z. Then:
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(i) The character map

charG
inv : Ainv(G) →

∏

(H)∈ccsf (G)

Z

of (3.9) is injective;
(ii) The element x lies in the image of the character map

charG
inv : Ainv(G) →

∏

(H)∈ccsf (G)

Z

of (3.9) if and only if for every finite subgroup K ⊆ G the following
condition C(K) is satisfied: The image of x under the map induced by
the inclusion iK : K → G

(iK)∗
∏

(H)∈ccsf (G)

Z = map(ccs(H),Z) →
∏

(L)∈ccsf (K)

Z = map(ccs(K),Z)

satisfies the Burnside ring congruences for the finite group K appearing
in Theorem 1.3;

(iii) If K0 ⊆ K1 ⊆ G are two subgroups, then condition C(K1) implies con-
dition C(K0).

Proof. This follows from Theorem 1.3 and the fact that the inverse limit is left
exact. ¤

Example 3.11. (Finitely many conjugacy classes of finite subgroups).
Suppose that G has only finitely many conjugacy classes of finite subgroups. Then
we conclude from Theorem 3.10 that the cokernel of the injective character map
charG

inv : Ainv(G) → ∏
(H)∈ccsf (G) Z is finite. Hence Ainv(G) is a finitely generated

free abelian group of rank | ccsf (G)|.
Example 3.12 (Ainv(Z/p∞)). We have introduced in Example 2.10 the Prüfer
group Z/p∞ as colimn→∞Z/pn. Each Z/pn represents a finite subgroup and
each finite subgroup arises in this way. Hence ccs(Z/p∞) is on one-to-one-
correspondence with Z≥0 = {n ∈ Z | n ≥ 0}. Thus x ∈ ∏

(H)∈ccs(Z/p∞) Z can be
written as a sequence {x(n)} = {x(n) | n ∈ Z≥0}, where x(n) corresponds to the
value of x at Z/pn.

Consider the finite subgroup Z/pm. Its subgroups are given by Z/pk for k =
0, 1, 2 . . . m. Then condition C(Z/pm) reduces to the set of congruences for each
k = 0, 1, 2, . . . , m− 1

∑

C⊂(Z/pm)/(Z/pk)

Gen(C) · x(p−1
k (C)) ≡ 0 mod pm−k,
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where pk : Z/pm → (Z/pm)/(Z/pk) is the projection. More explicitly, the condi-
tion C(Z/pm) reduces to the set of congruences for each k = 0, 1, 2, . . . , m− 1

x(k) +
m−k∑

i=1

pi−1 · (p− 1) · x(k + i) ≡ 0 mod pm−k,

which can be rewritten as
m−k−1∑

i=0

pi · (x(k + i)− x(k + i + 1)) ≡ 0 mod pm−k.

One can see that C(Z/pm1) implies C(Z/pm0) for m0 ≤ m1 as predicted by
Theorem 3.10 (iii).

Suppose that x satisfies C(Z/pm) for m = 0, 1, 2, . . .. We want to show induc-
tively for l = 0, 1, 2 . . . that x(j) ≡ x(j + 1) mod pl holds for j = 0, 1, 2, . . .. The
induction begin l = 0 is trivial, the induction step from l − 1 to l ≥ 1 done as
follows. The m-th equation appearing in condition C(l + m) yields

l−1∑

i=0

pi · (x(m + i)− x(m + i + 1)) ≡ 0 mod pl.

Since by induction hypothesis x(k + i) − x(k + i + 1) ≡ 0 mod pl−1 holds, this
reduces to

x(m)− x(m + 1) ≡ 0 mod pl.

This finishes the induction step.

Since x(j) ≡ x(j + 1) mod pl holds for l = 0, 1, 2, . . ., we conclude x(j) =
x(j + 1) for j = 0, 1, 2, . . .. On the other hand, if x(j) = x(j + 1) holds for j =
0, 1, 2, . . ., then x obviously satisfies the conditions C(Z/pm) for m = 0, 1, 2, . . ..
Theorem 3.10 (i) and (ii) shows that the character map

charZ/p∞
inv : Ainv(Z/p∞) →

∏

(H)∈ccsf (Z/p∞)

Z

is injective and its image consists of the copy of the integers given by the con-
stant series. This implies that the projection pr : Z/p∞ → {1} induces a ring
isomorphism

Ainv(pr) : Ainv({1}) = Z
∼=−→ Ainv(Z/p∞).

In particular we conclude from Example 2.10 that the canonical ring homomor-
phism

TZ/p∞ : A(Z/p∞)
∼=−→ Ainv(Z/p∞)

of (3.2) is bijective.
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3.3. The-Inverse-Limit-Version of the Burnside Ring and Rational Re-
presentations. Analogously to Ainv(G) one defines Rinv,F (G) for a field F to
be the commutative ring with unit given by the inverse limit of the contravariant
functor

Rinv,F (?) : SubFIN (G) → RINGS, H 7→ RF (H).

This functor has been studied for F = C for instance in [1], [2]. The system
of maps PH : A(H) → RQ(H) for the finite subgroups H ⊆ G appearing in
Theorem 1.20 defines a ring homomorphism

PG
inv : Ainv(G)→Rinv,Q(G).(3.13)

The system of the restriction maps for every finite subgroup H ⊆ G induces a
homomorphism

SG,F : Swf (G;F )→Rinv,F (G).(3.14)

Although each of the maps PH for the finite subgroups H ⊆ G are rationally
surjective by Theorem 1.20, the map Pinv need not to be rationally surjective in
general, since inverse limits do not respects surjectivity or rationally surjectivity
in general.

Example 3.15 (Rinv;Q(Z/∞)). Since every finite subgroup of Z/p∞ is cyclic, we
conclude from Theorem 1.20 that the map

P
Z/p∞
inv : Ainv(Z/p∞)

∼=−→ Rinv,Q(Z/p∞)

is bijective. We have already seen in Example 3.12 that p∗ : Ainv({1}) → Ainv(Z/p∞)
is bijective. We conclude from Example 2.10 that the following diagram is com-
mutative and consists of isomorphisms

A(Z/p∞) TZ/p∞−−−−→∼= Ainv(Z/p∞)

P
Z/p∞

y∼= P
Z/p∞
inv

y∼=

Swf (Z/p∞;Q)
S
Z/p∞;Q
inv−−−−−→∼=

Rinv,Q(Z/p∞)

and is isomorphic by the maps induced by the projection p : Z/p∞ → {1} to the
following commutative diagram whose corners are all isomorphic to Z and whose
arrows are all the identity under this identification.

A({1}) T {1}−−−−→∼= Ainv({1})

P
{1}

y∼= P
{1}
inv

y∼=

Swf ({1};Q)
S
{1};Q
inv−−−−→∼= Rinv,Q({1})
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Example 3.16 (Swf (Z/p∞;C) and Rinv;C(Z/∞)). On the other hand let us
consider C as coefficients. Consider the canonical map

SZ/p∞,C : Swf (Z/p∞;C) → Rinv,C(Z/p∞)

which is induced by the restriction maps for all inclusions H → G of finite sub-
groups. If φH : Rinv,C(Z/p∞) → RC(H) is the structure map of the inverse limit
defining Rinv,C(Z/p∞) for the finite subgroup H ⊆ Z/p∞, then the composition

Swf (Z/p∞;C) SZ/p∞,C−−−−−→ Rinv,C(Z/p∞)
ψH−−→ RC(H)

is the map given by restriction with the inclusion of the finite subgroup H in
Z/p∞. We claim that this composition is surjective. Choose n with H = Z/pn.
We have to find for every 1-dimensional complex Z/pn-representation V a 1-
dimensional complex Z/p∞-representation W such that V is the restriction of
V . If V is given by the homomorphism Z/pn → S1, k 7→ exp(2πik/pn), then the
desired W is given by the homomorphism

Z/p∞ = Z[1/p]/Z→ S1, k 7→ exp(2πik).

This implies that both Swf (Z/p∞;C) and Rinv,C(Z/p∞) have infinite rank as
abelian groups.

4. The Covariant Burnside Group

Next we give a third version for infinite groups which however will only be an
abelian group, not necessarily a ring.

Definition 4.1 (Covariant Burnside group). Define the covariant Burnside group
A(G) of a group G to be the Grothendieck group which is associated to the abelian
monoid under disjoint union of G-isomorphism classes of proper cofinite G-sets
S, i.e., G-sets S for which the isotropy group of each element in S and the quotient
G\S are finite.

The cartesian product of two proper cofinite G-sets with the diagonal action is
proper but not cofinite unless G is finite. So for an infinite group G we do not get
a ring structure on the Burnside group A(G). If G is finite the underlying abelian
group of the Burnside ring A(G) is just A(G). Given a group homomorphism
f : G0 → G1, induction yields a homomorphism of abelian group A(G0) → A(G1)
sending [S] to [G1 ×f S]. Thus A becomes a covariant functor from GROUPS to
Z−MODULES.

In the sequel we denote by R[S] for a commutative ring R and a set S the
free R-module with the set S as R-basis. We obtain an isomorphism of abelian
groups

βG : Z[ccsf (G)]
∼=−→A(G), (H) 7→ [G/H].(4.2)
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The elementary proof of the following lemma is left to the reader.

Lemma 4.3. Let H and K be subgroups of G. Then

(i) G/HK = {gH | g−1Kg ⊂ H};
(ii) The map

φ : G/HK → ccs(H), gH 7→ g−1Kg

induces an injection

WGK\(G/HK) → ccs(H);

(iii) The WGK-isotropy group of gH ∈ G/HK is (gHg−1 ∩NGK)/K;
(iv) If H is finite, then G/HK is a finite union of WGK-orbits of the shape

WGK/L for finite subgroups L ⊂ WGK. ¤

The next definition makes sense because of Lemma 4.3 above.

Definition 4.4 (L2-character map). Define for a finite subgroup K ⊂ G the
L2-character map at (K)

charG
K : A(G) → Q, [S] 7→

r∑

i=1

|Li|−1

if WGK/L1, WGK/L2,. . . , WGK/Lr are the WGK-orbits of SK . Define the
global L2-character map by

charG : A(G) → Q[ccsf (G)], [S] 7→
∑

(K)∈ccsf (G)

charG
K([S]) · (K).

Notice that one gets from Lemma 4.3 the following explicit formula for the
value of charG

K(G/H). Namely, define

LK(H) := {(L) ∈ ccs(H) | L conjugate to K in G}.
For (L) ∈ LK(H) choose L ∈ (L) and g ∈ G with g−1Kg = L. Then

g(H ∩NGL)g−1 = gHg−1 ∩NGK;

|(gHg−1 ∩NGK)/K|−1 =
|K|

|H ∩NGL| .

This implies

charG
K(G/H) =

∑

(L)∈LK(H)

|K|
|H ∩NGL| .(4.5)

Remark 4.6 (Burnside integrality relations). Let T ⊆ ccsf (G) be a finite subset
closed under taking subgroups, i.e., if (H) ∈ T , then (K) ∈ T for every subgroup
K ⊆ H. Since a finite subgroup contains only finitely many subgroups, one can
write ccsf (G) as the union of such subsets T . The union of two such subsets is
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again such a subset. So R[ccsf (G)] is the colimit of the finitely generated free
R-modules R[T ] if T runs to the finite subsets of ccsf (G) closed under taking
subgroups.

Fix a subset T of ccsf (G) closed under taking subgroups. One easily checks
using Lemma 4.3 that the composition

Z[ccsf (G)]
βG

−−→ A(G)
charG

−−−→ Q[ccsf (G)]

maps Z[T ] to Q[T ]. We numerate the elements in T by (H1), (H2), . . ., (Hr) such
that Hi is subconjugated to (Hj) only if i ≤ j holds. Then the composition

Q[ccsf (G)]
βG⊗ZQ−−−−−→ A(G)⊗Z Q charG

−−−→ Q[ccsf (G)]

induces a Q-homomorphism

Q[T ] AT−−→ Q[T ]

given with respect to the basis {(Hi) | i = 1, 2, . . . r} by a matrix A which is
triangular and all whose diagonal entries are equal to 1. The explicit values of
the entries in AT are given by (4.5). The matrix AT is invertible and one can
actually write down an explicit formula for its inverse matrix BT in terms of
Möbius inversion [3, Chaper IV]. The matrix BT yields an isomorphism

BT : Q[T ]
∼=−→ Q[T ].

Given an element x ∈ Q[ccsf (G)], we can find a finite subset T ⊆ ccsf (G)
closed under taking subgroups such that x lies already in Q[T ]. Then x lies in
the image of the injective L2-character map

charG : A(G) → Q[ccsf (G)]

of Definition 4.4 if and only if

BT : Q[T ]
∼=−→ Q[T ]

maps x to an element in Z[T ]. This means that the following rational numbers
r∑

j=1

BT (i, j) · x(j)

for i = 1, 2 . . . , r are integers, where BT (i, j) and x(j) are the components of BT

and x belonging to (i, j) and j. We call the condition that these rational numbers
are integral numbers the Burnside integrality relations.

Now suppose that G is finite. Then the global L2-character of Definition 4.4 is
related to the classical character map (1.2) by the factors |WK|−1, i.e., we have
for each subgroup K of G and any finite G-set S

chG
K(S) = |WK|−1 · |SK |.(4.7)
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One easily checks that for finite G under the identification (4.7) the Burnside inte-
grality relations can be reformulated as a set of congruences, which consists of one
congruence modulo |WGH| for every subgroup H ⊆ G (compare Subsection 1.1).

4.1. Relation to L2-Euler characteristic and Universal Property of the
Covariant Burnside Group. The Burnside group A(G) can be characterized
as the universal additive invariant for finite proper G-CW -complexes and the
universal equivariant Euler characteristic of a finite proper G-CW -complex is
mapped to the L2-Euler characteristics of the WGH-CW -complexes XH by the
character map at (H) for every finite subgroup H ⊆ G. In particular it is
interesting to investigate the universal equivariant Euler characteristic of the
classifying space for proper G-actions EG provided that there is a finite G-CW -
model for EG. All this is explained in [26, Section 6.6.2].

The relation of the universal equivariant Euler characteristic to the equivariant
Euler class which is by definition the class of the Euler operator on a cocompact
proper smooth G-manifold with G-invariant Riemannian metric in equivariant K-
homology defined by Kasparov is analyzed in [31]. Equivariant Lefschetz classes
for G-maps of finite proper G-CW -complexes are studied in [32].

4.2. The Covariant Burnside Group and the Colimit-Version of the
Burnside Ring Agree. Instead of the inverse-limit-version one may also con-
sider the colimit-version

Acov(G) := colimH∈SubFIN (G)A(H)

where we consider A as a covariant functor from SubFIN (G) to the category of
Z-modules by induction.

Theorem 4.8 (Acov(G) and A(G) agree). The obvious map induced by the var-
ious inclusions of a finite subgroup H ⊆ G

V G : Acov(G)
∼=−→ A(G)

is a bijection of abelian groups.

Proof. Recall that A(G) is the free abelian group with the set ccsf (G) of conju-
gacy classes of finite subgroups as basis. Now the claim follows from the bijec-
tion (3.7). ¤

The analogue for the representation ring is an open conjecture. Namely if we
define for a field F of characteristic zero

Rcov,F (G) := colimH∈SubFIN (G)RF (H)

we can consider
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Conjecture 4.9. The obvious map

WG,F : Rcov,F (G) → K0(F [G])

is a bijection of abelian groups.

This conjecture follows from the Farrell-Jones Conjecture for algebraic K-
theory for F [G] as explained in [30, Conjecture 3.3]. No counterexamples are
known at the time of writing. For a status report about the Farrell-Jones Con-
jecture we refer for instance to [30, Section 5].

Let

PG
cov : Acov(G)→Rcov,F (G).(4.10)

be the map induced by the maps PH : A(H) → RF (H), [S] 7→ [F [S]] for the
various finite subgroups H ⊆ G.

4.3. The Covariant Burnside Group and the Projective Class Group.
Given a finite proper G-set, the Q-module Q[S] with the set S as basis becomes
a finitely generated projective QG-module by the G-action on S. Thus we obtain
a homomorphism

PG : A(G)→K0(QG).(4.11)

Conjecture 4.12. The map PG : A(G) → K0(QG) is rationally surjective.

This conjecture is motivated by the fact that it is implied by Theorem 1.20
and Theorem 4.8 together with Conjecture 4.9.

4.4. The Covariant Burnside Group as Module over the Finite-Set-
Version. If S is a finite G-set and T is a cofinite proper G-set, then their carte-
sian product with the diagonal G-action is a cofinite proper G-set. Thus we
obtain a pairing

µG
A : A(G)×A(G) → A(G), ([S], [T ]) 7→ [S × T ](4.13)

Analogously one defines a pairing

µG
K : Swf (G;Q)×K0(QG) → K0(QG), ([M ], [P ]) 7→ [M ⊗Q P ](4.14)

which turns K0(QG) into a Swf (G;Q)-module. These two pairings are compati-
ble in the obvious sense (see (0.1)).
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4.5. A Pairing between the Inverse-Limit-Version and the Covariant
Burnside Group. Given a finite group H, we obtain a homomorphism of abelian
groups

νH : A(H) → homZ(A(H),Z), [S] 7→ νH(S),

where νH(S) : A(H) → Zmaps [T ] to |G\(S×T )| for the diagonal G-operation on
S × T . A group homomorphism f : H → K induces a homomorphism of abelian
groups resφ : A(K) → A(H) by restriction and a homomorphism of abelian groups
indφ : A(H) → A(K) by induction. The latter induces a homomorphism of
abelian groups (indφ)∗ : A(K) → A(H). One easily checks that the collection
of the homomorphisms νH for the subgroups H ⊆ G induces a natural trans-
formation of the contravariant functors from SubFIN (G) to Z-modules given by
A(?) and homZ(A(?),Z). Passing to the inverse limit, the canonical isomorphism
of abelian groups

homZ
(
colimH∈SubFIN (G)A(H),Z

) ∼=−→ invlimH∈SubFIN (G) homZ(A(H),Z)

and the isomorphism appearing in Theorem 4.8 yield a homomorphism of abelian
groups

νG
A : Ainv(G) → homZ(A(G);Z)

which we can also write a bilinear pairing

νG
A : Ainv(G)×A(G)→Z.(4.15)

For a field F of characteristic zero, there is an analogous pairing

νG
R : Rinv,F (G)×Rcov,F (G)→Z(4.16)

which comes from the various homomorphisms of abelian groups for each finite
subgroup H ⊆ G

RF (H) → homZ(RF (H);Z), [V ] 7→ ([W ] 7→ dimF (F ⊗FG (V ⊗F W ))) .

The pairings νG
A and νG

R are compatible in the obvious sense (see (0.1)).

The homomorphism of abelian groups νG
R : Rinv,F (G) → homZ(Rcov,F (G),Z)

associated to the pairing νG
R is injective. Its cokernel is finite if G has only finitely

many conjugacy classes of finite subgroups. It is rationally surjective if there is
an upper bound on the orders of finite subgroups of G.

Define the homomorphism QG
A : A(G) → Z and QG

K : K0(QG) → Z respectively
by sending [S] to |G\S| and [P ] to dimQ(Q⊗QGP ) respectively. Then the pairings
µG

A, νG
A , µG

K and νG
R are compatible in the obvious sense (see (0.1)).
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4.6. Some Computations of the Covariant Burnside Group.

Example 4.17 (A(G) for torsionfree G). Suppose that G is torsionfree. Then
the inclusion i : {1} → G induces a Z-isomorphism

A(i) : A({1}) = Z
∼=−→ A(G).

Example 4.18 (Extensions of Zn with Z/p as quotient). Suppose that G can be
written as an extension 1 → A → G → Z/p → 1 for some fixed prime number p
and for A = Zn for some integer n ≥ 0 and that G is not torsionfree. We use the
notation of Example 3.6 in the sequel. We obtain an exact sequence

0 →
⊕

H1(Z/p;A)

A({1}) → A({1})⊕
⊕

H1(Z/p;A)

A(Z/p) → A(G) → 0

If we define Ã(G) as the kernel of A(G) → A({1}), we obtain an isomorphism
⊕

H1(Z/p;A)

Ã(Z/p)
∼=−→ Ã(G).

Let H0 be the trivial subgroup and H1, H2, . . ., Hr be a complete set of represen-
tatives of the conjugacy classes of finite subgroups. Then r = |H1(Z/p;A)| and
A(G) is the free abelian group of rank r +1 with {[G/H0], [G/H1], . . . [G/Hr]} as
basis. Each Hi is isomorphic to Z/p. We compute using (4.5)

chG
H0

(G/H0) = 1;
chG

H0
(G/Hj) = 1

p j = 1, 2, . . . , r;
chG

Hi
(G/Hj) = 1 i = j, i, j = 1, 2, . . . , r;

chG
Hi

(G/Hj) = 0 i 6= j, i, j = 1, 2, . . . , r.

The Burnside integrality conditions (see Remark 4.6) become in this case for
x = (x(i)) ∈ ⊕r

i=0Q

x(0)− 1
p
·

r∑

i=1

x(i)∈Z;

x(i)∈Z i = 1, 2, . . . , r.

Example 4.19 (Groups with appropriate maximal finite subgroups). Consider
the groups appearing in Example 3.4. In the notation of Example 3.4 we get an
isomorphism of Z-modules

⊕

i∈I

Ã(Mi)
L

i∈I
eA(ji)−−−−−−−→ Ã(G).
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5. Equivariant Cohomology Theories

In this section we recall the axioms of a (proper) equivariant cohomology theory
of [27]. They are dual to the ones of a (proper) equivariant homology theory as
described in [25, Section 1].

5.1. Axiomatic Description of a G-Cohomology Theory. Fix a group G
and an commutative ring R. A G-CW -pair (X, A) is a pair of G-CW -complexes.
Recall that a G-CW -complex X is proper if and only if all isotropy groups of
X are finite, and is finite if X is obtained from A by attaching finitely many
equivariant cells, or, equivalently, if G\X is compact. A G-cohomology theory
H∗G with values in R-modules is a collection of covariant functors Hn

G from the
category of G-CW -pairs to the category of R-modules indexed by n ∈ Z together
with natural transformations δn

G(X, A) : Hn
G(X, A) → Hn+1

G (A) := Hn+1
G (A, ∅) for

n ∈ Z such that the following axioms are satisfied:

• G-homotopy invariance
If f0 and f1 are G-homotopic maps (X, A) → (Y, B) of G-CW -pairs,
then Hn

G(f0) = Hn
G(f1) for n ∈ Z;

• Long exact sequence of a pair
Given a pair (X, A) of G-CW -complexes, there is a long exact sequence

· · · δn−1
G−−−→ Hn

G(X, A)
Hn

G(j)−−−−→ Hn
G(X)

Hn
G(i)−−−−→ Hn

G(A)
δn
G−→ · · · ,

where i : A → X and j : X → (X, A) are the inclusions;
• Excision

Let (X, A) be a G-CW -pair and let f : A → B be a cellular G-map
of G-CW -complexes. Equip (X ∪f B,B) with the induced structure of
a G-CW -pair. Then the canonical map (F, f) : (X, A) → (X ∪f B,B)
induces an isomorphism

Hn
G(F, f) : Hn

G(X, A)
∼=−→ Hn

G(X ∪f B,B);

• Disjoint union axiom
Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote by ji : Xi →∐

i∈I Xi the canonical inclusion. Then the map

∏

i∈I

Hn
G(ji) : Hn

G

(∐

i∈I

Xi

)
∼=−→

∏

i∈I

Hn
G(Xi)

is bijective.

If H∗G is defined or considered only for proper G-CW -pairs (X, A), we call it a
proper G-cohomology theory H∗G with values in R-modules.
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5.2. Axiomatic Description of an Equivariant Cohomology Theory. Let
α : H → G be a group homomorphism. Given an H-space X, define the induction
of X with α to be the G-space indα X which is the quotient of G×X by the right
H-action (g, x) · h := (gα(h), h−1x) for h ∈ H and (g, x) ∈ G×X. If α : H → G
is an inclusion, we also write indG

H instead of indα.

A (proper) equivariant cohomology theory H∗? with values in R-modules consists
of a collection of (proper) G-cohomology theories H∗G with values in R-modules
for each group G together with the following so called induction structure: given
a group homomorphism α : H → G and a (proper) H-CW -pair (X, A) there are
for each n ∈ Z natural homomorphisms

indα : Hn
G(indα(X, A))→Hn

H(X, A)(5.1)

satisfying

(i) Bijectivity
If ker(α) acts freely on X, then indα : Hn

G(indα(X, A)) → Hn
H(X, A) is

bijective for all n ∈ Z;
(ii) Compatibility with the boundary homomorphisms

δn
H ◦ indα = indα ◦δn

G;
(iii) Functoriality

Let β : G → K be another group homomorphism. Then we have for
n ∈ Z

indβ◦α = indα ◦ indβ ◦Hn
K(f1) : Hn

H(indβ◦α(X, A)) → Hn
K(X, A),

where f1 : indβ indα(X, A)
∼=−→ indβ◦α(X, A), (k, g, x) 7→ (kβ(g), x) is the

natural K-homeomorphism;
(iv) Compatibility with conjugation

For n ∈ Z, g ∈ G and a (proper) G-CW -pair (X, A) the homomorphism
indc(g) : G→G : Hn

G(indc(g) : G→G(X, A)) → Hn
G(X, A) agrees with Hn

G(f2),
where f2 is the G-homeomorphism f2 : (X, A) → indc(g) : G→G(X, A), x 7→
(1, g−1x) and c(g)(g′) = gg′g−1.

This induction structure links the various G-cohomology theories for different
groups G.

Sometimes we will need the following lemma whose elementary proof is anal-
ogous to the one in [25, Lemma 1.2].

Lemma 5.2. Consider finite subgroups H, K ⊆ G and an element g ∈ G
with gHg−1 ⊆ K. Let Rg−1 : G/H → G/K be the G-map sending g′H to
g′g−1K and c(g) : H → K be the homomorphism sending h to ghg−1. Let
pr: (indc(g) : H→K{•}) → {•} be the projection to the one-point space {•}. Then
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the following diagram commutes

Hn
G(G/K)

Hn
G(Rg−1 )−−−−−−−→ Hn

G(G/H)

indG
K

y∼= indG
H

y∼=

Hn
K({•}) indc(g) ◦Hn

K(pr)−−−−−−−−−−→ Hn
H({•})

5.3. Multiplicative Structures. Let H∗G be a (proper) G-cohomology theory.
A multiplicative structure assigns to a (proper) G-CW -complex X with G-CW -
subcomplexes A,B ⊆ X natural R-homomorph
-isms

∪ : Hm
G (X, A)⊗R Hn

G(X, B)→Hm+n
G (X, A ∪B).(5.3)

This product is required to be compatible with the boundary homomorphism
of the long exact sequence of a G-CW -pair, namely, for u ∈ Hm

G (A) and v ∈
HnG(X) and i : A → X the inclusion we have δ(u∪v) = δ(u∪Hn(i)(v). Moreover,
it is required to be graded commutative, to be associative and to have a unit
1 ∈ H0

G(X) for every (proper) G-CW -complex X.

LetH∗? be a (proper) equivariant cohomology theory. A multiplicative structure
on it assigns a multiplicative structure to the associated (proper) G-cohomology
theory H∗G for every group G such that for each group homomorphism α : H → G
the maps given by the induction structure of (5.1)

indα : Hn
G(indα(X, A))

∼=−→Hn
H(X, A)

are in the obvious way compatible with the multiplicative structures on H∗G and
H∗H .

Example 5.4. Equivariant cohomology theories coming from non-equi-
variant ones). Let K∗ be a (non-equivariant) cohomology theory with multi-
plicative structure, for instance singular cohomology or topological K-theory. We
can assign to it an equivariant cohomology theory with multiplicative structure
H∗? in two ways. Namely, for a group G and a pair of G-CW -complexes (X, A)
we define Hn

G(X, A) by Kn(G\(X, A)) or by Kn(EG×G (X, A)).

5.4. Equivariant Topological K-Theory. In [29] equivariant topological K-
theory is defined for finite proper equivariant CW -complexes in terms of equi-
variant vector bundles. For finite G it reduces to the classical notion which
appears for instance in [4]. Its relation to equivariant KK-theory is explained
in [38]. This definition is extended to (not necessarily finite) proper equivariant
CW -complexes in [29] in terms of equivariant spectra using Γ-spaces. This equi-
variant cohomology theory K∗

? has the property that for any finite subgroup H
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of a group G we have

Kn
G(G/H) = Kn

H({•}) =
{

RC(H) n even;
{0} n odd.

6. Equivariant Stable Cohomotopy in Terms of Real Vector
Bundles

In this section we give a construction of equivariant stable cohomotopy for fi-
nite proper G-CW -complexes for infinite groups G in terms of real vector bundles
and maps between the associated sphere bundles. The result will be an equiva-
riant cohomology theory with multiplicative structure for finite proper equivariant
CW -complexes. It generalizes the well-known approach for finite groups in terms
of representations. We will first give the construction, show why it reduces to
the classical construction for a finite group and explain why we need to consider
equivariant vector bundles and not only representations in the case of an infinite
group.

6.1. Preliminaries about Equivariant Vector Bundles. We will need the
following notation. Given a finite-dimensional (real) vector space V , we denote
by SV its one-point compactification. We will use the point at infinity as the base
point of SV in the sequel. Given two finite-dimensional vector spaces V and W ,
the obvious inclusion V ⊕W → SV ∧ SW induces a natural homeomorphism

φ(V, W ) : SV⊕W ∼=−→SV ∧ SW .(6.1)

Let

∇ : SR→SR ∨ SR.(6.2)

be the pinching map, which sends x > 0 to ln(x) ∈ R ⊆ SR in the first summand,
x < 0 to − ln(−x) ∈ R ⊆ SR in the second summand and 0 and ∞ to the base
point in SR ∨SR. Under the identification SR = S1 this is the standard pinching
map S1 → S1/S0 ∼= S1 ∨ S1, at least up to pointed homotopy.

We need some basics about G-vector bundles over proper G-CW -complexes.
More details can be found for instance in [29, Section 1]. Recall that a G-CW -
complex is proper if and only if all its isotropy groups are finite. A G-vector
bundle ξ : E → X over X is a real vector bundle with a G-action on E such that
ξ is G-equivariant and for each g ∈ G the map lg : E → E is fiberwise a linear
isomorphism. Such a G-vector bundle is automatically trivial in the equivariant
sense that for each x ∈ X there is a G-neighborhood U , a G-map f : U → G/H
and a H-representation V such that ξ|U is isomorphic as G-vector bundle to the
pullback of the G-vector bundle G×H V → G/H by f . Denote the fiber ξ−1(x)
over a point x ∈ X by Ex. This is a representation of the finite isotropy group Gx

of x ∈ X. A map of G-vector bundles (f, f) from ξ0 : E0 → X0 to ξ1 : E1 → X1
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consists of G-maps f : E0 → E1 and f : X0 → X1 with ξ1 ◦ f = f ◦ ξ0 such that
f is fiberwise a (not necessarily injective or surjective) linear map.

Given a G-vector bundle ξ : E → X, let Sξ : SE → X be the locally trivial G-
bundle whose fiber over x ∈ X is SEx . Consider two G-vector bundles ξ : E → X
and µ : F → X. Let Sξ ∧X Sµ : SE ∧X SF → X be the G-bundle whose fiber
of x ∈ X is SEx ∧ SFx , in other word it is obtained from Sξ : SE → X and
Sµ : SF → X by the fiberwise smash product. Define Sξ ∨X Sµ analogously.
From (6.1) we obtain a natural G-bundle isomorphism

φ(ξ, µ) : Sξ⊕µ ∼=−→Sξ ∧X Sµ.(6.3)

The next basic lemma is proved in [29, Lemma 3.7].

Lemma 6.4. Let f : X → Y be a G-map between finite proper G-CW -complexes
and ξ a G-vector bundle over X. Then there is a G-vector bundle µ over Y such
that ξ is a direct summand in f∗µ.

6.2. The Definition of Equivariant Stable Cohomotopy Groups. Fix a
proper G-CW -complex X. Let SPHBG(X) be the following category. Objects
are G-CW -vector bundles ξ : E → X over X. A morphism from ξ : E → X
to µ : F → X is a bundle map u : Sξ → Sµ covering the identity id : X → X
which fiberwise preserve the base points. (We do not require that u is fiberwise
a homotopy equivalence.)

A homotopy h between two morphisms u0, u1 from ξ : E → X to µ : F → X is a
bundle map h : Sξ×[0, 1] → Sµ from the bundle Sξ×id[0,1] : SE×[0, 1] → X×[0, 1]
to Sµ which covers the projection X× [0, 1] → X and fiberwise preserve the base
points such that its restriction to X × {i} is ui for i = 0, 1.

Let Rk be the trivial vector bundle X×Rk → X. We consider it as a G-vector
bundle using the trivial G-action on Rk. Fix an integer n ∈ Z. Given two objects
ξi, two non-negative integers ki with ki + n ≥ 0 and two morphisms

ui : Sξi⊕Rki → Sξi⊕Rki+n

for i = 0, 1, we call u0 and u1 equivalent, if there are objects µi in SPHBG(X) for
i = 0, 1 and an isomorphism of G-vector bundles v : µ0 ⊕ ξ0

∼=−→ µ1 ⊕ ξ1 such that
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the following diagram in SPHBG(X) commutes up to homotopy

Sµ0⊕Rk1 ∧X Sξ0⊕Rk0 id∧Xu0−−−−−→ Sµ0⊕Rk1 ∧X Sξ0⊕Rk0+n

σ1

y σ2

y
Sµ0⊕ξ0⊕Rk0+k1 Sµ0⊕ξ0⊕Rk0+k1+n

Sv⊕id

y Sv⊕id

y
Sµ1⊕ξ1⊕Rk0+k1 Sµ1⊕ξ1⊕Rk0+k1+n

σ3

y σ4

y
Sµ1⊕Rk0 ∧X Sξ1⊕Rk1 id∧Xu1−−−−−→ Sµ1⊕Rk0 ∧X Sξ1⊕Rk1+n

where σi stands for the obvious isomorphism coming from (6.3) and permutation.

We define πn
G(X) to be the set of equivalence classes of such morphisms u : Sξ⊕Rk →

Sξ⊕Rk+n
under the equivalence relation mentioned above. It becomes an abelian

group as follows.

The zero element is represented by the class of any morphism c : Sξ⊕Rk →
Sξ⊕Rk+n

which is fiberwise the constant map onto the base point.

Consider classes [u0] and [u1] represented by two morphisms of the shape
ui : Sξi⊕Rki → Sξi⊕Rki+n

for i = 0, 1. Define their sum by the class represented
by the morphism

Sξ0⊕ξ1⊕Rk0+k1+1 σ1−→ Sξ0⊕Rk0 ∧X Sξ1⊕Rk1 ∧X SR

id∧X id∧X∇−−−−−−−−→ Sξ0⊕Rk0 ∧X Sξ1⊕Rk1 ∧X

(
SR ∨X SR

)

τ−→
(
Sξ0⊕Rk0 ∧X Sξ1⊕Rk1 ∧X SR

)
∨X

(
Sξ0⊕Rk0 ∧X Sξ1⊕Rk1 ∧X SR

)

(u0∧X id∧X id)∨X(id∧Xu1∧X id)−−−−−−−−−−−−−−−−−−−−−→(
Sξ0⊕Rk0+n ∧X Sξ1⊕Rk1 ∧X SR

)
∨X

(
Sξ0⊕Rk0 ∧X Sξ1⊕Rk1+n ∧X SR

)

σ5∨Xσ6−−−−−→
(
Sξ0⊕ξ1⊕Rk0+k1+1+n

)
∨X

(
Sξ0⊕ξ1⊕Rk0+k1+1+n

)

id∨X id−−−−−→ Sξ0⊕ξ1⊕Rk0+k1+1+n

where the isomorphisms σi are given by permutation and the isomorphisms (6.3)
τ is given by the distributivity law for smash and wedge-products and∇ is defined
fiberwise by the map ∇ of (6.2).
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Consider a class [u] represented by the morphisms of the shape u : Sξ⊕Rk →
Sξ⊕Rk+n

. Define its inverse as the class represented by the composition

Sξ⊕Rk+1 σ1−→ Sξ⊕Rk ∧X SR
u∧X− id−−−−−→ Sξ⊕Rk+n ∧X SR

σ2−→ Sξ⊕Rk+1+n
,

where − id is fiberwise the map − id : R → R. The proof that this defines the
structure of an abelian group is essentially the same as the one that the abelian
group structure on the stable homotopy groups of a space is well-defined.

Next consider a pair (X, A) of proper G-CW -complexes. In order to define
the abelian group πn

G(X, A) we consider morphisms u : Sξ⊕Rk → Sξ⊕Rk+n
with

k + n ≥ 0 in SPHBG(X) such that u is trivial over A, i.e., for every point
a ∈ A the map ua : Sξa⊕Rk → Sξa⊕Rk+n

is the constant map onto the base point.
In the definition of the equivalence relation for such pairs we require that the
homotopies of two morphisms are stationary over A. Then define πn

G(X, A) as
the set of equivalence classes of morphism u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X)
with k + n ≥ 0 which are trivial over A using this equivalence relation. The
definition of the abelian group structure goes through word by word.

Notice that in the definition of πn
G(X, A) we cannot use as in the classical

settings cones or suspensions since these contain G-fixed points and hence are
not proper unless G is finite. The properness is needed to ensure that certain
basic facts about bundles carry over to the equivariant setting.

6.3. The Proof of the Axioms of an Equivariant Cohomology Theory
with Multiplicative Structure. In this subsection we want to prove

Theorem 6.5 (Equivariant stable cohomotopy in terms of equivariant vector
bundles). Equivariant stable cohomotopy π∗? defines an equivariant cohomology
theory with multiplicative structure for finite proper equivariant CW -complexes.
For every finite subgroup H of the group G the abelian groups πn

G(G/H) and πn
H

are isomorphic for every n ∈ Z and the rings π0
G(G/H) and π0

H = A(H) are
isomorphic.

Consider a G-map f : (X, A) → (Y, B) of pairs of proper G-CW -complexes.
Using the pullback construction one defines a homomorphism of abelian groups

πn
G(f) : πn

G(Y, B) → πG
n (X, A).

Thus πn
G becomes a contravariant functor from the category of proper G-CW -

pairs to the category of abelian groups.

Lemma 6.6. Let f0, f1 : (X, A) → (Y, B) be two G-maps of pairs of proper G-
CW -complexes. If they are G-homotopic, then πn

G(f0) = πn
G(f1).
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Proof. By the naturality of πn
G it suffices to prove that πn

G(h) = id holds for the
G-map

h : (X, A)× [0, 1] → (X, A)× [0, 1], (x, t) 7→ (x, 0).

Let the element [u] ∈ πn
G((X, A)× [0, 1]) be given by the morphism u : Sξ⊕Rk →

Sξ⊕Rk+n
in SPHBG(X × [0, 1]) with k + n ≥ 0 which is trivial over X × {0, 1} ∪

A × [0, 1]. By [29, Theorem 1.2] there is an isomorphism of G-vector bundles
v : ξ

∼=−→ h∗ξ covering the identity id : X× [0, 1] → X× [0, 1] such that v restricted
to X×{0} is the identity id : ξ|X×{0} → ξ|X×{0}. The composition of morphisms
in SPHBG(X × [0, 1])

u′ : Sh∗ξ⊕Rk Sv−1⊕id−−−−−→ Sξ⊕Rk u−→ Sξ⊕Rk+n Sv⊕id−−−−→ Sh∗ξ⊕Rk+n

has the property that its restriction to X ×{0} agrees with the restriction of h∗u
to X × {0}. Hence this composite u′ is homotopic to the morphism h∗u itself.
Namely, if we write h∗ξ = i∗0ξ × [0, 1] for i0 : X → X × [0, 1], x 7→ (x, 0), then the
homotopy is given at time s ∈ [0, 1] by the morphism

Si∗0ξ⊕Rk × [0, 1] → Si∗0ξ⊕Rk+n × [0, 1], (z, t) 7→ (pr ◦u′(z, st), t)

for pr : Si∗0ξ⊕Rk+n × [0, 1] → Si∗0ξ⊕Rk+n
the projection. Obviously this homotopy

is stationary over A. We conclude from the equivalence relation appearing in the
definition of πn

G and the definition of πn
G(h) that πn

G(h)([u]) = [u′] = [u] holds. ¤

Next we define the suspension homomorphism

σn
G(X, A) : πn

G(X, A)→ πn+1
G ((X, A)× ([0, 1], {0, 1})).(6.7)

For a G-vector bundle ξ over X let ξ×[0, 1] be the obvious G-vector bundle over
X×[0, 1], which is the same as the pullback of ξ for the projection X×[0, 1] → X.
Consider a morphism u : Sξ → Sµ in SPHBG(X) which is trivial over A. Let

σ(u) : Sξ×[0,1] = Sξ × [0, 1] → S(µ⊕R)×[0,1] =
(
Sµ ∧X SR

)
× [0, 1]

be the morphism in SPHBG(X × [0, 1]) given by

(z, t) ∈ Sξ × [0, 1] 7→ ((u(z) ∧ e(t)) , t) ∈
(
Sµ ∧X SR

)
× [0, 1],

where e : [0, 1] → SR comes from the homeomorphism (0, 1) → R, t 7→ ln(x) −
ln(1 − x). The morphism σ(u) is trivial over X × {0, 1} ∪ A × [0, 1]. We define
the in (X, A) natural homomorphism of abelian groups σn

G(X, A) by sending the
class of u to the class of σ(u).

Lemma 6.8. The homomorphism σn
G(X, A) of (6.7) is bijective for all pairs of

proper G-CW -complexes (X, A).
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Proof. We want to construct an inverse

τn+1
G : πn+1

G ((X, A)× ([0, 1], {0, 1})) → πn
G(X, A)

of σn
G(X, A). Consider two G-vector bundles ξ and µ over X and a morphism

v : Sξ×[0,1] → Sµ×[0,1] in SPHBG(X× [0, 1]) which is trivial over A×{0, 1}. Define
a morphism in SPHBG(X) which is trivial over A

τ(v) : Sξ⊕R = Sξ ∧X SR → Sµ

by sending (z, (e(t)) ∈ Sξ ∧X SR to pr ◦v(z, t) for pr : Sµ×[0,1] = Sµ × [0, 1] → Sµ

the projection, e : [0, 1] → SR the map defined above and t ∈ [0, 1]. Next consider
an element [u] ∈ πn+1

G (X, A) represented by a morphism u : Sξ⊕Rk → Sξ⊕Rk+n+1

in SPHBG(X × [0, 1]) for k + n ≥ 0 which is trivial over X × {0, 1} ∪ A × [0, 1].
Choose an isomorphism of G-vector bundles v : ξ0 × [0, 1]

∼=−→ ξ which covers the
identity on X×[0, 1] and is the identity over X×{0}, where ξ0 is the restriction of ξ

to X = X×{0} (see [29, Theorem 1.2]). Let u′ : S(ξ0
LRk)×[0,1] → S(ξ0

LRn)×[0,1]

be the composition

S(ξ0
LRk)×[0,1] Sv⊕id−−−→ S(ξ

LRk) u−→ Sξ⊕Rk+n+1 Sv−1⊕id−−−−−→ S(ξ0
LRk+n+1)×[0,1].

Notice that [u] = [u′] holds in πn+1
G ((X, A)× ([0, 1], {0, 1})). Define τn+1

G ([u]) by
the class of τ(u′) : Sξ0

LRk+1 → Sξ0
LRk+n+1

.

Consider [u] ∈ πn
G(X, A) represented by the morphism u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X) which is trivial over A. Then τn+1
G ◦ σn

G([u]) is represented by the
morphism τ ◦ σ(u) which can be identified with

Sξ⊕Rk+1 σ1−→ Sξ⊕Rk ∧X SR
u∧X id−−−−→ Sξ

LRk+n ∧X SR
σ2−→ Sξ⊕Rk+1+n⊕R

But the latter morphism represents the same class as u. This shows τn+1
G ◦

σn
G([u]) = [u] and hence τn+1

G ◦ σn
G = id. The proof of σn

G([u]) ◦ τn+1
G = id is

analogous. ¤

So far we have only assumed that the G-CW -complex X is proper. In the
sequel we will need additionally that it is finite since this condition appears in
Lemma 6.4.

Lemma 6.9. Let (X1, X0) be a pair of finite proper G-CW -complexes and f : X0 →
X2 be a cellular G-map of finite proper G-CW -complexes. Define the pair of finite
proper G-CW -complexes (X, X2) by the cellular G-pushout

X0
f−−−−→ X2y

y
X1 −−−−→

F
X
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Then the homomorphism

πn
G(F, f) : πn

G(X, X2)
∼=−→ πn

G(X1, X0)

is bijective for all n ∈ Z.

Proof. We begin with surjectivity. Consider an element a ∈ πn
G(X1, X0) repre-

sented by a morphism
u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X1) which is trivial over X0. By Lemma 6.4 there is a G-vector bundle
µ over X, a G-vector bundle ξ′ over X1 and an isomorphism of G-vector bundles
v : ξ ⊕ ξ′

∼=−→ F ∗µ. Consider the morphism u′ in SPHBG(X1) which is given by
the composition

SF ∗µ⊕Rk Sv−1⊕id−−−−−→ Sξ⊕ξ′⊕Rk σ1−→ Sξ′ ∧X1 Sξ⊕Rk id∧X1
u−−−−−→ Sξ′ ∧X1 Sξ⊕Rk+n

σ2−→ Sξ⊕ξ′⊕Rk+n Sv⊕id−−−→ SF ∗µ⊕Rk+n
.

By definition it represents the same element in πn
G(X1, X0) as u. Hence we can

assume without loss of generality for the representative u of a that the bundle ξ
is of the form F ∗µ for some G-vector bundle µ over X. Since the morphism u is
trivial over X0, we can find a morphism SPHBG(X)

u : Sµ⊕Rk → Sµ⊕Rk+n

which is trivial over X2 and satisfies F ∗(u) = u. Hence the morphism u defines
an element in πn

G(X, X1) such that πn
G(F, f)([u]) = [u] = a holds.

It remains to prove injectivity of πn
G(F, f). Consider an element b in the kernel

of πn
G(F, f). Choose a morphism

u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X) which is trivial over X2 and represents b. Then F ∗u : SF ∗ξ⊕Rk →
SF ∗ξ⊕Rk+n

represents zero in πn
G(X1, X0). Hence we can find a bundle µ over X1

such that the composition

Sµ⊕F ∗ξ⊕Rk σ1−→ Sµ ∧X1 SF ∗ξ⊕Rk id∧X1
u−−−−−→ Sµ ∧X1 SF ∗ξ⊕Rk+n σ2−→ Sµ⊕F ∗ξ⊕Rk+n

is homotopic relative X0 to the trivial morphism. As in the proof of the surjectiv-
ity we can arrange using Lemma 6.4 that µ is of the shape F ∗ξ′ for some G-vector
bundle ξ′ over X. By replacing u by idSξ′ ∧Xu we can achieve that b = [u] still
holds and additionally the morphism in SPHBG(X1)

F ∗u : SF ∗(ξ⊕Rk) → SF ∗(ξ⊕Rk+n)

is homotopic relative X0 to the trivial map. Since u is trivial over X2, we can
extend this homotopy trivially from X1 to X to show that u itself is homotopic
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relative X2 to the trivial map. But this means b = [u] = 0 in πn
G(X, X2). This

finishes the proof of Lemma 6.9. ¤

Lemma 6.10. Let A ⊆ Y ⊂ X be inclusions of finite proper G-CW -complexes.
Then the sequence

πn
G(X, Y )

πn
G(j)−−−→ πn

G(X, A)
πn

G(i)−−−→ πn
G(Y, A)

is exact at πn
G(X, A) for all n ∈ Z, where i and j denote the obvious inclusions.

Proof. The inclusion j ◦ i : (Y, A) → (X, Y ) induces the zero map πn
G(X, Y ) →

πG
n (Y, A) since an element in a ∈ πn

G(X, Y ) is represented by a morphism u : Sξ⊕Rk →
Sξ⊕Rk+n

in SPHBG(X) which is trivial over Y and πn
G(j ◦ i)(a) is represented by

the restriction of u to Y .

Consider an element a ∈ πn
G(X, A) which is mapped to zero under πn

G(i).
Choose a morphism u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X) which is trivial over A
and represents a. Hence we can find a G-vector bundle ξ′ over Y such that the
morphism in SPHBG(Y ) given by the composition

Sξ′⊕i∗ξ⊕Rk σ1−→ Sξ′ ∧Y Si∗ξ⊕Rk id∧Y i∗u−−−−−→ Sξ′ ∧Y Si∗ξ⊕Rk+n σ2−→ Sξ′⊕i∗ξ⊕Rk+n

is homotopic to the trivial map relative A.

As in the proof of Lemma 6.9 we can arrange using Lemma 6.4 that ξ′ is the
of the shape i∗µ for some G-vector bundle µ over X. Hence we can achieve by
replacing u by idSµ ∧Xu that a = [u] still holds in πn

G(X, A) and additionally the
morphisms in SPHBG(Y )

i∗u : Sj∗ξ⊕Rk → Si∗ξ⊕Rk+n

is homotopic relative A to the trivial map. One proves inductively over the
number of equivariant cells in X − Y and [29, Theorem 1.2] that this homotopy
can be extended to a homotopy relative A of the morphism u to another morphism
v : Sξ → Sξ⊕Rn

in SPHBG(X) which is trivial over Y . But this implies that the
element [v] ∈ πn

G(X, Y ) represented by v is mapped to a = [u] under πn
G(i). ¤

In order to define a G-cohomology theory we must construct a connecting
homomorphism for pairs. In the sequel maps denoted by ik are the obvious
inclusions and maps denoted by prk are the obvious projections. Consider a
pair of finite proper G-CW -complexes (X, A) and n ∈ Z, n ≥ 0. We define the
homomorphism of abelian groups

δn
G(X, A) : πn

G(A)→ πn+1
G (X, A)(6.11)
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to be the composition

πn
G(A)

σn
G(A)−−−−→ πn+1

G (A× [0, 1], A× {0, 1})
(πn+1

G (i1))−1

−−−−−−−−→ πn+1
G (X ∪A×{0} A× [0, 1], X qA× {1})

πn+1
G (i2)−−−−−→ πn+1

G (X ∪A×{0} A× [0, 1], A× {1})
(πn+1

G (pr1))−1

−−−−−−−−−→ πn+1
G (X, A),

where σn
G(A) is the suspension isomorphism (see Lemma 6.8), the map πn+1

G (i1)
is bijective by excision (see Lemma 6.9) and πn+1

G (pr1) is bijective by homotopy
invariance (see Lemma 6.6) since pr1 is a G-homotopy equivalence of pairs.

Lemma 6.12. Let (X, A) be a pair for proper finite G-CW -complexes. Let
i : A → X and j : X → (X, A) be the inclusions. Then the following long se-
quence is exact and natural in (X, A):

· · · δn−1
G−−−→ πn

G(X, A)
πn

G(j)−−−→ πn
G(X)

πn
G(i)−−−→ πn

G(A)

δn
G−→ πn+1

G (X, A)
πn+1

G (j)−−−−−→ πn+1
G (X)

πn+1
G (i)−−−−−→ πn+1

G (A)
δn−1
G−−−→ · · · .

Proof. It is obviously natural. It remains to prove exactness.

Exactness at πn
G(X) follows from Lemma 6.10.

Exactness at πn
G(X, A) follows from the following commutative diagram

πn+1
G

(
X ∪A×{0} A× [0, 1], X qA× {1}) (σn

G(A))−1◦πn+1
G (i1)−−−−−−−−−−−−−→∼=

πn
G(A)

πn+1
G (i2)

y δn+1
G (X,A)

y

πn+1
G

(
X ∪A×{0} A× [0, 1], A× {1}) (πn+1

G (pr1))−1

−−−−−−−−−→∼=
πn+1

G (X, A)

πn+1
G (i3)

y πn+1
G (i)

y

πn+1
G (X qA× {1}, A× {1}) πn+1

G (i4)−−−−−→∼=
πn+1

G (X)

whose left column is exact at πn+1
G

(
X ∪A×{0} A× [0, 1], A× {1}) by Lemma 6.10.
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Exactness at πn
G(A) is proved analogously by applying Lemma 6.10 to the

inclusions

(X × {0, 1}, X × {0} qA× {1})
⊆ (X × [0, 1], X × {0} qA× {1})

⊆ (X × [0, 1], X × {0, 1}) .

¤

We conclude from Lemma 6.6, Lemma 6.9 and Lemma 6.12 that π∗G defines a
G-cohomology theory on the category of finite proper G-CW -complexes.

Consider a finite proper G-CW -complex X with two subcomplexes A,B ⊆ X.
We want to define a multiplicative structure, i.e., a cup-product

∪ : πm
G (X, A)× πn

G(X, B)→ πm+n
G (X, A ∪B).(6.13)

Given elements a ∈ πm
G (X, A) and b ∈ πn

G(X, B), choose appropriate morphisms
u : Sξ⊕Rk

→ Sξ⊕Rm+k
and v : Sη⊕Rl → Sη⊕Rn+l

in SPHBG(X) representing a and b. Define
a∪b by the class of the composition of morphisms in SPHBG(X) which are trivial
over A ∪B.

Sξ⊕η⊕Rk+l σ1−→ Sξ⊕Rk ∧X Sη⊕Rl

u∧Xv−−−→ Sξ⊕Rk+m ∧X Sη⊕Rl+n σ2−→ Sξ⊕η⊕Rk+l+m+n
.

Next we deal with the induction structure. Consider a group homomorphism
α : H → G. The pullback construction for the α : H → G-equivariant map X →
indα X = G×α X, x 7→ 1G×α x defines a functor SPHBG(indα X) → SPHBH(X)
which yields a homomorphism of abelian groups

indα : πn
G (indα(X, A))→ πn

H(X).(6.14)

Now suppose that the kernel of H acts trivially on X. Let ξ : E → X be a H-
vector bundle. Then G ×α X is a proper H-CW -complex. Since H acts freely
on X, we obtain a well-defined G-vector bundle G ×α ξ : G ×α E → G ×α X.
Thus we obtain a functor indα : SPHBH(X) → SPHBG(G ×α X). It defines a
homomorphism of abelian groups

indα : πn
H(X)→ πn

G (indα(X, A)) .(6.15)

which turns out to be an inverse of the induction homomorphism (6.14).

Now we have all ingredients of an equivariant cohomology theory with a mul-
tiplicative structure. We leave it to the reader to verify all the axioms. This
finishes the proof of Theorem 6.5.
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6.4. Comparison with the Classical Construction for Finite Groups.
Next we want to show that for a finite group G our construction reduces to the
classical one. We first explain why the finite group case is easier.

Remark 6.16 (Advantages in the case of finite groups). The finite group case
is easier because for finite groups the following facts are true. The first fact
is that every G-CW -complex is proper. Hence one can view pointed G-CW -
complexes, where the base point is fixed under the G-action and one can carry
out constructions like mapping cones without losing the property proper. We
need proper to ensure that certain basic facts about G-vector bundles are true
(see [29, Section 1]). The second fact is that every G-vector bundle over a finite
G-CW -complex ξ is a direct summand in a trivial G-vector bundle, i.e., a G-
vector bundle given by the projection V ×X → X for some G-representation V .
This makes for instance Lemma 6.4 superfluous whose proof is non-trivial in the
infinite group case (see [29, Lemma 3.7]).

Next we identify πn
G(X) defined in Subsection 6.2 with the classical definitions

which we have explained in Subsection 1.4 provided that G is a finite group.

Consider an element a ∈ πn
G(X) with respect to the definition given in Sub-

section 1.4. Obviously we can find a positive integer k ∈ Z with k + n ≥ 0
such that a is represented for some complex G-representation V by a G-map
f : SV ∧Sk∧X+ → SV ∧Sk+n. Let ξ be the trivial G-vector bundle V ×X → X.
Define a map

f : Sξ⊕Rk σ1−→ (SV ∧ Sk) × X
f×prX−−−−→ (SV ∧ Sk+n) × X

σ2−→ Sξ⊕Rk+n
.

It is a morphism in SPHBG(X) and hence defines an element a′ ∈ πn
G(X) with re-

spect to the definition of Subsection 6.2. Thus we get a homomorphism of abelian
groups a 7→ a′ from the definition of Subsection 1.4 to the one of Subsection 6.2.

Consider a morphism u : Sξ⊕Rk → Sξ⊕Rk+n
in SPHBG(X) representing an

element in b = [u] in πn
G(X) as defined in Subsection 6.2. Choose a G-vector

bundle µ, a complex G-representation V and an isomorphism of (real) G-vector
bundles φ : µ⊕ ξ

∼=−→ V ×X. Then the morphism

v : SV⊕Rk ×X
(φ⊕id)−1

−−−−−−→ Sµ⊕ξ⊕Rk σ1−→ Sµ ∧X Sξ⊕Rk

id∧u−−−→ Sµ ∧X Sξ⊕Rk+n σ2−→ Sµ⊕ξ⊕Rk+n φ⊕id−−−→ SV⊕Rk+n ×X

is equivalent to u and hence b = [v]. Since v covers the identity and is fiberwise
a pointed map, its composition with the projection SV⊕Rk+n × X → SV⊕Rk+n

yields a map

v : SV⊕Rk ∧X+ → SV⊕Rk+n
.
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It defines an element b′ := [v] in πn
G(X) with respect to the definition given in

Subsection 1.4. The map b 7→ b′ is the inverse of the map a → a′ before.

Remark 6.17 (Why consider G-vector bundles?). One may ask why we consider
G-vector bundles ξ in Section 6. It would be much easier if we would only con-
sider trivial G-vector bundles V ×X for G-representations V . Then we would not
need Lemma 6.4. The proof that π∗G is a G-cohomology theory with a multiplica-
tive structure would go through and for finite groups we would get the classical
notion. The problem is that the induction structure does not exists anymore as
the following example shows.

Consider a finitely generated group such that Gmrf is trivial. Then any G-
representation V is trivial (see Subsection 2.5). This implies that a morphism
u : Sξ⊕Rk → Sξ⊕Rk+n

in SPHBG(X) for ξ = V × X is the same as a (non-
equivariant) map

SV⊕Rk ∧ (G\X+) → SV⊕Rk+n
.

This yields an identification of πn
G(X) with respect to the definition, where all

G-vector bundles are of the shape X × V , with the (non-equivariant) stable
cohomotopy group πn

s (G\X). If G contains a non-trivial subgroup H ⊆ G, then
the existence of an induction structure would predict for X = G/H that πn

G(G/H)
is isomorphic to πn

H , which is in general different from πn
s (G\(G/H)) = πn

{1}.

So we need to consider G-vector bundles in order to get induction structures
and hence an equivariant cohomology theory. In particular our definition guar-
antees πn

G(G/H) = πn
H for every group G with a finite subgroup H ⊆ G.

Remark 6.18 (The coefficients of equivariant stable cohomotopy). It is impor-
tant to have information about the values πn

G(G/H) for a finite subgroup H ⊆ G
of a group G. By the induction structure and the identification above πn

G(G/H)
agrees with the abelian groups πn

H = πH−n defined in Subsection 1.4. The equiva-
riant homotopy groups πH−n are computed in terms of the splitting due to Segal
and tom Dieck (see [49, Theorem 7.7 in Chapter II on page 154], [41, Proposi-
tion 2]) by

πn
G(G/H) = πH

−n =
⊕

(K)∈ccs(H)

πs
−n(BWHK).

The abelian group πs
q is finite for q ≥ 1 by a result of Serre [42] (see also [18]), is

Z for q = 0 and is trivial for q ≤ −1. Since WHK is finite, H̃p(BWHK;Z) is finite
for all p ∈ Z. We conclude from the Atiyah-Hirzebruch spectral sequence that
πs−n(BWHK) is finite for n ≤ −1. This implies |πn

G(G/H)| < ∞ for n ≤ −1 and
that πn

G(G/H) = 0 for n ≥ 1. We know already π0
H = A(H) from Theorem 1.13.

Thus we get
|πn

G(G/H)|<∞ n ≤ −1;
π0

G(G/H) = A(H);
πn

G(G/H) = {0} n ≥ 1.
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Remark 6.19. (Equivariant stable Cohomotopy for arbitrary G-CW -
complexes). In order to construct an equivariant cohomology theory or an
(equivariant homology theory) for arbitrary G-CW -complexes it suffices to con-
struct a contravariant (covariant) functor from the category of small groupoids
to the category of spectra (see [39], [30, Proposition 6.8]). In a different paper
we will carry out such a construction yielding equivariant cohomotopy and ho-
motopy for arbitrary equivariant CW -complexes and will identify the result with
the one presented here for finite proper G-CW -complexes.

6.5. Rational Computation of Equivariant Cohomotopy. The cohomotopy
theoretic Hurewicz homomorphism yields a transformation of cohomology theo-
ries

π∗s(X) → H∗(X;Z)

from the (non-equivariant) stable cohomotopy to singular cohomology with Z-
coefficients. It is rationally an isomorphism provided that X is a finite CW -
complex. It is compatible with the multiplicative structures. The analogue for
equivariant cohomotopy is described next.

Let G be a group and H ⊆ G be a finite subgroup. Consider a pair of finite
proper G-CW -complexes (X, A). Lemma 4.3 implies that (XH , AH) is a pair
of finite proper WGH-CW -complexes and WGH\(XH , AH) is a pair of finite
CW -complexes. Taking the H-fixed point set yields a homomorphism

αn
(H)(X, A) : πn

G(X, A) → πn
WGH(XH , AH).

This map is natural and compatible with long exact sequences of pairs and Mayer-
Vietoris sequences.

The induction structure with respect to the homomorphism WGH → {1} yields
a homomorphism

βn
WGH(XH , AH) : πn

s

(
WGH\(XH , AH)

) → πn
WGH(XH , AH).

We claim that βn
WGH(Z, B) is a rational isomorphism for any pair of finite proper

WGH-CW -complexes (Z, B). Since β∗WGH is natural and compatible with the
long exact sequences of pairs and Mayer-Vietoris sequences, it suffices to prove
the claim for Z = WGH/L and B = ∅ for any finite subgroup L ⊂ WGH.
But then βn

WGH reduces to the obvious map πn({•}) → πn
L which is a rational

isomorphism by Remark 6.18.

Let

hn(XH , AH) : πn
s

(
WGH\(XH , AH)

) → Hn
(
WGH\(XH , AH);Z

)
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be the cohomotopy theoretic Hurewicz homomorphism. Let

γn
(
WGH\(XH , AH)

)
: Hn

(
WGH\(XH , AH);Z

)⊗Z Q
→ Hn

(
WGH\(XH , AH);Q

)

be the natural map. Define a Q-homomorphism by the composition

ζn
G(X, A)(H) : πn

G(X, A)⊗Z Q
αn

(H)
(X,A)⊗ZidQ−−−−−−−−−−→ πn

WGH(XH , AH)⊗Z Q
�
βn

WGH(XH ,AH)⊗ZidQ
�−1

−−−−−−−−−−−−−−−−−→ πn
s

(
WGH\(XH , AH)

)⊗Z Q
hn(XH ,AH)⊗ZidQ−−−−−−−−−−−→ Hn

(
WGH\(XH , AH);Z

)⊗Z Q
γn(WGH\(XH ,AH))−−−−−−−−−−−−−→ Hn

(
WGH\(XH , AH);Q

)
.

Define

(6.20) ζn
G(X, A) =

∏

(H)∈ccs(G)

ζn
G(X, A)(H) : πn

G(X, A)⊗Z Q

→
∏

(H)∈ccs(G)

Hn
(
WGH\(XH , AH);Q

)
.

Theorem 6.21. The maps

ζn
G(X, A) : πn

G(X, A)⊗Z Q
∼=−→

∏

(H)∈ccs(G)

Hn
(
WGH\(XH , AH);Q

)

are bijective for all n ∈ Z and all pairs of finite proper G-CW -complexes (X, A).
They are compatible with the obvious multiplicative structures.

Proof. One easily checks that ζ∗G defines a transformation of G-homology theories,
i.e., is natural in (X, A) and compatible with long exact sequences of pairs and
Mayer-Vietoris sequences. Hence it suffices to show that ζn

G(G/K) is bijective for
all n ∈ Z and finite subgroups K ⊂ G. The source and target of ζn

G(G/K) are
trivial for n 6= 0 (see Remark 6.18). The map ζ0

G(G/K) can be identified using
Lemma 4.3 (ii) with the rationalization of the character map

charH : A(H) →
∏

(H)∈ccs(G)

Z

defined in (1.2) which is bijective by Theorem 1.3. ¤
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6.6. Relating Equivariant Stable Cohomotopy and Equivariant Topolo-
gical K-Theory. We have introduced two equivariant cohomology theories with
multiplicative structure, namely equivariant cohomotopy (see Theorem 6.5) and
equivariant topological K-theory (see Subsection 5.4).

Let X be a finite proper G-CW -complex with G-CW -subcomplexes A and B
and let a ∈ πm

G (X, A) be an element. We want to assign to it for every m ∈ Z a
homomorphism of abelian groups

φm,n
G (X, A)(a) : Kn

G(X, B) → Km+n
G (X, A ∪B).(6.22)

Choose an integer k ∈ Z with k ≥ 0, k + m ≥ 0 and a morphism u : Sξ⊕Rk →
Sξ⊕Rk+m

in SPHBG(X) which is trivial over A and represents a. Let v be the
morphism in SPHBG(X) which is given by the composite

v : Sξ⊕ξ⊕Rk σ−→ Sξ ∧X Sξ⊕Rk id∧Xu−−−−→ Sξ ∧X Sξ⊕Rk+m σ−1−−→ Sξ⊕ξ⊕Rk+m
.

Then v is another representative of a. The bundle ξ ⊕ ξ carries a canonical
structure of a complex vector bundle and we denote this complex vector bundle
by ξC.

Let σk(X, A∪B) : Km+n
G (X, A∪B)

∼=−→ Km+n+k
G

(
(X, A ∪B)× (Dk, Sk−1)

)
be

the suspension isomorphism. Let prk : X×Dk → X be the projection and pr∗k ξC
be the complex vector bundle obtained from ξC by the pull back construction.
Associated to it is a Thom isomorphism

Tm+n+k
pr∗k ξC

: Km+n+k
G

(
(X, A ∪B)× (Dk, Sk−1)

)

∼=−→ K
m+n+k+2·dim(ξ)
G

(
Spr∗k ξC , S

pr∗k ξC|X×Sk−1∪(A∪B)×Dk ∪ (X ×Dk)∞
)

,

where (X ×Dk)∞ is the copy of X ×Dk given by the various points at infinity
in the fibers Spr∗k ξC and pr∗k ξC|X×Sk−1∪(A∪B)×Dk is the restriction of pr∗k ξC to
X × Sk−1 ∪ (A ∪B)×Dk (see [29, Theorem 3.14]). Let

pk :
(
Spr∗k ξC , S

pr∗k ξC|X×Sk−1∪(A∪B)×Dk ∪ (X ×Dk)∞
)

(
Sξ⊕ξ⊕Rk

, Sξ⊕ξ⊕Rk|A∪B ∪X∞
)

be the obvious projection which induces by excision an isomorphism on K∗
G.

Define an isomorphism

µm+n,m+n+k+2·dim(ξ) : Km+n
G (X, A ∪B)

→ K
m+n+k+2·dim(ξ)
G

(
Sξ⊕ξ⊕Rk

, Sξ⊕ξ⊕Rk|A∪B ∪X∞
)
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by the composite K
m+n+k+2·dim(ξ)
G (pk)−1 ◦ Tn+m+k

pr∗k ξC
◦ σk(X, A ∪B). Define

µn,m+n+k+2·dim(ξ) : Kn
G(X, B)

→ K
m+n+k+2·dim(ξ)
G

(
Sξ⊕ξ⊕Rk+m

, Sξ⊕ξ⊕Rk+m|B ∪X∞
)

analogously. Let the desired map φm,n
G (X, A)(a) be the composite

φm,n
G (X;A,B)(a) : Kn

G(X, B)

µn,m+n+k+2·dim(ξ)

−−−−−−−−−−−−→ K
m+n+k+2·dim(ξ)
G

(
Sξ⊕ξ⊕Rk+m

, Sξ⊕ξ⊕Rk+m|B ∪X∞
)

K
m+n+k+2·dim(ξ)
G (v)−−−−−−−−−−−−−→ K

m+n+k+2·dim(ξ)
G

(
Sξ⊕ξ⊕Rk

, Sξ⊕ξ⊕Rk|A∪B ∪X∞
)

(µm+n,m+n+k+2·dim(ξ))−1

−−−−−−−−−−−−−−−−−→ Km+n
G (X, A ∪B).

We leave it to the reader to check that the definition of φm,n
G (X;A,B)(a) is

independent of the choices of k and u. The maps φm,n
G (X;A,B)(a) for the various

elements a ∈ πm
G (X, A) define pairings

φm,n
G (X;A,B) : πm

G (X, A)×Kn
G(X, B)→Km+n

G (X, A ∪B).(6.23)

The verification of the next theorem is left to the reader.

Theorem 6.24. (Equivariant topological K-theory as graded algebra
over equivariant stable cohomotopy).

(i) Naturality
The pairings φm,n

G (X;A.B) are natural in (X;A,B);
(ii) Algebra structure

The collection of the pairings φm,n
G (X; ∅, A) defines on K∗

G(X, A) the
structure of a graded algebra over the graded ring π∗G(X) ;

(iii) Compatibility with induction
Let φ : H → G be a group homomorphism and (X, A) be a pair of proper
finite G-CW -complexes. Then the following diagram commutes

πm
G (indα(X, A))×Kn

G (indα(X, B))
φm,n

G (indα(X;A,B))−−−−−−−−−−−−→ Km+n
G (indα(X, A ∪B))

indα× indα

y indα

y

πm
H (X, A)×Kn

H(X, B)
φm,n

H (X;A,B)−−−−−−−−→ Km+n
H (X, A ∪B)

(iv) For a ∈ πm−1
G (A) and b ∈ Kn

G(X) we have

φm,n
G (X; ∅, ∅)(δ(a), b) = δ

(
φm−1,n

G (A; ∅, ∅)(a,Kn
G(j)(b))

)
,
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where δ : πm−1(A) → πm
G (X) and δ : Km+n−1

G (A) → Km+n
G (X) are bound-

ary operators for the pair (X, A) and j : A → X is the inclusion.

For every pair (X, A) of finite proper G-CW -complexes define a homomorphism

ψn
G(X, A) : πn

G(X, A) → Kn
G(X, A), a 7→ φn,0

G (X, A, ∅)(a, 1X),(6.25)

where 1X ∈ K0
G(X) is the unit element. Then Theorem 6.24 implies

Theorem 6.26 (Transformation from equivariant stable cohomotopy to equiva-
riant topological K-theory). We obtain a natural transformation of equivariant
cohomology theories with multiplicative structure for pairs of equivariant proper
finite CW -complexes by the maps

ψ∗? : π∗? → K∗
? .

If H ⊆ G is a finite subgroup of the group G, then the map

ψn
G(G/H) : πn

G(G/H) → K0
G(G/H)

is trivial for n ≥ 1 and agrees for n = 0 under the identifications π0
G(G/H) =

π0
H = A(H) and K0

G(G/H) = K0
H({•}) = RC(H) with the ring homomorphism

A(H) → RC(H), [S] 7→ [C[S]]

which assigns to a finite H-set the associated complex permutation representation.

7. The Homotopy Theoretic Burnside Ring

In this section we introduce another version of the Burnside ring which is of
homotopy theoretic nature and probably the most sophisticated and interesting
one.

7.1. Classifying Space for Proper G-Actions. We need the following notion
due to tom Dieck [44].

Definition 7.1 (Classifying space for proper G-actions). A model for the classi-
fying space for proper G-actions is a proper G-CW -complex EG such that EGH

is contractible for every finite subgroup H ⊆ G.

Recall that a G-CW -complex is proper if and only if all its isotropy groups are
finite. If EG is a model for the classifying space for proper G-actions, then for
every proper G-CW -complex X there is up to G-homotopy precisely one G-map
X → EG. In particular two models are G-homotopy equivalent and the G-
homotopy equivalence between two models is unique up to G-homotopy. If G is
finite, a model for EG is G/G. If G is torsionfree, EG is the same as EG which is
by definition the total space of the universal principal G-bundle G → EG → BG.

Here is a list of groups G together with specific models for EG with the property
that the model is a finite G-CW -complex.
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G EG

word hyperbolic groups Rips complex
discrete cocompact subgroup G ⊆ L of a Lie
group L with finite π0(L)

L/K for a maximal
compact subgroup
K ⊆ L

G acts by isometries properly and cocom-
pactly on a CAT(0)-space X, for instance
on a tree or a simply-connected complete
Riemannian manifold with non-positive sec-
tional curvature

X

arithmetic groups Borel-Serre comple-
tion

mapping class groups Teichmüller space
outer automorphisms of finitely generated
free groups

outer space

More information and more references about EG can be found for instance in
[6] and [28].

7.2. The Definition of the Homotopy Theoretic Burnside Ring. We have
introduced the equivariant cohomology theory with multiplicative structure for
proper finite equivariant CW -complexes π∗? in Section 6 and the classifying space
EG for proper G-actions in Subsection 7.1.

Definition 7.2 (Homotopy theoretic Burnside ring). Let G be a (discrete) group
such that there exists a finite model EG for the universal space for proper G-
actions. Define the homotopy theoretic Burnside ring to be

Aho(G) := π0
G(EG).

If G is finite, π0
G(EG) agrees with π0

G which is isomorphic to the Burnside ring
A(G) by Theorem 1.13. So the homotopy theoretic definition Aho(G) reflects this
aspect of the Burnside ring which has not been addressed by the other definitions
before.

After the program described in Remark 6.19 has been carried out, the assump-
tion in Definition 7.2 that there exists a finite model for EG can be dropped and
thus the Homotopy Theoretic Burnside ring Aho(G) can be defined by π0

G(EG)
and analyzed for all discrete groups G.

If G is torsionfree, Aho(G) agrees with π0
s(BG).

Theorem 6.26 implies that the map (see (6.25))

ψ0
G(EG) : Aho(G) = π0

G(EG) → K0
G(EG)
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is a ring homomorphism. It reduces for finite G to the ring homomorphism
A(G) → RC(G) sending the class of a finite G-set to the class of the associated
complex permutation representation.

7.3. Relation between the Homotopy Theoretic and the Inverse-Limit-
Version. Suppose there is a finite model for EG. Then there is an equivariant
Atiyah-Hirzebruch spectral sequence which converges to πn

G(EG) and whose E2-
term is given in terms of Bredon cohomomology

Ep,q
2 = Hp

ZSubFIN (G)(EG;πq
?).

Here πq
? is the contravariant functor

πq
? : SubFIN (G) → Z−MODULES, H 7→ πq

H

and naturality comes from restriction with a group homomorphism H → K rep-
resenting a morphism in SubFIN (G). Usually the Bredon cohomology is defined
over the orbit category, but in our case we can pass to the category SubFIN (G)
because of Lemma 5.2. Details of the construction of Hp

ZSubFIN (G)(EG;π?
q) can be

found for instance in [27, Section 3]. We will only need the following elementary
facts. There is a canonical identification

H0
ZSubFIN (G)(EG;πq

?)∼= invlimH∈SubFIN (G)π
q
H .(7.3)

If we combine (7.3) with Theorem 1.13 we get an identification

H0
ZSubFIN (G)(EG;π0

?)∼= Ainv(G).(7.4)

The assumption that EG is finite implies together with Remark 6.18

|Hp
ZSubFIN (G)(EG;πq

?)| < ∞ if q ≤ −1;(7.5)

Hp
ZSubFIN (G)(EG;πq

?) = {0} if p > dim(EG) or p ≤ −1 or q ≥ 1.(7.6)

The equivariant Atiyah-Hirzebruch spectral sequence together with (7.4), (7.5)
and (7.6) implies

Theorem 7.7 (Rationally Aho(G) and Ainv(G) agree). Suppose that there is a
finite model for EG. Then the edge homomorphism

edgeG : Aho(G) = π0
G(EG) → Ainv(G)

is a ring homomorphism whose kernel and the cokernel are finite.

The edge homomorphism appearing in Theorem 7.7 can be made explicit.
Consider a morphism u : Sξ⊕Rk → Sξ⊕Rk

in SPHBG(EG) representing the element
a ∈ π0

G(EG). In order to specify edgeG(a) we must define for every finite subgroup
H ⊆ G an element edgeG(a)H ∈ A(H). Choose a point x ∈ EGH . Then u induces
a pointed H-map Sξx⊕Rk → Sξx⊕Rk

. It defines an element in π0
H . Let edgeG(a)H

be the image of this element under the ring isomorphism degH : π0
H

∼=−→ A(H)
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appearing in Theorem 1.13. One easily checks that the collection of these elements
edgeG

H(a) does define an element in the inverse limit Ainv(G). So essentially edgeG

is the map which remembers just the system of the maps of the various fibers.

Remark 7.8. (Rank of the abelian group Aho(G)). A kind of character
map for the homotopy theoretic version would be the composition of edge and
the character map charG

inv of (3.9). Since we assume that EG has a finite model,
there are only finitely many conjugacy classes of finite subgroups and the Burn-
side ring congruences appearing in Theorem 3.10 becomes easier to handle. In
particular we conclude from Example 3.11 and Theorem 7.7 that Aho(G) is a fi-
nitely generated abelian group whose rank is the number | ccsf (G)| of conjugacy
classes of finite subgroups of G.

7.4. Some Computations of the Homotopy Theoretic Burnside Ring.

Example 7.9 (Groups with appropriate maximal finite subgroups). Suppose
that the group G satisfies the conditions appearing in Example 3.4 and admits a
finite model for EG. In the sequel we use the notation introduced in Example 3.4.
Then one can construct a G-pushout (see [28, Section 4.11])

∐
i∈I G×Mi EMi

i−−−−→ EGy
y

∐
i∈I G/Mi −−−−→ EG

(7.10)

Taking the G-quotient, yields a non-equivariant pushout. There are long exact
Mayer-Vietoris sequence associated to (7.10) and to the G-quotient. (We ignore
the problem that G×E Mi and EG may not be finite. It does not really matter
since both are free or because we will in a different paper extend the definition of
equivariant stable cohomotopy to all proper equivariant CW -complexes). These
are linked by the induction maps with respect to the projections G → {1}.
Splicing these two long exact sequences together, yields the long exact sequence

· · · →
∏

i∈I

ker
(
res{1}Mi

: π−1
Mi
→ π−1

s

)
→ π0

s(G\EG) → Aho(G)

→
∏

i∈I

Ã(Mi) → π1
s(G\EG) → · · ·

Example 7.11 (Extensions of Zn with Z/p as quotient). Suppose that G satisfies
the assumptions appearing in Example 3.6. Then G admits a finite model for
EG. In the sequel we use the notation introduced in Example 3.6. Then variation
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of the argument above yields a long exact sequence

· · · →
∏

H1(Z/p;A)

ker
(
res{1}Z/p : π−1

Z/p(BAZ/p) → π−1
s (BAZ/p)

)
→ π0

s(G\EG) →

Aho(G) →
∏

H1(Z/p;A)

ker
(
res{1}Z/p : π0

Z/p(BAZ/p) → π0
s(BAZ/p)

)
→ π1

s(G\EG) → · · ·

where Z/p acts trivially on BAZ/p. If r is the rank of the finitely generated free
abelian group AZ/p, then

ker
(
res{1}Z/p : πn

Z/p(BAZ/p) → πn
s (BAZ/p)

)
=

r⊕

k=0

ker
(
res{1}Z/p : πn−k

Z/p → πn−k
s

)(r
k)

.

8. The Segal Conjecture for Infinite Groups

We can now formulate a version of the Segal Conjecture for infinite groups. Let
εG : Aho(G) → Z be the ring homomorphism which sends an element represented
by a morphism u : Sξ⊕Rk → Sξ⊕Rk

in SPHBG(EG) to the mapping degree of the
map induced on the fiber ux : Sξx⊕Rk → Sξx⊕Rk

for some x ∈ EG. This is the
same as the composition

Aho(G)
edgeG

−−−−→ Ainv(G)
charG

inv−−−−→
∏

(H)∈ccsf (G)

Z
pr{1}−−−→ Z,

where charG
inv is the ring homomorphism defined in (3.9) and pr{1} the projection

onto the factor belonging to the trivial group. We define the augmentation ideal
IG of Aho(G) to be the kernel of the ring homomorphism εG. Recall that for
a finite proper G-CW -complex X the abelian group πn

G(X) is a π0
G(X)-module.

The classifying map f : X → EG is unique up to G-homotopy. Suppose that EG
is finite. Then f induces a uniquely defined ring homomorphism π0

G(f) : Aho(G) =
π0

G(EG) → π0
G(X) and we can consider πn

G(X) is a Aho(G)-module.

Conjecture 8.1 (Segal Conjecture for infinite groups). Let G be a group such
that there is a finite model for the classifying space of proper G-actions EG. Then
for every finite proper G-CW -complex there is an isomorphism

πn
s (EG×G X)

∼=−→ πn
G(X)ÎG

,

where πn
G(X)ÎG

is the IG-adic completion of the Aho(G)-module πn
G(X).

In particular we get for all n ∈ Z an isomorphism

πn
s (BG)

∼=−→ πn
G(EG)ÎG

and especially for n = 0
π0

s(BG)
∼=−→ Aho(G)ÎG

.
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If G is finite, Conjecture 8.1 reduces to the classical Segal Conjecture (see
Theorem 1.14).

The classical Segal Conjecture (see Theorem 1.14) for a finite group does not
say much if the finite group is torsionfree, i.e. is trivial. The same remark holds
for the Segal Conjecture 8.1 for infinite groups if the group under consideration
is torsionfree as explained below.

Since G is torsionfree, G acts freely on X and EG = EG. Thus we obtain an
identification

πn
s (EG×G X) = πn

s (G\X).

The Burnside ring Aho(G) becomes π0
s(BG) and IG corresponds to the kernel

of the ring homomorphism π0
s(BG) → π0

s({•}). By assumption BG is a finite
CW -complex. It is not hard to check that (IG)dim(BG)+1 = {0}. Hence we obtain
an identification

πn
G(X)ÎG

∼= πn
G(X) ∼= πn

s (G\X).

Under these two identifications the map appearing in Conjecture 8.1 is the iden-
tity and hence an isomorphism.
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