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On the Kähler-Ricci Flow on Complex Surfaces

D.H. Phong and Jacob Sturm

1 Introduction

One of the most important properties of a geometric flow is whether it preserves
the positivity of various notions of curvature. In the case of the Kähler-Ricci
flow, the positivity of the curvature operator (Hamilton [7]), the positivity of the
biholomorphic sectional curvature (Bando [1], Mok[8]), and the positivity of the
scalar curvature (Hamilton [4]) are all preserved. However, whether the positivity
of the Ricci curvature is preserved is still not known. As stressed for example
in Chen-Tian [3], this is central to the problem of convergence of the Kähler-
Ricci flow on Kähler-Einstein manifolds of positive curvature. The existence of
Kähler-Einstein metrics has been conjectured by S.T.Yau [10] to be equivalent
to stability in geometric invariant theory, and there is strong interest in relating
these notions to the behavior of the Kähler-Ricci flow.

In this note, we show that the positivity of the Ricci curvature is preserved on
compact complex surfaces, under the additional assumption that the sum of any
two eigenvalues of the traceless curvature operator on traceless (1, 1)-forms is
non-negative.

2 The curvature operator in the Kähler case

Let X be an n-dimensional compact complex manifold, with a Kähler metric
ds2 = gk̄jdzjdz̄k. The Kähler-Ricci flow is the flow ġk̄j = −Rk̄j + µgk̄j , where nµ
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is the average scalar curvature, and Rk̄j is the Ricci curvature. By differentiating
the defining relation [∇j ,∇k̄]V

p = Rk̄j
p
qV

q, we obtain the corresponding flows
for the Riemann curvature tensor Rk̄j

p
q, the Ricci curvature Rk̄j = Rk̄j

p
p, and

the scalar curvature R = gjk̄Rk̄j :

Ṙ = ∆R− µR + Rk̄jRk̄j

Ṙk̄j = ∆Rk̄j + Rk̄l
m

jR
l
m −Rk̄

m̄Rm̄j

Ṙq̄jl̄m = ∆Rq̄jl̄m + µRq̄jl̄m −Rl̄
r̄Rq̄jr̄m −Rq̄

r̄Rl̄jr̄m + Rr̄
p̄
q̄jRp̄

r̄
l̄m

+Rq̄
p̄
r̄mRp̄

r̄
l̄j −Rq̄

p̄
l̄
r̄Rp̄jr̄m (2.1)

Here ∆ = ∇l∇l = glk̄∇l∇k̄ is the complex Laplacian. It is easily seen that
the flows of R and Rk̄j can be written in the same form with ∆ replaced by
∆̄ = ∇l̄∇l̄ = ∇l∇l, and hence with 1

2∆R = 1
2(∆ + ∆̄). On the other hand, the

flow for the Riemann curvature tensor becomes, when written with ∆̄

Ṙq̄jl̄m = ∆̄Rq̄jl̄m + µRq̄jl̄m −Rr
mRq̄jl̄r −Rr

jRq̄ml̄r + Rp
rq̄jR

r
pl̄m

+Rp
jl̄rR

r
pq̄m −Rp

j
r
mRq̄pl̄r (2.2)

Combining the flows with ∆ and ∆̄, we obtain the flow with real Laplacian:

Ṙq̄jl̄m =
1
2
∆RRq̄jl̄m + µRq̄jl̄m − 1

2
(Rr

mRq̄jl̄r + Rr
jRq̄ml̄r + Rl̄

r̄Rq̄jr̄m + Rq̄
r̄Rl̄jr̄m)

+Rp
rq̄jR

r
pl̄m + Rp

rl̄jR
r
pq̄m −Rq̄

p̄
l̄
r̄Rp̄jr̄m (2.3)

As in the Riemannian case [6,7], the flow for the Riemann curvature operator
simplifies considerably in the formalism of frames. Let ea = ∂

∂zj ej
a, eā = eā

j̄ ∂
∂z̄j

be an orthonormal frame at time t = 0, i.e., eb̄
k̄gk̄je

j
a = δb̄a, ej

ae
a
k = δj

k, and
ej

aδ
ab̄eb̄

k̄ = gjk̄. Let gk̄j flow by ġk̄j . We want to flow ej
a so that it remains an

orthonormal frame with time. Thus we impose 0 = (gk̄je
j
aeb̄

k̄ )̇ = ġk̄je
j
aeb̄

k̄ +
gk̄j ė

j
aeb̄

k̄ + gk̄je
j
aėb̄

k̄. For this to hold, it suffices to set

ėj
a = −1

2
gjr̄ġr̄se

s
a = −1

2
gjr̄(−Rr̄s + µgr̄s)es

a (2.4)

from which it follows that ėb̄
k̄ = 1

2Rb̄
k̄ − 1

2µek̄
b̄, ėb

k = −1
2Rb

k + 1
2µeb

k, where
in general, we can go back and forth between middle Latin indices (j,k,l...)
and early Latin indices (a,b,c...) by using frames, e.g. V a = ea

jV
j , Rābc̄d =

eā
j̄ek

bec̄
l̄em

dRj̄kl̄m.
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The flow of the frame gets rid of all the terms mixing the Ricci tensor and the
curvature tensor in the flow of Rābc̄d. Indeed, the cancellation mechanism is very
simple:

Ṙābc̄d = ėā
j̄ek

bec̄
l̄em

dRj̄kl̄m + eā
j̄ ėk

bec̄
l̄em

dRj̄kl̄m + eā
j̄ek

bėc̄
l̄em

dRj̄kl̄m

+eā
j̄ek

bec̄
l̄ėm

dRj̄kl̄m + eā
j̄ek

bec̄
l̄em

dṘj̄kl̄m (2.5)

We have for example ėā
j̄ek

bec̄
l̄em

dRj̄kl̄m = 1
2Rā

q̄Rq̄bc̄d − 1
2µRābc̄d, and the first

term on the right hand side cancels with one of the terms in the flow with real
Laplacian. Altogether, we obtain the equation

Ṙābc̄d =
1
2
∆RRābc̄d − µRābc̄d + Rp̄rābRr̄pc̄d + Rāpr̄dRp̄bc̄r −Rāpc̄rRp̄br̄d (2.6)

Similarly, the same simplification occurs for the flow of the Ricci curvature, writ-
ten in a frame. Differentiating the equation Rāb = eā

q̄ej
bRq̄j , we see, not surpris-

ingly, that the term involving the square of the Ricci curvature cancels

Ṙāb =
1
2
∆RRāb − µRāb + Rāb

p
rR

r
p. (2.7)

2.1 The traceless curvature operator Sābc̄d

To analyze the flow of the Riemannian curvature tensor in the operator case, it
is convenient to separate out the traces. Thus set

Sāb = Rāb − 1
n

Rδāb

Sābc̄d = Rābc̄d − 1
n

(Rābδc̄d + Rc̄dδāb) +
1
n2

Rδābδc̄d (2.8)

Then Sāa = 0, Sāac̄d = 0 = Sābc̄c, and a straightforward calculation shows that
the flows for R, Rāb, Rābc̄d are equivalent to the following flows for R, Sāb, Sābc̄d

Ṙ =
1
2
∆RR + Sp̄rSr̄p +

1
n

R(R− µn)

Ṡāb =
1
2
∆RSāb +

1
n

(R− µn)Sāb + Sābc̄dSd̄c (2.9)

Ṡābc̄d =
1
2
∆RSābc̄d − µSābc̄d + Sp̄rābSr̄pc̄d + Sāpr̄dSp̄bc̄r − Sāpc̄rSp̄br̄d +

1
n

SābSc̄d

In the Kähler case, the Riemann curvature tensor can be viewed as a symmetric
operator Op(R) on the space Λ1,1 of real (1, 1)-forms. This space itself decomposes
into the line spanned by the Kähler form ω =

√−1
2 gk̄jdzj∧dz̄k, and its orthogonal
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complement, namely the space Λ1,1
0 of traceless real (1, 1)-forms. Now the term

Rp̄rābRr̄pc̄d can clearly be viewed as Op(R)2. Similarly, the tensor Sābc̄d can be
viewed as an operator Op(S) on Λ1,1

0 , and we have the decomposition

Op(R) =
(

R/2 S
St Op(S)

)
(2.10)

The term Sp̄rābSr̄pc̄d in the flow for Sābc̄d corresponds to Op(S)2. Following Hamil-
ton [6,7], we show that the remaining terms Sāpr̄dSp̄bc̄r − Sāpc̄rSp̄br̄d admit a Lie
algebra interpretation. Define the Lie bracket by

[φ, ψ]āb = φāpψp̄b − ψāpφp̄b (2.11)

Let φα
āb be an orthonormal basis of real traceless (1, 1)-forms, and set Sābc̄d =∑

αβ Mαβφα
ābφ

β
c̄d. Thus Mαβ is the matrix of Op(S) in the basis φα

āb. Then

Sāpc̄rSp̄br̄d − Sāpr̄dSp̄bc̄r = MαλMβµφα
āpφ

β
p̄b(φ

λ
c̄rφ

µ
r̄d − φλ

r̄dφ
µ
c̄r)

= MαλMβµφα
āpφ

β
p̄b[φ

λ, φµ]c̄d (2.12)

Set [φλ, φµ] = cλµρφρ, where cλµρ are the structure constants of the Lie algebra.
The antisymmetry of cλρµ implies

MαλMβµφα
āpφ

β
p̄bc

λµρφρ
c̄d =

1
2
MαλMβµ[φα, φβ]ābc

λµρφρ
c̄d,

and thus

Sāpc̄rSp̄br̄d − Sāpr̄dSp̄bc̄r =
1
2
MαλMβµcαβνφν

ābc
λµρφρ

c̄d ≡
1
2
M#

νρφ
ν
ābφ

ρ
c̄d (2.13)

To make M#
νρ explicit, we need the structure constants cαβν of the Lie algebra

of traceless (1, 1)-forms. Choose a coordinate system centered at a point p ∈ M
such that the metric gk̄j is the identity matrix at p. Then an orthogonal basis
for the space of real (1, 1) forms is (in dimension 2 to simplify notations) ω =
dx1 ∧ dy1 + dx2 ∧ dy2 =

√−1
2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2), η1 = dx1 ∧ dy1− dx2 ∧ dy2 =√−1

2 (dz1∧dz̄1−dz2∧dz̄2), η2 = dx1∧dy2+dx2∧dy1 =
√−1

2 (dz1∧dz̄2+dz2∧dz̄1),
η3 = dx1 ∧ dx2 + dy1 ∧ dy2 = 1

2(dz1 ∧ dz̄2 − dz2 ∧ dz̄1), with
√

2ηi forming an
orthonormal basis for Λ1,1

0 . Furthermore, [η2, η3] = η1, [φ1, φ2] = φ3, [φ3, φ1] = φ2,
which means that Λ1,1

0 is su(2) with structure constants

cαβγ =
√

2εαβγ (2.14)

where εαβγ is the sign of the permutation (1, 2, 3) 7→ (α, β, γ).
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2.2 Positivity of the Ricci curvature in dimension 2

We are now in position to prove the following theorem:

Theorem. Let X be a compact Kähler manifold of dimension 2, and consider
the Kähler-Ricci flow ġk̄j = −Rk̄j +µgk̄j. If the initial metric has Ricci curvature
non-negative everywhere and positive somewhere, and if the sum of the two lowest
eigenvalues of the operator Sābc̄d on the space Λ1,1

0 of traceless (1, 1)-forms is non-
negative, then both of these properties continue to hold for all time t > 0.

Proof. If we view the Ricci curvature as a Hermitian form on T 1,0 vectors, its
positivity is equivalent to the positivity of its trace and of its determinant. Set

Rāb = A
ω√−1/2

+ B1
η1√−1/2

+ B2
η2√−1/2

+ B3
η3√−1/2

(2.15)

In particular, A = 1
2R and

√
2√−1

Bi are the components of Sāb in the orthonormal

basis
√

2ηi for Λ1,1
0 .

Claim: The Ricci curvature is non-negative if and only if A ≥ 0 and

A2 −B2
1 −B2

2 −B2
3 ≥ 0 , i.e., SābSb̄a ≤ 1

2R2 (2.16)

To see this, we let X = a ∂
∂z1

+ b ∂
∂z2

be an arbitrary tangent vector. Then

Ricci(X, X̄) = A(|a|2 + |b|2) + B1(|a|2 − |b|2) + B2(ab̄ + bā)−√−1B3(ab̄− bā)

= ( a b )
(

A + B1 B2 −
√−1B3

B2 +
√−1B3 A−B1

) (
ā
b̄

)
= ( a b ) P

(
ā
b̄

)

Thus the Ricci curvature is non-negative if and only if the matrix P is non-
negative. Now the trace of P is 2A and the determinant is A2 − B2

1 − B2
2 − B2

3 .
This proves the claim.

Set |S|2 = Sp̄rSr̄p. Using the flow for Sp̄r, we find

(|S|2)̇ =
1
2
∆R|S|2− (∇lSp̄r∇lSr̄p +∇lSp̄r∇lSr̄p) +

2
n

(R−µn)|S|2 + 2Sb̄aSābc̄dSd̄c

(2.17)
Combining with the flow for R

Ṙ =
1
2
∆RR + |S|2 +

1
n

R(R− µn), (2.18)
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we obtain the flow for the determinant of the Ricci curvature

(
1
2
R2 − |S|2)̇ =

1
2
∆R(

1
2
R2 − |S|2)−∇lR∇lR + (∇lSp̄r∇lSr̄p +∇lSp̄r∇lSr̄p)

+
2
n

(R− µn)(
1
2
R2 − |S|2) + R|S|2 − 2 Sb̄aSābc̄dSd̄c (2.19)

We shall abbreviate this equation by

(
1
2
R2 − |S|2)̇ =

1
2
∆R(

1
2
R2 − |S|2)− |∇R|2 + (∇S∇̄S̄ + ∇̄S∇S̄)

+
2
n

(R− µn)(
1
2
R2 − |S|2) + R|S|2 − 2〈S Op(S) S〉 (2.20)

We examine the non-negativity of the expression 1
2R2 − |S|2, assuming that it is

non-negative at initial time. Consider then the first time when min (1
2R2−|S|2) =

0, and consider a minimum point. At this point, by the maximum principle, we
have

(
1
2
R2 − |S|2)̇ ≥ −|∇R|2 + (∇S∇̄S̄ + ∇̄S∇S̄) + R|S|2 − 2〈S Op(S) S〉 (2.21)

On the other hand, at a minimum, the derivatives of 1
2R2− |S|2 all vanish. Thus

we have

∇lR =
1
R

(∇lS · S̄ + S · ∇lS̄) (2.22)

and hence

|∇lR| ≤ 1
R

(|∇lS| · |S̄|+ |S| · |∇S̄|) =
1√
2
(|∇lS|+ |∇lS̄|) (2.23)

since 1
2R2 − |S|2 = 0. But then

∑

l

|∇lR|2 ≤ 1
2

∑

l

(|∇lS|+ |∇lS̄|)2 ≤
∑

l

(|∇lS|2 + |∇lS̄|2) (2.24)

(In the preceding argument, we have assumed that R > 0, which follows from
the strong maximum principle if t > 0. If R = 0 and t = 0, then we are at a
minimum of R, and ∇lR = 0, so that the above inequality holds trivially). Thus
the inequality from the maximum principle reduces to

(
1
2
R2 − |S|2)̇ ≥ R|S|2 − 2〈S Op(S) S〉 (2.25)
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In an orthonormal basis φα
āb for the space of traceless (1, 1)-forms where the

operator Sābc̄d is diagonal, with eigenvalues m1,m2,m3, the preceding inequality
can be rewritten as

(
1
2
R2 − |S|2)̇ ≥ 2

3∑

α=1

(
1
2
R−mα)|sα|2 (2.26)

where we have denoted by sα ∈ R the components of Sāb in that basis:

Sāb =
3∑

α=1

sαφα
āb (2.27)

It follows from (2.8) that Sābb̄a = n−1
n R = 1

2R when n = 2. On the other
hand, since Sābc̄d =

∑3
α=1 mαφα

ābφ
α
c̄d we obtain Sābb̄a =

∑3
α=1 mα. Thus the non-

negativity of the determinant of the Ricci curvature will be preserved if we can
show that

0 ≤ 1
2
R−mα =

∑

β 6=α

mβ , (2.28)

that is, the sum of any two eigenvalues of Sābc̄d is non-negative.

Recall that a symmetric bilinear form is 2-nonnegative if the sum of its two
smallest eigenvalues is non-negative. We have assumed that the traceless cur-
vature operator Sābc̄d is 2-nonnegative at initial time. It remains to show that
the 2-nonnegativity of the traceless curvature operator is preserved under the
Kähler-Ricci flow. Chen [2] has shown that the 2-nonnegativity of the curvature
operator Op(R) is preserved by the Ricci flow. Now if the Riemann curvature
operator Op(R) is 2-nonnegative, then so is M = Op(S), but the converse does
not hold, so we cannot directly quote Chen’s result.

First note that if m1 ≤ m2 ≤ m3 are the eigenvalues of M , then

m1 + m2 = inf{M(φ, φ) + M(ψ, ψ) : φ, ψ ∈ Λ1,1
0 , |φ| = |ψ| = 1, φ ⊥ ψ}

Moreover, the condition m1 + m2 ≥ 0 is clearly closed and convex. The ODE
associated to M from the heat flow for the system (2.9) for R, Sāb, Sābc̄d is

dM

dt
= −µM + M2 + M# + T (2.29)

where, in coordinates where M is diagonal, M#
αβ = −2(

∏
γ 6=α mγ)δαβ and Tαβ =

sαsβ. To show that m1+m2 ≥ 0 is preserved, it suffices, by Hamilton’s maximum
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principle for systems, to show that (2.29) preserves this condition. Now Lemma
3.5 of [7]implies

d

dt
(m1 + m2) ≥ inf{dM

dt
(φ, φ) +

dM

dt
(ψ, ψ)} :

where φ, ψ range over all φ, ψ ∈ Λ1,1
0 such that |φ| = |ψ| = 1, φ ⊥ ψ and M(φ, φ)+

M(ψ, ψ) = m1 + m2. For such φ, ψ, we have M2(φ, φ) + M2(ψ, ψ) = m2
1 + m2

2,
M#(φ, φ) + M#(ψ, ψ) = −2m3(m1 + m2) and T (φ, φ) + T (ψ, ψ) ≥ 0, since T is
a non-negative operator. Thus (2.29) implies

d

dt
(m1 + m2) ≥ −µ(m1 + m2) + m2

1 + m2
2 − 2m3(m1 + m2). (2.30)

The right hand side is non-negative when m1 + m2 becomes 0. Thus the non-
negativity of m1 + m2, and hence of 1

2R2 − |S|2 is preserved under the flow.
Q.E.D.

Remark: By flowing (1
2R2−|S|2)−1, one can show, using a similar argument, that

(1
2R2− |S|2) is bounded below by a positive constant, if it is positive everywhere

at the initial time and if the traceless curvature operator is 2-nonnegative.
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