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Metrics of constant negative scalar-Weyl
curvature

GIOVANNI CATINO

Extending Aubin’s construction of metrics with constant negative
scalar curvature, we prove that every n-dimensional closed man-
ifold admits a Riemannian metric with constant negative scalar-
Weyl curvature, that is R + ¢t|I¥|, ¢ € R. In particular, there are no
topological obstructions for metrics with e-pinched Weyl curvature
and negative scalar curvature.

1. Introduction

A natural problem in Riemannian geometry is to understand the relation
between curvature and topology of the underlying manifold. Given a smooth
n-dimensional manifold M, n > 3, the curvature tensor of a Riemannian
metric g on M can be decomposed in its Weyl, Ricci and scalar curvature
part, that is

1 R
Riemg = Wy + mRicg Dyg — 30 = 1)5271 — 2)9 Dy,

where (Mis the Kulkarni-Nomizu product. It is common knowledge that weak
positive curvature conditions, such as positive scalar curvature R, [8, [17],
or strong negative ones, such as negative sectional curvature, are in general
obstructed. On the other hand, Aubin in [I} 2] showed that, on every smooth
n-dimensional closed (compact with empty boundary) manifold, there exists
a smooth Riemannian metric with constant negative scalar curvature, Ry, =
—1. This result was extended to the complete, non-compact, case by Bland
and Kalka in [3]. In particular, there are no topological obstructions for
negative scalar curvature metrics. Actually, a much stronger result is known:
Lohkamp in [I5] proved that every smooth n-dimensional complete manifold
admits a complete smooth Riemannian metric with (strictly) negative Ricci
curvature, Ricy < 0 (the three-dimensional case was considered in [4] [7]).

By virtue of the Riemann components, in dimension n > 4, it is natural
to ask if there are unobstructed curvature conditions which involve the Weyl
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curvature. To the best of our knowledge, the first result in this direction was
proved by Aubin [2], who constructed a metric with nowhere vanishing Weyl
curvature on every closed n-dimensional manifold. As a consequence, in [6]
the authors proved the existence of a canonical metric (weak harmonic Weyl)
whose Weyl tensor satisfies a second order Euler-Lagrange PDE, on every
given closed four-manifold.

In [9], Gursky studied a variant of the Yamabe problem related to a
modified scalar curvature given by

Ry +t|Wgylg, teR,

where |W,|, denotes the norm of the Weyl curvature of g. We will refer to
this quantity as the scalar- Weyl curvature (see Section . Constant scalar-
Weyl curvature metrics naturally arise as critical points in the conformal
class of the modified Einstein-Hilbert functional

g — Vo, ()75 [ (Ry+tW,lp) v,

It is clear that positive scalar-Weyl curvature metrics are obstructed, at
least for ¢ < 0, and naturally we may ask what we can say concerning the
negative regime. In this paper we prove the following existence result:

Theorem 1.1. On every smooth n-dimensional closed manifold M, for
every t € R, there exists a smooth Riemannian metric g = g; with

Ry +t|Wylg=—1 on M.

In particular, there are no topological obstructions for negative scalar-Weyl
curvature metrics.

Remark 1.2. In dimension four, Theorem [I.I] was proved also by Seshadri

n [I§]. We observe that his proof cannot be trivially generalized to higher
dimension, since it is based on the existence of a hyperbolic metric on a knot
complement of S3.

It is well known that there are obstructions for the existence of metrics
with zero Weyl curvature. On the other hand, choosing t = 1/4/e, € > 0,
in Theorem we obtain the following existence result for metrics with
e-pinched Weyl curvature and negative scalar curvature:
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Corollary 1.3. On every smooth n-dimensional closed manifold, for every
€ > 0, there exists a smooth Riemannian metric g = g. with

R, <0 and \Wg|§<£R§ on M.

The interesting notion of isotropic curvature was introduced by Micallef
and Moore in [I6]: (M, g) has positive (or negative) isotropic curvature if
and only if the curvature tensor of g satisfies

Ri313 + Ria14 + Ra323 + Roa24 — 2R1234 >0 (or < 0)

for all orthonormal 4-frames {e1, e2, €3, e4}. Using minimal surfaces, the au-
thor of [I6] proved that any closed simply connected manifold with positive
isotropic curvature is homeomorphic to the sphere S™. As already observed
in [I8, Theorem 1.1], in dimension four, metrics with negative scalar-Weyl
curvature for ¢ > 6 have negative isotropic curvature. In particular, Theo-
rem [L.1] implies the following:

Corollary 1.4 (Seshadri [18]). On every smooth four-dimensional ori-
entable closed manifold there exists a smooth Riemannian metric with neg-
ative isotropic curvature.

We finally note that, in dimension n > 4, a characterization of negative
isotropic curvature was given in [I3] in terms of an inequality involving
the Weyl tensor and the (n — 4)-curvature, which coincides with the scalar
curvature if n = 4. It would be interesting to extend Corollary ton >4,
by following this path.

2. The scalar-Weyl curvature

In this section we briefly recall the variational and conformal aspects of the
scalar-Weyl curvature, first studied by Gursky in [9]. Let (M,g) be a n-
dimensional closed (compact with empty boundary) Riemannian manifold.
First we recall that the conformal Laplacian is the operator

4(n —1)

Lgi=— n—2

Ay + Ry,

which has the following well known conformal covariance property: if g =
u?/("=2) g then

Lo =u" "2 Ly(¢u), Ve C*M).
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Moreover, the scalar curvature of the conformally related metric g is given
by
_n42
Rz = u »—=2Lgu.
Therefore, the operator £ plays a prominent role in the resolution of the

Yamabe variational problem. Given t € R, we define the scalar-Weyl curva-
ture

(2.1) Fy:= Ry +t{Wylg
and the associated modified conformal Laplacian

4(n—1)
t._
=T Ay + Fy,

L

where |Wy|, denotes the norm of the Weyl curvature of g. The key observa-
tion in [9] is that the couples (Fy, £!) and (Ry, L,) share the same conformal
properties. In fact, if § = u*("=2g, then

_ntz Cais
(22)  Liop=u2Li(¢u), V¢ C*M), and Fy=u 2Ll
In particular, a spectral argument shows the following [9, Proposition 3.2]:

Lemma 2.1. Let (M,g) be a n-dimensional closed Riemannian manifold.
Then, there exists a C*>® metric § € [g] with either F3>0,F;<0, or F=
0. Moreover, these three possibilities are mutually exclusive.

In analogy with the Yamabe problem, Gursky defined the functional
JopuLhudVy
n—2)/2
(g /o) av,) 7

Y (u) =

and the conformal invariant

~

Y(M,[g)) = _ infV(w.

Using (2.2)), it is easy to see that the functional u — ?(u) is equivalent to
the modified Einstein-Hilbert functional

Ju F5dVg
Volg(M)(n=2)/2"

5= ut/ (-2

Following a classical subcritical regularization argument, Gursky showed
that, if Y (M, [g]) <0, then the variational problem of finding a conformal
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metric g € [g] with constant scalar-Weyl curvature F' can be solved. The
proof (in dimension four) can be found in [9, Proposition 3.5] and it can
be trivially generalized to dimension n > 4. In particular, we have the fol-
lowing sufficient condition to the existence of constant negative scalar-Weyl
curvature:

Lemma 2.2. Let (M,g) be a n-dimensional closed Riemannian manifold.
If there exists a metric g’ € [g] such that

/ Fg/ dVg/ < 0,
M

then, there exists a (unique) C** metric g € [g] such that Fy = —1.

To conclude this section, we observe that the full modified Yamabe
problem related to the scalar-Weyl curvature and more generally modi-
fied scalar curvatures was treated in [I12]. Moreover, these techniques in-
troduced by Gursky, have been used in various contexts, especially in the
four-dimensional case. For instance we want to highlight [10} 1], 14} [18].

3. Aubin’s metric deformation: two integral inequalities

In this section we first recall the variational formulas for some geometric
quantities under the deformation of the metric of the type

d=g+df @df, feC®(M).

In [T, 2] Aubin, with a clever coupling of this deformation with a conformal
one, proved local and global existence results of metrics satisfying special
curvature conditions. The proof of the first three formulas can be found in
[2]. The variation of the Weyl tensor can be found in [5, Chapter 2].

Lemma 3.1. Let (M, g) be a n-dimensional Riemannian manifold and con-
sider the variation of the metric g, in a given local coordinate system, defined

by

9i; = 9ij + fifs, e C®(M).
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Then we have

dVy = w'/?dv,,

Nt i’_fifj
(g)]_gj 211) ) .
R =R- ERijfifj t [(Af)2 - fitfit}

~ 2 ADF Py~ F I 1),
Wikt = Wigke + Eg(f)ije,

with w:= 1+ |Vf|? and

Eq(f)ijkt := %(fiszjt — fitfir)

+ ﬁ(Rikfjft — Ritfifr + Rjt fife — Rjnfife)

+ (n_l)]?n_g)(gikfjft — 9itfife + giefife — gjnfift)
fPra

(=) Fowka9e + Ji0) = Riptagin + Jifi)

+ Riptq(gir + fifr) — Rjprq(git + fift)]

- w(jljpf{(gq_ 2) (9ikgjt — itk + gie fifr — gififx + gje fifu — gjnfifi]
- w(nl_Q){ (Af) fir = finf) (gie + Fife) = [(AF) fie — Fip TN gsn + fife) }
_ w(nl—Q){[(Af)fjt - fjpff](gik + fifx) — [(Af)f]k — fjpf/ﬂ (git + fzft)}

1 2
* w(n —1)(n —2) [(Af)2 B |V2f| }

X (9ikgjt — 9it9ik + Girfife — gt fifr + gje fife — g fift)
D fq
+ ng(;f_Q)[(fikqu — fipfwa)(gjt + fift) = (ficSpg — fipJra)(gsn + fi 1]

+ %[(fjtqu — finfta)(Gir + fife) — (fjkqu — fjpfkq)(git + fifo)]
2

- w2(n _ 1)(n _ 2) [(Af)fpqupq - fpqufqrfr](gikgjt — gitgjk)
2 T

1y g WA oa = I a7 ]

X (g fife — giefife + 9jefif — gjn fift)-
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Moreover,

won Tl g (Affi— ’

fzyfj>

and thus
(]
R AV, = RdV, — ”ff dv,.
f R o= [ - | R

We will denote by [g] the conformal class of the metric g. Using a confor-
mal deformation, we can show the following first integral sufficient condition
for the existence of a constant negative scalar-Weyl curvature:

Lemma 3.2. Let M be a n-dimensional closed manifold. If there exists a
positive smooth function u € C*°(M) such that for a Riemannian metric g
on M it holds

/ F, 2dv+ / |Vu|? dV, < 0,
then there exists a (unique) C** metric g € [g] such that F = —1.

Proof. We consider the conformal metric ggj = u¥/("=2)g. By [@2.2) we have

4n—1) A
Fg/ = Rg/ +t’Wg/‘g/ = u74/(n72) (Rg +t‘Wg|g . 5/11_2)uu> .

Therefore, since dVy = u?n/ (”_2)dVg, using the assumption we obtain

4(n —1
/Fg/dVg/:/ Fgu2dvg+(")/ IVul? dV, < 0.
M M n—=2 Jyu

The conclusion follows now by Lemma O

Using Aubin’s deformations, we prove the following second integral sufficient
condition for the existence of a constant negative scalar-Weyl curvature:

Lemma 3.3. Let M be a n-dimensional closed manifold. Suppose that there
exists a smooth function p € C*°(M) such that for a Riemannian metric g



326 Giovanni Catino

on M and some t > 0 it holds

Rijp'p?
R, + t|W, dV+t/Ego dV—/]dV
/M( g | g|<p) g M| ol )|<p 'g. w1+ [Vel2 g
n—1 CipPPPigp?  pietdd|? ]
n _ dv, <0,
n—2/M [(1+|V<p\2)2 (1+[Ve2)3] 77

where |- |, denotes the norm with respect of g+ dp @ dp and Ey4(p) is
defined as in Lemma . Then, there exists a (unique) C*® metric § €
lg + dp ® dy] such that Fj = —1.

Proof. Let ¢ € C*°(M). Applying Lemma to the metric ¢ = g+ dp ®
de with

wi= (1+ V) 7,

we know that there exists a conformal metric ¢” € [¢'] with Fy» = —1, if
Fy 4(n—1 —1/4)2

/ gmdvg/+(”)/ V(e avy <o,
M (1+[Vel) n=2 Ju ¢

From Lemma [3.1] we obtain the equivalent inequality

4(n—1)

Fy, —_—

[ Feav,+ 2=
< [ 1+ Vo) o (1 v 2‘”“("]’—‘“% )dv,
/M (‘H 4,0\) J(+| ‘P‘) g 1+ |Vo|? g

n—1 PipPP Piqp? it |2 ]
= [ F,dV,+ / P — dv, < 0.
/M T =2y [(1+|W\2)2 1+ V23] 7

Using again Lemma [3.1] we get

/ Fy dVg:/ (Ry +t|Wy
M M

Rijp'y?
= tiWyrle,) dV, — —HX T _qV,.
/M (Rg + ’ g "P) Vg /M 1 4 ’v¢|2 g

w) dVy

Using that
’Wg”@ < |Wg‘<p + ’Eg(W)hv

where Ey(p) is defined as in Lemma we conclude the proof of this
lemma. ]
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4. Proof of Theorem [1.1]

In this section we prove Theorem The strategy of the proof takes strong
inspiration from the works of Aubin in [1I 2].

Step 1.

From [1, 2] we know that, on a closed n-dimensional manifold, there exists
a Riemannian metric ¢’ with constant scalar curvature —1. In particular,
if t <0, Fyy <0. By Lemma there exists a metric g € [¢'] such that
Fz = —1. Therefore, from now on we focus on the case

t>0.
First of all, we can choose a Riemannian metric g with
Fy=Ry+t[Wylg >0 on M,
otherwise Theorem would immediately follow from Lemma and

Lemma Consider a positive smooth function ¢ € C*°(M) and a pos-
itive constant k£ > 0, and define

g =vg, ¢ =g +dki)@d(kip).

If we fix t > 0 and apply Lemma to the metric ¢’ with ¢ = k1), we obtain
that if

Dy ::/ (Ry + t{Wylky) dVg’th/ | Eg (k) |y dVy
M M
) / RV,
M 1//“72 + ‘Vg’w‘?f
Lnot / VIV GV [V Vv )
n—2Jy

- dVy, <0,
(/K2 +[Vgul2)? (/K2 +|Vgplo)3| 7
then there exists a (unique) C*“ metric g € [¢”] such that F; = —1. There-
fore, to prove Theorem it is sufficient to show that ®,; < 0 for some

dVy
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positive smooth function 1) and positive constant k (concerning the regular-
ity of the metric, see the end of the proof). Let

o= (22,

With respect to the metric g, by standard formulas for conformal transfor-
mations (see [B, Chapter 5]), we have

_ _ 2
Ry - 1 <Rg_2(n 1)&_’_71 1|V f] )7

o n—2 f n-—2 f2

fi;  n—=1fif; 1 Af

By=Ri=f+ 5 e g
(4.1) z’ljkt = ;}m]’kt?
dVy =" dVy = fpdV,
V‘gw =i — ; (%%’ - ;|V¢’29U> :

Moreover, since
g =g+ d(ky) © d(ke) = b [g +d(2k/9) © d(2k /)| =: v,

from the conformal invariance of the Weyl curvature and Lemma (3.1}, we
obtain

1
ikt + By (k)ijre = Wil = iwijkt

= ; Wijke + Eg(%\/@z‘jkt}

1
= Wik + aEg(Qk\/;/))ijkt-

Therefore, the "error term” of Weyl tensor under Aubin’s deformation of
the metric satisfies the following conformal invariance:

1
(4.2) Eg (k) = $E9(2k\/1$)'
In particular, we have the relations

1 1
Wylky = Wyl g ratep) @d(ew) = ¥|Wg'|§ = E|Wg|§
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and
1 1
’Eg’(k¢)’kw = J’Eg’(kw)b - ﬁ‘E!/(Qk\/&)‘?-

Following the computation in [2], putting all together we obtain

- L L R
(I)M _/M (Rg + E’WQ‘Q w/k2j_|_ |VJ¢P> deg

wt [ LB,e/Dl5av,

fijtp? n—1 IVfI?
+/M@z}/k2+|wr2dvﬁn—2 v J

av,

n—1 |fi'?

v e e
| N

ey W
A ]
"3 ), e v R ZR R
EEY LY — VYR

Eno2)y G+ VP

fdv,

Moreover, since

ViR i ? 12 i
/M F W Lt e Y T e /M R A
AfVOP 1 BAf
/M Ve Y =T et v Y

we finally get
2 Rijbit;
o :/ (R + —|W —H> dv,
M v g w‘ g|g 1/1/k2+lvw\2 f g

. .alytahd
vt [ Dpee/Dla+ [ A
1n—1 fi? 1 YAf
(43 5 /kauwdvg‘w Ty el
71—1/ |: YipPpPigh? _ Wtjwlep ]fdv
n—2 Ju L@/R2+[VeR)? ~ (@/k2 + [vy)E) T
1n—1/ HIVYIS = [V (90" )
v (/R + V)

k2n—2 favy.
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Step 2.

Let y = y(x) be a fixed smooth real function such that

y(—z) =y(®) VzeR

y() =1 Via| > 1

y(xr) >6>0 VreR

y'(z) >0 Vo< <1

1/(n—1 1/(n—1

LY/ () > 1 vV (1/4)Y 0D < < (3/4)M0D,
Let p € M and consider a local, normal, geodesic polar coordinate system
around b p, ¢17 T 7¢n—1' We have 9pp = 17 Gpi = O) gij = 51] + P2aij7 gpp =
1 (from now on, the indices i = 1,...,n — 1 correspond to the coordinate ¢;).

The coefficients a;; are of order 1. In particular, we have that the Christoffel
symbols of the metric g satisfy

p
(4.4) sz =0, ng =0, Ffj = —5 (aij + papaij) .

Let B, = B,(p) be the geodesic ball centered at p of radius 0 < r < rg, with
ro such that B, C M. For p’ € B,., we choose

f@0) =y (p) , p=disty(p',p).

r

In particular, from (4.4)), we have

(15) By =1y (2), sh=o,
(4.6) fpp(p,) = Tigy” (g) ) fpi(p/) =0,
fis (@) = % (aij + pOpaij) ' (5) :

From now on, to simplify the expressions, we will omit arguments in the
functions: it will be clear that if f, f,, etc. are computed at p’ € B,, then
y,y',y" will be computed at p/r with p = disty(p’, p). Moreover, we will
denote by C' = C(n, d,t,p) > 0 some universal positive constant independent
of r and k.
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Since 0 < p < r, we have

/ !

=L f=0 fp=Y fi=0 Ifl<or, <0y <0

Thus, using that ¢ = f2/("=2 and 0 < § < f < 1, we get

/ /
1Y Y C
(4.7) CTZ <9, <C= =0, [yl < 5,
Yo =0, |¢ij] < Cry, < Cy <C.
In particular
N2 2
1) 2 _ 2 (y)
C 2 < |V —wp§0T2.
Step 3.
From now on, we consider indices a,b=p,1,...,n—1, while i,j =

1,...,n—1. We will estimate the terms in (4.3) not involving the Weyl
curvature, restricted to the ball B,.

We have
C Baypw® Ry 1 URy
Y /K2 4 [VY|? V/k? + P2 PP K2 k2 2
1 017“2

< _ _
- RPP + k2 7“2/k2 4 02(y1)2

and thus
Raphathy 1

4.8 - —————fdV, < C|B,| + =06

(148) 5, o7k + [vgp! Vo < CIB+ g

where | B,| denotes the volume of B, and © = O(p, 1/k,r) > 0 will denote a
continuous function in 1/k and r, for 0 <r <rp and 0 < 1/k < 1.
Also

A 7 S S SO [
UK VYR T /R g2 k2 k2 4 2
y/l 1 Cl

< 4 -
- 2 + k2 T2/k2+02(y/)2
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and integrating over B,, we get

fabwawb 1 / " 1
4. — < = —0.
(49) [ e o< [, o @t 50
We have
fa" o Y g YAf ¢

R VR SR SO TR Vel S R o)

and therefore

(10) =1 Jay” dvg—l/ _AT < Lo

k22 g /K +|VY|? k2 Jp, /K2 + V|2 k2
Moreover
%b%ﬁb%c?ﬁc . |¢ab¢a¢b\2
(V/R2+ VY22 (/R +|Vy[2)3
R R G X
(W/k2+2)2 (P/k2+92)3 k2 (/2 +42)3
1 Cy
= B2 (/R + Caly )
and thus
n—1 %blﬁb%c?#c |¢ab¢“¢b|2 1
= [ O e s ) 1 <

Finally, reasoning as before, one has

1n-1 / VY1 — Vo (aryp ")t
Kn-2Jp  (0/k+[VyP)3

Fav, < Lo

(4.12) )<

Therefore, since
/ R, f dVy < C|By|,
B,
using (4.8)),(4.9),(4.10) and (4.11) in , we obtain that
@) ws <t [ L (Wl |B@DG) 4V, +Cl

1
k2

T

1
'I"2 B

y"” dvy + —0,
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where ®p denotes the quantity defined in (4.3)) restricted to B,. Note that
this intermediate estimate, when ¢t = 0, coincides with the one of Aubin in

2].

Step 4.

We now estimate the remaining terms in (4.3)) which involve the Weyl cur-

vature. Since
g =g+ d(2k\/{) @ d(2k/1),

from Lemma we have

1 . g iy

P =—— g=0, G =gY.
e Y =9
Therefore, for any Riemann-type 4-tensor, T', we obtain

n—1
2 2 2
(4.14) ’Tg|§: Z Tijkt t 5 e 1 +4k:2 2 Z szkt

0,4,k t=1 P ik t=1

2 E: ipkp*

[ +4k2 p i,k=1

In particular (this follows immediately from g > g):
/
Wils <IWly and ¢ [ Ziwiigav, < 1B

From (4.13)), we obtain

1 1

Concerning the first integral, we have the following key estimate:

Lemma 4.1. We have
I 1
¢ : E\Eg(%\/i)’?dvg <C|B| + ﬁ@’

for some C = C(n,d,t,p) >0 and © = O(p,1/k,r) > 0 as above.
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Proof. We set n = 2y/¢ and E = E,(2k\/{) = E4(kn). From (4.7)), since 0 <
§2/(n=2) < 4 < 1, we have

/ /
_1Y Y C
(416) C 1? S 77[) S C?a i = 07 |77pp| S ﬁa
Noi = 0, |yl < Crnp < Oy < C.
Firstly, from Lemma and (4.16)), we get
k?
Eijit = TkQﬁg(mknjt — NitNjk)
k2n2
+ i+ /<:2772)p(n ~9) (Ripkpgjt — Riptpgjr + Rjptpgix — Rjpkpgit)
p
2k2Rppn§
_ (1 T k%ﬁ))(n — 1)(71 — 2) (gzkg]t - gztgjk)
k2
- 1+ k2n2)(n — 2) [((Aﬁ)mk - nipni)gjt — ((An)ni — nipntp)gjk
p
+ ((Amnje = njpn})gik — ((An)njx — njan)git}
k‘2 A 2 2 12
p
k4773771w

+ (L R2n2)2(n —2) (Mikgjt — MitGjk + NjtGik — NjkYit)

2k477277pp
- (1 + kzng)z(;_ 1)(n — 2) (An - npp)(gikgjt - gitgjk:)-

Since An = 1,, + np, we can simplify the expression, obtaining

k2
By = ————(0::M51 — Nt
igkt = 7 n k277% (Miknjt nztn]k)
k2n2

* (1+ k‘2772)p(n —2) (Ripkpgjt — Riptpgjk + Rjptogin — Rjphodit)
P
S

_ (1 n k2772)(n — 1)(7’L — 2) (gzkg]t - gztgjk)
P
k‘2

B ez [(U;I:Uik — i) 9t — (1Emie — nipn} ) G
»

+ (e — mipnl ) gie — (mEmjn — njpni)gu}
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kZ
PY2 4 9 P 21 (ginais — Givas
+ (1 + k,gn/g))(n — 1)(n — 2) [(ﬁp) + nppnp |7h]| ](gzk’g]t gztg]k’)

k277
-~ a7 k2n2)p2p(n ) (Nikgjt — Nitjk + NjtGik — NjkYit)
o

o (1+ k‘2772)2(n —1)(n—2) (gzkg]t - gztg]k:)-
o

In particular, we have simplified the fourth block with the sixth one. Cou-
pling the fifth block with the last one, we obtain

1
Eijre = m(mkﬂjt — NitNjk)

2
7
+ (/K2 + npg)(n —9) (Ripkpgjt — Riptpgjr + Rjptpgix — Rjpkpgit)
p
- 2B (9ik9jt — 9it9jk)
(17K + n2)(n — 1)(n — 2) 79— J05k

1
P . . P .
~ E Y [(nﬁmk — i) 9t — (MEmie — nipnl} ) G

+ (Bmje — npn? ) gie — (M — njpni)git}
1
+ (0)? = i 1°] (9ingjt — 9itgjn)
(/R ) 1)) )~ Il = gua

L Mpp (Mikgjt — Nitgsk + Njtgik — NjkYit)
kQ (1/]{:2_’_77%)2(”_2) J J J J

—l—i 20 1pp"p k05t — g00)
k2 (l/k;Q 4 ng)2<n _ 1)(77, — 2) 9ik9jt — Gitgjk)-

Using (4.16]), since |nixn;i| < 07727 it is easy to see that the first five blocks
are bounded by C = C(n,d,t,p) > 0 while the last two are controlled by
K2 [r2/k2 + Ca(y) 22

Therefore

Cq
[r2/k2 + Ca(y')?]?

Secondly, from Lemma and (4.16)), we get
(4.18) Eipt = 0.

1
(4.17) |Eijie] < C + 12
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Lastly, using again Lemma and (4.16)), we obtain

P k2R’ k2 Rgixn? K Riprpny 2k Rppga,
PRI R -2 (n-1D(n-2) n—2 (n—1)(n—2)
k? k2 girn

_ ANk — i’ — ikTlpp A —

n_2[( )ik 77p77k] (1+k277%)(n_2)( n npp)

k2 gk 2 2

M RR (AR = V2 }

T oD —2) [(dn)* = [V
K pnianee 2k ik pp

T+ RE)n—2) (1R D2 o )

Since An = n,, + 15, we can simplify this expression, obtaining

B K nn,, K Ry k* Ry, k2 Ripkot B 2k* R ,pgin,
PRTTR2T n—2  (a-lm-2) n-2  (n-1)(n-2)
k‘2

k2 giknppTlh
1+ k2n2)(n —2)

—5 [Mopnik + MMk — MipTTy,| — (

k2 gix
M T(pP)2 4 9 D |y, |2
+ (7’L _ 1)(7'L _ 2) [(np) + nppnp |771J| ]
K pnisnee 2k gin2npomh
(I+Em2)(n—2) (1+En2)(n—1)(n—2)
_ Eningp k2R k? Ry} k*Rigkoms 2k Rppgin)

1+ k22 n—2 (n—1)(n—2) n—2 (n—1)(n—2)
k? k2 girNopnp
1+ ang)(n —2)
kQQik Y2 2 kZWiknpp
(n—1)(n—2) L) = mig ] + (1 +&22)(n—2)
i k29z’k77pp77£
(1+k*n2)(n—1)(n —2) '

n—9 [nﬁmk - nipni] - (

_l’_

Rearranging the terms, we get

k2R’ k*Rgien) K Ripeps 2k Rppgin),

—2 " (n—1)(n-2) n—2  (n—1)(n—2)

k2 k2 g,

_ Py, — m. P MR TP\2 |y |2
n_2 [npnzkz nzpnk] + (n — 1)(n — 2) [(Up) |771]| ]
n—1 kzniknpp _ kzgiknppng

n—21+kmn2 (14+k2n2)(n—1)

E’ipkp =
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Therefore, from (4.16]), we deduce

Cy
T2/k2 + Cg(y’)y

| Eiprpl < CE*n? +

and thus

1 1 Ch

— B <C+ — :
g e = O R e gy

(4.19)

As a consequence, using (4.14]) and (4.17)), (4.18)), (4.19), we obtain

1 Ch

By 2Dl < C 4 e

which implies
f 1
t . J\Eg(Qk\/@Z)deg < C|B,[+ ﬁ@v

for some C' = C(n,d,t,p) >0 and © = O(p, 1/k,r) > 0. dJ

Step 5.
Using Lemma in (4.15), we obtain
1 , 1

for some C'= C(n,d,t,p) >0 and © = O(p,1/k,r) > 0. Since, y'(1) = 0, in-
tegrating by parts, we obtain

1 1 —1 /
l / y'dV, = —- / /9, log /detgs; dV, — = / L av,
72 B T JB, B, P

.
C 1y

< B -~ / L av,.
r B, P

T

r

Hence, from (4.20)), we get

n—1

Y 1
L4V, + —0.
r /B o Vot 2

T

1
dp < C <1 + T) B, | —



338 Giovanni Catino

Using that, by assumption, y/(z) > 1 for all (1/4)/ (=1 < 2 < (3/4)1/(»=1),
we obtain

7,( )1/(7; 1)

1 1
dp < C<1+r> | B —78" 1\1nf\/detgw/ p" 2 dp + k2®

1/(7L—1)
1
<C(1+-)IB] - 72|B7"‘ + ﬁ@,

where we used the fact that |B,| ~ cr™ as r — 0. In particular, there exist
a continuous function A(p) > 0 and, for p € M fixed, a continuous function
©p(r) > 01in r, for 0 < r < rg, such that

O(p, 1/k, 1) < Oy(r),

and
1 A 1
wa e <fo(ivl) 2]+ hoo

Since, by assumption, Fy, = Ry + t|Wy|, > 0, given v > 0, there exists a pos-
itive radius 0 < r; < rg such that

(4.22) 3 C < 1> —1>vFy,

7“1 T1

where Fgy:= ([, FydVy) /Volg(M). Consider h disjoint geodesic balls
Bﬂl (p;) of radius r =7 centered at p; € M, j=1,...,h; as well as cor-
responding functions fU and ), as constructed above. Moreover, for v
sufficiently large, we can assume that

h

1
Z\Brl(pj)\ > ;V019<M)-
j=1

On every ball B7, we choose

0,
k% :=max< 1, sup ﬂ .
j=1wh | B, ()))]

From and (| - forall j =1,...,h, we get

Cpy < —VF |Br1(pj)|_|Br1(pj)|+ @pj(ﬁ) ~vFy| Bl (p))].
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Now we define f (and 1 accordingly) setting f = fU! inside the ball B7
and f =1 in the complement of the union of all the balls B, j =1,...,h.
Therefore, for all j =1,...,h, we obtain

h
By < [ Fydvy - vF, Y B (0)
M st
< F, | Vol (M) — VZ |B (pj)| | <0.

This concludes the proof of Theorem To be precise, we note that the
proof above gives a C*“ metric with negative constant scalar-Weyl curvature
F. The density of smooth metrics in the space of C%® metrics (with the C?
norm) will then give us a smooth metric with negative scalar-Weyl curvature.
From Lemma we obtain a smooth metric with constant negative scalar-
Weyl curvature. O
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