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Abstract: Renormalized Chern classes c̃2, . . . , c̃n for a compact, connected,
complex manifold X with smooth, strictly pseudoconvex boundary M were
defined in [7]. A Chern-Simons type invariant was also defined in [6] for
a compact, strictly pseudoconvex CR-manifold M of dimension three, and
a Gauss-Bonnet theorem relating the two in [7]. We show here that if M
is spherical, and P (c̃2, . . . , c̃n) is a polynomial with rational coefficients in
c̃2, . . . , c̃n, then the corresponding Chern class P (X) = P (c̃2, . . . , c̃n) defines
a class in H∗(X, M ;Q). The proof is based on the multi-valued Hartogs
theorem of [5] and the exponents of monodromy for a development map.

1. Introduction

A characteristic number µ(M) for three dimensional compact strongly pseudo-
convex CR manifolds M with CR sub-bundle of the tangent bundle a torsion
complex line bundle, was introduced in [6], constructed analogously to the Chern-
Simons invariant α(Y, [g]) ∈ R/Z for the conformal class [g] of a Riemannian
metric g on a compact three manifold Y . Several examples were computed in
[6], and for all those M which were spherical, i.e., locally CR equivalent to the
standard sphere, it was found that µ(M), which is a priori a real number, is
rational.

In [7] renormalized Chern forms were described for X a compact complex
manifold with strictly pseudoconvex boundary ∂X = M . Roughly speaking,
these are forms computed in a class of natural complete Kähler metrics on X
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which includes the Bergman metric, the Kähler-Einstein metric, etc. In [7] only
the Kähler-Einstein metric was used explicitly. In effect, one uses the asymptotic
complex hyperbolicity of such metrics to show the convergence of characteristic
number integrals for those characteristic forms which would vanish identically
on the complex ball in the complex hyperbolic metric. This gives, in general,
classes whose integrals in the top dimension are again only real numbers. In the
case dimCX = 2, a kind of Gauss-Bonnet formula was shown in [7] relating the
integral of the renormalized Chern-form c̃2 with the Euler characteristic of X,
µ(M), and a topological (rational) characteristic number:∫

X
c̃2 = χ(X)− 1

3
c2
1 + µ(M).

Here c1 ∈ H2(X, M ;Q) is the first Chern class of the canonical line bundle Ω2
X

corresponding to a topological trivialization near the boundary of some power of
Ω2

X . In particular, the renormalized Chern number
∫
X c̃2 ∈ Q if the boundary M

is any of the spherical examples computed in [6]. Our purpose here is to show that
this rationality is always true for spherical M and for any renormalized Chern
number.

More specifically, let X be as above, with dimCX = n, and let g be a Kähler
metric on X of the type allowed in [7], that is, asymptotically complete Kähler-
Einstein at the boundary. (In [7] only complete Kähler-Einstein metrics were
used. In section 3. below, however, we check that the techniques of [7] allow
one to extend the theory of [7] to metrics which are only sufficiently close as-
ymptotically to such a Kähler-Einstein metric at the boundary.) Let c̃2, . . . , c̃n

be the renormalized Chern forms for this metric, and let P = P (c̃2, . . . , c̃n) be a
polynomial with rational coefficients in the renormalized Chern forms, a form of
degree exactly 2n.

Theorem 1.1. (Main Theorem) X, P, g as above. Then P (X) =
∫
X P (c̃2, . . . , c̃n)

is rational.

In fact, a more precise theorem is proved. When M is spherical, one may choose
a metric on X with which to compute the c̃j , j = 2, . . . , n for which these forms
vanish near the boundary M . These forms define classes [c̃j ] ∈ H2j(X, M ;R)
which are independent of the choice of metric (within a class of metrics). The
more precise statement is the following

Theorem 1.2. The classes [c̃j ], j = 2, . . . , n, are in H2j(X, M ;Q).

The Main Theorem follows immediately from Theorem 1.2.

We use the rest of this introduction to sketch the proof of Theorem 1.2 and
to outline the contents of the rest of the paper. Let E be the maximal compact
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subvariety contained in X. Using the fact that M is spherical and a development
map technique in [5], we can replace the metric g by another complete Kähler
metric g̃ which is locally complex hyperbolic outside any open neighborhood of
E, and a transgression formula as in [7] allows one to replace the renormalized
Chern forms in the metric g by those in the new metric g̃, and in such a metric
the renormalized forms vanish identically wherever the metric is locally complex
hyperbolic. Thus, if the analytic set E is empty or of codimension > 1, the metric
g̃ can be defined everywhere on X and P (X) = 0, since its integrand vanishes.
In general, the (multi-valued) developing map D : X \ E → Bn which pulls
back the complex hyperbolic metric ds2

CH from the complex unit ball Bn ⊂ Cn

doesn’t extend across E, and is singular there. Roughly speaking, in the limit, the
characteristic form integral should be calculable by a kind of residue formula along
E taking into account the various singularities of the metric D∗ds2

CH there. The
main point of the theorem is to analyze the nature of these singularities, though
we will use an indirect, geometric argument for calculating the final integrals
rather than a direct residue calculation.

Two elementary examples in complex dimension one illustrate this phenome-
non. Let X = ∆, the unit disk, and consider the mapping D from ∆ \ {0} =
∆∗ 3 z → w = zα ∈ ∆, with 0 < α ∈ R. D is, in general, multi-valued, but if we
pull back a hermitian metric g = ρ(|w|2)|dw|2, the metric D∗g is well-defined on
∆∗ and possibly singular at the origin. Looking first at the case of g the Poincaré
metric |dw|2

(1−|w|2)2
on ∆ and calculating the first Chern form of D∗g distributionally,

we get that

D∗g = α2 | z |2(α−1)| dz |2
(1− | z |2α)2

,

and therefore,

c1(D∗g) =
√−1
2π

∂∂ log
| z |2(α−1)

(1− | z |2α)2
= (α− 1)δ0 + D∗c1(g),

so that the contribution of the singularity to the integral of the distributional
Chern form is α − 1, and in particular is rational if and only if the monodromy
exponent is rational.

On the other hand, if we take the example g = |dw|2
|w|2 log2 |w|2 , i.e., the Poincaré

metric on the punctured disk ∆∗, then D∗g(w) = g(z) and computing distribu-
tionally, c1(D∗g) = D∗c1(g), which is integrable, and there is no singular contri-
bution to the distributional first Chern form.

In our case, the irreducible divisors Ej ⊂ E are divided into the elliptic and
parabolic divisors, the elliptic ones being generalizations of the first example
above, and the parabolic divisors generalizing the second example. For the ellip-
tic divisors, the exponents of the principal monodromy, corresponding to passing
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once around the divisor Ej , determine whether the global Chern classes are ra-
tional. We do not compute the characteristic integrals as explicitly as in the
elementary case above, but use more geometric arguments to pass to carefully
chosen coverings of X near E where we can extend the development map locally
across the compact subvariety. Simple topological comparisons enable us to shift
our considerations at a parabolic divisor to the higher dimensional analogue of
the second example above, and a similar elementary residue calculation such as
is implicit in the calculation of the second example above, and which was used
previously at least as early as in Mumford’s paper [23], shows that in a precise
sense these divisors do not contribute to the Chern class.

Section 2 collects some needed details about renormalized Chern forms and
fills in some gaps in the literature as to their dependence on approximations to
the Kähler-Einstein metric. In particular, we verify that for M spherical, the
forms c̃j determine well-defined classes in H2j(X, M ;R). In section 3 we re-
view what we need of the development map technique of [5], in particlar, the
multi-valued Hartogs theorem, and use this to pull back the complex hyperbolic
metric from Bn to X, and thus concentrate the classes studied to neighborhoods
of the maximal compact subvariety of X. In section 4 we analyze the principal
monodromies. The irreducible divisors of E are classified according to whether
these monodromies are elliptic or parabolic. Composing the monodromy repre-
sentation with the adjoint representation of PSU(n, 1) on the complexification
su(n, 1) ⊗ C of su(n, 1), and some reductions, we prove that the eigenvalues of
the principal monodromy transformations are roots of unity. This comes from
standard relations on the fundamental group and intersection matrices of curves
in surfaces due to Mumford [22], though care has to be taken in “abelianizing”
a non-abelian representation. Section 5 carries out a final preparatory geometric
reduction of the principal monodromies, and a sharper analysis of the case of
a parabolic divisor. Section 6 constructs a completion of the pull-back of the
tangent bundle TBn by the development map which is compared to the tan-
gent bundle TX by the differential of the development map. This comparison
completes the proof of the Main Theorem 1.1. A final section 7 gives a brief
description of an analogous problem for real conformally compact manifolds, and
recent work on renormalizing volumes of manifolds like our X.

The authors would like to thank both the University of Michigan (JSR), Po-
hang University of Science and Technology and Seoul National University (DB),
and the Korean Institute for Advanced Study (DB and JSR) for visitor support
during the preparation of this paper. The authors would also like to thank Gang
Tian for useful discussions concerning this subject at an early stage of our work.
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2. Renormalized Chern Forms.

In this section we recall the basics of renormalized Chern forms from [7] and
extend them to cover the current situation. We first describe the class of metrics
for which the renormalized Chern forms will be defined, and use the standard
transgression formula to check the extent to which they are independent of the
metric used within this class.

In [7], it was assumed one had a Kähler-Einstein metric g on a compact com-
plex manifold with smooth, strictly pseudoconvex boundary, and if we define the
tensors

(2.1) K = K j

i k`
= −1{δ j

i gk` + δ j
k gi`}

and

(2.2) Ricci =
1

n + 1
Rici`δ

j
k +

1
n + 1

Rick`δ
j

i

and
W j

i k`
= Riem−Ricci,

where Riem j

i k`
is the (Kähler) Riemannian curvature tensor, Ric = Rici` =

Riemj

i j`
is the Ricci form. This leads to matrices of 2-forms

(2.3) Ω = (Ω j
i ) = (

∑

k,`

Riem j

i k`
dzk ∧ dz`),

and

(2.4) W = (W j
i ) = (

∑

k,`

W j

i k`
dzk ∧ dz`),

Explicitly, in [7], it was assumed that Ricij ≡ −(n + 1)gij , or equivalently

(2.5) E := Ricci−K = 0

A renormalized Chern form was then taken to be a polynomial in the power traces
Tr (W j), j = 2, . . . , n, which could be expressed in terms of the Chern forms of
the metric g. Specific renormalized characteristic forms c̃j , j = 2, . . . , n, (c̃1 = 0),
the renormalized Chern classes, were defined inductively by

(2.6) cj = c̃j +
j∑

i=1

aj,i(c̃2, . . . , c̃j−1)ci
1,

where the aj,i(c̃2, . . . , c̃j−1) are 2j − 2i-forms, polynomial in the already defined
renormalized Chern classes. We will here check more carefully that the renormal-
ized Chern classes may be defined in terms of approximations to a Kähler-Einstein
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metric, as in [14], and that these forms will yield the same characteristic numbers
as in [7].

Let first v0 be a volume form on X which is smooth and strictly positive up
to and including the boundary M . In local holomorphic coordinates z1, . . . , zn

smooth to the boundary near a boundary point z0 ∈ M , we can write

v0 = ρ0(z)
n∏

j=1

√−1
2

dzj ∧ dzj ,

where ρ0 is smooth and strictly positive up to the boundary. Consider all volume
forms v of the form

v =
1

(−ψ)n+1
v0,

where ψ is a smooth function vanishing on M , with dψ 6= 0 on M , and ψ < 0 on
the interior of X. The Ricci form is

Ric(v) = ∂∂ log
(−ψ)n+1

ρ0
.

We set g = g(v) = − 1
n+1Ric(v) sufficiently close to M and extend it to all of X

as a hermitian metric on the tangent bundle TX. This metric is Kähler near M .
We will say that the volume form v is a Fefferman approximation if it satisfies

(2.7) Ric(v) + (n + 1)g = O(ψn−1) at the boundary.

That such volume forms exist locally near z0 in the boundary follows from Fef-
ferman’s Monge-Ampère algorithm in [14], applied in local coordinates to the

function ρ
−1

n+1

0 · ψ. This amounts to solving the following problem asymptotically
at ∂X = {φ = 0} locally: find a strictly plurisubharmonic defining function φ, so
φ < 0 on X, and verifying

(2.8) J(φ) ≡ det
(

φ φj

φi φij

)
= −1 mod O(φn+1).

Fefferman shows that (2.8) has a solution φ which is unique mod O(φn+2). Then
the volume form is uniquely defined through order n+1, that is, any two solutions
v1, v2 of (2.7) satisfy

(2.9)
v1

v2
= 1 + O(φn+2).

The transformation law in [14] relating computations in different holomorphic
coordinate systems shows that the solution to equation (2.7) is globally defined
near M , and can be extended to all of X as a smooth volume form.

Following [14], p. 400, we want to improve the degree of approximation to the
exact Kähler-Einstein metric by adding logarithmic terms at the boundary to φ.
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Consider functions of the form

(2.10) ψ = φ(1 + Aφn+1 log(−φ)),

where A is smooth to the boundary of X.

Proposition 2.1. There exists A ∈ C∞(X) such that

(2.11) J(ψ) = −1 + O(φn+2 log(−φ)),

and A is unique mod O(φ), and is algebraically computable locally at ∂X.

Proof. One simply inserts (2.10) into the calculation on pp. 399-400 of [14], and
arrives at the following:

J(ψ) + 1 = −(n + 3)Aφn+1 + O(φn+2 log(−φ)),

so the proposition is proved by taking

A = − 1 + J(φ)
(n + 3)φn+1

.

¤

Let g now be the metric

gij =
∂2

∂zi∂zj
log(

1
−ψ

)

where ψ is one of the solutions of (2.11). Equation (2.11) implies that for g,

(2.12) Ric = −(n + 1)g mod O(φn log(−φ)),

and more precisely,
(2.13)
Ricij + (n + 1)gij = E `

i ` j
:= Eij = φiφjφ

n log(−φ) ·O(1) + φn+1 log(−φ) ·O(1).

Note that E j

i k`
= 1

(n+1){δ j
i Ek` + δ j

k Ei`}. We have the simple identity

(2.14) Ω = W + Ricci = W + E + K.

Finally, define

(2.15) Tj(Ω) = (
i

2π
)j Tr (Ωj), j = 1, . . . , n,

and the characteristic forms
(2.16)

Pj(Ω) =
j−2∑

k=0

(−1)k

(
j

k

)
Tj−k(Ω)T k

1 (Ω)
(n + 1)k

+
(−1)j−1(j − 1)T j

1 (Ω)
(n + 1)j−1

, j = 2, . . . , n.

The renormalized characteristic forms of [7] are the polynomials in the forms
Pj(Ω). Theorem 2.1 of [7] says that Pj(W + K) = ( i

2π )jTr (W j).
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Proposition 2.2. For ψ as in proposition 2.1, the characteristic forms Pj(Ω)
are continuous up to the boundary of X, and agree with ( i

2π )jTr (W j) there.

We need some lemmas to show this.

Lemma 2.3. For j = 1, . . . , n, we have an expansion

(2.17) Tj(Ω) =
j∑

k=0

ωkbk,

where ω is the Kähler form for g, and the coefficients bk are bounded 2j-2k forms.

Proof. This follows directly from two facts: Ω = Ω−K +K = W +E +K, where
W is continuous on X (cf., [7], p. 36 and the proof of proposition 2.1 of that
paper) as is E, by (2.13); and K · (Ω − K) = (Ω − K) · K = 2

√−1ω(Ω − K)
(proof identical to that of lemma 2.1 of [7]). ¤

Next we estimate the difference between the trace powers of Ω and those of
W + K.

Lemma 2.4. For j = 1, . . . , n., we have an error estimate

(2.18) Tr (Ωj)− Tr ((W + K)j) = O(φn+1−j log(−φ)).

Proof. The difference of the two terms on the left hand side is expressible as a
sum of terms of the form Tr (A1 · . . . ·Aj), where each of the Ai is an n×n matrix
of two forms, each one equal to one of W,K, or E, and at least one of them
equal to E. Since W is continuous on X, the largest of these terms is equal to
Tr ((K)j−1E) = (2

√−1ω)j−1Tr (E) = (2
√−1ω)j−1∧{φn log(−φ)∂φ∧∂φ ·O(1)+

O(φn+1 log(−φ))}, by (2.13). The lemma follows immediately. ¤

Proof. (of proposition 2.2) We write Pj(Ω) as in (2.16), and estimate Pj(Ω) −
Pj(W + K) term-by-term from (2.16). For example, Tj−k(Ω)T k

1 (Ω)− Tj−k(W +
K)T k

1 (W + K) = {Tj−k(Ω) − Tj−k(W + K)}T k
1 (Ω) + Tj−k(W + K){T k

1 (Ω) −
T k

1 (W +K)} = O(φn+1−j log(−φ)), by (2.17) and lemma 2.4. Since Pj(W +K) =
( i
2π )jTr (W j) is continuous on X, this proves the proposition. ¤

Corollary 2.1. If the boundary M of X is spherical, then the renormalized
characteristic forms of X, computed using any approximate ψ as above, vanish
at M .

Proof. One can choose an approximate ψ which actually solves the Monge-Ampère
equation exactly, and for which W ≡ 0. But this implies that W for any approx-
imation as above, good through log order terms, has W = 0 at the boundary.
(For n = 2, one must use the argument of [7], proposition 2.1.) But then Pj(Ω)
vanishes at the boundary, by proposition 2.2. ¤
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We have now shown that using the function ψ generates approximate Kähler-
Einstein metrics with all renormalized classes well-defined and continuous on X.
Of course, there are choices for ψ and we would like to see how these forms
depend on such a choice. Suppose we have a one parameter family of hermitian
metrics which are Kähler near the boundary, gt, smooth in t ∈ [0, 1]. Let θt be
the local canonical hermitian connection (1,0)-forms and Ωt = dθt − θt ∧ θt the
corresponding curvature two forms. Recall the basic transgression formula:

(2.19) Tr (Ωj
1)− Tr (Ωj

0) = d{−j

∫ 1

0
Tr ((θ̇t ∧ Ωj−1

t )dt}.

Now suppose we have two functions ψ0, ψ1 as in (2.13), where ψ0 is of the form
given in (2.10), and we allow ψ1 to be slightly more singular, but so that

(2.20)
ψ1

ψ0
= 1 + Bφn+1 + Cφn+2 log(−φ),

where B ∈ C∞(X) and C is at least C2(X)∩C∞(X) on X and its third derivatives
are O(log(−φ)) at the boundary and fourth derivatives O( 1

φ). This allows the
possibility of using ψ1 = ψKE , the exact Kähler-Einstein solution [9], if such
exists on X, whose boundary behavior from [20] falls into the class described by
(2.20). Then set ψt := (1− t)ψ0 + tψ1 and set

(2.21) gt = ∂∂ log(
1
−ψt

).

Notice that each of ψt satisfies (2.13) and (2.20). To estimate θ̇t, we note first
that

(2.22) θ̇ j
t,i =

d

dt
(gjk

t ) ∂gt,ik + gjk
t ∂ġt,ik = −gjv

t ġt,uv guk
t ∂gt,ik + gjk

t ∂ġt,ik.

We estimate the pieces of (2.22) as follows, starting with the obvious estimates on
ψt. Note that for simplicity, we usually suppress explicit mention of the parameter
t in ψt, etc., in the next calculations.

(2.23)

ψ̇ = O(φn+2)

ψ̇i = O(φn+1)ψi + O(φn+2)

ψ̇k = O(φn+1)ψk + O(φn+2)

ψ̇ik = O(φn)ψiψk + O(φn+1)ψi + O(φn+1)ψk + O(φn+2)
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Estimate the derivatives of g, using (2.23):

(2.24)

ġuv = O(φn−1)ψuψv + O(φn)

∂ġuv = O(φn−2)ψk + O(φn−1)

∂gik = O(φ−3)ψk + O(φ−2)

Next, we draw on two estimates on gt from [7]: [7], equation (2.8):

(2.25) guk = O(φ)

and [7], equation (2.10) ([20], equation (2.9)):

(2.26) gukψk = O(φ2).

With these pieces in hand, the following two lemmas summarize exactly what
is needed to estimate (2.19).

Lemma 2.5.

(2.27) θ̇ j
i = O(φn).

Proof. Using (2.25) and (2.26), we get

gjk∂ġik = O(φn),

gjv ġuv = O(φn+1),

guk∂gik = O(φ−1),
which taken together prove the lemma. ¤

The second lemma is slightly more precise.

Lemma 2.6.

(2.28) Tr (θ̇) = O(φn)∂φ + O(φn+1).

Proof. We compute

Tr (θ̇) =
d

dt
Tr (θ) =

d

dt
∂ log(det(gij)) =

d

dt
∂ log

1
(−ψ)n+1

+
d

dt
∂ log(1 + Fφn+1).

Since
d

dt
∂ log

1
(−ψ)n+1

= −(n + 1)
d

dt

∂ψ

ψ
= O(φn)∂φ + O(φn+1),

and
d

dt
∂ log(1 + Fφn+1) = ∂

Ḟφn+1

1 + Fφn+1
= O(φn)∂φ + O(φn+1),
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taken together they prove the lemma. ¤

Proposition 2.7. Let ψi,Ωi be as above, and P (Ω) a characteristic form of
degree 2k. Then

(2.29) P (Ω1)− P (Ω0) = dTP,

where TP is a continuous form on X which vanishes along M = ∂X.

Proposition 2.7 has two immediate consequences.

Corollary 2.2. For P (Ω) a renormalized Chern form of degree 2n, the integral∫
X P (Ω) is independent of the approximation used to compute the approximate

Kähler-Einstein metric above. In particular, if X admits a complete Kähler-
Einstein metric, these integrals agree with those introduced in [7].

Proof. This follows from proposition 2.7 and integration by parts. ¤

Corollary 2.3. If ∂X = M is a spherical CR-hypersurface, then the renormalized
Chern form P (Ω) calculated in any approximate Kähler-Einstein metric vanishes
at the boundary. Any two such approximations differ by a form dTP , where
TP vanishes on the boundary. In particular, the cohomology class [P (Ω)] ∈
H2i(X, M ;R) is independent of the approximation used.

Proof. Locally at ∂X we may introduce coordinates where we have a local defining
function ψ1 such that the associated metric g1 is complex hyperbolic ( see section
3. below). In particular, W1 vanishes identically. Then from the argument of
proposition 2.1 in [7] (if n = 2; otherwise it is a trivial remark), any other W = W0

also vanishes along ∂X. So, both P (Ω1) and P (Ω0) give classes in H2i(X, M ;R),
and proposition 2.7 shows that these classes are the same. ¤

We now prove proposition 2.7.

Proof. We start by estimating (2.19). We decompose

(2.30) Ωt = Wt + Et + Kt,

where we have

(2.31) KtΩt = ΩtKt = (2i)ωtΩt,

and similarly for Et. We also have Et = O(φn log(−φ)), from (2.13). Substituting
(2.30) and (2.31) into the integrand of the transgression formula Tr (θ̇t ∧ Ωj−1

t ),
we see it may be expanded into a sum

(2.32) Tr (θ̇t ∧ Ωj−1
t ) =

j−1∑

k=0

ωk
t Bk,
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where Bk is a sum of terms of the form

Tr (θ̇t ∧Ak,1 ∧ . . . ∧Ak,j−1−k),

and each of Ak,`, ` = 0, . . . , j − 1, is either Wt or Et. Then we have estimates:

(2.33) Tr (θ̇t ∧Ak,1 ∧ . . . ∧Ak,j−1−k) =





O(φn)∂φ + O(φn+1), k = j − 1

O(φn), k ≤ j − 2

The case k = j − 1 is lemma 2.6. The case k ≤ j − 2 is lemma 2.5.

Substituting (2.33) into (2.32) we get

(2.34)

Tr (θ̇t ∧ Ωj−1
t ) = ωj−1

t ∧ (O(φn)∂φ + O(φn+1))

+
∑

k≤j−2 ωk
t O(φn))

= O(φ).

Integrating this from t = 0 to t = 1 gives the proposition in the case P (Ω) =
Tr (Ωj).

The general P (Ω) is a sum of products Tr (Ωj1) . . .Tr (Ωj`), where j1+. . .+j` ≤
n. The transgression formula for such a summand is a sum of terms like

constant ×
∫ 1

0
Tr (Ωj1

t ) . . .Tr (θ̇t ∧ Ωjk−1) . . .Tr (Ωj`
t )dt.

Using (2.17) for each Ωt, we get that the integrand is a sum of terms

O(1) · ωm
t ∧ Tr (θ̇ ∧ Ωjk−1

t ),

where 0 ≤ m ≤ ∑
i6=k ji. Taken together with (2.34), we get

(2.35)

ωm
t ∧ Tr (θ̇t ∧ Ωjk−1

t ) = ωm+jk−1
t ∧ (O(φn)∂φ + O(φn+1))

+
∑

`≤jk−2 ωm+`
t O(φn))

= O(φn−(m+jk−1))∂φ + O(φn+1−(m+jk)).

= O(φ),

since m + jk < n + 1. Integrating from 0 to 1 proves proposition 2.7. ¤
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3. Development Mappings and Monodromy.

In this section we draw some consequences of the development map technique
of [5]. Since our boundary M is spherical, there is a covering {Uα} of M , and CR
diffeomorphisms φα : Uα → ∂Bn. These are related on overlaps by the CR maps

φα,β := φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) ⊂ ∂Bn,

where the φα,β are global transformations in PSU(n, 1), the biholomorphic au-
tomorphism group of Bn. This implies that the coordinate charts φα can be
analytically continued along any continuous curve γ lying in M , that is, they
define a multivalued CR-equivalence on all of M . By Levi extension, the CR
mappings φα extend to holomorphic mappings also denoted φα, defined and lo-
cally biholomorphic on relatively open sets Ûα ⊂ X, mapping to the (closed) unit
ball Bn. Since the overlaps are given by the extensions of φα,β to Ûα ∩ Ûβ, these
local extensions define a multivalued holomorphic mapping, denoted D, from a
neighborhood of the boundary M of X into the unit ball Bn. This mapping is
unique up to composition with a global element g ∈ PSU(n, 1), and is called the
development map.

By the multivalued Hartogs theorem of [5], the multivalued development map
D may be analytically continued along any continuous path c(t) lying in X \ E,
where E ⊂ X is the maximal compact subvariety of X. Fixing a basepoint
z0 ∈ X \ E, and a determination of D near z0, the multivaluedness of D gives a
monodromy representation

ρ : π1(X \ E, z0) → PSU(n, 1),

which is uniquely determined up to (global) conjugation in PSU(n, 1). Since
the monodromy of D lies in PSU(n, 1), there is a well-defined Kähler metric
D∗ds2

CH pulled back from Bn by the development map. Here ds2
CH is the complex

hyperbolic (Bergman) metric on Bn for which PSU(n, 1) acts as isometries. This
metric has constant holomorphic sectional curvature -1. This pullback metric
is locally near the boundary of the form for which we can define renormalized
Chern forms, and indeed, by 2.7, such forms will vanish identically wherever this
metric is defined, i.e., on X \ E. Furthermore, given any open neighborhood V
of E, we may find a Hermitian metric h on the holomorphic tangent bundle of
TX which agrees with the Kähler metric D∗ds2

CH in an open neighborhood of
X \ V. The forms c̃j , j = 2, . . . , n, computed in h vanish on this same set, and
so are compactly supported in V. By the usual transgression formula, as used in
propositions 2.2 and 2.7, the classes of the forms P (c̃2, . . . , c̃n) in H∗(X, M ;R) are
independent of the choice of such an h, where P is any polynomial with rational
coefficients as in Theorem 1.1.

Our first understanding of the principal monodromies comes from the general-
ized Schwarz lemma, see, for example, [17], [28]. Fix a point z ∈ E∗, the smooth
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locus of E. If codz(E) > 1, then D extends holomorphically across E, and the
codimension assumption means that D is also a local diffeomorphism across E in
a neighborhood of z. This extends the locally complex hyperbolic metric D∗ds2

ch
to a neighborhood of z, so we will assume that codz(E) = 1. In this case, let
ΓC be a complex disk in Xwhich is transverse to E and such that the origin of
ΓC ∩ E = {z0}, where z0 is a smooth point of E.

In local coordinates (z1, . . . , zn−1, ζ) at 0 = z0 ∈ X, so that Ej given by ζ = 0,
by the Schwarz lemma we have

(3.1) D∗ds2
CH ≤ C{

n−1∑

i=1

|dzi|2 +
|dζ|2

|ζ|2 log2(|ζ|2)}.

Let c(r) = (0, . . . , 0, r), r ∈ (0, ε), be a radial curve. There is a single-valued
development map D along c. The boundedness of Bn implies that there exist a
sequence ri → 0 in (0, ε), and a point w0 ∈ Bn so that limri→0 D(c(ri)) = w0.

The length of the circle Cr = {|ζ| = r, z1 = . . . = zn−1 = 0} in the Poincaré
metric |dζ|2

|ζ|2 log2(|ζ|2)
is bounded by C

log 1
r

. If we analytically continue D once counter-

clockwise along Cr, starting at c(r), we come to ρ(γj) ·D(c(r)). Therefore, taking
complex hyperbolic distances in Bn, we see that

(3.2) dCH(D(c(r)), ρ(γj) ·D(c(r))) ≤ C

log 1
r

.

Since the Euclidean distance in Bn is less than the complex hyperbolic distance,
taking limri→0 of this last equation, we conclude that ρ(γj)(w0) = w0.

Proposition 3.1. The principal monodromy γj has ρ(γj) ∈ PSU(n, 1) which is
either elliptic or parabolic.

Proof. If w0 is in Bn, then ρ(γj) is elliptic. If w0 ∈ ∂Bn, then by applying a
Cayley transformation, we may without loss of generality replace Bn by its Siegel
domain representation Un = {(z, w) ∈ Cn−1 ×C | Im(w)− |z|2 > 0}, and that w0

gets sent to the point at infinity. In this setting, ρ(γj) is represented as follows:

(3.3) ρ(γj)(z, w) = (λ ·A(z + a), λ2 · (w + t + 2
√−1(z, a) +

√−1(a, a))),

where 0 < λ ∈ R, A ∈ U(n − 1), a ∈ Cn−1 and t ∈ R, and the claim of the
proposition is that λ = 1.

Let H = H(z, w), (z, w) ∈ Un denote the height function H(z, w) = Im(w) −
|z|2. Then the complex hyperbolic metric on Un has Kähler form ωCH =

√−1
2 ∂∂

log 1
H , and so we have the relation between non-negative hermitian differential

forms:

ds2
CH ≥ ∂H

H
⊗ ∂H

H
.
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Hence, for any real curve u(t) ∈ Un, t ∈ [a, b], we have

|u′(t)|2CH ≥ | < ∂H

H
, u′(t) > |2 =

1
4
· | < dH

H
, u′(t) > |2,

and hence,

lengthCH(u) ≥ 1
2
· | log

H(u(a))
H(u(b))

|.
Applying this to the case where u(t) is the analytic continuation of D along
Cr, r > 0, we find

distCH(D(c(r)), ρ(γj) · (D(c(r)))) ≥ 1
2
· | log

H(ρ(γj) · (D(c(r))))
H(D(c(r)))

| = | log λ|.

Since limr→o distCH(D(c(r)), ρ(γj) · (D(c(r))) = 0, we conclude that λ = 1.

¤

4. Exponents of the Principal Monodromies

Let AdC : PSU(n, 1) → GL(su(n, 1)⊗C) be the complexified adjoint represen-
tation, and denote by ρC the representation AdC ◦ ρ : π1(X, z0) → GL(su(n, 1)⊗
C). Recall that for every (smooth) irreducible component Ej of the maximal
compact subvariety E of X, the principal monodromy of Ej is the element in
the fundamental group π1(X, zo) represented by a loop γj going once counter-
clockwise around the divisor Ej , e.g., the curve Cr in the previous section. The
conjugacy class of γj ∈ π1(X, z0) is uniquely determined. The aim of the present
section is to prove the following lemma.

Lemma 4.1. All eigenvalues of ρC(γj) are roots of unity, for every irreducible
divisor Ej of E.

Before proving 4.1 we make some reductions.

Lemma 4.2. In lemma 4.1 we may assume that a neighborhood of E ⊂ X is
biholomorphic to an open neighborhood of a divisor E′ in a projective algebraic
manifold X ′. Further, we may assume that every irreducible component E′

k of E′
is non-singularly embedded in X ′, and that E′ has normal crossings.

Proof. Let E[j] denote the connected components of E. Then each E[j] may
be contracted to an isolated normal singular point x[j] in a complex variety X̌.
By a theorem of M. Artin, the space X̌ is locally biholomorphic to a projective
algebraic variety Y̌ [j] at x[j]. By resolution of singularities, there is a projective
manifold Ŷ and a proper map π̂ : Ŷ → Y̌ such that π̂ is biregular over Y̌ \ {x[j]},
and π̂−1(x[j]) = Ê[j] is a smooth divisor with normal crossings, all of whose
components are non-singularly embedded in Ŷ . Furthermore, we may assume
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that there is a neighborhood V̂ of Ê = ∪Ê[j] and a mapping π : V̂ → V ⊂ X,
where V is a neighborhood of E in X. This mapping is biregular off E, and
π−1(E) = Ê ⊂ Ŷ . Note that for every irreducible divisor Ei in E, the proper
transform of (Ei), say Êi, is among the (smooth) irreducible divisors of Ê, and
that if γ̂i denotes a loop passing once around the divisor Êi, then π(γ̂i) = γi is a
loop passing once positively around Ei. Thus, to prove 4.1 it suffices to consider
the representation, still denoted ρC = Ad ◦ ρ : π1(V̂ \ Ê, z0) → PSU(n, 1), and
to prove that all eigenvalues of ρC(γ̂k) are roots of unity, for all γ̂k, principal
monodromy around an irreducible divisor of Ê.

¤

Henceforth, we will assume the properties of lemma 4.2 but keep the original
notation X, E, etc. Next, we reduce X to a surface which still carries the principal
monodromy loops. Since Ŷ in the proof of 4.2 is projective, we may intersect it
with generic hypersurface sections in some projective embedding so that we may
construct a non-singular surface S ⊂ X such that S∩E = C = ∪jCj , where each
Cj = S∩Ej is a smooth curve in S, where Ej runs over the irreducible divisors of
E, and every pair Ci, Cj intersect transversally. By restricting to a neighborhood
of C in S, and by blowing up a few points of intersection of Ci, Cj if necessary,
we may assume that we have a surface S which is a deformation retraction of the
curve C and that the irreducible components Ci, Cj of C either do not intersect,
or if they do, they intersect transversally in just one point. In this case, every
principal monodromy loop about some divisor Ej in X is in the image of a loop
about one of the curves Ci. Thus, we are reduced to the following situation:

We have a surface S, a deformation retraction to a curve C ⊂ S, and C = ∪iCi,
where the irreducible curves Ci are smooth and intersect each other transversally
at no more than one point per pair of curves. We have a representation, still
denoted ρC, coming from our original monodromy representation,

ρC = AdC◦ρ◦ι# : π1(S\C, z0) → π1(X\E, z0) → PSU(n, 1) → GL(su(n, 1)⊗C),

where ι : S\C → X\E is the inclusion, and ι# is the induced map of fundamental
groups. It remains to show that all eigenvalues of ρC(γi) are roots of unity, where
γi runs over all the principal monodromies of the components Ci.

We may take S above to be a tubular neighborhood of C of the form given in
[22], which is constructed from the normal disk bundles of the Ci ⊂ S plumbed
together at the various intersection points of the components. We recall Mum-
ford’s description of the fundamental group π1(S \ C, z0) in terms of generators
and relations in this situation. Concentrate first on an irreducible component Ci

of C. Let Ni be the holomorphic normal bundle of Ci ⊂ S and Bi ⊂ Ni the
unit disk bundle. Let πi : Bi → Ci be the projection. Let xi,j = Ci ∩ Cj , if this
intersection is non-empty. Let gi be the genus of Ci. The fundamental group
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π1(Ci \ {xi,j}, zi) is generated by curves αi
k, β

i
k, k = 1, . . . , gi, and ci,j , where the

αk and βk are a standard generating set for the fundamental group of Ci, and for
each intersection point xi,j , ci,j is given by a loop passing once counter-clockwise
about xi,j . The group π1(Ci \ {xi,j}, zi) is generated by these elements subject
to the single non-trivial relation

(4.1) 1 =
gi∏

k=1

[αi
k, β

i
k] ·

∏

j

c−1
i,j ,

where [αi
k, β

i
k] = αi

kβ
i
kα

i
k
−1

βi
k
−1 is the commutator.

Next let Wi = π−1
i (Ci \ {xi,j}) minus the zero section. The fundamental

group of Wi is represented in terms of generators αi
k, β

i
k, k = 1, . . . , gi, ci,j , where

πi(αi
k) = αi

k, etc., and one new generator γi going once around 0 in the fiber of
Bi, which is the principal monodromy corresponding to the component Ci. The
fundamental group π1(Wi, zi) is generated by these elements. They verify the
relation

(4.2) γdi
i =

gi∏

k=1

[αi
k, β

i
k] ·

∏

j

c−1
i,j ,

where di is the self-intersection number Ci · Ci of C in S (the degree of Ni).
Furthermore, γi is central in π1(Wi, zi). In S, Ci and Cj are joined at the point
xi,j = xj,i = Ci ∩ Cj . Wi and Wj are plumbed together in such a way that γi

is identified with cj,i and γj with ci,j . Note that we will eventually have to be
careful about the question of basepoints for fundamental groups, but that the
statement of lemma 4.1 only involves the conjugacy classes of the γi’s, which
simplifies things considerably.

Proof. (of Lemma 4.1) We would like, in some sense, to abelianize the repre-
sentation ρC. This is possible if we can decompose the representation accord-
ing to eigenspaces, which is almost possible. To carry this out, define V i

` ⊂
su(n, 1) ⊗ C to be the λi

` generalized eigenspace for ρC(γi), i.e., the kernel of
(ρC(γi)− λi

`I)N , N >> 0. Since γi is central in π1(Wi, zi), the subspace V i
` is left

stable by ρC(αi
k), ρC(βi

k), ρC(ci,j), for all k, j. We may restrict the relation (4.2)
above to V i

` ,and get

(4.3) (ρC(γi)|V i
`
)di =

gi∏

k=1

[ρC(αi
k)|V i

`
, ρC(βi

k)|V i
`
]
∏

j

ρC(ci,j)−1|V i
`
.

Taking determinants of this relationship gives us equations

(4.4) (λi
`)

di dim V i
` =

∏

j

det(ρC(ci,j)−1|V i
`
),
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one for each `, where ` runs over the distinct eigenvalues of ρC(γi). This gives us
as many equations as there are unknowns in our problem, namely, the number
of distinct eigenvalues of the ρC(γi)’s. Unfortunately, we cannot yet describe this
system clearly enough to analyze it. This is due to the role played by the choice of
basepoints for the fundamental groups involved. To see this, consider a simpler
case where we have a representation of π1(S \ C, z0) in GL(2,C), and C has
three distinct components which form a triangle in S. Assume we have distinct
eigenvalues λi

`, i = 1, 2, 3, and ` = 1, 2. Now suppose we start making equations
for the eigenvalues from the first component: we would get two equations:

λ1
1
d1 · λ2

1 · λ3
1 = 1,

λ1
2
d1 · λ2

2 · λ3
2 = 1.

Unfortunately, when one writes down analogous equations generated from the
component C2 and its principal monodromy element γ2, the names of the eigen-
values of γ1 and γ3 may not be consistent. We will see below that in order to
analyze the system of equations, it is important that the eigenvalues be labeled
consistently, so that the next set of equations is

λ2
1
d2 · λ1

1 · λ3
1 = 1,

λ2
2
d2 · λ1

2 · λ3
2 = 1,

and not, for example,
λ2

1
d2 · λ1

1 · λ3
2 = 1,

λ2
2
d2 · λ1

2 · λ3
1 = 1.

To this end, we consider the intersection graph K of the array of curves C = ∪iCi.
Recall that one introduces a line segment Li for each Ci, and Li and Lj are
joined at one point if Li ∩ Lj 6= φ. This point of intersection is distinct for
distinct pairs Li, Lj . We would like to construct next a finite covering K̂ of
K. Over each Li introduce m := n2 + 2n = dimC su(n, 1) ⊗ C distinct line
segments L̃i

1, . . . , L̃
i
m. Associate with each L̃i

k an eigenvalue λi
k of ρC(γi). Do

this in such a way that one has exactly m` = multiplicity λi
` of the λi

k equal
to λi

`, for all `, where λi
` runs, as before, over the distinct eigenvalues of ρC(γi).

Care must be taken in how we join the various L̃i
k, L̃

i′
k′ together over K. Letting

V (λ, ρC(γi)) ⊂ su(n, 1) ⊗ C denote the generalized eigenspace for ρC(γi) with
eigenvalue λ, and similarly for V (λ, ρC(ci,i′)). If Li ∩ Li′ 6= φ in K, then join
arbitrarily m(i, k; i′, k′) := dimV (λi

k, ρC(γi))∩V (λi′
k′ , ρC(ci,i′)) of the L̃i

k with the
L̃i′

k′ .

There is a natural covering map p : K̂ → K of degree m. There is another,
connected covering of q : K ′ → K of degree ≤ m! such that the induced covering
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K̂ ′ = q∗K̂ is trivial, i.e., is equivalent to K ′ × {1, . . . , m}. We next use K ′ to
induce a covering of S. We already have a retraction r : S → C. On the other
hand, it is clear that we have a surjection s : C → K, and together these induce a
surjection s#◦r# : π1(S, z0) → π1(K,x0). The covering K ′ → K corresponds to a
finite index subgroup πK′ ⊂ π1(K, x0) and so we induce the finite index subgroup
πS′ ⊂ π1(S, z0), which corresponds in turn to a finite covering qS′ : S′ → S. By
construction, C ′ = q−1

S′ (C) is a connected curve whose irreducible components are
embedded smooth curves, and which intersect each other in at most one point.
Consider the principal monodromies γ

′
i′ around the components C

′
i of C ′, and

their representation, still denoted ρC, via π1(S′, z′0) → π1(S, z0) → GL(su(n, 1)⊗
C). qS′ sends C

′
i′ to some component Ci of C, and there exists a positive integer

ν(i, i′) such that ρC(γ
′
i′) = (ρC(γi))ν(i,i′). Hence, to prove lemma 4.1 it suffices to

show that all eigenvalues of ρC(γ
′
i′) are roots of unity, for all i′.

We will now drop the primes from our notation, but assume instead that for
the eigenvalues (listed with multiplicity) λi

k of each of the ρC(γi) we have an
ordering, say k = 1, . . . , m, which is independent of passing around closed loops
of components Cj (i.e., well-defined after passing around closed loops in K).

Let us next revisit the equations on the λi
k described in (4.4). First of all, we fix

some notation. Let s = the number of components Ci of C. For k, k′ = 1, . . . , m,
let (i, k) ∼ (i, k′) if λi

k = λi
k′ . Let u, v run over the set of ∼ equivalence classes

[i, k], i = 1, . . . , s, k = 1, . . . , m, and let N denote the number of distinct ∼
equivalence classes. Let λ(u) = λi

k, for any (i, k) ∈ u.

Next, let us note that, since the ρ(γi) are either elliptic or parabolic in PSU(n, 1),
we have that |λi

k| = 1, for all i, k. Hence we can write λi
k = e2π

√−1ai
k , where

ai
k ∈ R, and they are well-defined mod Z. As above, we set a(u) = ai

k, for any
(i, k) ∈ u.This means that, taking 1

2π
√−1

log, equation (4.4) is equivalent to the
following, for every class u:

(4.5)
∑

(i,k)∈u

{dia
i
k +

∑

{i′|Ci∩Ci′ 6=φ}
ai′

k } ≡ 0 mod Z.

Let (Ci,j) = (Ci ·Cj) be the (symmetric) intersection matrix of the curves Ci, Cj

in S. Notice that (4.5) can be rewritten

(4.6)
∑

{k | (i,k)∈u}

s∑

j=1

Ci,j aj
k ≡ 0 mod Z.

Concerning the matrix (Ci,j), we note that the curve C may be contracted to
an isolated normal surface singularity, since, e.g., it has a strongly pseudoconvex
neighborhood in S. By a well-known theorem of Mumford [22], the matrix (Ci,j)
is negative definite.
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Returning to our system of equations for the a(u), we can write them in terms
of an N × N matrix A = (Au,v) with integer entries. For each t = 1, . . . , m,
let It = {u|λ(u) = λi

t, for some 1 ≤ i ≤ s}, and define the subspace Rs
[t] =

{∑i∈It
ciei, ci ∈ R} ⊂ RN , where ei is the standard basis of RN . Let Πt :

RN → Rs
[t] be the orthogonal projection sending

∑s
i=1 ciei to

∑
i∈It

ciei. Define

the symmetric N ×N matrix A[t] by

A[t]
u,v =

{
Ci · Ci′ if [i, t] = u, [i′, t] = v,
0 else.

By Mumford’s theorem, for any w ∈ RN ,
∑

u,v A
[t]
u,vwuwv ≤ 0, with strict inequal-

ity if Πtw 6= 0 in Rs
[t].

Note that now the matrix A of our system of equations may be written

A =
m∑

t=1

A[t],

so that A is negative semi-definite, and in fact, for any vector w ∈ RN (wτ denotes
the transpose), we have:

wτAw =
∑

t

wτA[t]w =
∑

t

(Πtw)τA[t](Πtw) ≤ 0,

where equality holds if and only if Πtw = 0, for all t = 1, . . . , m, which is if and
only if w = 0. Hence, the matrix A is invertible. Since A has integer entries, the
equations

∑
v Au,va(v) ≡ 0 mod Z, for all u, implies that a(u) ∈ Q, for all u.

Therefore, every λ(u) = e2π
√−1a(u) is a root of unity, proving lemma 4.1.

¤

5. Some Reductions

In this section we exploit the main lemma 4.1 from the previous section. We
first consider the group Γ = ρC(π1(X \ E, z0)) ⊂ GL(su(n, 1) ⊗ C). This is a
finitely generated group, and by a theorem of A. Selberg ([26], lemma 8, which
the authors first learned from Borel’s proposition 2.3 of [3]), there is a finite
index normal subgroup Γ′ ⊂ Γ such that for every element g ∈ Γ′, the only root
of unity which is an eigenvalue of g is 1. Let us consider ρ−1

C (Γ′) ⊂ π1(X \E, z0),
a normal subgroup of finite index, which corresponds to a finite Galois covering
p : X ′ → X \E. By resolution of singularities and Riemann’s existence theorem,
we can assume that this extends to a proper holomorphic map p : X̂ → X, where
X̂ is a complex manifold with Ê := p−1(E) a divisor with normal crossings and
smoothly embedded irreducible components, and for which p : X̂ \ Ê → X \ E
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agrees with our original Galois covering. By construction, ρC(π1(X̂ \Ê, z0)) = Γ′.
Note also that lemma 4.1 applies to the principal monodromies γ̂i around the
components Êi of Ê, and hence these all have all eigenvalues equal to 1.

Next, let us pull TX back to X̂ by p. By the projection formula, [c̃j(X)] ∈
H2i(X, M ;Q) if and only if p∗([c̃i]) ∈ H∗(X̂, M̂ ;Q), where M̂ = ∂X̂ = p−1(M).
On the other hand, we have the differential dp∗ : TX̂ → p∗TX, which is an iso-
morphism off Ê. We can construct a hermitian metric ĥ on TX̂ which agrees with
that on p∗TX via dp∗ outside any neighborhood of Ê, and [c̃i(X̂)]− [p∗c̃i(X)] ∈
H2i(X̂, M̂ ;Q). Putting these two observations together, we conclude:

Proposition 5.1. [c̃i(X)] ∈ H2i(X, M ;Q) if an only if [c̃i(X̂)] ∈ H2i(X̂, M̂ ;Q).

As before, we suppress the change of X to X̂, and simply assume that for any
principal monodromy γi around Ei, ρC(γi) is unipotent.

As a last reduction before the proof of the main theorem, let us consider a
divisor Ei whose principal monodromy is parabolic.

Proposition 5.2. For γi parabolic, X as above, then ρ(γi) ∈ PSU(n, 1) is con-
jugate by a Cayley transform to an automorphism of Un given by

Un 3 (z, w) → (z, w + ti),

for some ti ∈ R.

Proof. Referring back to equation (3.3), we see that ρ(γi) is given, after a Cayley
transform, by

(5.1) Un 3 (z, w) → (z + a,w + t + 2
√−1(z, a) +

√−1(a, a))

for some a ∈ Cn−1, t ∈ R, since in (3.3) we know λ = 1, by proposition 3.1, and
A = I ∈ U(n−1), by the main lemma 4.1. It remains to show that a = 0 ∈ Cn−1.
At a regular point of E in Ei, let (z1, . . . , zn−1, ζ) be local coordinates in which
Ei is given by ζ = 0. Writing the development map D on the disk z1 = . . . =
zn−1 = 0 to Un, we now have that the pull-back D∗H, where H is as before the
height function on Un, is well-defined off ζ = 0. By the well-known fact that
holomorphic sectional curvatures decrease on passage to complex submanifolds
of Kähler manifolds, and the one-dimensional Schwarz(-Pick-Ahlfors) lemma, we
get that

(5.2)
√−1

2
∂D∗H ∧ ∂D∗H

D∗H2 ≤
√−1

2
∂∂ log

1
D∗H

≤
√−1

2
∂∂ log log(

1
|ζ|).

Integrating along any radial curve ζ = se
√−1θ0 from s = r to s = ro > r to

compute the arclength of this curve in the Poincaré metric as in the proof of
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proposition 3.1, we conclude

(5.3)
1

D∗H(re
√−1θ0)

≥ log( 1
r0

)

D∗H(r0e
√−1θ0)

· 1
log(1

r )

and hence,

(5.4)
1

D∗H(ζ)
≥ c · 1

log( 1
|ζ|)

,

for some positive constant c, provided |ζ| < r0.

Now let us fix 0 < r < r0, and estimate the analytic continuation of D along
the circle Cr. Set D(re

√−1θ) = (z1(θ), . . . , zn−1(θ), w(θ)) ∈ Un. As observed
earlier, D(re

√−1θ) is a curve from D(r) to ρ(γi)(D(r)) = (z(0) + a,w(r) + t +
2
√−1(z(r), a) +

√−1(a, a)). But we can estimate

(5.5)
∫ 2π

0
|dD

dθ
(re

√−1θ)|CH dθ ≥
∫ 2π

0

|dz
dθ (θ)|√

H(D(re
√−1θ))

dθ

where |dz
dθ (θ)| =

√∑n−1
i=1 |dzi

dθ (θ)|2. By (5.4), we get

(5.6)
∫ 2π

0

|dz
dθ (θ)|√

H(D(re
√−1θ))

dθ ≥ c
1
2

1

log
1
2 (1

r )

∫ 2π

0
|dz

dθ
(θ)|dθ.

Finally, since z(θ) is a curve from z(0) to z(0) + a, using Euclidean length in
Cn−1 gives

(5.7)
∫ 2π

0

|dz
dθ (θ)|√

H(D(re
√−1θ))

dθ ≥ c
1
2

1

log
1
2 (1

r )
|a|.

Substituting (3.2) into (5.7) and (5.6) gives
C

log
1
2 (1

r )
≥ |a|,

and letting r → 0, we conclude a = 0, proving proposition 5.2.

¤

6. Completion of the Argument

In this section we construct a holomorphic bundle F over X which is an ex-
tension of the pull-back D∗TBn on X \ E across E ⊂ X, and which admits an
extension of the complex hyperbolic metric across all elliptic divisors Ej ⊂ E,
and having only very mild singularities across the parabolic divisors Ei. This last
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part of the proof is a simple adaptation to the present situation of constructions
of [11] and [23]. A set of comparisons as in the proof of proposition 5.1, and
a check à la [23] that the singular parts of the metric on F do not contribute
distributional terms to the Chern classes complete the proof of the main theorem.

Let 0 be a regular point on Ei, a parabolic component of E. Let (z1, . . . , zn−1, ζ)
be coordinates near 0 as in the proof of proposition 5.2, and let the development
map (after Cayley transform) be D : ∆n−1 ×∆∗ → Un, given by

(6.1) D(z, ζ) = (f(z, ζ), g(z, ζ) +
ti

2π
√−1

log ζ),

where ti is as in proposition 5.2, and f(z, ζ), g(z, ζ) are single-valued on ∆n−1 ×
∆∗.

Lemma 6.1. The functions f(z, ζ), g(z, ζ) extend holomorphically across ζ = 0.

Proof. Consider the function G(z, ζ) = e
√−1g(z,ζ) on ∆n−1 × ∆∗. Since Im(g +

ti
2π
√−1

log ζ) > 0, we have that

|G(z, ζ)| ≤ 1

|ζ| ti
2π

.

Hence, G(z, ζ) is meromorphic across ζ = 0, and we may write

(6.2) G(z, ζ) = ζν ·G(ν)(z, ζ),

where ν ∈ Z, and G(ν) is holomorphic across ζ = 0, and G(ν) 6= 0 in a neigh-
borhood of some point (z0, 0) ∈ Ei. But then, taking log of both sides of the
equation

e
√−1g = ζν ·G(ν)

shows that ν = 0, since otherwise g would not be single-valued on ∆n−1 × ∆∗.
Then G 6= 0 near (z0, 0), which means that g(z, ζ) extends holomorphically across
Ei near (z0, 0), and hence everywhere. Since D(z, ζ) ∈ Un, we have

|f(z, ζ)|2 < Im(g(z, ζ)) +
|ti|
2π

log(
1
|ζ|),

or
|f(z, ζ)|2 < C(1 + log(

1
|ζ|)), C >> 0.

This implies f(z, ζ) extends holomorphically across Ei, too. ¤

Since we are assuming now that the principal monodromies are unipotent, if
Ej is an elliptic component of E, then the monodromy γj verifies ρ(γj) = I.
Then the development map D itself extends across Ej locally. Finally, at a
general point z∞ ∈ E, since E is a divisor with normal crossings, we can find
coordinates (z1, . . . , zk, w1, . . . , w`, ζ1, . . . , ζd), where wj = 0, j = 1, . . . , `, are the
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elliptic divisor components passing through z∞, and ζi = 0, i = 1, . . . , d, are the
parabolic divisor components through z∞. Fixing a basepoint z0 ∈ ∆n−d× (∆∗)d

we see that all ρ(γi), i = 1, . . . , d, must commute with each, and hence fix the
same point on the boundary of Bn. Passing to the Cayley transform Un, the same
method as in the proof of lemma 6.1 shows:

Corollary 6.1. Near z∞, we may write

D(z, w, ζ) = (f(z, w, ζ), g(z, w, ζ) +
d∑

i=1

ti

2π
√−1

log ζi),

where f, g are holomorphic on all of ∆n.

Fixing z0, w0, and (ζ0)j , j 6= i, and letting ζi = ri ∈ (0, 1) → 0, that

D(z0, w0, (ζ0)1, . . . , ri, . . . , (ζ0)d) ∈ Un,

for all ri → 0, we get the following corollary.

Corollary 6.2. In corollary 6.1, the coefficients ti are all positive.

The development map D : X \E → Bn allows us to pull back the holomorphic
tangent bundle TBn, together with the differential dD∗ : TX|X\E → D∗TBn.

This is obviously true on the universal covering X̃ \ E of X \ E, but then the
bundle and differential dD∗ are both equivariant with respect to the actions of
π1(X \ E, z̃0) on X̃ \ E and ρ(π1(X \ E, z̃0)) on Bn, allowing the construction
to be pushed down to X \ E. D∗TBn obviously extends across all points of E
contained only in elliptic components of E.

We next would like to extend both TX|X\E and D∗TBn across the parabolic
components. First, define TparX to be the bundle of vector fields tangent to
Epar along Epar := ∪Ei parabolic Ei, explicitly spanned by the ∂

∂zs
, ∂

∂wj
, ζi

∂
∂ζi

in
the local coordinates given above. For D∗TBn, following Mumford, we define a
holomorphic bundle F extending it to X by the condition that its holomorphic
sections Γ(∆n,O(F )) are those holomorphic sections of D∗TBn over ∆n−d×(∆∗)d

which are bounded in the pull back of the complex hyperbolic metric on D∗TBn.

Lemma 6.2. F is a holomorphic vector bundle. The differential of D extends
to give a holomorphic bundle homomorphism dD∗ : TparX → F , which is an
isomorphism on X \ E.

Proof. We check that F is a vector bundle near z∞ ∈ Epar. We write D :
∆n−d × (∆∗)d → Un as above. We claim that a basis for F over ∆n is given
by Z1, . . . , Zn−1,W , where Zj(z, ζ) = ∂

∂zj
|(z,w)=D(z,ζ), W (z, ζ) = ∂

∂w |(z,w)=D(z,ζ).
Note that since D is not single-valued, Zj ,W denote equivalence classes of vectors,
where the equivalence class, e.g., [ ∂

∂zj
|(z,w)] = { ∂

∂zj
|(z,w+

Pd
i=1 miti)

| mi ∈ Z}. The
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complex hyperbolic length of Zj is independent of the representative. Direct
calculation shows

(6.3) |Zj |2CH =
|fj |2

D∗H2
+

1
D∗H

≤ C,

and

(6.4) |W |2CH =
1

D∗H2
≤ C,

verifying that these are sections of F . To prove that they are a basis of F , we
consider a section Z =

∑
aj(z, ζ)Zj + b(z, ζ)W, where aj , b are holomorphic on

∆n−d × (∆∗)d, with |Z|2CH ≤ C, we deduce

|a|2
D∗H

≤ |Z|2CH ≤ C,

so that the coefficients aj extend holomorphically to ∆n. Similarly, we now know

|bW |2CH =
|b|2

D∗H2
≤ C,

showing that b extends holomorphically to ∆n as well, proving the Zj ,W are a
local basis for F .

To show that the differential dD∗ extends holomorphically across Epar, using
the same local coordinates as above, we compute

(6.5)

dD∗( ∂
∂zj

) =
∑ ∂fs

∂zj
Zs + ∂g

∂zj
W,

dD∗( ∂
∂wj

) =
∑ ∂fs

∂wj
Zs + ∂g

∂wj
W,

dD∗(ζi
∂

∂ζi
) =

∑
ζi

∂fs

∂ζi
Zs + (ζi

∂g
∂ζi

+ ti
2π
√−1

)W,

Since all the coefficients of Zj ,W on the right hand side of (6.5) are holomorphic
on ∆n, dD∗ : TparX → F as claimed.

¤

In what follows, we will no longer have to distinguish between the coordinates
zj and wk in ∆n−d × (∆∗)d, so we will drop mention of the wk’s.

With these bundles in hand, we can make a series of comparisons. Note that
there is an inclusion bundle map ι : TparX → TX. All the bundles will be
assumed to have the same metric induced from the complex hyperbolic metric
on Bn off of E. We extend this to a hermitian metric on each of these bundles
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differing from the complex hyperbolic metric only within any small open neigh-
borhood of E. Then [c̃i(TparX) − c̃i(TX)], and [c̃i(TparX) − c̃i(F )] are both in
H2i(X, M ;Q). Thus, the main theorem reduces finally to the following lemma:

Lemma 6.3. [c̃i(F )] ∈ H2i(X, M ;R) vanishes.

Proof. We consider two metrics on F : the first is a metric hX which will be
smooth on X, and agreeing with the pull-back D∗hCH of the complex hyperbolic
metric off a small neighborhood of Epar, and the second is h = D∗hCH itself.
This latter, is, of course, singular along Epar. Recall the definitions from [23]:

Definition 6.4. A smooth p-form η on X \ E has Poincaré growth on X \ E if
in any polydisk neighborhood of z∞ as above, and any tangent vectors v1, . . . , vp

on ∆n, we have an estimate |η(v1, . . . , vp)|2 ≤ C
∏ |vj |2P , where ds2

P is any local
Poincaré metric comparable to

ds2
P =

∑

j

|dzj |2 +
∑

i

|dζi|2
|ζi|2 log2 1

|ζi|2
,

on ∆n−d × (∆∗)d. The p-form η is good if η and dη have Poincaré growth.

Definition 6.5. A hermitian metric h on F over X \ E is good on X if in any
polydisk neighborhood of z∞ as above, and if hi,j = h(ei, ej) in a local basis for
F on ∆n, then

i) |hi,j |, (dethi,j)
−1 ≤ C(

∑d
i=1 log |ζi|)2k, for some C > 0, k ≥ 0,

ii) the 1-forms (∂h · h−1)i,j are good in the sense of definition 6.4.

We verify that D ∗ hCH is good on F by calculating in Un and pulling back
to ∆n−d × (∆∗)d. We calculate in the basis Zj ,W of F , which is equivalent to
calculating in the basis ∂

∂zj
, ∂

∂w of TUn. On Un, the components of hCH are given
explicitly as

(6.6)

hCH( ∂
∂zj

, ∂
∂zl

) =
δj,`

H + zjzl

H2 , j, l = 1, . . . , n− 1,

hCH( ∂
∂zj

, ∂
∂w ) = zj

2
√−1H2 , j = 1, . . . , n− 1,

hCH( ∂
∂w , ∂

∂w ) = 1
4H2 ,
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which implies that on ∆n−d × (∆∗)d we have

(6.7)

h(Zj , Zl) =
δj,`

D∗H + fjfl

H2 , j, l = 1, . . . , n− 1,

h(Zj ,W ) = fj

2
√−1D∗H2 , j = 1, . . . , n− 1,

h(W,W ) = 1
4D∗H2 ,

where fj is as in corollary 6.1. Together with (deth)−1 = C ·Hn+1 this verifies
part i) of definiton 6.5. For part ii), we first observe that any entry of h−1 is
bounded by CD∗H. From (6.7), we see that |∂hs,t

∂zj
| ≤ C

D∗H2 and thus

| < ∂h · h−1,
∂

∂zj
> | ≤ C

D∗H
≤ C ′.

Similarly, | < ∂h, ∂
∂ζi

> | ≤ C
D∗H2|ζi| , and |∂hs,t

∂ζi
| ≤ C

D∗H2|ζi| and

| < ∂h · h−1,
∂

∂ζi
> | ≤ C

D∗H|ζi| ,

showing that ∂h · h−1 has Poincaré growth. The same applies to ∂h · h−1. As to
d(∂h · h−1), we refer to (6.7) to see that

(6.8)

| ∂
2hs,t

∂zj∂zl
| ≤ C

D∗H2

| ∂2hs,t

∂zj∂ζi
| ≤ C

D∗H3|ζi|

| ∂2hs,t

∂ζi∂ζk
| ≤ C

D∗H3|ζi||ζk|

Hence, we get

|∂∂h · h−1( ∂
∂zj

, ∂
∂zk

)|2≤ C
D∗H2 ,

|∂∂h · h−1( ∂
∂zj

, ∂
∂ζi

)|2≤ C
D∗H4|ζi|2 ≤

C
D∗H2|ζi|2 log |ζi|2 ,

|∂∂h · h−1( ∂
∂ζi

, ∂
∂ζk

)|2≤ C
|ζi|2|ζk|2D∗H4 ≤ C

|ζi|2 log2 |ζi|2·|ζk|2 log2 |ζk|2
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and hence ∂∂h · h−1 is of Poincaré growth. Since the product of forms with
Poincaré growth is again of Poincaré growth, this shows that d(∂h · h−1) is of
Poincaré growth, and so ∂h · h−1 is good on ∆n−d × (∆∗)d, and therefore h is
good on F over ∆n−d × (∆∗)d.

Let now A,Ao denote the connection forms for the canonical hermitian con-
nections on F with respect to hX , h, respectively, over ∆n−d × (∆∗)d, and sim-
ilarly, let Ω,Ωo be the corresponding curvature forms. For any symmetric, Ad-
invariant polynomial P (Ω, . . . ,Ω) homogeneous of degree ν, we have a transgres-
sion (2ν − 1)-form TP (A − Ao,Ω,Ωo) polynomial in its arguments, so that on
∆n−d × (∆∗)d we have

P (Ω, . . . ,Ω)− P (Ωo, . . . ,Ωo) = dTP (A−Ao,Ω,Ωo).

Since the component forms of Ωo, Ao are good on ∆n−d × (∆∗)d, the forms
P (Ωo, . . . ,Ωo), TP (A − Ao,Ω,Ωo) and dTP (A − Ao,Ω,Ωo) are all locally inte-
grable across

∏
ζi = 0, and so define currents [P (Ωo, . . . ,Ωo)], [TP (A−Ao,Ω,Ωo)]

and [dTP (A − Ao,Ω,Ωo)] on X. The point of good forms is proposition 1.2 of
[23]: for a good form η, [dη] = d[η]. Thus, the characteristic forms satisfy the
equation of currents

P (Ω, . . . ,Ω)− [P (Ωo, . . . ,Ωo)] = d[TP (A−Ao,Ω,Ωo)]

on X. In our case, the currents P (Ω, . . . ,Ω) − [P (Ωo, . . . ,Ωo)] and TP (A −
Ao,Ω,Ωo) are compactly supported in any small open neighborhood of E. (No-
tice that A − Ao is globally defined, and supported near E.) More specifically,
when P (Ω, . . . ,Ω) gives a renormalized Chern form c̃i(Ω), or a polynomial of
such, we obtain P (Ωo, . . . ,Ωo) ≡ 0 on ∆n−d × (∆∗)d, and so [P (Ωo, . . . ,Ωo)] ≡ 0
on X. Thus we are left in such a case with the equation of currents P (Ω, . . . ,Ω) =
d[TP (A−Ao,Ω,Ωo)] on X, which implies the class of P (Ω, . . . ,Ω) ∈ H2ν(X, M ;R)
is 0, proving lemma 6.3 and hence Theorem 1.2 and Theorem 1.1.

¤

7. Open Questions; the Real Analogue

There are many questions left open by the present work. In general, it is still
unknown what the relationship is between the renormalized Chern classes of [7]
and, for example, index problems on pseudonconvex manifolds. One indication
of such a relationship is given by [13], and unpublished calculations of C. Ep-
stein show that renormalizability of combinations of Chern classes occurring in
Riemann-Roch theorems is correlated with spectral behavior of the kinds of op-
erators studied in [13]. Encouraging results in this direction have appeared very
recently in the Stanford thesis of P. Albin [1].
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Similar problems arise for conformally compact manifolds X whose boundaries
M = ∂X are conformally flat and the Pontrjagin classes of X. In this case one
cannot expect the integrals of such forms over X to be rational, in general,
because of the relationship to the volumes of hyperbolic three manifolds [12], [21]
and because there is no canonical way to fill in the boundary manifold M , as
there is in the complex case (up to blowing up). A natural class of X to consider
would be X admitting a conformally compact Einstein metric. This would be
interesting in that one does not know when such a conformally flat M should
admit a fill-in X with such a metric.

The method of renormalization of [7] is essentially algebraic, and renormalizes
the characteristic class c1(X)n to 0. In the case of Kähler-Einstein manifolds, this
class is proportional to the volume form. Recent geometric cut-off renormaliza-
tions of volume of conformally compact [16] and Kähler-Einstein manifolds [27]
are directly in the spirit of physical applications. These suggest that all Chern
classes may be renormalized in a similar fashion, and with non-trivial contribution
for the cn

1 .

Finally, the present work avoids explicit evaluation of the renormalized char-
acteristic numbers, in particular, their evaluation by residue formulas. Examples
in [24] confirm that, although the evaluation can be made locally along E, what
has to be evaluated is global (coming from M by analytic continuation, and not
just local geometry of E). In the present context this appears in the bundle F
of section 6. The only residue computed here is that in section 6. coming from
[23]. The intermediate reductions use weak forms of the Thom-Porteous relations.
Residue formulas can be expected to work in those cases where the degeneracy
loci of [15], e.g., associated to bundle maps such as dD∗ : TparX → F of section
6. are of the correct dimension [18].
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