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Introduction

In 1969, Siegel ([14]) constructed modular forms from arithmetic of totally real
number fields as follows.

Theorem 1.1. (Siegel) Let F be a totally real number field of degree d, and let
∂F be the different of F . Then for every even integer k ≥ 2, (e(τ) = e2πiτ )

gk(τ) = ζF (1− k) + 2d−1
∑

m≥1

am(F, k)e(nτ)

is a holomorphic elliptic modular form of weight dk for SL2(Z) (except for the
case (d, k) = (1, 2)), where

am(F, k) =
∑

x∈∂−1,+
F ,trF/Qx=m

∑

x∂F⊂a⊂OF

(Na)k−1.

Here the superscript ‘+′ stands for totally positive elements.

Siegel further derived from this a simpler proof of his famous theorem that
ζF (1− k) is rational for all k ≥ 1.
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and a NSA grant.
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Siegel’s construction is based on the simple observation that a Hilbert modular
form becomes an elliptic modular form when restricting diagonally to the upper
half plane. Indeed, Hecke constructed and proved in 1924 that

Ek(τ) = ζF (1− k) + 2d−1
∑

x∈∂−1,+
F

σk−1(x∂F )e(trxτ) (1.1)

is a Hilbert modular form of weight k for SL2(OF ). Here

σk−1(b) =
∑

b⊂a⊂OF

(Na)k−1

and trxτ =
∑d

j=1 σj(x)τj for the real embeddings σj . It is easy to see that
gk(τ) = Ek(τ, · · · , τ).

In fact, Hecke also gave similar construction for odd k together with some
ideal class character as long as there are no obvious cancellations. The case
k = 1 is particularly interesting, where he concentrated on the real quadratic
fields to avoid complication. Indeed, let F = Q(

√
D) and assume that D = d1d2

such that d1, d2 < 0 are fundamental discriminants of imaginary quadratic fields
with (d1, d2) = 1. Let χ be the genus character of F associated to the genus field
K = Q(

√
d1,
√

d2). Then Hecke proved in the same paper (Hecke’s trick) that

E1,χ(τ, τ ′, s) =
∑

[a]∈CL+
(F )

χ(a)(Na)1+2s (1.2)

·
∑

0 6=(m,n)∈a2/O∗,+
F

vsv′,s

(mτ + n)(m′τ ′ + n′)|mτ + n|2s|m′τ ′ + n′|2s

is a (non-holomorphic) Hilbert modular form of weight 1 for SL2(OF ), and is
holomorphic at s = 0. So E1,χ(τ, τ ′, 0) is a holomorphic Hilbert modular form
of weight 1. He further computed the Fourier expansion of this holomorphic
modular form, which is very similar to (1.2). Unfortunately, he messed up a sign
in the calculation, and it turns out that E1,χ(τ, τ ′, 0) ≡ 0 identically. It should
be mentioned that Gross and Zagier took advantage of this fact to compute its
central derivative at s = 0 and use it to compute the factorization of the singular
moduli ([6]).

Hecke was unfortunate in another sense. If Hecke had used a quartic totally
real field or injected some ramification in his example, he would have produced
honest Hilbert modular forms of weight 1. This is one of the main purposes of
this paper. Indeed, we will prove in Section 3 the following theorem, after local
preparation in Section 2.
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Theorem 1.2. Let F be a totally real number field of degree d with different ∂F ,
and let K be a totally imaginary quadratic extension of F with relative discrim-
inant dK/F . Let χ = χK/F be the quadratic Hecke character of F associated to
K/F . Let α = (αv) ∈

∏
v|dK/F

F ∗
v with ordvαv = ordv∂F , and let N be a square-

free integral ideal of F such that all its prime factors are inert in K. Then there
is a function on Hd × C, denoted by E∗(τ, s, Φα,N ), such that

(1) As a function of s, E∗(τ, s,Φα,N ) is meromorphic with possibly finitely
many poles and is holomorphic along the unitary line Re s = 0. It has a simple
functional equation
∏

v|N
(|N |

1+s
2

v +|N |−
1+s
2

v )E∗(τ, s, Φα,N ) = ε(α,N )
∏

v|N
(|N |

1−s
2

v +|N |−
1−s
2

v )E∗(τ,−s,Φα,N ),

(1.3)
where

ε(α,N ) = (−1)o(N )id
∏

v|dK/F

χv(αv)ε(χv, ψv) (1.4)

= (−1)o(N )
∏

v|dK/F

χv(αv)
∏

v|∂F ,v-dK/F

χv(∂F ).

Here o(N ) is the number of prime factors of N , ε(χv, ψv) is Tate’s local root
number (ψv is to be defined later), and χv(a) = χv($v)ordva is independent of the
choice of a uniformizer $v when χv is unramified.

(2) As a function of τ = (τ1, · · · , τd) ∈ Hd, E∗(τ, s,Φα,N ) is a Hilbert (non-
holomorphic) modular form of weight 1, level dK/FN , and character χ, where χ
stands for

χ : (OF /dK/FN )∗ ³ (OF /dK/F )∗ −→ {±1}, χ(a) =
∏

v|dK/F

χv(a).

(3) The central value E∗(τ, 0,Φα,N ) 6= 0 if and only if ε(α,N ) = 1. The
central value E∗(τ, 0,Φα,N ) is a holomorphic modular form and has Fourier ex-
pansion

E∗(τ, 0,Φα,N ) = (1 + ε(α,N ))L(0, χK/F )

+ 2dε(α,N )
∑

t∈(∂−1
F N )+

δ(αt)ρK/F (t∂FN−1)e(trtτ).

Here tr(tτ) =
∑

i σi(t)τi for the real embeddings {σ1, · · · , σd} of F ,

δ(αt) =
∏

v|dK/F

(1 + χv(αvt)), (1.5)
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and
ρK/F (a) = #{A ⊂ OK : NK/F A = a}. (1.6)

We gave two formulae for ε(α,N ) in Theorem 1.2 on purpose. From the
second formula, it is clear ε(α,N ) = ±1, so the first formula implies dK/F 6= OF

when d = [F : Q] is odd. That is,

Corollary 1.3. Let F be a totally real number field of odd degree, and let K be a
totally imaginary quadratic extension of F . Then K/F is ramified at some finite
prime.

This fact was also observed recently by Gross and McMullen ([5], Proposition
3.1). By looking at the sign ε(α,N ) in the special case where K/F is unramified
at every finite prime and N = OF , one also obtains the following corollary, which
explains Hecke’s misfortune.

Corollary 1.4. Assume that d = [F : Q] is even, and that K/F is unramified
at every finite prime. Then the ‘spherical Eisenstein series’ E∗(τ, 0,Φ1,OF ) = 0
if and only if d ≡ 2 mod 4. Moreover, when d ≡ 2 mod 4, for every t ∈ ∂−1,+

F ,
there is no ideal A of K with relative norm t∂F .

In particular, when 4|d, the spherical Eisenstein series give holomorphic Hilbert
modular forms of weight one of SL2(OF ) Hecke tried to construct in 1924. Even
for degree 2, our construction gives holomorphic Hilbert modular forms of weight
one with small level and trivial character (see Theorems 5.1 and 5.3)

Following Siegel ([14]) and restricting the function diagonally to (τ, · · · , τ),
one obtains

Theorem 1.5. Let the notation be as in Theorem 1.2. with ε(α,N ) = 1. Then

fα,N (τ) = L(0, χ) + 2d−1
∞∑

m=1

am(α,N )e(mτ)

is a holomorphic elliptic modular form of weight d, level N , and Nebentypus
character χ̃. Here N > 0 is given by NZ = dK/FN ∩Z, and χ̃ is the composition
of the embedding (Z/N)∗ ↪→ (OF /dK/FN )∗ with χ, i.e.,

χ̃(a) =
∏

v|dK/F

χv(a). (1.7)

Finally,
am(α,N ) =

∑

t ∈ (∂−1
F N )+

trF/Qt = m

δ(αt)ρK/F (t∂FN−1). (1.8)
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Theorem 1.5 has at least three types of potential applications:

(1) One can use it to compute the L-value L(0, χK/F ), or equivalently the
relative class number of K/F .

(2) One can use it to construct a lot of (infinitely many, in fact) holomorphic
modular forms of some fixed weight, level, and quadratic Nebentypus character.

(3) Since the space of holomorphic modular forms of a fixed weight, level, and
Nebentypus character is finite, the infinitely many modular forms constructed in
(2) have to have some relations. They should be reflected on the arithmetic of
the chosen number fields.

We don’t address these applications fully in this paper. Instead, we focus on
some interesting examples in Sections 4 and 5. Section 4 deals with unramified
extensions and Section 5 deals with real quadratic fields and its totally imaginary
quadratic extensions, both biquadratic and non-biquadratic. It turns out that
biquadratic and non-biquadratic fields have slightly different flavors (see for ex-
ample Corollaries 5.5 and 5.8). We record two simple examples here to give the
reader a flavor and refer to these two sections for other examples. Notice that
both examples are slight variants of Hecke’s original example.

Theorem 1.6. (Theorem 4.1, Corollary 4.7) Let F be a totally real number field
of degree d divisible by 4 and let K be a totally imaginary quadratic extension of
F unramified at all finite primes. Then

fK/F (τ) = L(0, χK/F ) + 2d−1
∞∑

m=1

am(K/F )qm

is a holomorphic modular form of weight d for SL2(Z), where

am(K/F ) =
∑

t∈∂−1,+
F ,trF/Qt=m

ρK/F (t∂F ).

Moreover,

(1) If d = [F : Q] = 4, then

L(0, χK/F ) =
1
30

∑

t ∈ ∂−1,+
F

trF/Qt = 1

ρK/F (t∂F ),

and the ratio am(K/F )
a1(K/F ) is independent of F or K, and is non-zero.
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(2) If d = [F : Q] = 8, then

L(0, χK/F ) =
4
15

∑

t ∈ ∂−1,+
F

trF/Qt = 1

ρK/F (t∂F ),

and the ratio am(K/F )
a1(K/F ) is independent of F or K, and is non-zero.

Theorem 1.7. (Theorem 5.1) Let N be a square-free positive integer. Let d1, d2 <
0 be two fundamental discriminants of imaginary quadratic fields, and let F =
Q(
√

D) with D = d1d2 > 0, and let K = Q(
√

d1,
√

d2). Assume that

(d1, d2) = 1, and (
d1

p
) = (

d2

p
) = −1 for every p|N. (1.9)

So every prime p|N splits in F and every prime of F above N is inert in K.
Let N be an integral ideal of F with odd number of prime factors in F such that
N ∩ Z = NZ . Then

fd1,d2,N (τ) = L(0, χK/F ) + 2
∞∑

m=1

am(d1, d2,N )e(mτ) (1.10)

is a holomorphic (elliptic) modular form of weight 2 for Γ0(N) with trivial Neben-
typus character, where

am(d1, d2,N ) =
∑

t=a+m
√

D
2

∈N ,|a|<m
√

D

ρK/F (tN−1). (1.11)

The case ε(α,N ) = −1 is even more interesting as first demonstrated by
Gross and Zagier ([6], [7], see also [10] and [17]). In ([3]), Bruinier and the
author compute the central derivative in one of the special case (see Theorem
5.7) when ε(α, N) = −1, and use it to generalize the work of Gross and Zagier on
singular moduli ([6]) to a family of Hilbert modular form (the Borcherds forms on
a Hilbert modular surface) valued a CM 0-cycle associated to a non-biquadratic
quartic field.
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reading the manuscript carefully and correcting the typos.
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Notation Let F be a totally real number field, and let ψ = ψQ ◦ trF/Q be the
additive character of F used in this paper, where ψQ is the ‘canonical’ additive
character of QA such that ψR(x) = e(x). Let K = F (

√
∆) be a totally imaginary

quadratic extension of F , and let χ = (∆, )A be the quadratic Hecke character
of F associated to K/F . Let ∂F and ∂K/F be the different of F and relative
different of K/F respectively, and let dF = NF/Q∂F and dK/F = NK/F ∂K/F be
the discriminant and relative discriminant respectively. Let I(s, χ) = ⊗′I(s, χv)
be the induced representation of SL2(FA), consisting of Schwartz functions Φ(g, s)
on SL2(FA) such that

Φ(n(b)m(a)g, s) = χ(a)|a|s+1Φ(g, s), n(b) =
(

1 b
0 1

)
, m(a) =

(
a 0
0 a−1

)

(1.12)

For a factorizable section Φ =
∏

v Φv ∈ I(s, χ) which is standard in the sense
that Φv|SL2(Ov) is independent of s for v < ∞, the Eisenstein series

E(g, s,Φ) =
∑

γ∈B\SL2(F )

Φ(γg, s) (1.13)

is absolutely convergent when Re(s) >> 0 and has a meromorphic continuation
to the whole complex s-plane with finitely many poles and is holomorphic on the
unitary line Re(s) = 0. Moreover, it satisfies a functional equation

E(g, s,Φ) = E(g,−s,M(s)Φ), (1.14)

where

M(s)Φ(g, s) =
∫

FA
Φ(wn(b)g, s)db, w =

(
0−1
1 0

)
(1.15)

is an intertwining operator from I(s, χ) to I(−s, χ), The Eisenstein series E(g, s, Φ)
has the Fourier expansion

E(g, s, Φ) = E0(g, s,Φ) +
∑

t∈F ∗
Et(g, s,Φ) (1.16)

where, for t ∈ F ∗

Et(g, s,Φ) =
∏
v

Wt,v(g, s, Φv) (1.17)

with
Wt,v(g, s, Φv) =

∫

Fv

Φv(wn(b)g, s)ψv(−tb)db (1.18)

Here db is the Haar measure on Fv with respect to the character ψv. The constant
term

E0(g, s,Φ) = Φ(g, s) + W0(g, s,Φ) = Φ(g, s) + M(s)Φ(g, s). (1.19)
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We normalize
W ∗

t,v(g, s,Φ) = L(s + 1, χv)Wt,v(g, s,Φ) (1.20)

and
E∗(g, s,Φ) = Λ(s + 1, χ)E(g, s, Φ) (1.21)

with

Λ(s, χ) = A
s
2

∏
v

L(s, χv) = A
s
2 ΓR(s + 1)dL(s, χ), A = NF/Q(∂F dK/F ). (1.22)

Here
L(s, χv) = ΓR(s + 1) = π−

s+1
2 Γ(

s + 1
2

)

for v|∞. Notice that the normalized L-function satisfies

Λ(s, χ) = Λ(1− s, χ), Λ(0, χ) = L(0, χ). (1.23)

Finally, when Φv = Φk
R is the eigenfunction of SO2(R) of ‘weight’ k for every

v|∞, i.e,

Φv(gkθ, s) = eikθΦv(g, s), kθ =
(

cos θ sin θ
− sin θ cos θ

)
,

we define for τ = (τ1, τ2, · · · , τd) ∈ Hd

E∗(τ, s, Φ) =
d∏

j=1

v
− k

2
j E∗(

∏

j

gτj , s, Φ), (1.24)

where τj = uj + ivj and gτj = n(uj)m(√vj) ∈ SL2(Fσj ) with gτj (i) = τj . Here
{σ1, · · · , σj} are real embeddings of F .

The proof of Theorem 1.2 is simply to choose a proper section Φα,N ∈ I(s, χ)
with given data and compute the Fourier expansion of E∗(τ, s, Φα,N ) via (1.16)-
(1.19). This is a purely local calculation. In Section 2, we collect and expand
results of ([11]) on local Whittaker functions needed for the proof of Theorem
1.2. They should be of independent interest.

2 Local results

In this section, we extend the local results of [11] to a general p-adic local field,
which is needed in the proof of Theorem 1.2 and should be of independent interest.
In this section, F stands for a finite field extension of Qp with ring of integers OF

and a uniformizer $. Let K be a quadratic extension of F , including F ⊕F . Let
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χ be the quadratic character of F ∗ associated to K/F and let ψ be an unramified
additive character of F in the sense

n(ψ) := min{n : ψ|$nOF
= 1} = 0.

For α ∈ F ∗, let Vα = K with quadratic form Qα(z) = αzz̄. This gives a Weil
representation ωα = ωVα,ψ of G = SL2(F ) on S(K), and the map

λα : S(K) −→ I(0, χ), λα(φ)(g) = ωα(g)φ(0),

is G-equivariant. Here we remark that χVα = (−det Vα, )F = χK/F is indepen-
dent of the choice of α. Let R(Vα) be the image of λα. Then ωα and R(Vα) only
depends on α ∈ F ∗/NK∗ (up to isomorphism). In this paper, we denote V + for
Vα with α = 1. When K/F is inert, we fix a choice for V − = Vα with α ∈ $O∗F .
When K/F is ramified, we fix a choice for α ∈ O∗F such that χ(α) = −1. It is
well-known that

I(0, χ) = ⊕α∈F ∗/NK∗R(Vα) =

{
R(V +) if K/F split,
R(V +)⊕R(V −) if K/F non-split.

(2.1)

Let φ0 = char(OK), and let Φα ∈ I(s, χ) be the standard sections such that

Φα(g, 0) = λα(φ0).

Actually, Φα depends only on the choices of α modulo NO∗K . We denote Φ+ for
Φ1 ∈ R(V +). When K/F is non-split, we denote Φ− = Φα for the prefixed α
above. We remark that Φα (thus Φ±) depend on the choice of ψ. In fact, the
section Φα with respect to βψ is the same as Φαβ with respect to ψ. Then the
following is well-known and is easy to check.

Proposition 2.1. Assume that K/F is unramified. Let X = |$|s .

(1) One has ω+(k)φ0 = φ0 for all k ∈ K = SL2(OF ). Φ+ is the unique
eigenfunction of K = SL2(OF ) with trivial eigencharacter such that Φ+(1, s) = 1.

(2) one has

W ∗
t (1, s, Φ+) = char(OF )(t)

∑

0≤r≤ordF t

(χ($)X)r.

(3) One has for t ∈ OF

W ∗
t (1, 0,Φ+) =

{
ordF t + 1 if K/F split,
1+(−1)ordF t

2 if K/F inert.
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In particular, W ∗
t (1, 0,Φ+) = 0 if and only if K/F is inert and ordF t is odd. In

such a case,

W ∗,′
t (1, 0,Φ+) =

1
2
(ordF t + 1) log |$|−1

(4) M∗(s)Φ+(g, s) = L(s, χ)Φ+(g,−s). In particular, W ∗
0 (1, s, Φ+) =

M∗(s)Φ+(1, s) = L(s, χ). Here L(s, χ) = (1 − χ($)|$|s)−1 is the local L-
function of χ.

Denote

K0($n) = {g =
(

a b
c d

)
∈ SL2(OF ) : c ≡ 0 mod $n} (2.2)

It is easy to check that

SL2(F ) = BK0($n)
⋃

BwK0($n)
⋃

(
⋃

0<ordF c<n

Bn−(c)K0($n)). (2.3)

Here n−(c) =
(

1 0
c 1

)
.

Proposition 2.2. Assume that K/F is inert.

(1) One has ω−(k)φ0 = φ0 for every k ∈ K0($). Φ− is an eigenfunction of
K0($) with the trivial eigencharacter such that Φ−(1) = 1 and Φ−(w) = −|$|.

(2) One has

W ∗
t (1, s, Φ−) = char(OF )(t)

(
− 1 + |$|

1 + |$|X +
ordF t∑

n=0

(−X)n

)

= − 1 + |$|
1 + |$|X char(OF )(t) + W ∗

t (1, s, Φ+),

and

W ∗
t (w, s,Φ−) = −|$|char($−1OF )(t)

(
− 1 + |$|

1 + |$|X +
ordF t∑

n=0

(−X)n

)
.

(3) For t ∈ OF ,W ∗
t (1, 0,Φ−) = −1−(−1)ordF t

2 = 0 ⇔ ordF t ≡ 0 mod 2.

For t ∈ $−1OF , Wt(w, 0,Φ−) = −1−(−1)ordF t

2 = 0 ⇔ ordF t ≡ 0 mod 2. When
ordF t ≥ 0 is even, one has

W ∗,′
t (1, 0,Φ−) = −|$|−1W ∗,′

t (w, 0,Φ−) = (
|$|

1 + |$| +
ordF t

2
) log |$|.
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(4) M∗(s)Φ− = −|$|L(s+1,χ)L(s,χ)
L(s−1,χ) Φ−(−s).

Proof. We first recall a general fact about Weil representation, which holds for
any quadratic extension K ([9]). That is,

ωα(n(b))φ(x) = ψ(bαxx̄)φ(x),
ωα(m(a))φ(x) = χ(a)|a|φ(xa), (2.4)

ωα(w)φ(x) = γ(Vα)φ̂(x) = γ(Vα)
∫

F
φ(y)ψ(−αtrK/F (xȳ))dψy

Here
γ(Vα) = (ε(Vα)γ(ψ)2γ(detVα, ψ))−1

and dψy is the self-dual Haar measure on K with respect to (x, y) 7→ αψ(trK/F xȳ).
γ(ψ) and γ(α, ψ) are Weil’s local indices ([13]). So

dψy = |∂K/F |
1
2
Kdy (2.5)

where vol(OK , dy) = 1. Since the matrix of Vα with respect to the basis {1,
√

∆}
is diag(α,−α∆), one has

γ(Vα)−1 = (α,−α∆)γ(ψ)2γ(−∆, ψ)

= χ(α)γ(−1, ψ)−1γ(−∆, ψ)

= χ(α)
(−1,−∆)γ(∆, ψ)

(−1,−1)
= χ(α)(−1,∆)γ(∆, ψ)

= χ(α)γ(∆, ψ)−1.

So
γ(Vα) = χ(α)γ(∆, ψ). (2.6)

Recall also that Φ− = Φα for α ∈ $O∗F . It is clear from (2.4) that

ωα(n(b))φ0 = φ0, b ∈ OF ,

ωα(m(a))φ0(z) = χ(a)|a|φ0(za) = φ0(z), z ∈ O∗F ,

ωα(w)φ0(z) = γ(Vα)
∫

OK

ψ(αtrzȳ)dαy

= γ(Vα)|$|char($−1OK)(z).
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Here dαy = |$|dy is the Haar measure on Vα self-dual with respect to the bi-
character (x, y) 7→ ψ(αtrxȳ). So (c, α ∈ $OF )

ωα(n(−c)w)φ0(z) = γ(Vα)|$|ψ(−cαzz̄)char($−1OK)(z)

= γ(Vα)|$|char($−1OK)(z)

= ωα(w)φ0(z).

Therefore,

ωα(n−(c))φ0 = ωα(w−1)ωα(n(−c)w)φ0 = ωα(w−1w)φ0 = φ0.

So ωα(k)φ0 = φ0 for every k ∈ K0($), and Φ− = Φα is an eigenfunction of K0($)
with trivial eigencharacter. It is clear

Φ−(1) = φ0(0) = 1, Φ−(w) = γ(Vα)|$|.
This proves (1). Next, for b /∈ OF , one has

wn(b) =
(

b−1−1
0 b

)(
1 0

b−1 1

)
,

and Φ−(wn(b)) = χ(b−1)|b|−(s+1)Φ−(1). Since χ is unramified and χ($) = −1,
one has

Wt(1, s, Φ−) =
∫

OF

Φ−(wn(b))ψ(−tb) +
∑

n≥1

∫

$−nO∗F
Φ−(wn(b))ψ(−tb)db

= Φ−(w)char(OF )(t) +
∑

n≥1

|$|nsχ($)n

∫

O∗F
ψ(− t

$n
b)db

= γ(Vα)|$|char(OF )(t)

+
∑

n≥1

(−X)n
(
char($nOF )(t)− |$|char($n−1OF )(t)

)
.

So Wt(1, s, Φ−) = 0 unless t ∈ OF . When k = ordF t ≥ 0, one has

Wt(1, s, Φ−) = γ(Vα)|$|+ (1− |$|)
k∑

n=1

(−X)n − |$|(−X)k+1

= −1 + γ(Vα)|$|+ (1 + |$|X)
k∑

n=0

(−X)n.

So Wt(1, 0,Φ−) = −1+γ(Vα)|$|+(1+ |$|)1+(−1)k

2 . By [10] Proposition 1.4, one
has Wt(1, 0,Φ−) = 0 if χ(t) 6= χ(α) = −1, i.e., k is even. This implies

γ(∆, ψ) = 1 (2.7)
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and γ(Vα) = −1. So

W ∗
t (1, s, Φ−) = L(s + 1, χ)Wt(1, s, Φ−) = − 1 + |$|

1 + |$|X +
k∑

n=0

(−X)n

as claimed. The proof for W ∗
t (w, s,Φ−) is similar and left to the reader. (3)

follows from (2) easily. To prove (4), notice that SL2(F ) = BK0($)
⋃

BwK0($),
so the K0($)-invariant space I(s, χ)K0($) is two dimensional and has a basis
{Φ+,Φ−} by Proposition 2.1 and (1). So

M(s)Φ− = aΦ+(−s) + bΦ−(−s).

On the other hand, M(0) clearly preserves R(V ±). So we have to have a = 0,
and M(s)Φ− = bΦ−(−s), with

b = M(s)Φ−(1, s) = W0(1, s, Φ−) = −|$| L(s, χ)
L(s− 1, χ)

.

Next, we assume that K = F (
√

∆) is ramified over F with ordF ∆ = 0 or 1.
Let dK/F = $fOF be the relative discriminant, and ∂ = ∂K/F = $f

KOK be the
relative different. Notice that f = 1 when p 6= 2. There is not much difference
between V ±, so we use Vα and Φα and so on with α ∈ O∗F .

Proposition 2.3. Assume that K/F is ramified, and let the notation be as above.

(1) For any k =
(

a b
c d

)
∈ K0($f ), one has

ωα(k)φ0 = χ(d)φ0.

Let Φα ∈ I(s, χ) be the standard section associated to φ0 via the Weil represen-
tation (ωα, S(Vα)), i.e., Φα(g, 0) = ωα(g)φ(0). Then Φα is the eigenfunction of
K0($f ) with character χ : K0($f ) −→ {±1}, k 7→ χ(d) such that

Φα(1) = 1, Φα(w) = χ(α)γ(∆, ψ)|$| f2 = χ(−α)ε(χ, ψ)|$| f2 , (2.8)
Φα(n−(c)) = 0 for 0 < ordF c < f.

(2) Its Whittaker function with respect to ψ satisfies

W ∗
t (1, s, Φα) = Φα(w)(1 + χ(αt)XordF t+f )char(OF )(t),

W ∗
t (w, s,Φα) = Φα(w)2(1 + χ(αt)XordF t+f )char(d−1

K/F )(t).
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(3) One has the functional equation

M∗(s)Φα = Φα(−s)Φα(w).

(4) For t ∈ OF , W ∗
t (1, 0,Φα) = 0 if and only if χ(αt) = −1. In such a

case,

W ∗,′
t (1, 0,Φα) = Φα(w)(ordF t + f) log |$|−1.

(5) For t ∈ d−1
K/F , W ∗

t (w, 0,Φα) = 0 if and only if χ(αt) = −1. In such a
case,

W ∗,′
t (w, 0,Φα) = χ(−1)|$|f (ordF t + f) log |$|−1.

Proof. This is basically Proposition 2.7 of [11] when p 6= 2. Notice that W ∗
t (g, s,Φ)

= Wt(g, s, Φ) in this case. Recall that χ has conductor $fOF , and K0($n) is gen-

erated by m(a), n(b), and n−(c) =
(

1 0
c 1

)
with a ∈ O∗F , b ∈ OF , and c ∈ $nOF .

(1) By (2.4), one clearly has ωα(n(b))φ0 = φ0 and ωα(m(a))φ0 = χ(a)φ0

for b ∈ OF and a ∈ O∗F . Next, n−(c) = w−1n(−c)w. First,

ωα(w)φ0(x) = γ(Vα)
∫

OK

ψ(−αtrK/F xȳ)dψy = γ(Vα)|$| f2 char(∂−1)(x).

Second, for c ∈ $fOF , one has then

ωα(n(−c)w)φ0(x) = γ(Vα)|$| f2 ψ(−αcxx̄)char(∂−1)(x)

= γ(Vα)|$| f2 char(∂−1)(x) = ωα(w)φ0.

So

ωα(n−(c))φ0 = ωα(w−1)ωα(w)φ0 = φ0.

This proves the first claim of (1) and that Φα is an eigenfunction of K0($f ) with
character χ. Clearly

Φα(1) = ωα(1)φ0(0) = 1,

and

Φα(w) = ωα(w)φ0(0) = γ(Vα)|$| f2 = χ(α)γ(∆, ψ)|$| f2

by the above calculation. When 0 < n = ordF c < f , one has n−(c) = −wn(−c)w,
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and thus

Φα(n−(c)) = χ(−1)ωα(wn(−c)w)φ0(0)

= χ(−1)γ(Vα)
∫

F
ωα(n(−c)w)φ0(z)dz

= χ(−1)γ(Vα)2
∫

F
ψ(−cαzz̄)dz

∫

F
φ0(y)ψ(−αtrK/F zȳ)dy

= χ(−1)γ(Vα)2
∫

∂−1
K/F

ψ(−αczz̄)dz

= |$|−f

∫

OK

ψ(−αc$−fzz̄)dz.

The norm map z 7→ zz̄ maps OK − {0} onto the subset A of OF − {0} whose
characteristic function is given by char(A)(x) = 1+χ(x)

2 char(OF )(x) (for x 6= 0).
The kernel of the norm map is K1, which is a compact group. So there is a
constant C > 0 such that

∫

OK

ψ(−αc$−1zz̄)dz = C

∫

OF

ψ(−αc$−1x)
1 + χ(x)

2
dx

=
1
2

∫

OF

ψ(−αc$−fx)dx +
1
2

∫

OF

ψ(−αc$−fx)χ(x)dx

= 0.

This proves (1).

(2) For b /∈ OF , write

wn(b) =
(

b−1−1
0 b

)(
1 0

b−1 1

)
.

So Φα(wn(b)) = χ−1(b)|b|−1−sΦα(n−(b−1)) for b /∈ OF , and

Wt(1, s, Φα) =
∫

OF

Φα(wn(b))ψ(−tb)db +
∑

n≥1

∫

$−nO∗F
Φα(wn(b))ψ(−tb)db

= Φα(w)char(OF )(t) +
∑

n≥f

|$|nsχ($)n

∫

O∗F
χ−1(b)ψ(− tb

$n
)db.

Here we have used the fact that Φα(n−(c)) = 0 if 0 < ordF c < f .

Notice that the Gaussian integral

χ($)n

∫

O∗F
χ−1(b)ψ(− tb

$n
)db = char($n−fO∗F )(t)χ(−t)ε(χ, ψ)|$| f2
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where ε(χ, ψ) is the Tate’s root number. So
∑

n≥f

|$|nsχ($)−n

∫

O∗F
χ−1(b)ψ(− tb

$n
)db = χ(−t)ε(χ, ψ)|$| f2 |$|k+fchar(OF )(t)

with k = ord$t ≥ 0. In summary, we have proved for t ∈ OF

Wt(1, s, Φα) = γ(Vα)|$| f2
(
1 + χ(αt)CXk+f

)

with
C = ε(χ, ψ)γ(∆, ψ)−1χ(−1).

So Wt(1, 0,Φα) = 0 if and only if χ(αt)C = −1. On the other hand, by Propo-
sition 1.4(iii) of [10], εF (Vα) = −χ(t), i.e., χ(αt) = −1, implies Wt(1, 0,Φα) = 0.
So C = 1, i.e.,

γ(∆, ψ) = χ(−1)ε(χ, ψ). (2.9)

Therefore

Wt(1, s, Φα) = χ(α)γ(∆, ψ)|$| f2 (1 + χ(αt)XordF t+f ).

The formula for W ∗
t (w, s, Φα) can be proved similarly. For the purpose of proving

(3), we also need to compute Wt(n−(c), s, Φα) when 0 < n = ordF c < f . Similar
calculation gives

Wt(n−(c), s, Φα) = 0 (2.10)

unless ordF t = ordF c− f . In such a case,

Wt(n−(c), s, Φα) = Φα(w)ψ(
t

c
)|c|−1

∫

1+$nOF

χ−1(b)ψ(− t

c
b)db

+ χ(−c)|c|s
∫

1+$f−nOF

χ(b)ψ(− t

c
b)db. (2.11)

Now we are ready to prove (3). It is clear that M(s)Φα ∈ I(−s, χ) is an
eigenfunction of K0($f ) with eigencharacter χ since Φα is. So it suffices to verify
(3) for g = 1, w, or n−(c) with 0 < n = ordF c < f . Since

M(s)Φα(g, s) = W0(g, s,Φα),

one sees immediately from (2)

M(s)Φα(1, s) = Φα(w), M(s)Φα(w, s) = Φα(w)2.

So M(s)Φα(g, s) = Φα(w)Φα(g,−s) is true for g = 1, w. By (2.10), one has for
0 < ordF c < f

M(s)Φα(n−(c), s) = 0 = Φα(w)Φα(n−(c),−s).

This proves (3). Claims (4) and (5) follow from (2) directly.
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Finally, we consider the case F = R, and fix ψR(x) = e(x). (2.1) still holds.
When K = C, i.e., χ = sgn is the sign character. Let φ0 = e−πzz̄ be the Gaussian,
and let Φ± be its associated standard section in I(s, χ) via the Weil representation
ω±1. Then Φ± = Φ±1

R is the unique eigenfunction of KR = SO2(R) of weight ±1
defined in the introduction. The following is [11], Proposition 2.6. The sign

difference is due to the fact that we use w =
(

0−1
1 0

)
to define the Whittaker

function while −w is used in [11]. For general Φn
R, we refer to [12], Proposition

14.1.

Proposition 2.4. For τ = u+ iv in the upper half plane H, let gτ = n(u)m(
√

v),
and

W ∗
t,R(τ, s, Φ1

R) = v−
1
2 L(s + 1, χ)Wt(gτ , s, Φ1

R),

where L(s, χ) = ΓR(s + 1) as in the introduction. Then

(1)

W ∗
t,R(τ, 0,Φ1

R) =





−2ie(tτ) if t > 0,

−i if t = 0,

0 if t < 0.

(2) When t < 0, one has

W ∗,′
t,R(τ, 0,Φ1

R) = −ie(tτ)β1(4π|t|v),

where
β1(x) =

∫ ∞

1
e−ux du

u
= −Ei(−x), x > 0

is a partial Gamma function.

(3) M∗(s)Φ1
R = −iL(s, χ)Φ1

R(−s). Here M∗(s) = L(s + 1, χ)M(s) is the
normalized intertwining operator from I(s, χ) to I(−s, χ).

We end this section with a useful fact relating the local Weil index with the
local root number.

Corollary 2.5. Let F be a local field, and let ψ be a non-trivial additive character
of F . Let ∆ ∈ F ∗. Then

γ(∆, ψ)ε(χ∆, ψ) = 1.

Here χ∆ = (∆, )F is the quadratic character of F ∗ associated to F (
√

∆).

Proof. First notice that

γ(∆, aψ) = χ∆(a)γ(∆, ψ), ε(χ∆, aψ) = χ∆(a)ε(χ∆, ψ).
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So the identity does not depends on the choice of ψ. Next, if ∆ ∈ F ∗,2, then
γ(∆, ψ) = ε(χ∆, ψ) = 1. So we can assume ∆ /∈ F ∗,2. When F = R, ∆ < 0, and
thus

γ(∆, ψR) = i−1 = ε(sgn, ψR)−1.

When F is a p-adic field, we take ψ to be unramified. If K = F (
√

∆) is unramified
over F , then one has by (2.7)

γ(∆, ψ) = 1 = ε(χ∆, ψ)−1.

If K = F (
√

∆) is ramified, then one has by (2.9)

γ(∆, ψ) = χ∆(−1)ε(χ∆, ψ) = ε(χ∆, ψ)−1.

The case of non-archimedean field of positive character is the same.

3 The main formula

Now we are back to the global situation and let the notation be as in the introduc-
tion. In particular, F is a totally real number field of degree d, and K = F (

√
∆)

is a totally imaginary quadratic extension of F . Recall that χ = χK/F = (∆, )A
be the quadratic Hecke character of F associated to K/F .

For α = (αv) ∈
∏

v|dK/F
F ∗

v with ordvαv = ordv∂F and a square-free integral
ideal N of F prime to dK/F as in Theorem 1.2, we choose a standard section
Φ = Φα,N =

∏′
v Φv ∈ I(s, χ) as follows.

When v|∞, we choose Φv = Φ1
R ∈ I(s, χv) be the unique eigenfunction of

SO2(R) of weight one as in the introduction.

When v|dK/F , choose Φv = Φ+
v with respect to the unramified additive char-

acter ψ0
v = α−1

v ψv as in Section 2.

When v|N , choose Φv = Φ−v with respect to a unramified additive character
ψ0

v , say ψ0
v = α−1

v ψv for some αv ∈ ∂FO∗v as in Section 2.

When v - NdK/F∞, choose Φv = Φ+
v with respect to a unramified additive

character ψ0
v , say ψ0

v = α−1
v ψv for some αv ∈ ∂FO∗v as in Section 2.

We remark that Φv is independent of the choice of ψ0
v or equivalently α−1

v

when v - dK/F∞. The purpose of this section is to prove

Theorem 3.1. Let the notation be as above. Then the Eisenstein series E∗(τ, s,Φα,N )
satisfies all the properties in Theorem 1.2.
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Proof. We first make a remark on the Fourier expansion and the local Whit-
taker function with respect to ψ. When t 6= 0, the t-th Fourier coefficient of an
Eisenstein series E(g, s,Φ) is

Et(g, s,Φ) =
∫

F\FA
E(n(b)g, s, Φ)ψ(−tb)dψb

=
∏
v

∫

v
Φv(wn(b)gv)ψv(−tb)dψvb

=
∏
v

Wψv
t,v (gv, s, Φv).

Here the Haar measure dψvb on Fv is chosen to be self-dual with respect to ψv.
The Haar measure db on Fv used in Section 2 is chosen to be self-dual with respect
to an unramified additive character, say ψ0

v = α−1
v ψv. So we have (we set αv = 1

for v|∞) dψvb = |αv|
1
2
v db. So

Wψv
t,v (g, v,Φv) = |αv|

1
2
v W

ψ0
v

tαv ,v(g, s,Φv). (3.1)

Everything in (1) follows from the general theory of Eisenstein series except
for the function equation, where one has

E(g, s,Φ) = E(g,−s,M(s)Φ).

For the rest of the proof, we denote Φ = Φα,N . By the results in Section 2, and
the above remark one has

M∗
v (s)Φv = |αv|

1
2
v M∗,ψ0

v
v Φv = Φv(−s)





−iL(s, χv) if v|∞,

|dK/F |
1
2
v χv(−αv)ε(χv, ψv) if v|dK/F ,

− |$v |+|$v |s
1+|$v |1+s L(s, χv) if v|N ,

|∂F |
1
2
v L(s, χv) otherwise.

It is easy to see

∏

v|dK/F

|dK/F |
1
2
v

∏

v|∂F

|∂F |
1
2
v = A−

1
2 , A = NF/Q(∂F dK/F ),

and
∏

v|N

|$v|+ |$v|s
1 + |$v|1+s

=
∏

v|N

|N |
1−s
2

v + |N |−
1−s
2

v

|N |
1+s
2

v + |N |−
1+s
2

v

.



324 Tonghai Yang

So

M∗(s)Φ = |A| s+1
2

∏
v

M∗
v (s)Φv = ε(α,N )Λ(s, χ)Φ(−s)

∏

v|N

|N |
1−s
2

v + |N |−
1−s
2

v

|N |
1+s
2

v + |N |−
1+s
2

v

,

with

ε(α,N ) = (−1)o(N )(−i)d
∏

v|dK/F

χv(−αv)ε(χv, ψv) = −1)o(N )id
∏

v|dK/F

χv(αv)ε(χv, ψv)

being as in the first formula for ε(α,N ) in Theorem 1.2. Here we used the fact
that

(−1)d
∏

v|dK/F

χv(−1) =
∏
v

χv(−1) = 1.

So

E∗(τ, s,Φ) = E(τ,−s,M∗(s)Φ)

= ε(α,N )Λ(1− s, χ)E(τ,−s,Φ)
∏

v|N

|N |
1−s
2

v + |N |−
1−s
2

v

|N |
1+s
2

v + |N |−
1+s
2

v

= ε(α,N )E∗(τ,−s,Φ)
∏

v|N

|N |
1−s
2

v + |N |−
1−s
2

v

|N |
1+s
2

v + |N |−
1+s
2

v

.

This verifies the functional equation. The constant term of E∗(τ, s,Φ) is

E∗
0(τ, s,Φ) = Λ(s + 1, χ)(

∏

1≤i≤d

vi)
s
2 + M∗(s)Φ(gτ , s)(

∏

1≤i≤d

vi)−
1
2

= Λ(−s, χ)(
∏

1≤i≤d

vi)
s
2 + ε(α,N )Λ(s, χ)(

∏

1≤i≤d

vi)−
s
2 .

Here vi = Im(τi). In particular,

E∗
0(τ, 0,Φ) = (1 + ε(α,N ))Λ(0, χ) = (1 + ε(α,N ))L(0, χ).

This verifies (3) for the constant term. Moreover, if ε(α,N ) = 1, then E∗
0(τ, 0,Φ) =

2L(0, χ) 6= 0. If ε(α,N ) = −1, then E∗(τ, 0,Φ) = 0 by the functional equation
proved in (1). So

E∗(τ, 0,Φ) = 0 ⇔ ε(α,N ) = −1.

For t ∈ F ∗, the t-th Fourier coefficient of E∗(τ, 0,Φ) is given by

E∗
t (τ, 0,Φ) = A

1
2

∏

1≤i≤d

W ∗,ψR
t,σi

(τi, 0,Φ1
R)

∏

v|dK/F

W ∗,ψv
t,v (1, 0,Φv)

∏

v-dK/F∞
W ∗,ψv

t,v (1, 0,Φv)

= 0
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unless t >> 0 and t ∈ ∂−1
F , i.e., t ∈ ∂−1,+

F , by the results in Section 2. In such a
case, one has by the same results in Section 2.

W ∗,ψR
t,σi

(τi, 0,Φ1
R) = −2ie(σi(t)τi),

W ∗,ψv
t,v (1, 0,Φαv) = |A|

1
2
v χv(−αv)ε(χv, ψv)(1 + χv(αvt)), if v|dK/F ,

and

W ∗,ψv
t,v (1, 0,Φαv) = |A|

1
2
v





−1+(−1)ordvαvt−1

2 if v|N ,
1+(−1)ordv(αvt)

2 if v - NdK/F∞ is inert,
(1 + ordv(αvt)) if v - NdK/F∞ is split.

On the other hand, decomposing a =
∏

v pordva
v , one sees immediately that

ρK/F (a) =
∏

v<∞
ρv(a) (3.2)

with

ρv(a) =





1 if v is ramified in K,
1+(−1)ordva

2 if v is inert in K,

1 + ordva if v is split in K,

(3.3)

So
∏

v-dK/F∞
W ∗,ψv

t,v (1, 0,Φv) = (−1)o(N )ρK/F (t∂FN−1)
∏

v-dK/F∞
|A|

1
2
v . (3.4)

Therefore, one has

E∗
t (τ, 0,Φ) = ε(α,N )2dδ(αt)ρK/F (t∂FN−1)

for t ∈ ∂−1,+
F . This verifies (3).

To verify (2), let γ =
(

a b
c d

)
∈ Γ0(dK/F ), let γv be its image in SL2(Fv). For

v = σj |∞, write γj = σj(γ) and cj = σj(c) and so on. Write gγjτj = γjgτjkθ, then

eiθ =
cjτj + dj

|cjτj + dj | .

Also note that Imγjτj = vj

|cjτj+dj |2 . We also write the action of SL2(FA) on
I(s, χ) as

r(g)Φ(g1) = Φ(g1g).
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The proof of (2) is a standard shifting technique between finite and infinite primes.
Indeed,

E∗(γτ, s, Φ) = (
∏

j

Imγjτj)−
1
2 E∗(

∏

j

gγjτj , s, Φ)

=
∏

j

(cjτj + dj)E∗(
∏

j

γjgτj , s, Φ)

=
∏

j

(cjτj + dj)(vj)−
1
2 E∗(

∏

j

gτj , s, r(
∏

v<∞
γ−1

v )Φ).

The last identity is due to the trivial but important fact that f(γg) = f(g) for
any automorphic form f , γ ∈ SL2(F ), and g ∈ SL2(FA). Now, the results in
Section 2 imply

r(γ−1
v )Φv =

{
Φv if v unramified,

χv(d)Φv if v ramified.

Therefore

E∗(γτ, s, Φ) =
∏

j

(cjτj + dj)(vj)−
1
2 E∗(

∏

j

gτj , s, Φ)
∏

v ramified

χv(d)

= χ(γ)
∏

j

(cjτj + dj)E∗(τ, s,Φ).

This verifies (2). Finally, we verify the second formula for ε(α,N ). It is well-
known ([15] that

ε(χv, ψv) =

{
i if v|∞,

χv($v)n(ψv) if χ is unramified at v < ∞.

So id =
∏

v|∞ ε(χv, ψv). Since the global root number of χ is

1 =
∏
v

ε(χv, ψv),

a simple calculation gives then

ε(α,N ) = (−1)o(N )
∏

v|dK/F

χv(αv)
∏

v|∂F ,v-dK/F

χv(∂F ).
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Elementary Proofs of Corollary 1.3: Since this corollary is so simple, we
give two other simple proofs here. First, if K/F , i.e., χ is unramified at every
finite prime, then the global root number χ is

1 =
∏
v

ε(χv, ψv) = i[F :Q]
∏

v<∞
χv($v)n(ψv) = ±i

as in the final part of the proof of the theorem. This is impossible and so K/F is
ramified at some finite prime. The second proof is even simpler and is generously
shown to me by David Rohrlich. Indeed,

1 = χ(−1) =
∏
v

χv(−1) = (−1)[F :Q]
∏

v<∞
χv(−1) = −

∏
v<∞

χv(−1).

So there is some finite prime v such that χv(−1) = −1, which implies that K/F is
ramified at v. Notice that the above argument actually proved a slightly stronger
result: If K/F is a quadratic extension of number fields unramified at every finite
prime, then the number of real primes of F which become complex in K is even.

We end this section with a simple fact complement to Corollary 1.3.

Proposition 3.2. Let d > 0 be an even integer. Then there is a totally real
number field F of degree d together with a totally imaginary quadratic extension
K such that K/F is unramified at every finite prime.

Proof. Let p be a prime number such that p ≡ 1 mod d. Then Q+(ζp) = Q(ζp +
ζ−1
p ) is a cyclic totally real number field of degree p−1

2 , which is divisible by d
2 . So

it has a unique totally real subfield F1 of degree d
2 . Let d1 < 0 and d2 < 0 are two

fundamental discriminants of imaginary quadratic fields such that p, d1 and d2

are pairwise relatively prime. Then F = F1(
√

d1d2) is a totally real number field
of degree d, and K = F1(

√
d1,
√

d2) is a totally imaginary quadratic extension
of F unramified at every finite prime of F . Incidently, F is abelian over Q with
Galois group Z/2× Z/(d/2).

4 Unramified cases

In this section, we assume that K/F is unramified at every finite prime and take
N = OF . So N = 1 in Theorem 1.5. Theorem 1.5 and Corollary 1.4 give

Theorem 4.1. Let F be a totally real number field of degree d with 4|d, and let K
be a totally imaginary quadratic extension of F unramified at every finite prime.
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Let χK/F be the quadratic Hecke character of F associated to K/F . Then

fK/F (τ) = L(0, χK/F ) + 2d−1
∑

m≥1

am(K/F )qm

is a holomorphic modular form of weight d for SL2(Z). Here q = e(τ), and

am(K/F ) =
∑

t ∈ ∂−1,+
F

trF/Qt = m

ρK/F (t∂F ).

Theorem 4.1 can be used to compute L(0, χK/F ) and thus the relative class
number hK/hF . Indeed, they are related by (see for example [16])

L(0, χ) =
2d

WK [O∗K : µKO∗F ]
hK

hF
. (4.1)

Here hK and hF are ideal class numbers of K and F respectively, and µK is the
group of roots of unity in K and WK = #µK .

Let
Ek(τ) = 1− 2k

Bk

∑

n≥1

σk−1(n)qn (4.2)

be the classical Eisenstein series of weight k, where Bk is the Bernoulli numbers,
and

σk(n) =
∑

m|n
mk.

Let
∆(τ) = q

∏

n≥1

(1− qn)24 =
∑

n≥1

qnτ(n) (4.3)

be the cusp form of weight 12 for SL2(Z). Siegel proved in [14] page 90 the
following proposition.

Proposition 4.2. Let

r =

{
[ d
12 ] if d ≡ 2 mod 12,

1 + [ d
12 ] if d 6≡ 2 mod 12,

be the dimension of the space Md(SL2(Z)) of holomorphic modular form of weight
d for SL2(Z). Write

E12r−d+2

∆r
=

∑

n≥−r

cd,nqn.
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Then cd,0 6= 0. Moreover, if f(τ) =
∑

n≥0 anqn be a holomorphic modular form
of weight d for SL2(Z), then

∑

0≤m≤r

cd,−mam = 0.

We refer to [1] and [2] for generalization of this proposition. Combining this
proposition with Theorem 4.1, one obtains

Corollary 4.3. Let the notation and assumption be as in Theorem 4.1. Then

cd,0L(0, χK/F ) +
∑

1≤m≤r

cd,−mam(K/F ) = 0,

where cd,m and r are as in Proposition 4.2.

Example 4.4. Let D1, D2, · · · , Dr > 0 are fundamental discriminants of real
quadratic fields such that (Di, Dj) = 1 for 1 ≤ i < j ≤ r. Assume D1 = d1d2

such that d1 and d2 are fundamental discriminants of imaginary quadratic fields.
Let F = Q(

√
D1, · · · ,

√
Dr) be a totally real number field of degree 2r, and let

K = F (
√

d1,
√

d2). Then K is a totally imaginary quadratic extension of F which
is unramified at every finite prime of F . So, for r ≥ 2,

fd1,d2,D2,··· ,Dr(τ) = fK/F (τ)

is a holomorphic modular form of weight 2r for SL2(Z).

Example 4.5. Let d be an even positive integer, and F1 be a totally real number
field of degree d/2 with discriminant dF1 . Let D = d1d2 > 0 be a fundamental
discriminant prime to dF1 such that d1 and d2 are fundamental discriminants of
imaginary quadratic fields. Then F = F1(

√
D) is a totally real number field of

degree d, and K = F1(
√

d1,
√

d2) is a totally imaginary quadratic extension of F
unramified at every finite prime. If 4|d, then we obtain a holomorphic modular
form of weight d for SL2(Z) given by

fF1,d1,d2(τ) = L(0, χK/F ) + 2d−1
∞∑

m=1

am(K/F )qm.

On the other hand, if d ≡ 2 mod 4, then for every t ∈ ∂−1,+
F = (

√
D∂F1)

−,+, the
ideal t∂F is a not a norm from K.

Conjecture 4.6. Let 4|d and let F1 be a totally real number field of degree d
2 as

in Example 4.5. The the formula forms fF1,d2,d2(τ), as d1 and d2 vary subject to
the conditions in Example 4.5, generate the space of Md(SL2(Z)) of holomorphic
modular forms of weight d for SL2(Z).
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The small degree cases are in particular interesting. For example, since
M4(SL2(Z)) and M8(SL2(Z)) are both one dimensional, we obtain immediately
from Theorem 4.1

Corollary 4.7. Let the notation and assumption be as in Theorem 4.1.

(1) If d = [F : Q] = 4, then

fK/F (τ) = L(0, χK/F )E4(τ),

and
L(0, χK/F ) =

1
30

∑

t ∈ ∂−1,+
F

trF/Qt = 1

ρK/F (t∂F ).

(2) If d = [F : Q] = 8, then

fK/F (τ) = L(0, χK/F )E8(τ),

and
L(0, χK/F ) =

4
15

∑

t ∈ ∂−1,+
F

trF/Qt = 1

ρK/F (t∂F ).

(3) In both cases, the ratio am(K/F )
L(0,χK/F ) is independent of F or K.

Corollary 4.8. (1) Let F = Q(
√

D1,
√

D2) be a bi-quadratic totally real quartic
field, and assume D1 = d1d2 such that d1 and d2 are fundamental discriminants
of imaginary quadratic fields. Let K = (

√
d1,
√

d2,
√

D2) be a totally imaginary
quadratic extension of F . Then

am(K/F )
L(0, χK/F )

is independent of the choice of d1, d2, or D2.

(2) Let F = F1(
√

D) and K = F1(
√

d1,
√

d2) be as in Example 4.5, where
D1 = d1d2, and F1 is a totally real quartic field of degree 4 with (dF1 , D) = 1.
Then

aK/F (m)
L(0, χK/F )

is independent of the choice of d1, d2 or F1.
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Similarly, we have

Corollary 4.9. Let the notation and assumption be as in Theorem 4.1 with
d = [F : Q] = 12. Then

fK/F (τ) = aE12(τ) + b∆(τ)

with

a1(K/F ) = Ca + b, a2(K/F ) = (1 + 211)Ca− 24b, C =
65520
691

. (4.4)

Finally,
L(0, χK/F ) = a.

Example 4.10. Let F1 = Q(α) be a totally real cubic field, and let D1 = d1d2 > 0
and D2 are two fundamental discriminants of real quadratic fields such that
(D1, D2) = 1 and that d1 and d2 are fundamental discriminants of imaginary
quadratic fields. Then F = Q(α,

√
D1,

√
D2) is a totally real number field of de-

gree 12, and K = Q(α,
√

d1,
√

d2,
√

D2) is a totally imaginary quadratic extension
of F , and so

fα,d1,d2,D2(τ) = L(0, χK/F ) + 211
∑

m≥1

am(K/F )qm

is a holomorphic modular form of weight 12 for SL2(Z). A natural question is
when two such forms are proportional (say fixing α, D1, d2, and varying d1)?

Example 4.11. Let d1, d2 be two fundamental discriminants of imaginary quadratic
fields such that 13, d1, and d2 are pairwise relatively prime. Let D = d1d2. Then
F = Q(ζ13 + ζ−1

13 ,
√

D) is a totally real number field (in fact, Galois over Q with
Galois group Z/6 × Z/2), and K = Q(ζ13 + ζ−1

13 ,
√

d1,
√

d2) is a totally imagi-
nary quadratic extension of F unramified at every finite prime. So fK/F (τ) is a
holomorphic modular form of weight 12.

5 Real quadratic fields

In this section, we use Theorem 1.5 to give three different ways to construct
modular forms of weight 2 via CM quartic fields. Biquadratic fields give modular
forms of level N with the trivial character. Non-biquadratic fields give modular
forms of level N with the Dirichlet character (N ). The first construction is very
close in essence to the one constructed by Hecke and is given in Theorem 1.7,
which we restate here for the convenience of the reader.
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Theorem 5.1. Let N be a square-free positive integer. Let d1, d2 < 0 be two
fundamental discriminants of imaginary quadratic fields, and let F = Q(

√
D)

with D = d1d2 > 0, and let K = Q(
√

d1,
√

d2). Assume that

(d1, d2) = 1, and (
d1

p
) = (

d2

p
) = −1 for every p|N. (5.1)

So every prime p|N splits in F and every prime of F above N is inert in K.
Let N be an integral ideal of F with odd number of prime factors in F such that
N ∩ Z = NZ . Then

fd1,d2,N (τ) = L(0, χK/F ) + 2
∞∑

m=1

am(d1, d2,N )e(mτ) (5.2)

is a holomorphic (elliptic) modular form of weight 2 for Γ0(N) with the trivial
Nebentypus character, where

am(d1, d2,N ) =
∑

t=a+m
√

D
2

∈N ,|a|<m
√

D

ρK/F (tN−1). (5.3)

Proof. Since K/F is unramified at every finite prime, α in Theorem 1.5 does not
appear, we denote α = 1 in such a case. So

ε(1,N ) = i2(−1)o(N ) = (−1)o(N )+1 = 1

by assumption. Notice that ∂F =
√

DOF , and thus

t ∈ (∂FN )+ ⇔
√

Dt =
a + b

√
D

2
∈ N with |a| < b

√
D. (5.4)

Now the proposition follows immediately from Theorem 1.5.

Notice that if N = N1d for some rational positive integer d then it is clear
from the theorem

fd1,d2,N = fd1,d2,N1(dτ)

is an old form, while fd1,d2,N1 is a modular form of weight two for Γ0(N1) with
N1Z = N1 ∩ Z. Recall that when N is a prime number, there is exactly one (up
to scalar) Eisenstein series of weight 2 for Γ0(N), given by

E2,N (τ) =
N − 1

24
+

∑

n≥1

(
∑

d|n,N -d
d)qn. (5.5)

Recall also that dim M2(Γ0(N)) = 1 for N = 2, 3, 5, 7, 13. So we have
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Corollary 5.2. Let N = 2, 3, 5, 7, or 13, and let d1 and d2 be as in Theorem 5.1.
Then

fd1,d2,N (τ) =
24L(0, χK/F )

N − 1
E2,N (τ),

and
L(0, χK/F ) =

N − 1
24

∑

t=a+
√

D
2

∈N ,|a|<√D

ρK/F (tN−1).

We mention that fd1,d2,N is independent of N when N is prime. Next we
consider the case where N is a square-free and N ≡ 3 mod 4 so that Q(

√−N)
has discriminant −N . The following theorem gives another way to construct
modular forms of weight 2 for Γ0(N) by biquadratic CM fields.

Theorem 5.3. Let K = Q(
√

D,
√−N) be a bi-quadratic CM field with maximal

totally real subfield F . Assume that D > 0 and −N < 0 are fundamental dis-
criminants of quadratic fields such that (2D, N) = 1. Let β = (βv) ∈

∏
v|N O∗Fv

such that
χ(β) =

∏

v|N
χv(βv) = −1.

Then

fD,β,N (τ) = L(0, χK/F ) + 2
∞∑

m=1

am(D, β,N)e(mτ)

is a holomorphic modular form of weight 2 for Γ0(N) with the trivial Nebentypus
character, where

am(D, β,N) =
∑

t=a+m
√

D
2

∈OF ,|a|<m
√

D

δ(βt)ρK/F (tOF ).

Proof. In Theorem 1.5, we choose α =
√

Dβ = (
√

Dβv) ∈
∏

v|N O∗v , andN = OF .
Recall again ∂F =

√
DOF . Then

ε(α,N ) =
∏

v|N
χv(αv)

∏

v|√DOF

χv(
√

D)

=
∏

v|N
χv(βv)

∏

v|ND

χv(
√

D)

= χ(β)
∏

v|∞
χv(

√
D)

= −χ(β).
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Using (5.4), Theorem 1.5 gives in this case the modular form of weight 2, level
N , and character χ̃

fα,N (τ) = L(0, χ) + 2
∑

m≥1

am(α,N )e(mτ)

with

am(α,N ) =
∑

t∈∂−1,+
F ,trF/Qt=m

δ(αt)ρK/F (t∂F )

=
∑

t=a+m
√

D
2

∈OF ,|a|<m
√

D

δ(βt)ρK/F (tOF ).

= am(D, β,N).

So fD,β,N is a modular form of weight 2, level N , and character χ̃, where

χ̃ : (Z/N)∗ −→ {±1}, χ̃(a) =
∏

v|N
χv(a).

We need to prove χ̃ = 1. This follows from the following lemma.

Lemma 5.4. Let a be a rational integer prime to N , and let p|N be a rational
prime number. Then ∏

v|p
χv(a) = 1.

Proof. There are two cases. If p = pp′ is split in F . Then Fp = Fp′ = Qp, and
thus χp(a) = χp′(a). So χp(a)χp′(a) = 1. If p is inert in F . Since p is odd, OF /p
is the quadratic extension of Z/p, and every element a ∈ (Z/p)∗ is a square in
OF /p, and so χp(a) = 1 again.

Analogue of Corollary 5.2 holds here for N = 3, 7. Another interesting exam-
ple is N = 11, where M2(Γ0(11)) has dimension 2 and is generated by

E2,11(τ) =
5
12

+ q + 3q2 + 4q3 + 7q4 + 6q5 + · · · . (5.6)

and the cusp form

fE = (η(τ)η(11τ))2 = q− 2q2− q3 +2q4 + q5 +2q6− 2q7− 2q9− 2q10 + q11 + · · · ,

which is associated to the elliptic curve

E = X0(11) : y2 − y = x3 − x2 − 10x− 20.
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Here are some examples coming from Corollary 5.2 and Theorem 5.3.

f−3,−23,N11 =
2
5
(6E2,11 − fE) = 1 + 2q + 8q2 + 10q3 + 16q4 + · · · ,

f−3,−31,N11 =
2
5
(6E2,11 − fE) = 1 + 2q + 8q2 + 10q3 + 16q4 + · · · ,

f−3,−47,N11 = 4E2,11 =
5
3

+ 4(q + 3q2 + 4q3 + 7q4 · · · ),
f13,β,11 = 24E2,11 = 10 + 24(q + 3q2 + 4q3 + 7q4 · · · ),
f17,β,11 =

8
5
(3E2,11 + 2fE) = 2 + 8(q + q2 + 2q3 + 5q4 + · · · ),

f5,β,11 =
8
5
(3E2,11 + 2fE) = 2 + 8(q + q2 + 2q3 + 5q4 + · · · ),

f5,−β,11 =
48
5

(E2,11 − fE) = 4 + 48(q2 + q3 + q4 + · · · ).

It might be worthwhile to study when two such modular forms are propor-
tional. Notice that β does not matter in above formulae for D = 13 or 17, as
11 is inert in F = Q(

√
D) in these cases, and there is basically one choice for

β. When D = 5, 11 splits in F = Q(
√

5) into two primes v and v′. There are
two choices of β in this case. In the formula, we choose v so that χv(

√
5) = 1,

βv = −√5, and βv′ =
√

5. Notice that δ(βt) + δ(−βt) = 4 and thus

f5,β,11 + f5,−β,11 = 2L(0, χK/F ) + 8
∞∑

m=1

(
∑

t∈a+m
√

5
2

∈OF ,|a|≤m
√

5

ρK/F (tOF ))qm

is a modular form independent of β. In general, similar consideration gives

Corollary 5.5. Let N ≡ 3 mod 4 be a prime number and let F = Q(
√

D) and
K = Q(

√
D,
√−N) be as in Theorem 5.3. Then

fD,−N = L(0, χK/F ) + 4
∞∑

m=1

am(D,−N)qm

is a holomorphic modular form for Γ0(N) of weight 2, where

am(D,−N) =
∑

t=a+m
√

D
2

∈OF ,|a|<m
√

D

ρK/F (tOF ).

Finally, we come to the non-biquadratic case. We first prove a an easy lemma.
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Lemma 5.6. Let F = Q(
√

D) be a real quadratic field, and let K = F (
√

∆)
be a totally imaginary quadratic extension of F which is not biquadratic, i.e.,
F̃ = Q(

√
∆∆′) is also a real quadratic field. Assume that K/F is unramified at

every prime above 2, and that ∆ is primitive in the sense that ∆ does not have
rational prime factors. Then

(1) dK/F ∩ Z = NF/QdK/F = dF̃Z, where dF̃ is the discriminant of F̃ .

(2) The character χ̃ : (Z/dF̃ )∗ ∼= (OF /dK/F )∗ −→ {±1} defined in Theorem
1.5 is the quadratic Dirichlet character associated to F̃ /Q.

Proof. By a theorem of Hilbert ([4], Theorem 17.20), one has

dK/F =
∏

ordp∆=odd
p.

where p runs through odd prime ideals of F . Since ∆ is primitive, p = NF/Qp is
a rational prime split or ramified in F . This implies

NF/QdK/F = dK/F ∩ Z =
∏

ordp∆=odd
p,

and ∆∆′ = a2NF/QdK/F . But ∆ and ∆′ are square modulo 4 and odd, so

∆∆′ ≡ a2 ≡ 1 mod 4.

So NF/QdK/F ≡ 1 mod 4 is square-free and

NF/QdK/F = dF̃ .

This proves (1). (2) follows from the fact

(Z/dF̃ )∗ = (OF /dK/F )∗

(since every prime factor of dF̃ is split or ramified in F ) and (1) and (1.7).

Now assume N ≡ 1 mod 4 be square free and let εN = (N ) be the quadratic
Dirichlet character. Let F and K be as in Lemma 5.6 such that F̃ = Q(

√
N).

Take α = (αv) ∈
∏

v F ∗
v such that ordvαv = ordv

√
D, and N = OF . Then

ε(α,N ) =
∏

v|√DOF ,v-dK/F

χv(
√

D)
∏

v|dK/F

χv(−αv).
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Here χ = χK/F . Set α =
√

Dβ with β = (βv) ∈
∏

v|dK/F
O∗v , then

ε(α,N ) =
∏

v|D,v-dK/F

χv(
√

D)
∏

v|dK/F

χv(
√

Dβv)

=
∏

v|dF dK/F

χv(
√

D)
∏

v|dK/F

χv(βv) = −
∏

v|dK/F

χv(βv).

The lemma above implies OF /dK/F
∼= Z/N . So if we take βv = M for every

v|dK/F and some fixed rational integer M prime to N , then

χ(β) =
∏

v|dK/F

χv(M) = (
M

N
). (5.7)

So Theorem 1.5 gives

Theorem 5.7. Let N ≡ 1 mod 4 be a square-free positive integer. Let F =
Q(
√

D) be a real quadratic field and let K = F (
√

∆) be a CM quartic field such
that F̃ = Q(

√
∆∆′) = Q(

√
N). Assume that K/F is unramified at every prime

above 2 and that ∆ is primitive. Let M be a rational integer prime to N with
(M

N ) = −1. Then

fK/F,M (τ) = L(0, χK/F ) + 2
∑

m≥1

am(K/F, M)e(mτ)

is a holomorphic modular form of weight 2, level N , and Nebentypus character
(N ). Here

am(K/F, M) =
∑

t=a+m
√

D
2

∈OF ,|a|<m
√

D

δ(Mt)ρK/F (tOF ).

The case when N is prime is in particular simple. In this case, there is a unique
prime v0 of F above N which is ramified in K/F , and δ(Mt) = 1 + χv0(Mt) =
1− χv0(t) = 0 or 2. Moreover, if δ(Mt) = 0, i.e., χv0(t) = 1, then (for t > 0 > t′)

∏

v-dK/F∞
χv(t) = χv0(t)

∏

v|∞
χv(t) = −1.

This implies χv(t) = −1 for some inert prime v of F (in K), and so ρv(tOF ) = 0.
Therefore ρK/F (tOF ) = 0 when δ(Mt) = 0. So we obtain
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Corollary 5.8. Let the notation be as in Theorem 5.7. Assume further that N
is a prime number. Then

fK/F = L(0, χK/F ) + 4
∑

m≥1

am(K/F )e(mτ)

is a holomorphic modular form of weight 2, level N , and Nebentypus character
(N ). Here

am(K/F ) =
∑

t=a+m
√

D
2

∈OF ,|a|<m
√

D

ρK/F (tOF ).

Recall a classical result of Hecke which says that dim M2(N, (N )) = 1 for
N = 5, 13, 17. Recall also that for a primitive Dirichlet character ε of conductor
N such that ε(−1) = 1, the Eisenstein series

E2,ε(τ) =
1
2
L(−1, ε) +

∞∑

m=1

σ1,ε(m)qm, q = e(τ) (5.8)

is a modular form of weight 2, level N with Nebentypus character ε. Here

σ1,ε(m) =
∑

0<d|m
ε(d)d.

Corollary 5.9. Let the notation and assumption be as in Corollary 5.8. Then
for N = 5, 13, 17, one has

fK/F (τ) =
2L(0, χK/F )
L(−1, (N ))

E2,(
N

)(τ).

Conjecture 5.10. Similar to Conjecture 4.6, we think the following should be
true.

(1) When N > 0 is square free, the modular forms fd1,d2,N constructed in
Theorem 5.1, as d1, d2, and N change, generate the space M2(Γ0(N)) of holo-
morphic modular forms of weight 2, level N with trivial Nebentypus character.

(2) When N ≡ 3 mod 4 is square-free, the modular forms fD,β,N constructed
in Theorem 5.3, as D and β change, generate the space M2(Γ0(N)).

(3) When N ≡ 1 mod 4 is square-free, the modular forms fK/F,M constructed
in Theorem 5.7, as K, F , and M change, generate the space M2(N, (N )) of
holomorphic modular forms of weight 2, level N with Nebentypus character (N ).

These conjectures can easily be verified when N is small.
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