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Nondiscreteness of F -thresholds

Vijaylaxmi Trivedi

For every integer g > 1 and prime p > 0, we give an example of
a standard graded domain R (where Proj R is a nonsingular pro-
jective curve of genus g over an algebraically closed field of char-
acteristic p), such that the set of F -thresholds of the irrelevant
maximal ideal of R is not discrete. This answers a question posed
by Mustaţă-Takagi-Watanabe ([MTW], 2005).

These examples are based on a certain Frobenius semistability
property of a family of vector bundles on X, which was constructed
by D. Gieseker using a specific “Galois” representation (analogous
to Schottky uniformization for a genus g Riemann surface).

1. Introduction

Let (R,m) be a Noetherian local ring of positive characteristic p. For an
ideal I of R, a set of invariants of singularities in positive characteristic,
called F -thresholds, were introduced by [MTW] as follows

{F -thresholds of I} := {cJ(I) | J ⊆ m such that I ⊆ Rad(J)},

where cJ(I) := lime→∞max{r | Ir ̸⊆ J [pe]}/pe and where J [pe] is the ideal
generated by the set {xp

e

| x ∈ J} (the existence of this limit was proved in
[DsNbP]).

In the same paper Mustaţă-Takagi-Watanabe posed the following (Ques-
tion 2.11 in [MTW]):

Question. Given an ideal (0) ̸= I ⊆ m, could there exist finite accumulation
points for the set of F -thresholds of I?

It was shown for regular local ring ([MTW] and for regular ring 1 [BMS2])
that the F -thresholds of an ideal coincide with the F -jumping numbers of
the generalized test ideals of I (see [HY]). The F -jumping numbers are
positive characteristic analogues of the jumping numbers of a multiplier

1With natural finiteness conditions imposed.
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ideal in characteristic 0. The first F -jumping number (introduced by [TaW])
corresponds to the log canonical threshold of I.

The set of the jumping numbers, for a given ideal, is known to be discrete
and rational.

It is known ([MTW], [BMS1], [BMS2], [KLZ]) that in a regular ring 1 the
set of F -jumping numbers for an ideal is discrete and they are all rational
(in fact, as pointed out in [BMS2], the discreteness of the set of F -jumping
numbers implies the rationality statement due to the fact that if I is gener-
ated by m elements and λ is an F -jumping number then {peλ}+m− 1 is
also an F -jumping number, for all e ≥ 1, where {peλ} is the fractional part
of peλ).

More recently, it was shown in [HMNb] (Proposition 4.17) that the set
{cJ(I)}J is a discrete set of rational points when R is a direct summand of a
regular F -finite domain S. Here the authors extend the theory of Bernstein-
Sato polynomials to the direct summands of regular rings, while for regular
rings the authors in [MTW] relate the Bernstein-Sato polynomials to the
F -jumping numbers and the F -thresholds. Now in [HMNb], each cJ(I) is
identified with cJS(IS) and hence is an F -jumping number of IS.

In particular, in all of the above cases, the F -thresholds of an ideal have
been studied by identifying them with the F -jumping numbers of some ideal
in a regular ring where such a set is discrete and consists of rational numbers.

The discreteness of the set of F -jumping numbers is known in some
singular cases too e.g. when the ring is an F -finite normal Q-Gorenstein
domain ([GrS], [BSTZ], [KSSZ], [ST]). However we cannot conclude the same
for F -thresholds, as they can be in general different from the F -jumping
numbers, as shown by the following Example 2.5 from [TaW], where the ring
R = k[x, y, z]/(xy − z2) with m = (x, y, z) and the first F -jumping number
of m < the first F -threshold of m.

In this paper we answer the above question of [MTW] affirmatively (see
Corollary 1.2).

Recall that in [TrW], the number cI(m) was realized as the maximal
supporting point of the continuous function, namely the HK density function
of (R, I).

Moreover, in the case of dimension two, we had shown there that the F -
thresholds of the maximal ideal at graded ideals can be expressed in terms of
the Harder-Narasimhan slopes of the associated syzygy bundles. As a result,
we had deduced that the set {cI(m) | I is graded}I consists of rational
points.
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Here, we apply this new view point to show that the set of F -thresholds
of an ideal can have accumulation points for a cone over a nonsingular pro-
jective curve of any genus g > 1 over any characteristic p > 0. More precisely
we prove the following

Theorem 1.1. Given a prime p and an integer g > 1, there is a two-
dimensional standard graded normal Q-Gorenstein domain (R,m) (a cone
over a nonsingular curve of genus g) over an algebraically closed field of
char p > 0, and a sequence of m-primary graded ideals {Im}m≥0, such that
the F -threshold of m at Im is given by

cIm(m) =
3

2
+

(g − 1)

pm+m0d
, for m ≥ 0,

where d = e0(R,m) and m0 ≥ 0 is an integer such that pm0 < g.
Moreover, each Im is generated by three homogeneous elements of degree

1 in R. Further, if p ̸= 2 then we can choose R such that the Gorenstein
index of R is coprime to p.

In particular we have the following

Corollary 1.2. Given a prime p and an integer g > 1, there exists a two
dimensional standard graded normal Q-Gorenstein domain R with the graded
maximal ideal m such that the set of F -thresholds of m has accumulation
points, where Proj R = X is a nonsigular projective curve of genus g over a
field of char p.

Moreover there is a strictly decreasing sequence consisting of F -thresholds
of m; thus, the F -thresholds of an ideal need not satisfy the descending chain
condition (unlike in the case of regular rings).

For the proof of Theorem 1.1, we crucially use the following construc-
tion by D. Gieseker in [G]. For a given p and g > 1, there exists a family
X of stable curves of genus g over Spec k[[t]] (k is an algebraically closed
field of char p) with smooth generic fiber, and a closed fiber with particular
singularities. By taking a specific representation of G (analogus to the rep-
resentation arising from a Schottky uniformization for a compact Riemann
surface of genus g), where G is the group of covering transformations of Y0
(and where Y0 is the universal cover over the special fiber X0 of X), Gieseker
constructed a rank 2 vector bundle F1 on the generic fiber XK (K = k((t))
with an explicit Harder-Narasimhan filtration. Moreover the bundle F1, as-
sociated to the representation of G, comes equipped with a sequence {Fk}k≥1

of bundles such that F ∗Fk+1 = Fk.
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From this sequence we construct a set of vector bundles with the similar
properties such that, in addition, the new set is a bounded family of bundles
on the curve XK . By choosing L = the power of the canonical bundle of the
curve, we ensure that the coordinate ring (corresponding to the embedding
of the curve by L) is Q-Gorenstein.

In Section 2 we recall the required basic theory of Harder-Narasimhan
filtrations of vector bundles on curves, and also results from [TrW]. In Sec-
tion 3 we prove Theorem 1.1.

2. Preliminaries

We recall a few generalities about Harder-Narasimhan filtration of vector
bundles on curves.

Definition/Notations. Let X be a nonsingular curve over an algebraically
closed field k of char = p > 0 then for a vector bundle V on X, we denote

deg V = deg(∧rankV V ), and µ(V ) = deg V/rank V.

A bundle V is semistable if for every subbundleW ⊆ V , we have µ(W ) ≤
µ(V ).

Every bundle has the unique HN (Harder-Narasimhan) filtration, which
is a filtration

(2.1) 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = V

such that (1) µ(E1) > µ(E2/E1) > · · · > µ(En/En−1) and (2) each Ei/Ei−1

is a semistable bundle.
The HN filtration of V is strong HN filtration if, in addition, each

Ei/Ei−1 is strongly semistable, i.e., Fn∗(Ei/Ei−1) is semistable for every
nth-iterated Frobenius map Fn : X −→ X. It is known (Theorem 2.7 of [L])
that for a vector bundle V there exists m ≥ 0 such that Fm∗V has strong
HN filtration.

For the vector bundle V with the HN filtration (2.1), we denote

µmin(V ) = µ(V/En−1) and amin(V ) = µmin(F
m∗(V ))/pm,

where m is an integer such that Fm∗V achieves the strong HN filtration.

We recall the following results (Theorem B (1) from [TrW]).
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Theorem 2.1 ([TrW]). Let R be a standard graded two dimensional do-
main defined over an algebraically closed field. Let I ⊂ R be a graded ideal
of finite colength with a set of s homogeneous generators of degree d. Let
X = Proj S, where S is the normalization of R in its quotient field. Let

(2.2) 0 −→ V0 −→ M0 = ⊕sOX(1− d) −→ OX(1) −→ 0

be the canonical sequence of OX-modules.
Then cI(m) = 1− amin(V0)/d.

3. Nondiscreteness of F -thresholds

We recall a result by Gieseker [G].

Theorem 3.1. (Gieseker) For each prime p > 0 and integer g > 1, there
is a nonsingular projective curve X of genus g over an algebraically closed
field of characterstic p and a semistable vector bundle V of rank 2 and of
degree 0 such that F ∗V is not semistable.

Bundles of positive degree with such properties have been previously
constructed by J.-P. Serre and H. Tango. But for our result we use the other
properties of this bundle, which were proved by Gieseker in the process of
proving the above theorem. We elaborate on the relevant results from [G]:

For each g > 1 and each algebraically closed field k of char p, there is a
family of stable curves X of genus g over Spec k[[t]], such that the special
fiber X0 is a rational curve over k with g nodes and is k-split degenerate,
and the generic fiber XK is smooth and geometrically connected, where K
is the quotient field of k[[t]]. Now if Y0 is the universal covering space of the
special fiber X0 and G is the group of the covering transformations of Y0
over X0, then (Proposition 2, [G]) any representation ρ of G on Kn gives a
rank n bundle Fρ on X such that the pull back bundle F1 on the geometric
generic fiber XK̄ comes with a sequence of bundles F1, F2, F3, . . . such that
F ∗Fk+1 ≃ Fk, where F is the absolute Frobenius of XK̄ . Now, by making
a specific choice of a representation ρ (attributed to Mumford by [G]) of
the group G on K2, Gieseker derives (Lemma 4, [G]) a rank 2 bundle Fρ of
degree 0 on X and an exact sequence

0 −→ L −→ Fρ −→ L−1 −→ 0,

where degL = g − 1. Now pull back of L to XK̄ gives the HN filtration 0 ⊂
L ⊂ F1 and also a sequence of bundles F1, F2, F3, . . . such that F ∗Fk+1 = Fk.
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By a simple argument it follows (Lemma 5, [G]) that if g ≤ pk−1 then Fk is
semistable. Hence one can choose a (unique) bundle V from the set {Fk}k≥1

such that V is semistable and F ∗V is not semistable.
In the following lemma we consider a modified version of such a family

{Fm}m of bundles.
Before starting the lemma we recall some standard facts.

Remark 3.2. A line bundle L on a nonsingular curve X of genus g with
deg L ≥ 2g + 1 is very ample, i.e., there is a closed embedding i : X −→ Pn

k

such that L = OX(1) = i∗OP
n

k
(1), for some n > 0, (Corollary 5.6, Chap II,

[H]). This implies that the section ring R(X,L) := ⊕m≥0H
0(X,L⊗m) is a

quotient of k[X0, . . . , Xn] and hence is generated by degree 1 elements.
If L is an ample line bundle on a nonsingular projective variety X then

the section ring R(X,L) is Q-Gorenstein if L⊗m ≃ ω⊗n
X , for some m,n ∈

Z \ {0}, where ωX is the canonical divisor of X. Moreover the least n with
this property is called the Gorenstein index of R.

In particular (as degω⊗m
X = (2g − 2)m) the ring R(X,L) is a standard

graded normal Q-Gorenstein ring of Gorenstein indexm, for any nonsingular
curve X of genus g > 1 and L = ω⊗m

X , provided m ≥ 3.

Lemma 3.3. Given an integer g > 1 and a prime p, there is a nonsingular
curve X of genus g over an algebraically closed field of characteristc p and
a family of bundles {Em}m≥0 such that

1) rank Em = 2 and det(Em) = OX , for m ≥ 0 and

2) for each Em, the number m ≥ 0 is the least integer such that the bundle
Fm∗Em is not semistable. Moreover the HN filration (hence the strong
HN filtration) of Fm∗Em is

0 ⊂ Lm ⊂ Fm∗Em, where deg(Lm) = (g − 1)/pm0 ,

for some m0 ≥ 0 where pm0 < g.

3) There exists a very ample line bundle L on X, such that for every
m ≥ 0, the bundle Em ⊗ L is generated by its global sections.

In particular {Em ⊗ L}m≥0 is a bounded family.

Proof. The results in [G] (see the above discussion) give the following: for
given g > 1 and p, there is a nonsingular curve X of genus g over an al-
gebraically closed field of char p and a family of bundles {Fm}m≥1 such
that
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1) Fm is of rank 2 and of degree 0, for m ≥ 1 and

2) F ∗Fm+1 = Fm, and Fm is semistable if g ≤ pm−1,

3) F1 has the HN filtration L ⊂ F1, where degL = g − 1 and degF1 = 0.

Hence, there is a uniquem0 ≥ 0 such that Fm0+2 ∈ {Fk}k≥1 is semistable
and F ∗Fm0+2 = Fm0+1 is not semistable. Since Pic0(X) (the set of degree 0
line bundles on X) is an abelian variety, (Application 2, page 59 in [Mu1])
the map

nX : Pic0(X) −→ Pic0(X), given by L 7→ L⊗n is surjective.

Therefore, for eachm, we can choose Lm ∈ Pic0(X) such that det(Fm) =
L⊗2
m (recall that det(Fm) ∈ Pic0(X) as deg(det(Fm)) = deg(Fm) = 0).
We define Em = Fm+m0+1 ⊗ L−1

m+m0+1, for m ≥ 0.

Then det(Em) = det(Fm+m0+1)⊗ (L−1
m+m0+1)

⊗2 = OX . This proves As-
sertion (1).

Note that

F k∗Em = F k∗Fm+m0+1 ⊗ (L−1
m+m0+1)

⊗pk

= Fm−k+m0+1 ⊗ (L−1
m+m0+1)

⊗pk

,

hence for any m ≥ 0, the bundles Em, F ∗Em, . . . , Fm−1∗Em are semistable.
Since Fm∗Em = Fm0+1 ⊗ (L−1

m+m0+1)
⊗pm

, it has the HN filtration

Lm ⊂ Fm∗Em if and only if Fm0∗(Lm ⊗ L⊗pm

m+m0+1) ⊂ Fm0∗Fm0+1 = F1

is the HN filtration of F1. Therefore, by the uniqueness of the HN fil-
tration we have degLm = (g − 1)/pm0 . Moreover pm0 < g as Fm0+1 is not
semistable. This proves Assertion (2).

Now we fix a very ample line bundle OX(1) = ω⊗l0
X on X, where l0 ≥ 3

and (this is a standard argument in the literature)

Claim. For m ≥ 1, the bundle Em is 2-regular, i.e., H1(X,Em(n− 1)) = 0,
for n ≥ 2.

Proof of the claim. By Serre duality H1(X,Em(n− 1)) = Hom(Em, ωX(1−
n))∨. If Em −→ ωX(1− n) is a nonzero map then the semistability property
of the sheaf Em implies µ(Em) ≤ µ(ωX(1− n)). Therefore 0 ≤ (2g − 2) +
(1− n) degOX(1) < 0. This proves the claim. □

Hence (Chapter 14, [Mu2]), for m ≥ 1, every Em(2) is generated by its
global sections. Moreover, we can choose n0 ≥ 2 (Theorem 5.17, [H]) such
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that E0(n0) is generated by its global sections. Hence Assertion (3) follows
by taking L = OX(n0) = ωn0l0

X .
Moroever each Em ⊗ L has the same Hilbert polynomial with respect

to OX(1) (as each Em has the same rank and degree). Therefore the family
{Em ⊗ L}m≥0 is a bounded family. □

Remark 3.4. (a) For fix l0 ≥ 3, there exists l̃0 such that for every n0 ≥ l̃0
we can choose L = ω⊗l0n0

X (for L as in Lemma 3.3).

(b) Lemma 3.3 implies that, for any prime p and g > 1, there is a nonsin-
gular curve X of genus g over an algebraically closed field of characteristic
p and a bounded family F of vector bundles on X, such that if mV denotes
the minimum integer m for which Fm∗V achieves the strong HN filtration
then the set {mV | V ∈ the bounded family F} is unbounded.

Proof of Theorem 1.1. For given p and g, we select a nonsingular curve X
and a family {Em}m≥0 of bundles and a line bundle L = ωl0n0

X , where l0, n0

as in Remark 3.4 (a). Since Em is a vector bundle of rank two over a curve,
the (globally generated) bundle Em ⊗ L is generated by 3 global sections
(Ex. 8.2, Chap II, [H]). Hence there is a short exact sequence of OX -modules

0 −→ Mm −→ OX ⊕OX ⊕OX −→ Em ⊗ L −→ 0.

Now Mm = (det(Em ⊗ L))−1 = (L⊗2)∨. Dualizing the above short exact se-
quence we get

(3.1) 0 −→ (Em ⊗ L)∨ −→ OX ⊕OX ⊕OX
η

−→ L⊗2 −→ 0.

Let

R = ⊕n≥0Rn = ⊕n≥0H
0(X,L⊗2n) and Im = hm1R+ hm2R+ hm3R,

where the above map η is given by (s1, s2, s3) 7→ hm1s1 + hm2s2 + hm3s3, for
some hmi ∈ H0(X,L⊗2).

By Remark 3.2, the section ringR = R(X,L⊗2) is a normalQ-Gorenstein
standard graded domain. Let m be the graded maximal ideal of R. Note that
hm1, hm2, hm3 in R1 and deg X = e0(R,m) = degL⊗2. By Theroem 2.1, we
have

cIm(m) = 1− amin((Em ⊗ L)∨)/ deg(L⊗2).

Now, for any m ≥ 0, the bundle Fm−1∗Em is semistable and 0 ⊂ Lm ⊂
Fm∗Em is the strong HN filtration. This implies that 0 ⊂ Lm ⊗ Fm∗(L∨) ⊂
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Fm∗((Em ⊗ L)∨) is the strong HN filtration and Fm−1∗((Em ⊗ L)∨) is semi-
stable.

Hence

amin((Em ⊗ L)∨) = µmin(F
m∗((Em ⊗ L)∨))/pm

= µ(L−1
m ⊗ Fm∗(L∨))/pm

= − deg(L)− (g − 1)/pm+m0 .

Therefore

cIm(m) = 1 +
1

2 deg(L)

[
deg L+

g − 1

pm+m0

]
=

3

2
+

(g − 1)

dpm+m0

,

where d = e0(R,m) = degL⊗2.
By Remark 3.4 (a), given p ̸= 2, we can choose l0 and n0 such that the

Gorenstein index 2l0n0 is coprime to p. This proves the theorem. □

Remark 3.5. We recall that when R is a regular local ring, then, apart
from the set of F -thresholds (of an ideal) being discrete and rational, there
can be no strictly decreasing sequence of F -thresholds of an ideal I (Re-
mark 2.9, [MTW]). This is because in the regular case there is a bijection
between the set of F -thresholds of I and the set of test ideals of I, given by
c 7→ τ(Ic) such that if c1 and c2 are two F -threhsolds of I then c1 < c2 if
and only of τ(Ic2) ⊂ τ(Ic1).

However the above example in Theorem 1.1 shows that any such “order
reversing” bijective correspondence between the set of F -thresholds and a
set of ideals of some kind, would not hold.
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