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258 Hervé Jacquet

1 Introduction

We denote by G the group of invertible 2× 2 matrices and by N the subgroup of
matrices of the form

n =
(

1 •
0 1

)
.

The group N(R)×N(R) operates on GL(2,R) and M(2× 2,R) by

s 7→ tn1sn2 .

We say that an element s or its orbit is relevant if
(

1 0
x1 1

)
s

(
1 x2

0 1

)
= s ⇒ x1 + x2 = 0 .

A system of representatives for the relevant orbits in M(2×2,R) are the diagonal
matrices (

a1 0
0 a2

)
, a1 6= 0 ,

and the matrices (
0 a
a 0

)
, a 6= 0 .

We set

w :=
(

0 1
1 0

)

so that the previous matrix can be written wa.

For a 2× 2 matrix

m =
(

a b
c d

)

we set ∆1(m) = a, ∆2(m) = det m. They are invariants of the action of N ×N .

We let ψR or simply ψ be a non trivial additive character of R. We define
the orbital integrals of a Schwartz function Φ on M(2× 2,R): for a1 6= 0,

Ω[Φ, ψ : a1, a2] :=
∫

Φ
[(

1 0
x1 1

)(
a1 0
0 a2

)(
1 x2

0 1

)]
ψ(x1 + x2)dx1dx2

and, for a 6= 0,

Ω[Φ, ψ : wa] :=
∫

Φ
[
wa

(
1 x
0 1

)]
ψ(x)dx
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=
∫

Φ
[
a

(
0 1
1 x

)]
ψ(x)dx .

Most of the time, we will assume that Φ is in fact a smooth function of compact
support on GL(2,R). Our purpose is to study the asymptotic of these integrals.

Similarly, we denote by Mh(2×2,C/R) the space of 2×2 Hermitian matrices.
The group N(C) operates by

s 7→ tnsn .

We say that an element s or its orbit is relevant if
(

1 0
z 1

)
s

(
1 z
0 1

)
= s ⇒ z + z = 0 .

The previous matrices are also a set of representatives for the relevant orbits. We
define the orbital integrals of a function Ψ ∈ S(Mh(2× 2,C/R)) : for a1 6= 0,

Ω[Ψ,C/R, ψ : a1, a2] :=
∫

C
Ψ

[(
1 0
z 1

)(
a1 0
0 a2

)(
1 z
0 1

)]
ψ(z + z)dz

and, for a 6= 0,
Ω [Ψ,C/R, ψ : aw]

:=
∫

R
Ψ

[
a

(
0 1
1 x

)]
ψ(x)dx .

We set H := GL(2,C) ∩Mh(2× 2,C/R). We often write

ψC(z) = ψR(z + z) .

Most of the time we will assume that Ψ is in fact a smooth function of compact
support on H.

We want to study the asymptotic of these new integrals and show that, apart
from a sign, they have the same asymptotic as the previous integrals.

We will not discus here the motivation for the study of these integrals. See
the references [10], [5], [6]. In fact the integrals at hand are already discussed in
[10] (1). The novelty here is the introduction of the Casimir operator and the
use of a partial Fourier transform of the functions at hand. Indeed, we write the
orbital integrals as the integrals of a partial Fourier transform of Φ or Ψ. In the
end both kind of orbital integrals are written as the integral over R of a Schwartz
function against an oscillatory factor, the same in both cases. Moreover, the
results and the methods are likely to generalize to the case of GL(n). Indeed our
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use of the Fourier transform is inspired by the fact that the orbital integral of a
function Φ or Ψ and the orbital integral of its full Fourier transform are related
by a simple integral transform. This relation holds in the context of GL(n) ([5],
(4)).

Analogous integrals and dual Bessel distributions have been studied by a
number of authors, specially Baruch ([1]) and Baruch/Mao ([2]). For the relation
with the classical literature and an exhaustive list of references see [3]. The idea
of introducing a partial Fourier transform already occurs in [2].

2 Stationary phase

We recall and extend somewhat classical results on the stationary phase method
([9] is a convenient reference.). We recall the elementary formula

∫

R
φ(y)ψ

(
y2

2x

)
dy = |x|1/2γ(x, ψ)

∫

R
φ̂(y)ψ

(
−xy2

2

)
dy , (1)

where φ is a Schwartz function on R and φ̂ denotes its Fourier transform

φ̂(x) =
∫

R
φ(y)ψ(−yx)dy .

The factor γ(x, ψ) is an eighth root of 1 dpending only on the sign of x.

Proposition 1 Let φ(y, x) be a Schwartz function on R2. Assume that the sup-
port φ is contained in a set

{(y, x) : |y| ≥ C1 , |x| ≤ C2}
where C1 > 0, C2 > 0. Consider the integral

∫
φ(y, x)ψR

(
y + 1

y

x

)
dy .

There are two smooth functions of compact support on R, θε, ε = ±1, such that
the integral is equal to the sum

∑

ε=±1

ψ

(
2ε

x

)
γ(εx, ψ)|x|1/22−1/2θε(x) . (2)

Any two such functions satisfy

θε(0) = φ(ε, 0) . (3)
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Proof: Consider first the case where C1 > 1. Set

t = y +
1
y

.

Then, on the support of φ, |y| ³ |t|. Moreover

dt

dy
= 1− 1

y2

so that, on the support of φ

1 ≥ dt

dy
≥ 1− 1

C2
1

> 0 .

Thus we may view y as a function of t. Then

dny

dtn
=

Pn(y)
(y2 − 1)2n

dy

dt
,

where Pn is a polynomial. This is bounded by a polynomial in |t|. Now regard
the function

φ(y(t), x)

as a function of (t, x). Then any partial derivative

∂n+sφ

∂tn∂sx

can be computed as a linear combination of terms of the form

∂m+sφ

∂ym∂xs

with coefficients in the ring C[dy
dt ]. and is thus rapidly decreasing for t large. Thus

φ(y(t), x) is a Schwartz function of (t, x). Using t is a variable we get
∫

ψ

(
t

x

)
φ(y(t), x)

dy

dt
dt .

If we set
φ1(t, x) = φ(y(t), x)

dy

dt

we see that φ1 is a Schwartz function and the integral is the partial Fourier
transform of φ1(t, x) evaluated at (x−1, x). This is a smooth function θ(x) of
compact support on R with the additional property that

∂mθ

∂xm
(0) = 0
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for all m. We can rewrite θ in the prescribed form with θε(0) = 0 = φ(ε, 0).

Now we may assume the projection of the support of φ on the first factor is
concentrated on small neighborhoods of ±1. For y close to 1 we set

v =
y − 1
y1/2

.

Then
v(1) = 0 , y +

1
y

= 2 + v2 ,
dv

dy
(1) = 1 .

For y close to −1 we set

v =
y + 1

(−y)1/2
.

Then
v(−1) = 0 , y +

1
y

= −2− v2 ,
dv

dy
(−1) = 1 .

Then our integral becomes

∑

ε=±1

∫
φ(y, x)ψ

(
ε(2 + v2)

x

)
dy

dv
dv

=
∑

ε

ψ

(
2ε

x

)
γ(εx, ψ)|x|1/22−1/2

∫
φ1(u, x)ψ

(
−εu2x

4

)
du ,

where we have set
φ1(u, x) =

∫
φ(y, x)

dy

dv
ψ(−vu)dv .

Hence the original integral has the required form with

θε(x) =
∫

φ1(u, x)ψ
(
−εu2x

4

)
du .

In addition

θε(0) =
∫

φ1(u, 0)du = φ(y, 0)
dy

dv

∣∣∣∣
v=0

= φ(ε, 0) .

The functions θε are not unique but let us show that, as claimed, their values at
0 are unique. Indeed, suppose that we have a relation of the form

ψ

(
2
x

)
φ1(x) + ψ

(−2
x

)
φ−1(x) = 0

valid for x > 0 sufficiently small, where φ1 and φ−1 are continuous at 0. We have
to see that

φ1(0) = φ−1(0) = 0 .
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If say φ1(0) 6= 0 then we can write

ψ

(
4
x

)
=

φ−1(x)
φ1(x)

.

It follows that ψ
(

4
x

)
has a limit as x → 0+, a contradiction. Our conclusion

follows. 2

Remark: In the previous Proposition, the values of the derivatives dnθε
dxn at

x = 0 are also uniquely determined by the partial derivatives of the function
φ(y, x) at the point (ε, 0). In particular the derivatives of θε are arbitrary.

Proposition 2 Let φ(y, x) be a Schwartz function on R2. Assume that the sup-
port φ is contained in a set

{(y, x) : |y| ≥ C1 , |x| ≤ C2}

where C1 > 0, C2 > 0. There is a smooth function of compact support θ on R
with

dmθ

dxm
(0) = 0

for all m such that ∫
φ(y, x)ψR

(
y − 1

y

x

)
dy = θ(x) .

Proof: We set
t = y − 1

y
.

Then
dt

dy
= 1 +

1
y2

> 0 .

Thus we can use t has a variable of integration and write the integral
∫

ψ

(
t

x

)
φ(y(t), x)

dy

dt
dt .

As before, if we set

φ1(t, x) =
∫

φ(y(t), x)
dy

dt
dt

then φ1 is a Schwartz function and the integral is the partial Fourier transform
of φ1 evaluated at (x−1, x). Our assertion follows. 2
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3 Orbital integrals for GL(2,R).

In this section we will study the orbital integral of a smooth function of compact
support Φ on GL(2,R). Thus we may regard Φ as a Schwartz function, in fact a
function of compact support on M(2×2,R), which vanishes on singular matrices.
Our method is to compute the orbital integral as the integral of a partial Fourier
transform of Φ against an oscillatory factor.

We first discuss the asymptotic of the integral for a1a2 < 0. Our goal in this
section is to prove the following result.

Proposition 3 Let Φ be a smooth function of compact support on G(R). Then,
for b > 0, c > 0, ε1 = ±1,

Ω[Φ, ψ : ε1bc,−ε1b
−1c] =

∑

ε=±1

2−1/2b−1/2ψ

(
2εε1
b

)
γ(εε1, ψ)θε(ε1b, c) (4)

where the functions θε(x, y) are smooth functions of compact support on R×R×+.
Any two such functions verify

θε(0, c) = Ω[Φ, ψ : cεw] . (5)

Proof: Since Φ has compact support, in the orbital integral Ω[Φ, ψ : a1, a2] the
product ∆2 = a1a2 remains in a fixed compact set of R×. We first introduce the
partial Fourier transform

Φ1

(
a b
c t

)
:=

∫
Φ

(
a b
c y

)
ψ(−yt)dy .

Then by Fourier inversion formula we find, after a change of variables,

Ω[Φ, ψ : a1, a2] =

|a1|−2

∫
Φ1

(
a1 x1

x2 y

)
ψ

(
x1 + x2 + y(∆2 + x1x2)

a1

)
dx1dx2dy .

We first consider a smooth partition of unity on R

φ1 + φ2 = 1 ,

where φ1 is supported on a neighborhood of 0 and and is one in a smaller neigh-
borhood of zero. We will choose φ1 in a moment. The orbital integral is then the
sum of two integrals

Ωi[Φ, ψ : a1, a2] :=
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|a1|−2

∫
Φ1

(
a1 x1

x2 y

)
ψ

(
x1 + x2 + y(∆2 + x1x2)

a1

)
φi(y)dx1dx2dy ,

with i = 1, 2. Since ∆2 remains in a compact set of R× we may assume that the
support of φ1 is so small that

φ2

(
± 1√−∆2

)
= 1 .

In addition, we choose the support of φ1 so small that in the integral Ω1 the
quantity 1 + x2y remains in a compact set of R×+. We then use new variables:

X1 = x1(1 + x2y) , X2 = x2 , Y = y .

The Jacobian matrix is 


1 + x2y x1y x1x2

0 1 0
0 0 1


 .

Its determinant remains in a compact set of R×+. Thus

Ω1[Φ, ψ : a1, a2] =
∫

φ(X1, X2, Y )ψ
(

X1 + X2 + Y ∆2

a1

)
dX1dX2dY

where φ is a compactly supported function. This has the form

f

(
1
a1

,
1
a1

,
∆2

a1

)

where f is a Schwartz function. Thus it has the form specified in the Proposition
with θε(0) = 0.

We now introduce another partial Fourier transform

Φ2

(
a u1

u2 y

)
:=

∫ ∫
Φ1

(
a x1

x2 y

)
ψ(−x2u1 − x1u2)dx1dx2 .

We use the elementary formula
∫

φ(x1, x2)ψ(tx1x2)dx1dx2 = |t|−1

∫
φ̂(x1, x2)ψ(−t−1x1x2)dx1dx2 .

We find
Ω2[Φ, ψ : a1, a2] =

|a1|−1

∫
Φ2

(
a1 u1 − 1

a1

u2 − 1
a1

y

)
ψ

(
ya1a2

a1
− a1u1u2

y

)
×
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du1du2
φ2(y)dy

|y|
or, after a change of variables,

|a1|−1

∫
Φ2

(
a1 u1

u2 y

)
ψ

(
ya1a2 − 1

y

a1
− u1 + u2 + a1u1u2

y

)
×

du1du2φ2(y)
dy

|y| .

We set
φ(y, a1) :=

∫ ∫
Φ2

(
a1 u1

u2 y

)
ψ

(
−u1 + u2 + a1u1u2

y

)
du1du2

φ2(y)
|y| .

The function φ is a Schwartz function on R× R with support in a set

|y| ≥ C1 , |a1| ≤ C2 .

In addition

φ(y, 0) =
∫

Φ2

(
0 u1

u2 y

)
ψ

(
−u1 + u2

y

)
du1du2

φ2(y)
|y|

= |y|−1φ2(y)Φ1

(
0 −y−1

−y−1 y

)

= |y|−1φ2(y)
∫

Φ
(

0 −y−1

−y−1 x

)
ψ(−xy)dx

= |y|−2φ2(y)Ω[Φ, ψ : −y−1w]

Recall we assume a1a2 < 0. We set

a1 = ε1bc , a2 = −ε1b
−1c

with b > 0, c > 0 and ε1 = ±1. Then

Ω2[Φ, ψ : ε1bc,−ε1b
−1c]

= (bc)−1

∫
φ(y, ε1bc)ψ

(−c2y − 1
y

ε1bc

)
dy

= b−1c−2

∫
φ(−c−1y, ε1bc)ψ

(
y + 1

y

ε1b

)
dy .
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Now we apply Proposition (1), or rather a variant of the Proposition with c in a
compact set of R×, as a parameter. This can be written as

c−22−1/2b−1/2
∑

ε=±1

ψ

(
2εε1
b

)
γ(εε1, ψ)θε(ε1b, c)

where θε are smooth functions of compact support on R× R×+ such that

θε(0, c) = φ(−c−1ε, 0) = c2φ2(−c−1ε)Ω[Φ, ψ : cεw] = c2Ω[Φ, ψ : cεw] .

After a change of notations we arrive at the Proposition. 2

4 Action of the Casimir Operator

In this section we show that the derivatives of the functions θε at 0 can be
computed in terms of the orbital integrals of the functions Ω[ρ(C)nΦ, ψ : wz]
where C is the Casimir operator. Recall

C =
H2

2
+ X−X+ + X+X− =

H2

2
+ H + 2X−X+ (6)

where

H =
(

1 0
0−1

)
, X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
. (7)

For X in the enveloping algebra of GL(2,R) we denote by ρ(X) the corresponding
left invariant differential operator. Thus if X is in the Lie algebra then

ρ(X)Φ(g) =
dΦ(g exp(tX))

dt

∣∣∣∣
t=0

.

We assume
ψ(x) = exp(2iπηx) , η = ±1 .

Let Φ1 be the function defined on the open set {g|∆1(g) 6= 0} by

Φ1(g) :=
∫

Φ
[(

1 0
y 1

)
g

(
1 x
0 1

)]
ψ(x + y)dxdy .

Since C is in the center of the enveloping algebra we have

Ω[ρ(C)Φ, ψ : a1, a2] = (ρ(C)Φ1) (diag(a1, a2)) .
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Now (
ρ(

H2

2
+ H)Φ1

)
(diag(ε1bc,−ε1b

−1c)

=
(

1
2
(b

d

db
)2 + b

d

db

) (
Φ1(diag(ε1bc,−ε1b

−1c))
)

=
(

1
2
(b

d

db
)2 + b

d

db

) (
Ω[Φ, ψ : ε1bc,−ε1b

−1c]
)

.

Likewise

(ρ(X−X+))Φ1(diag(ε1bc,−ε1b
−1c))

=
∂2

∂s∂t
Φ1

[(
ε1bc 0
0 −ε1b

−1c

)(
1 0
s 1

)(
1 t
0 1

)]∣∣∣∣
s=t=0

=
∂2

∂s∂t
Φ1

[(
1 0

−sb−2 1

)(
ε1bc 0
0 −ε1b

−1c

)(
1 t
0 1

)]∣∣∣∣
s=t=0

=
∂2

∂s∂t
e−2iπηb−2se2iπηt

∣∣∣∣
s=t=0

Φ1

[(
ε1bc 0
0 −ε1b

−1c

)]

=
4π2

b2
Ω[Φ, ψ : ε1bc,−ε1b

−1c]

Thus
Ω[ρ(C)Φ, ψ : ε1bc,−ε1b

−1c] =
(

1
2
(b

d

db
)2 + b

d

db
+

8π2

b2

)
Ω[Φ, ψ : ε1bc,−ε1b

−1c] . (8)

We remark that in terms of the coordinates (a1, a2) the action of the Casimir
operator is given by

Ω[ρ(C)Φ, ψ : a1, a2] =
[
1
2
(a1∂a1 − a2∂a2)

2 + (a1∂a1 − a2∂a2)− 8π2 a2

a1

]
Ω[Φ, ψ : a1, a2] . (9)

To continue we write

Ω[Φ, ψ : ε1bc,−ε1b
−1c] = b−1/2

∑
ε

φε(b, c) .

where we have set

φε(b, c) = 2−1/2γ(εε1, ψ) exp(
4iπεε1η

b
)θε(ε1b, c) .

We get (
1
2
(b

d

db
)2 + b

d

db
+

8π2

b2

)
Ω[Φ, ψ : ε1bc,−ε1b

−1c]
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=
∑

ε

b−1/2

(
1
2
(b

d

db
)2 +

1
2
b

d

db
− 3

8
+

8π2

b2

)
φε(b, c) .

or
Ω[(ρ(C) +

3
8
)Φ : ε1bc,−ε1bc

−1]

=
∑

ε

b−1/2

(
1
2
(b

d

db
)2 +

1
2

d

db
+

8π2

b2

)
φε(b, c) .

Now we use the explicit form of φε(b, c). After simplification we find

∑
ε

b−1/22−1/2γ(εε1, ψ) exp
(

4iπεε1η

b

)
×

{
1
2
b2 ∂2

∂x2
θε(ε1b, c) + (ε1b− 4εηiπ)

∂

∂x
θε(ε1b, c)

}
.

Let us introduce the differential operators

Qε,ψ :=
1
2
x2 ∂2

∂x2
+ (x− 4εηiπ)

∂

∂x
. (10)

We have just seen that if we write

Ω[Φ, ψ : ε1bc,−ε1b
−1c] =

∑
ε

b−1/22−1/2γ(εε1, ψ) exp(
4iπεε1η

b
)θε(ε1b, c)

where the functions θε(x, y) are smooth functions of compact support on R×R×+,
then

Ω[(ρ(C) +
3
8
)Φ, ψ : ε1bc,−ε1bc

−1] =

∑
ε

b−1/22−1/2γ(εε1, ψ) exp(
4iπεε1η

b
)Qε,ψθε(c, ε1b) .

Thus for any integer n ≥ 0,

Ω[(ρ(C) +
3
8
)nΦ, ψ : ε1bc,−ε1bc

−1] =

∑
ε

b−1/22−1/2γ(εε1, ψ) exp(
4iπεε1η

b
)Qn

ε,ψθε(c, ε1b) . (11)

We point out a simple property of the operators Qε,ψ.
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Lemma 1 Let k 6= 0. Let Qk be the differential operator

Qk :=
1
2
x2 ∂2

∂x2
+ (x + k)

∂

∂x
.

For any j ≥ 0,

∂j

∂xj
Qk =

1
2
x2 ∂j+2

∂xj+2
+ ((j + 1)x + k)

∂j+1

∂xj+1
+

j(j + 1)
2

∂j

∂xj
.

For any C∞ function φ and any n ≥ 0 we have

Qn
kφ(0) =

∑

1≤r≤n

cn
r kr ∂rφ

∂xr
(0) ,

where the constants cn
r are independent of k and cn

n = 1.

Proof: The first identity is established by induction on j. The second assertion
is trivial for n = 1. Thus we may assume n ≥ 2 and our assertion established for
n− 1. Then

Qn
kφ(0) = Qn−1

k (Qkφ)(0) .

By the induction hypothesis we get this is

∑

1≤n−1

cn−1
r kr ∂r

∂xr
Qkφ(0) .

Applying the first identity we get

∑

1≤r≤n−1

cn−1
r kr

(
k
∂r+1φ

∂xr+1
+

r(r + 1)
2

∂rφ

∂xr
(0)

)
.

The assertion for n follows. 2.

Now by Proposition (3)

Ω[(ρ(C) +
3
8
)nΦ : wεc] = Qn

ε,ψθε(0, c) .

By the Lemma this is

(−4iπεη)n ∂nθε(0, c)
∂xn

+
∑

1≤r<n

(−4iπεη)rcn
r

∂xrθε

∂r
(0, c) .

This implies the following result.
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Proposition 4 For every n ≥ 0, there is a polynomial Pn of degree n with leading
coefficient 1 such that for ε = ±1, c > 0,

Ω[Pn(ρ(C) +
3
8
)Φ, ψ : wεc] = (−4iπεη)n ∂nθε

∂xn
(0, c) .

Thus we see that the functions θε(x, c) are not unique but their derivatives

∂rθε(x, c)
∂xr

have uniquely determined values at x = 0.

The following lemma implies that these derivatives are arbitrary.

Lemma 2 Let φn, n ≥ 0, be a sequence of functions in C∞c (R×). There is a
function Φ ∈ C∞c (G(R)) such that, for all n ≥ 0,

Ω[ρ(Cn)Φ, ψ : wz] = φn(z) .

Proof: Let U be the open set of matrices

g =
(

a b
c d

)

such that b 6= 0 and ∆2(g) < 0.

Every matrix g ∈ U can be written uniquely in the form

g =
(

0 z
z 0

)(
1 x
0 1

)
p , p =

(
r 0
y r−1

)

with r > 0, z = sign(b)
√
−∆2(g). The matrix g is in S if and only if r = 1 and

y = 0. Let B1 be the group of matrices of the form
(

r 0
y r−1

)
, r > 0 .

The map

(x, z, p) 7→
(

0 z
z 0

)(
1 x
0 1

)
p

gives a diffeomorphism
R× R× ×B1 → U .

We write

C = 2X+X− −H +
H2

2
.
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Then, for any function Φ

Ω[ρ(C)Φ, ψ : wz] = Ω[ρ(C1)Φ, ψ : wz]

where

C1 = −4iπX− −H +
H2

2
.

More generally, since C is in the center of the enveloping algebra,

Ω[ρ(Cn)Φ, ψ : wz] = Ω[ρ(Cn
1 )Φ, ψ : wz]

Now C1 is an element of the enveloping algebra of the group B1. Moreover

Cn
1 =

∑

0≤i≤n,0≤j≤n−1

ci,jX
i
−Hj +

H2n

2n
.

Given a sequence θn(x, z) , n ≥ 0 of smooth functions of compact support on
R× R×, there is a smooth function Φ of compact support on U such that

ρ(Ωn
1 )Φ

[(
0 z
z 0

)(
1 x
0 1

)]
= θn(x, z) .

Indeed, introducing appropriate coordinates we see that we need to find a function
Φ(x, z, u, v) of compact support on R× R× × R× R such that

∑

0≤i≤n,0≤j≤n−1

ci,j
∂i+j

∂iu∂jv
Φ(x, z, 0, 0) +

1
2n

∂2n

∂2nv
Φ(x, z, 0, 0) = θn(x, z) .

This follows from Borel’s Theorem (See [4], Theorem 1.2.6, page 16.).

We take θn to be of the form

θn(x, z) = φn(z)µn(x) ,

∫
µn(x)ψ(x)dx = 1 .

Then

Ω[ρ(C)nΦ, ψ : wz] = Ω[ρ(C1)nΦ, ψ : wz] =
∫

θn(x, z)ψ(x)dx = φn(z) .2

5 Flat orbital integrals

If follows from the previous section that if

Ω[ρ(C)nΦ, ψ : wz] = 0
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for all n ≥ 0 and all z ∈ R× then the functions θε(x, c) have the property that,
for all n ≥ 0,

∂nθε(x, c)
∂xn

∣∣∣∣
x=0

= 0 .

The products

exp
(

4iπε

x

)
θε(x, c)

are smooth functions with the same property. We arrive at the following result.

Proposition 5 Suppose that

Ω[ρ(C)nΦ, ψ : wz] = 0

for all n ≥ 0 and all z ∈ R×. Then there is a smooth function of compact support
θ on R× R×+ such that

∂rθ

∂xr
(0, c) = 0

for all c > 0 and all r ≥ 0, and

Ω[Φ, ψ : ε1bc,−ε1b
−1c] = θ(ε1b, c)

for c > 0, b > 0, ε1 = ±1.

We have a converse.

Proposition 6 Let θ(x, c) be a smooth function of compact support on R × R×+
such that

∂nθ

∂nx
(0, c) = 0

for all c > 0 and all n ≥ 0. Then there is a smooth function of compact support
Φ such that

Ω[Φ, ψ : xc,−x−1c] = θ(x, c) .

Proof: Assuming Φ supported on U we set

Φ1(g) =
∫

Φ
[
g

(
1 x
0 1

)]
ψ(x)dx .

Then

Φ1

[
g

(
1 x
0 1

)]
= Φ1(g)ψ(−x) .
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Moreover

(a1, a2, x) 7→ Φ1

[(
1 x
0 1

)(
0 a2

a1 0

)]

is a smooth function of compact support on R× × R× × R. Then

Ω
[
Φ, ψ :

(
a1 0
0 a2

)]
=

∫
Φ1

[(
1 0
y 1

)(
a1 0
0 a2

)]
ψ(y)dy .

This becomes:
∫

Φ1

[(
1 1

y

0 1

)(
0 −a2

y

ya1 0

)]
ψ

(
y − a2

ya1

)
dy .

or

Ω
[
Φ, ψ :

(
a1 0
0 a2

)]
=

|a1|−1

∫
Φ1

[(
a1

−∆2
y

y 0

)]
ψ

(
y − ∆2

y

a1

)
dy .

With a1 = xc, a2 = −x−1c, c > 0 we want

|xc|−1

∫
Φ1

[(
xc c2

y

y 0

)]
ψ

(
y + c2

y

xc

)
dy = θ(x, c) .

After a change of variables this becomes

∫
Φ1

[(
x 1

y

y 0

)(
c 0
0 c

)]
ψ

(
y + 1

y

x

)
dy = |x|θ(x, c) .

Note that

(x, y, c) 7→ Φ1

[(
x 1

y

y 0

)(
c 0
0 c

)]

is an arbitrary smooth function of compact support on

R× R× × R×+ .

Let φ0(y) be a smooth function of compact support on R× such that
∫

φ0(y)dy = 1 .

We take

Φ1

[(
x 1

y

y 0

)(
c 0
0 c

)]
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= |x|θ(x, c)ψ

(
−

y + 1
y

x

)
φ0(y) .

Because of the condition the function θ(x, c) is divisible by xn for every n > 0.
Thus this is indeed a smooth function which has the required property. 2

Remark: it is easy to obtain the asymptotic of the orbital integral of a
function supported on U . Since G(R) is a finite union of sets tniU with ni ∈ N(R)
this gives another proof of Proposition (3).

6 The case ∆2 > 0

We simply record the result. The proof follows easily from Proposition (2).

Proposition 7 Suppose Φ is a smooth function with compact support contained
in the set ∆2 > 0. Then there is a smooth function of compact support θ on
R× R×+ such that

∂r

∂xr
θ(0, c) = 0

for all c > 0 and all r ≥ 0 and

Ω[Φ, ψ : ε1bc, ε1b
−1c] = θ(ε1b, c)

for c > 0, b > 0, ε1 = ±1. Conversely, if θ is such a function, then there is a
smooth function Φ with compact support contained in the set ∆2 > 0 such that
the above relation holds.

7 Orbital integrals for H

Let Ψ be a smooth function of compact support on H. Then

Ω[Ψ,C/R, ψ : a1, a2] :=
∫

Ψ
[(

1 0
z 1

)(
a1 0
0 a2

)(
1 z
0 1

)]
ψR(z + z)dz .

We will study the integrals for a1a2 < 0. Our goal in this section is the following
result.

Proposition 8 For any smooth function of compact support on H

Ω[Ψ, ψ : ε1bc,−ε1b
−1c] =
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ε1b
−1/22−1/2

∑

ε±1

ψ

(
2εε1
b

)
γ(εε1, ψ)θε(ε1b, c) (12)

where θε are smooth functions of compact support on R× R×+. For any two such
functions

θε(0, c) = −εΩ[Ψ, ψ : wcε] .

Proof: We introduce the partial Fourier transform

Ψ1

(
a z
z b

)
:=

∫
Ψ

(
a z
z y

)
ψR(−yb)dy

Then by Fourier inversion formula we get

Ω[Ψ,C/R, ψ : a1, a2] =

|a1|−2

∫ ∫
Ψ1

(
a1 z
z y

)
ψ

(
z + z + y(∆2 + zz)

a1

)
dydz .

As before, we choose a partition of unity

φ1 + φ2 = 1

on R with φ1 supported on a small neighborhood of 0. We assume that φ2

(
± 1√−∆2

)
=

1.

Then Ω[Ψ,C/R, ψ : a1, a2] is the sum of two integrals i = 1, 2

Ωi[Ψ,C/R, ψ : a1, a2] =

|a1|−2

∫ ∫
Ψ1

(
a1 z
z y

)
ψ

(
z + z + y(∆2 + zz)

a1

)
φi(y)dydz .

We choose the support of φ1 so small that, in the first integral, writing z = u+iv,
1 + yu remains in a compact set of R×. We then use the following variables of
integration:

U = u +
y(u2 + v2)

2
, V = v, Z = U + iV, Y = y .

Indeed
∂U

∂u
= 1 + yu 6= 0

Thus the Jacobian determinant ∂(U,V,Y )
∂(u,v,y) is non-zero. Moreover, we can compute

u, v, y in terms of U, V, Y by

u =
−1 +

√
1 + Y (2U − Y V 2)

Y
, v = V, y = Y .
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Thus this is a legitimate change of coordinates. The integral takes the form
∫

f(Z, Y )ψ
(

Z + Z + Y ∆2

a1

)
dZdY .

This has the required form with θε(0, c) = 0.

Thus we have to study

|a1|−2

∫
Ψ1

(
a1 z
z y

)
ψ

(
z + z + y(∆2 + zz)

a1

)
φ2(y)dydz .

We recall the elementary formula
∫

C
f(z)ψ

(
z + z

x

)
dz = x

∫

C
f̂(z)ψ(−x(z + z))dz (13)

(which can derived from (1) applied twice) where

f̂(z) =
∫

C
f(u)ψC(−zu)du .

To apply it we introduce a new Fourier transform

Ψ2

(
a z
z b

)
=

∫
Ψ1

(
a u
u b

)
ψC(−uz)du .

Then we find the previous integral is equal to

sign(a1)|a1|−1

∫
Ψ2

(
a1 z − 1

a1

z − 1
a1

y

)
ψ

(
y∆2

a1
− a1

y
zz

)
φ2(y)

dy

y
dz .

After a change of variables this becomes

sign(a1)|a1|−1

∫
Ψ2

(
a1 z
z y

)
ψ

(
y∆2 − 1

y

a1
− a1zz + z + z

y

)
φ2(y)

dy

y
dz .

At this point we set

φ(y, a1) :=
∫

Ψ2

(
a1 z
z y

)
ψ

(
−z + z + a1zz

y

)
φ2(y)

y
dz .

This is a Schwartz function supported on a set

|y| ≥ C1 , |a1| ≤ C2 .
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In addition

φ(y, 0) =
∫

C
Ψ2

(
0 z
z y

)
ψ

(
−z + z

y

)
dz

φ2(y)
y

= y−1φ2(y)Ψ1

(
0 −y−1

−y−1 y

)

= y−1φ2(y)
∫

Ψ
(

0 −y−1

−y−1 x

)
ψ(−xy)dx

= sign(y)y−2Ω[Ψ,C/R, ψ : −y−1w] .

Our integral takes the form

Ω2[Ψ,C/R, ψ : ε1bc,−ε1b
−1c]

= ε1b
−1c−1

∫
φ(y, ε1bc)ψ

(−c2y − 1
y

ε1bc

)
dy

ε1b
−1c−2

∫
φ(−c−1y, ε1bc)ψ

(
y + y−1

ε1b

)
dy

By Proposition (1) this has the form

ε1b
−1/2c−22−1/2

∑

ε=±1

ψ

(
2εε1
b

)
γ(εε1, ψ)θε(εb, c)

where θε(x, y) are smooth functions of compact support on R× R×+ such that

θε(0, c) = φ(−c−1ε, 0) =

−εc2φ2(−c−1ε)Ω[Ψ,C/R, ψ : wcε] = −εc2Ω[Ψ,C/R, ψ : wcε] .

After a change of notations we arrive at the Proposition. 2.

8 Comparison of the action of the Casimir operators

We again assume ψR(x) = exp(2iπηx), η = ±1. Now view sl(2,C) as real vector
space. Consider the bilinear form

β(X, Y ) = Re(Tr(XY )) .

Then the dual basis of

H, K =:
(

i 0
0−i

)
, X+, X−, X ′

+ =
(

0 0
i 0

)
, X ′

− =
(

0 i
0 0

)
(14)
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is
H

2
,−K

2
, X−, X+,−X ′

−,−X ′
+ .

Thus the element

Cc :=
H2

2
− K2

2
+ X+X− + X−X+ −X ′

+X ′
− −X ′

−X ′
+

is in the center of the enveloping algebra of GL(2,C) viewed as a real Lie group.
It can be written as

Cc =
H2

2
+ 2H − K2

2
+ 2X−X+ − 2X ′

−X ′
+ .

The group GL(2,C) operates on the space of Hermitian matrices by s 7→ tgsg.
We have a corresponding action of the enveloping algebra on the space of smooth
functions of compact support. We denote by σ this action. Thus if X is in the
Lie algebra then

σ(X)Ψ(s) = Ψ(exp(t tX)s exp(tX))
∣∣
t=0

.

We wish to compute
Ω[ρ(Cc)Ψ,C/R, ψ : a1, a2]

as the application of a differential operator to the function

ω(a1, a2) := Ω[Ψ,C/R, ψ : a1, a2] .

Since Cc is in the center of the enveloping algebra, it amounts to the same to
apply the left invariant differential operator ρ(Cc) to the function

f(g) :=
∫

Ψ[tutgagu]ψ(z + z)dz

where

a = diag(a1, a2) , u =
(

1 z
0 1

)

and then evaluate at g = 1.

Applying H we get

d

dt
ω(a1e

2t, a2e
−2t)

∣∣∣∣
t=0

= 2(a1∂a1 − a2∂a2)ω(a1, a2) .

Now
exp(t tK)a exp(tK) = exp(tK)−1a exp(tK) = a .
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Thus the contribution of K and K2 is 0. Thus the contributions of the terms in
Cc containing H or K is

4
[
1
2
(a1∂a1 − a2∂a2)

2 + (a1∂a1 − a2∂a2)
]

ω(a1, a2) .

Now we compute the contribution of X−X+. The value of ρ(X−X+)f at g = e
is obtained by differentiating

∫
Ψ

[
tu

(
1 0
s 1

)(
1 t
0 0

)
a

(
1 0
t 1

)(
1 s
0 0

)
u

]
ψ(z + z)dz

with respect to s, t at t = s = 0. This reduces at once to

−4iπη
d

dt

∫
Ψ

[
tu

(
1 t
0 0

)
a

(
1 0
t 1

)
u

]
ψ(z + z)dz

∣∣∣∣
t=0

.

Now we exploit the relation
(

1 t
0 0

)
a

(
1 0
t 1

)
=

(
a1 + t2a2 ta2

ta2 a2

)
=

(
1 0

ta2
a1+t2a2

1

)(
a1 + t2a2 0

0 a1a2
a1+t2a2

)(
1 ta2

a1+t2a2

0 1

)
.

We get the derivative at t = 0 of

(−4iηπ) exp
(
− 4iηπta2

a1 + t2a2

) ∫
Ψ

[
tu

(
a1 + t2a2 0

0 a1a2
a1+t2a2

)
u

]
ψ(z + z)dz .

The above derivative is
−16π2 a2

a1
ω(a1, a2) .

On the other hand the action of X ′−X ′
+ can be computed similarly. It is the

value of ρ(X−X+)f at g = e. It is is obtained by differentiating
∫

Ψ
[

tu

(
1 0
is 1

)(
1 it
0 0

)
a

(
1 0
it 1

)(
1 is
0 0

)
u

]
ψ(z + z)dz

with respect to s, t at t = s = 0. It is simply 0.

Altogether then we see that

Ω[σ(
Cc

4
)Ψ, ψ : a1, a2] =

[
1
2
(a1∂a1 − a2∂a2)

2 + (a1∂a1 − a2∂a2)− 8π2 a2

a1

]
Ω[Ψ,C/R, ψ : a1, a2] . (15)

The differential operator is the same as the one for ρ(C) (see (9). It follows
that the Proposition (4) is true for the integrals Ω[Ψ,C/R, ψ : •].
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9 Matching

We say that Φ and Ψ match for ψ and we write Φ
ψ↔ Ψ if

Ω[Φ, ψ : a1, a2] = sign(a1)Ω[Ψ,C/R, ψ : a1, a2] .

It follows from Propositions (3) and (7) that if Φ
ψ↔ Ψ then

Ω[Φ, ψ : wz] = −sign(z)Ω[Ψ,C/R, ψ : wz] .

Also, by the previous section we see that if Φ
ψ↔ Ψ then

ρ(Cn)Φ
ψ↔ σ(

Cc

4

n

)Ψ

for all n ≥ 0.

Proposition 9 For every Ψ ∈ C∞c (H) there is Φ ∈ C∞c (G(R)) such that Φ
ψ↔ Ψ

Proof: Let us write

Ω[Ψ,C/R, ψ : ε1bc,−ε1b
−1c] =

ε1b
−1/22−1/2

∑

ε±1

ψ

(
2εε1
b

)
γ(εε1, ψ)θε(ε1b, c) .

We can find Φ ∈ C∞c (G(R)) such that

Ω[Φ, ψ : ε1bc,−ε1b
−1c] = b−1/22−1/2

∑

ε±1

ψ

(
2εε1
b

)
γ(εε1, ψ)θ1

ε (ε1b, c) .

where
∂nθ1(x, c)

∂xn

∣∣∣∣
x=0

=
∂nθ(x, c)

∂xn

∣∣∣∣
x=0

for all n ≥ 0. Thus

Ω[Φ, ψ : ε1bc,−ε1b
−1c]− ε1Ω[Ψ,C/R, ψ : ε1bc,−ε1b

−1c] = θ2(ε1b, c)

where θ2(x, c) is a smooth function of compact support such that

∂nθ2(x, c)
∂xn

∣∣∣∣
x=0
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for all n ≥ 0. There is a function Φ1 supported on the set ∆2 < 0 such that the
difference is equal to

Ω[Φ1, ψ : ε1bc,−ε1b
−1c] .

Likewise there is a function Φ2 supported on the set ∆2 > 0 such that

Ω[Φ, ψ : ε1bc, ε1b
−1c]− ε1Ω[Ψ,C/R, ψ : ε1bc, ε1b

−1c]

= Ω[Φ2, ψ : ε1bc, ε1b
−1c] .

Our assertion follows. 2.

However, it is not true any Φ of compact support on GL(2,R) matches a
function Ψ of compact support on H. Indeed, consider the orbital integral of
a smooth function of compact support Ψ on the space of invertible Hermitian
matrices.

Ω[Ψ,C/R, ψ : a1, a2] =
∫

Ψ
[

a1 a1z
a1z a2 + a1zz

]
ψC(z)dz .

Here the determinant of the matrix in the integrand is ∆2 = a1a2. Thus ∆2

remains in a compact set of R×. Changing variables we get

|a1|−2
R

∫
Ψ

[
a1 z

z ∆2+zz
a1

]
ψC

(
z

a1

)
dz .

On the support of the integrand there is C > 0 such that

|∆2 + zz| ≤ C|a1| .

But if ∆2 > 0 then
∆2 ≤ |∆2 + zz| .

Since ∆2 is in a compact set of R× we have

0 < C1 ≤ ∆2

for a suitable constant C1 Hence |a1| ≥ C1C
−1. Thus the orbital integral vanishes

for |a1| small enough.

This is not in general the case for the orbital integral of a function Φ smooth
of compact support on GL(2,R) supported on the set ∆2 > 0. Indeed the orbital
integral has the form θ(a1,∆2) where θ(x, y) is a smooth function of compact
support on R× R×+ such that

∂nθ(x, y)
∂xn

∣∣∣∣
x=0
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for all n ≥ 0.

However, for every Φ supported on the set {g ∈ G(R) : ∆2 < 0} there is a
function Ψ with matching orbital integrals. Indeed, arguing as before, it suffices
to prove the following lemma.

Lemma 3 Given a function θ, smooth of compact support on R× R×+ and such
that

∂nθ(x, y)
∂xn

∣∣∣∣
x=0

for all n ≥ 0 there is a function Ψ supported on {s ∈ H : ∆2s < 0} such that

Ω[Ψ,C/R, ψ : a1, a2] = θ(a1,∆2) .

Proof: Indeed the orbital integral of a function Ψ can be written
∫

Ψ

(
a1 x + iy

x− iy x2−(c2−y2)
a1

)
ψ

(
2x

a1

)
dxdy ,

where c =
√−∆2. For a suitable choice of Ψ this can be written

|a1|−2

∫
φ1(a1, x, c)φ2(y)φ3

(
x2 − (c2 − y2)

a1

)
ψ

(
2x

a1

)
dxdy ,

where the functions φi have compact support and the projection of the support
of φ1 on the last factor is a compact set of R×+. Now take

φ1(a1, x, c) = ψ

(
−2x

a1

)
φ4(a1, c)φ5(x)

where the partial derivatives of φ4 with respect to the first variable vanish at
(0, c). Then the integral takes the form

|a1|−2

∫
φ4(a1, c)φ5(x)φ2(y)φ3

(
x2 − (c2 − y2)

a1

)
dxdy .

We take φ2(y) supported on a small neighborhood of 0 so that c2 − y2 remains
in a compact set of R×+. We also assume that φ5(x) is supported on a compact
set of R×+. We set

x =
√

c2 − y2 + ta1 .

Then the integral becomes

2−1|a1|−1

∫
φ1(a1, c)φ4(

√
c2 − y2 + ta1)φ2(y)φ3(t)

1√
c2 − y2 + ta1

dtdy .
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We may choose the support of φ2 and φ3 to be small neighborhoods of 0 and then
choose φ4 so that

φ4(
√

c2 − y2 + ta1)φ2(y)φ3(t)
1√

c2 − y2 + ta1

= φ2(y)φ3(t) .

Then the integral becomes

2−1|a1|−1φ1(a1, c)
∫

φ2(y)φ3(t) dtdy .

If we take

φ1(a1, c) = 2|a1|θ(a1,∆2) ,

∫
φ2(y) dy = 1 ,

∫
φ3(t) dt = 1

we obtain our assertion. 2

10 A lemma for Bessel distributions on Hermitian
matrices

If Ψ is supported on the set ∆1 6= 0 then its orbital integral, viewed as as a
function of (a1,∆2), is simply a smooth function of compact support on R××R×.
Likewise for the orbital integral of a function Φ supported on the set ∆1 6= 0.
Such functions are easily matched. Thanks to the following Proposition, for some
applications, we may be able to restrict ourself to functions of this type.

If Ψ is a function on H we set, for g ∈ G(C),

σ(g)Ψ(s) = Ψ(tgsg) .

If

n =
(

1 u
0 1

)

we set
θ(n) = ψ(u + u)

and write n = nu. If Ω is an orbital integral then

Ω(σ(n)Ψ) = θ(n)−1Ω(Ψ) .

Proposition 10 Suppose µ is a distribution on H such that

µ(σ(n)Ψ) = θ(n)−1µ(Ψ)
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for all f and all n ∈ N(C). Suppose that

µ(σ(Cc)f) = cµ(f) .

If the restriction of µ to the open set {s ∈ H : ∆1(s) 6= 0} is zero then µ is 0.

Proof: Let Z be the set ∆1 = 0. Thus Z is the subvariety of matrices of the
form (

0 b

b d

)
, b ∈ C× , d ∈ R .

We first prove a lemma.

Lemma 4 Let µ be a distribution such that

µ(σ(n)Ψ) = θ(n)−1µ(Ψ)

for all Ψ and all n ∈ N(C). Suppose that µ is supported on Z. Then in fact µ is
supported on the subvariety Z1 of matrices of the form

(
0 b
b d

)
, b ∈ R× , d ∈ R .

Proof: Indeed let B be the group of upper triangular matrices. Then Z is one
orbit of the group B(C) and N(C) is a normal subgroup of B(C). For any z ∈ Z
let M1

z be the normal tangent space to Z , that is, the quotient

T (H, z)/T (Z, z) .

Let M
(r)
z the r−th symmetric power of M1

z . Let N z be the stabilizer of z in N(C).
Since N z leaves Z invariant it operates on T (H, z), T (Z, z) and the quotient M1

z .
Thus it operates also on the r−th symmetric power M

(r)
z . Now nu is in N z if

and only if
ub + bu = 0 .

This is a real vector space of dimension 1. Calling φ(u) the action of nu on the
space of Hermitian matrices we see that φ(u)X is polynomial in (u,X). Hence
the linear tangent map dφ(u)z is a polynomial function of u and so are the linear
maps induced on T (Z, z), M1

z and M r
z . In particular a common eigenvector in

M r
z of these linear maps is actually an invariant vector. On the other hand, by

a result of Kolk and Varadarajan ([7]), the support of µ is contained in the set
of z such that for some r there is a non-zero vector of M r

z transforming under
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the character θ restricted to N z. By the previous observation for such a z the
restriction of θ to N z must be trivial. This means that that

ub + bu = 0 ⇒ u + u = 0 .

This is equivalent to b = b which proves the lemma. 2.

Now we go back to the proof of the Proposition. Recall the Casimir operator
is given by

Cc :=
H2

2
− K2

2
+ X+X− + X−X+ −X ′

+X ′
− −X ′

−X ′
+ .

It can also be written

Cc =
H2

2
− 2H − K2

2
+ 2X+X− − 2X ′

+X ′
− .

In view of the invariance property of µ we have for any function f

µ(σ(X+f)) = kµ(f)

with k 6= 0 and
µ(σ(X ′

+)f) = 0 .

Thus the second condition on µ reads

µ

((
σ(H)2

2
− 2σ(H)− σ(K)2

2

)
f

)
= −kµ (σ(X−)f) .

However the vector fields σ(H) and σ(K) are tangential to the variety Z while the
vector field σ(X−) is transverse. Indeed to say that a vector field Ξ is tangential
to the submanifold Z means that if f = 0 on Z then Ξf = 0 on Z. Let us look
at σ(H).

σ(H)f(s) =
d

dt
f

((
et 0
0 e−t

)
s

(
et 0
0 e−t

))∣∣∣∣
t=0

.

In particular

σ(H)f
(

0 a
a z

)
=

d

dt
f

(
0 a
a ze−2t

)∣∣∣∣
t=0

.

Thus σ(H) is certainly tangential to Z. Likewise

σ(K)f(s) = ∂tf

((
e−it 0
0 eit

)
s

(
eit 0
0 e−it

))∣∣∣∣
t=0

.
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In particular

σ(K)f
(

0 a
a z

)
=

d

dt
f

(
0 ae−2it

ae−2it z

)∣∣∣∣
t=0

.

Thus σ(H) is certainly tangential to Z.

A vector field Ξ is transversal to Z at a point z ∈ Z if there is a function f
which vanishes on Z but Ξf(z) does not vanish at z. The vector field σ(X−) is
transverse at any point

z =
(

0 b

b d

)

such that b + b 6= 0. Indeed using the coordinates a, x, y, d in

(
a x + iy

x− iy d

)

we have

σ(X−)Ψ
(

0 x + iy
x− iy d

)
=

d

dt
Ψ

(
2tx + t2d td + x + iy

td + x− iy d

)∣∣∣∣
t=0

= (2x
∂

∂a
+ d

∂

∂x
)Ψ

(
0 x + iy

x− iy d

)
.

We can choose Ψ so that Ψ vanishes on the subvariety a = 0 but ∂Ψ
∂a does not

vanish on the subvariety at the point
(

0 x + iy
x− iy d

)
with x 6= 0. Thus σ(X−)

is transversal at this point.

It is an observation of Shalika ([8]) that a transverse derivative of a distri-
bution supported on Z cannot be equal to a linear combination of tangential
derivatives of the distribution. It follows that µ vanishes on the open set x 6= 0.
It is thus supported on the closed subvariety Z0 defined by x = 0, a = 0, that is
the subvariety of matrices of the form

(
0 iy
−iy d

)
.

On the other hand, the distribution is supported on Z1 by the lemma. Since
Z0 ∩ Z1 = ∅ the distribution is indeed 0. 2

We note that the analogous resul for distributions on GL(2,R) and more
general groups has been proved by Baruch.
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Analysis of Poincaré Series, Perspectvies in Mathematics, Vol. 13, Aca-
demic Press, 1990.

[4] L. Hormander, The Analysis of Linear Partial Differential Operators I,
Springer-Verlag, 1983.

[5] H. Jacquet, (1) Sur un résultat de Waldspurger II, Compositio Mathe-
matica 63 (1987) 315–389 (2) The continuous spectrum of the relative trace
formula for GL(3) over a quadratic extension, Israel J. Math. 89 (1995),
1-59. (3) A theorem of density for Kloosterman integrals, Asian J. Math. 2
(1998), 759-778. (4) Transfert lisse d’intégrales de Kloosterman, C.R. Acad.
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