
✐

✐

“12-Ohsawa” — 2021/2/16 — 23:37 — page 1867 — #1
✐

✐

✐

✐

✐

✐

Math. Res. Lett.
Volume 27, Number 6, 1867–1884, 2020

Generalizations of theorems of Nishino

and Hartogs by the L
2 method

Takeo Ohsawa

To the memory of Professor Akira Takeuchi

Three different generalizations will be given for Nishino’s rigidity
theorem asserting the triviality of Stein families of C over the poly-
disc, in connection to generalizations of Hartogs’s theorem on the
analyticity criterion for continuous functions.

Introduction

This is a continuation of [Oh-5], where an L2 extension theorem and Har-
togs’s analyticity criterion in [H] were applied to give an alternate proof of
the rigidity theorem of Nishino [Ni] asserting that a Stein manifold fibered
over Dm (D = {z ∈ C; |z| < 1}) is biholomorphically equivalent to Dm × C if
the fibers are equivalent to C. In [Oh-5] the assertion was stated for m = 1
but the proof works for any m. See also [Y-1]1 and [Ch]2. After a remarkable
generalization of Nishino’s rigidity theorem was given in [Y-2] which replaces
C by any Riemann surface except for the disc and the once-punctured disc,
the result has been expected to be strengthened in two ways, by weakening
the Steinness assumption and by raising the dimension of the fibers. The
purpose of the present article is to generalize Nishino’s theorem in each of
these two directions, eventually culminating in three generalizations of the
theorem. At first we shall replace the Steinness assumption by the existence
of a complete Kähler metric on the total space of the family, following the
ideas of Grauert [G-1] and Andreotti-Vesentini [A-V]. More precisely we
shall prove the following.

The author thanks to the referees whose suggestions contributed a lot to make
the paper readable.

1A potential theoretic proof was given.
2In [Ch] the Steinness was replaced by the weaker assupmtion of “disc convexity”.
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Theorem 0.1. LetM be a complex manifold of dimension m+ 1 which ad-

mits a complete Kähler metric and a holomorphic map π onto Dm without

critical points such that π−1(t) ∼= C for all t ∈ Dm. Then M is biholomor-

phically equivalent to Dm × C.

Note that neither the L2 extension theorem in [Oh-T] nor Hartogs’s
theorem is available since M is not assumed to have a Zariski dense Stein
open subset of a complex manifold. Accordingly, instead of the L2 extension
theorem we shall apply an L2 vanishing theorem in [Oh-1] (see also [Dm]
and [Oh-3]) by choosing suitable plurisubharmonic weight functions. As a
substitute of Hartogs’s theorem we shall apply the following.

Lemma 0.1. Let f be a C-valued continuous function on Dm. Then f is

holomorphic if and only if the domain

D
m × C \ {(t, f(t)); t ∈ D

m}

admits a complete Kähler metric.

The necessity part of Lemma 0.1 is contained in Grauert’s observation in
[G-1] that Stein manifolds admit complete Kähler metrics. The sufficiency
was first proved in [Oh-2] under a restrictive assumption that f is of class
C1, by applying the L2 vanishing theorem to extend a holomorphic function
from a hyperplane section with a growth control. The proof for the above
stronger assertion is more straightforward (see ➜2).

Since Theorem 0.1 seems to deserve some extension, we shall apply the
same method to prove a fibration theorem which describes a condition for
a complex manifold to be fibered over a manifold in such a way that the
generic fibers are C (see Theorem 4.2).

It is not known whether or not every Stein family of Cn for n ≥ 2 is
locally the product. Here we shall be contented with a weaker rigidity re-
sult for the family of Cn paired with the divisor {z ∈ Cn; z1 · · · zn = 0} (see
Theorem 4.3). Rather unexpectedly, this enables us to generalize Nishino’s
theorem in the following way, too.

Theorem 0.2. Let M be a complex manifold of dimension m+ n with a

holomorphic submersion onto Dm whose fibers are once-puctured CP
n, say

CP
n
∗ . Then M

∼= CP
n
∗ × Dm if and only if M is n-convex.

Corollary 0.1. Let f : Dm → Cn be a continuous function. Then f is holo-

morphic if and only if (Dm × Cn) \ {(t, f(t)); t ∈ Dm} is n-convex.
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Recall that a complex manifold M is said to be n-convex if it admits
a C2 exhaustion function φ whose Levi form (or complex Hessian) ∂∂̄φ has
strictly less than n nonpositive eigenvalues outside some compact subset say
K ⊂M (cf. [A-G]). M is called n-complete if φ is chosen in such a way
that K = ∅. Theorem 0.2 generalizes Nishino’s rigidity theorem because a
complex manifold is known to be Stein if and only if it is 1-complete (cf.
[G-3]).

After the author finished writing the proof of Corollary 0.1, he was in-
formed by N. Shcherbina that T. Pawlaschyk [P, Theorem 4.7.9] had ob-
tained it in a completely different way. (See also [P-S].) His proof is even
simpler in the sense that it does not use the L2 method, but the proof given
here might be of independent interest.

1. L
2 vanishing theorem and application

For the convenience of the reader, we shall briefly recall two basic things ; an
L2 vanishing theorem on complete Kähler manifolds in a primitive form as
was stated in [Oh-1] and a method how it is applied to produce holomorphic
top forms.

Let M be an n-dimensional connected complex manifold equipped with
a complete Kähler metric say g. We note that M admits a complete Kähler
metric of the form ∂∂̄λ(φ) for some λ : R → R if there exists a proper C∞

map φ :M → (−∞,∞) satisfying ∂∂̄φ > 0. Here, by an abuse of notation,
∂∂̄φ stands also for the complex Hessian of φ as well as the complex exterior
derivatives applied to φ. We know accordingly that the complement of an
analytic set in a Stein manifold admits a complete Kähler metric.

We shall recall below how the ∂̄-equation ∂̄u = v can be solved for a
given L2 ∂̄-closed (n, 1)-form v with an L2 solution u that vanishes at a
prescribed point x when M admits a C∞ plurisubharmonic function which
is strictly plurisubharmonic at x.

Recall that the L2 norm ∥h∥(= ∥h∥g) (resp. the weighted L2 norm
∥h∥Φ(= ∥h∥Φ,g)) of a measurable (p, q)-form h on M is defined as

(
∫

M
|h|2dVg

)
1

2

(

resp.

(
∫

M
e−Φ|h|2dVg

)
1

2

)

where |h| and dVg respectively stand for the length of h and the volume
form with respect to the metric g. The space of L2 forms with respect to
∥ · ∥ (resp. ∥ · ∥Φ) will be denoted by Lp,q(M)(resp. Lp,q

Φ (M)). Recall also
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that

∥h∥2 =
∫

M
h ∧ ∗h

(

resp. ∥h∥2Φ =

∫

M
e−Φh ∧ ∗h

)

,

where ∗ denotes Hodge’s star operator, and that Ln,0
Φ (M) does not depend

on the choice of the metric g. The following was proved in [Oh-1].

Theorem 1.1. (cf. [Oh-1, Theorem 1.5 and Corollary 1.6]) Let M be as

above and let Φ be a strictly plurisubharmonic function of class C4 on M .

Then, for any ∂̄ closed (n,1)-form f on M satisfying

∫

M
e−Φf ∧ ∗∂∂̄Φf <∞,(1.1)

there exists an (n,0)-form h satisfying ∂̄h = f and

in
2

∫

M
e−Φh ∧ h ≤

∫

M
e−Φf ∧ ∗∂∂̄Φf.

Here ∗∂∂̄Φ denotes Hodge’s star operator with respect to ∂∂̄Φ.

Recall that the proof of Theorem 1.1 in [Oh-1] is an application of the
Riesz representation theorem or Hahn-Banach’s theorem based on the esti-
mate

∣

∣

∣

∣

∫

M
e−Φf ∧ ∗∂∂̄Φ+gu

∣

∣

∣

∣

2

≤ ∥∂̄∗u∥2Φ,∂∂̄Φ+g

∫

M
e−Φf ∧ ∗∂∂̄Φf(1.2)

which holds for any u in the domain of the adjoint ∂̄∗ of ∂̄ with respect
to the weighted norm ∥∥Φ,∂∂̄Φ+g. The proof of (1.2) for those u with com-
pact support is done by a direct calculation using the Kähler condition on
g. The completeness of g is needed to extend the estimate to the domain
of ∂̄∗. Since ∥f∥Φ,∂∂̄Φ+g ≤ ∥f∥Φ,∂∂̄Φ holds for any (n, q)-form f , if Φ is a
C∞ plurisubharmonic function on M and f is a ∂̄-closed (n, 1)-form on M
satisfying

∥f∥Φ,∂∂̄Φ := lim
ϵ↘0

∥f∥Φ,∂∂̄Φ+ϵg <∞,

one can find a solution h to ∂̄h = f satisfying

∥h∥Φ ≤ lim
ϵ↘0

∥f∥Φ,∂∂̄Φ+ϵg.

In many situations Theorem 1.1 is applied in the following way: Let M
and Φ be as above, let x ∈M be any point and let z = (z1, . . . , zn) be a local
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coordinate around x which maps a neighborhood U of x onto Dn, where D =
{ζ ∈ C; |ζ| < 1}. Let χ :M → [0, 1] be a C∞ function satisfying suppχ ⊂ U
and χ ≡ 1 on a neighborhood of x, let α be a compactly supported C∞

(n, 0)-form on M satisfying α = χdz1 ∧ · · · ∧ dzn on U and α = 0 outside
U , and let Ψ be a C∞ function on M \ {x} satisfying suppΨ ⊂ U and Ψ =
2nχ log ∥z∥ on U \ {x}, where ∥z∥2 =

∑n
j=1 |zj |2. Clearly Ψ +mΦ is strictly

plurisubharmonic on M \ {x} for sufficiently large m. Then, since M \ {x}
admits a complete Kähler metric, g + ϵ∂∂̄(χ log (− log ∥z∥)) for sufficiently
small ϵ > 0 for instance, by Theorem 1.1 one can find for such m an (n, 0)-
form u on M \ {x} such that ∂̄u = ∂̄α and

in
2

∫

M
e−Ψ−mΦu ∧ u <∞.(1.3)

Then, by (1.3), α− u extends to a holomorphic n-form on M say α̃ such
that α̃(x) ̸= 0. Similarly, for any two distinct points x, y ∈M , one can find
a holomorphic n-form β on M satisfying β(x) = 0 and β(y) ̸= 0.

If Φ is a C∞ plurisubharmonic function on M and f is a ∂̄-closed (n, 1)-
form on M satisfying

lim
ϵ↘0

∥f∥Φ,∂∂̄Φ+ϵg <∞,

one can find a solution h to ∂̄h = f satisfying

∥h∥Φ ≤ lim
ϵ↘0

∥f∥Φ,∂∂̄Φ+ϵg.

(See [Oh-3, Theorem 2.8] for a more general statement.) Therefore, the above
argument works to show the following.

Theorem 1.2. Let M be a complete Kähler manifold of dimension n and

let φ be a C∞ plurisubharmonic function on M \ {x} such that e−φ is non-

integrable on any neighborhood of x and φ is strictly plurisubharmonic on

U \ {x} for some neighborhood U ∋ x. Then there exists a holomorphic n-
form h on M such that h(x) ̸= 0 and

∣

∣

∣

∣

∣

∫

M\V
e−φh ∧ h

∣

∣

∣

∣

∣

<∞

for any neighborhood V ∋ x.

The idea that only the local strict positivity of ∂∂̄φ suffices for the
existence theorem comes from [Hm], although it is not explicitly stated there.
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(See also [Sk] and [Dm].) Of course the global semipositivity of ∂∂̄φ and the
existence of a complete Kähler metric are both indispensable here.

2. Proof of Lemma 0.1

Let us restate the lemma to fix the notation.

Lemma 0.1. Let Γ be the graph of a continuous function z = f(t) from Dm

to C. Then f is holomorphic if (Dm × C) \ Γ has a complete Kähler metric.

Proof. Since the problem is local on Γ, we may assume in advance that Γ ⊂
Dm × D. Let γ :W → (Dm × D) \ Γ be the double covering asociated to the
unique index-two subgroup of π1((D

m × D) \ Γ) ∼= Z. For the construction
of the covering spaces associated to the subgroups of the fundamental group,
see [Ah, Chap. 9] for instance. Then W is a complex manifold admitting a
complete Kähler metric pulled up from downstairs. Let σ ∈ Aut(W ) be the
covering transformation without fixed points. Then, similarly as in section
one, one has a square integrable holomorphic (m+ 1)-form h ̸= 0 on W
satisfying h(x) = 0 and h(y) ̸= 0 for a pair of points x and y satisfying
σ(x) = y. Then, by putting ĥ = h− σ∗h one has a nonzero holomorphic
(m+ 1)-form ĥ satisfying σ∗ĥ = −ĥ. Then we put

ρ =
ĥ

γ∗(dt1 ∧ · · · ∧ dtm ∧ dz) .

Clearly σ∗ρ = −ρ. Note that ρ2 is holomorphic on (Dm × D) \ Γ. Since the
denominator and the numerator of ρ are square integrable, by Fubini’s the-
orem for almost every t ∈ Dm ρ2 extends to a meromorphic function, say
ρ2t on {t} × D, whose order of zero or pole at the point (t, f(t)) is an odd
integer. On the other hand, one knows already by Hartogs’s theorem that
Γ is analytic if ρ2 is not extendable across Γ. Hence, we may assume that
ρ2 is holomorphic on Dm+1. In this case Γ must be analytic because it is
contained in the divisor of ρ2. □

Remark 2.1. Shcherbina [Sh] proved that f is holomorphic if Γ is pluripo-
lar, i.e. if Γ ⊂ φ−1(−∞) holds for some plurisubharmonic function φ ̸≡ −∞
on Dm × C. Note that Lemma 0.1 implies that Γ is a complex submanifold if
Γ = Φ−1(−∞) for some plurisubharmonic function Φ on Dm × C such that
Φ is C∞ on (Dm × C) \ Γ. In fact, for any point x ∈ Γ there exists a neigh-
borhood U ∋ x with a complete Kähler metric say gU such that Φ < 0 on
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U . Then U \ Γ admits a complete Kähler metric gU − ∂∂̄ log(−Φ). However,
there seems to be no direct way to obtain such Φ from the given φ as above.

3. Proof of Theorem 0.1

Let the notation be as in Theorem 0.1. First we briefly recall a connec-
tion between Theorem 0.1 and the L2 theory. In [Oh-5] it turned out that
Nishino’s rigidity theorem is a direct consequence of an L2 extension the-
orem in [Oh-T]3. The idea is to regard an open immersion from the total
space of the family π :M → Dm to Dm × Ĉ, where Ĉ = C ∪ {∞}, as a col-
lection of the reciprocals of injective meromorphic functions from π−1(t) to
Ĉ, say ft, and identify the collection of fiberwise exterior derivatives of ft
with a relative canonical form which has a pole of order 2 along an analytic
section over Dm. An open embedding of M into Dm × Ĉ is given by pairing
t with a fiberwise primitive of an extension of dz/z2 from π−1(0) with inho-
mogeneous coordinate z, which is obtained by applying [Oh-T]. The point
is the equivalence

f ∈ C · dz
z2

⇐⇒ f ∈ L1,0
b log+ 1

|z|

(C \ {0}) ∩Ker∂̄ (2 < b ≤ 4).(3.1)

Here log+ 1
|z| := max {log 1

|z| , 0} and L1,0
b log+ 1

|z|

(C \ {0}) denotes, as was men-

tioned in ➜1, the space of measurable (1, 0) forms u on C \ {0} such that

√
−1

∫

C\{0}
e
−b log+ 1

|z|u ∧ u <∞.

Note that the fiberwise primitive is recovered as an integral along the paths
in the fibers of π starting from the points in the image of a holomorphic
section. Note that the analyticity of the complement of the image is assured
by [H] (or by Lemma 0.1). In view of the argument presented at the end of
➜1, it is clear that Theorem 1.1 is also applicable to produce such a relative
canonical form. Actually the following argument is slightly more delicate
because we need to have mΦ ≤ b log+ 1

|z| (2 < b ≤ 4) near z = 0.

Proof of Theorem 0.1. Let π :M → Dm be as in the assumption and let p ∈
π−1(0). We choose a neighborhood U ∋ 0 and a holomorphic map s : U →M
such that s(0) = p and π ◦ s = id. Let (t, z) be a local coordinate around p
such that z ◦ s = 0 and π||z|≤1 is proper.

3For the L2 extension theorem see also [Oh-6].
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Sublemma. In the above situation, for any ϵ > 0 there exist a neighbor-

hood V ∋ 0, a point q ̸= p in π−1(0) and a plurisubharmonic function φ on

π−1(V ) \ s(V ) such that φ+ (2 + ϵ) log |z| extends to a bounded function on

a neighborhood of p, φ is C∞ on π−1(V ) \ (s(V ) ∪ {q}) and strictly plurisub-

harmonic on W \ {q} for some neighborhood W ∋ q, e−φ is nonintegrable on

any neighborhood of q and that φ is bounded outside {|z| < 1}.

Proof. Let χ : [0,∞) → R be a C∞ function satisfying suppχ ⊂ [0, 12 ] and
supp(χ− 1) ∩ [0, 1e ] = ∅.

We put

Φ = max

{

(2 + ϵ− δ − δ′)χ(|z|) log |z − z(q)|
|z| + δλ

(

log
1

|z|

)

, log ∥t∥N
}

.

Here λ is a C∞ convex increasing function on (−∞,∞) satisfying suppλ ⊂
[0,∞),

λ′(x) = 1 on [2,∞)

and

λ′′(x) > 0 on (0, 1].

Then it is easy to see that, for any choice of positive numbers δ and δ′

with max{δ, δ′} < max{ϵ, 1}, one can find a neighborhood V ∋ 0 such that,
by extending Φ as 0 outside the neighborhood {(t, z); |z| < 1} of p, Φ +
δ′λ(log 1

|z|) satisfies the requirement if |z(q)| ≪ δ < ϵ and N ≫ 1
ϵ−δ , except

for the smoothness outside {z = 0} and strict plurisubharmonicity near q.

Here one uses the fact that the C2-norm of log |z−z(q)|
|z| on supp∂χ(|z|) tends

to 0 as q approaches to p. Hence, by Richberg’s theorem on the approxi-
mation of continuous plurisubharmonic functions by C∞ ones (cf. [Ri]), one
can find, for any ϵ′ > 0, a C∞ strictly plurisubharmonic function Φϵ′ on
π−1(V ) ∩ {0 < |z| < 1} such that

∣

∣

∣

∣

Φ+ δ′λ

(

log
1

|z|

)

+ δ′′∥t∥2 − Φϵ′

∣

∣

∣

∣

< ϵ′

holds on π−1(V ) ∩ {0 < |z| < 1} and Φϵ′ extends to π
−1(V ) as a C∞ function

in such a way that the extension coincides with δ′′∥t∥2 outside {|z| < 1}.
Then one may take this extended Φϵ′ as φ. □
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Continuation of the proof of Theorem 0.1. Let the situation be as above. By
Theorem 1.2, for any ϵ > 0 one has the existence of

h ∈ Lm+1,0
(2+ϵ) log+ (1/|z|)

(π−1(V ) \ s(V )) ∩Ker∂̄

such that h(q) ̸= 0, where the values of log+ 1
|z| outside {|z| < 1} are de-

fined to be 0, by an abuse of notation. Hence, by choosing ϵ < 2 one can
find a holomorphic (m+ 1)-form h on π−1(V ) \ s(V ) such that h/π∗(dt1 ∧
· · · ∧ dtm) is fiberwise the exterior derivative of a holomorphic function on
π−1(V ) \ s(V ), say F , which is fiberwise univalent. Here we note that, for
any h ∈ Lm+1,0

(2+ϵ) log+ (1/|z|)
(π−1(V ) \ s(V )) ∩Ker∂̄ \ {0} with 0 < ϵ < 2, h does

not have any zeros because it would otherwise contradict the L2 condition.
(Recall also thatH1,0(Ĉ,O(2)) ∼= C · dz

z2 and note that d(1/z) = −dz/z2 con-
cerning the univalence of F .) By Riemann’s mapping theorem, for instance,
the complements of such injective maps consist of single points in a bounded
subset of C. Hence the complement of the image of (t, F ) is the graph of
a continuous function because of its closedness, by virtue of a theorem of
Bolzano and Weierstrass. Hence it is a complex submanifold by Lemma 0.1,
so that we obtain the desired conclusion. □

An alternate argument. Based on the fact that

fdz ∈ C
dz

z2

holds if and only if f ∈ O(C \ {z = 0}) and
∫

C\{z=0}
e−3 log+ (1/|z|)|f(z)|2 <∞

and that any holomorphic 1-form on C \ {0} satisfying

i

∫

C\{0}
e−5 log+ (1/|z|)u ∧ u <∞

is of the form
(

a

z2
+

b

z3

)

dz, a, b ∈ C,

one has also a univalent map from C \ {0} to C by taking the ratio v/u of
an L2 holomorphic 1-form u with respect to the weight 3 log+(1/|z|) and an
L2 holomorphic 1-form v with respect to the weight 5 log+ (1/|z|). Hence,
instead of taking the fiberwise primitive of h in the above proof, one may
divide by h some element of Lm+1,0

5 log+ 1

|z|

(π−1(V ) \ s(V )) ∩Ker∂̄.
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4. Globalizing Nishino’s rigidity theorem

By Theorem 0.1, we know that U ∼= Dm × C if M is a complete Kähler
manifold of dimension m+ 1 and the fibers of π are C. On the other hand, it
follows immediately from Nishino’s rigidity theorem and Oka’s principle that
a Stein manifold M with a submersion π :M → N onto a Stein manifold
N with H2(N,Z) = 0 is equivalent to N × C if π−1(t) ∼= C for all t ∈ N .
We shall show that the method of proving Theorem 0.1 is available to show
another global version of Nishino’s theorem.

Definition 4.1. A closed complex analytic set S of pure codimension m
in a complex manifold M is said to be plumbed if S is equipped with a
neighborhood U and a surjective holomorphic map π from U onto Dm such
that π−1(0) = S and the fibers of π are closed in M .

Example 4.1. Every complete intersection in an affine algebraic variety is
plumbed.

From now on, we assume that M is a connected n-dimensional com-
plex manifold admitting a C∞ plurisubharmonic exhaustion function say φ
and a Kähler metric say g. Note that g + ∂∂̄eφ is then a complete Kähler
metric. For a Hermitian line bundle (B, b) over M , we denote by Θb the
curvature form of b. Following [N], we shall call a manifold admitting a C∞

plurisubharmonic exhaustion function a weakly 1-complete manifold .
For the convenience of the reader, we recall a generalization of The-

orem 1.1 following [Dm] and [Oh-3] according to the notation of ➜1 with
self-explanatory generalizations.

Theorem 4.1. Let M be an n-dimensional complex manifold admitting a

complete Kähler metric and let (B, b) be a semipositive line bundle over M .

Then, for any q ≥ 1 and a measurable B-valued (n, q) form v onM such that

∂̄v = 0 and ∥v∥Θb,b <∞, one can find a measurable B-valued (n, q − 1)-form
u on M satisfying ∂̄u = v and ∥u∥2Θb,b

≤ q∥v∥2Θb,b
.

Applying Theorem 4.1 for q = 1 instead of Theorem 1.1, one can gener-
alize Theorem 0.1 as follows.

Theorem 4.2. Let M be as above with a connected and reduced divisor

S and a plumbed submanifold (T, V, σ) with T ∼= C such that S intersects

with T at one point transversally. Assume moreover that #(S ∩ σ−1(t)) = 1
for all t and that there exists a semipositive line bundle (B, b) over M with
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Θb|σ−1(t) ≡ 0 for all t and that the bundle [S] admits a fiber metric for which

the length of a canonical section s of [S], say |s|, satisfies sup|s| <∞ and

−∂∂̄ log |s|+Θb > 0 on M \ S. Then S is connected and nonsingular, and

there exists a surjective holomorphic map from M to S whose fibers over a

Zariski dense open set are C.

Proof. If n = 2, then T is a divisor. Let [T ] be the line bundle associated to
T . Then, similarly as in the proof of Theorem 0.1, under the above situation
one can produce [T ]ν-valued holomorphic 2-forms f0, . . . , fm on M \ S, for
sufficiently large ν, such that fk are proportional to each other on the fibers
of σ and the ratio (f0 : · · · : fm) is constant along the fibers, so that it is an
extension of an embedding of S into CP

m via a surjective holomorphic map
π :M → S. Hence S is nonsingular because it is a holomorphic retract ofM .
Since M is weakly 1-complete, it follows by Maitani-Yamaguchi’s theorem
(cf. [M-Y] or [B-1, B-2]) that all fibers of π have the trivial Bergman kernel
since so do they for σ. Therefore, by the weak 1-completeness of M again,
the irreducible fibers of π are all C because so are they for σ. Hence M
surjectively maps onto S with generic fibers equivalent to C, as desired.

If n ≥ 3, it is easy to see that a similar argument works, since the assump-
tion on the line bundle B implies that it plays the role of [T ] as above. □

A similar method based on Theorem 4.1 can be applied to prove the
following.

Theorem 4.3. Let n ≥ 2 and let π be a holomorphic submersion from a

complex manifold M onto a Stein manifold N such that H2(N,Z) = 0. As-
sume that there exists a complete Kähler metric on M , π−1(t) ∼= Cn for all

t ∈ N and that there exists a proper holomorphic embedding

σ : N × {z = (z1, . . . , zn) ∈ C
n; min{|z1|, . . . , |zn|} ≤ 1} →֒M

satisfying π ◦ σ(t, z) ≡ t. Then there exists a biholomorphic map F from M
to N × Cn commuting with π and the projection to N such that the image of

σ is mapped by F onto N × {z = (z1, . . . , zn) ∈ Cn; min{|z1|, . . . , |zn|} ≤ 1}.

Proof. We shall exploit the identification of

{(

a

z2
+

b

z3

)

dz; a, b ∈ C

}
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with
{

fdz; f ∈ O(C \ {0}) and
∫

C\{0}
e−5 log+ |z−1||f(z)|2 <∞

}

.

Note that

fdz1 ∧ · · · ∧ dzn ∈ C
dz1 ∧ · · · ∧ dzn

z21 · · · z2n
holds if and only if f ∈ O(Cn \ {z1 · · · zn = 0}) and

∫

Cn\{z1···zn=0}
e−3

∑
n

k=1
log+ |zk||f(z)|2 <∞.

Similarly, any holomorphic n-form u on Cn \ {z1 · · · zn = 0} satisfying

in
2

∫

Cn\{z1···zn=0}
e−2 log+ (1/|zj |)−3

∑
n

k=1
log+ (1/|zk|)u ∧ u <∞

is of the form
(

a
∏n

k=1 zk
2
+

b

zj
∏n

k=1 zk
2

)

dz1 ∧ · · · ∧ dzn, a, b ∈ C.

We putX = {z ∈ Cn; z1 · · · zn = 0}. Then it is easy to see from the above
mentioned L2 interpretation that, similarly as in the proof of Theorem 0.1,
one can find an open embedding of N \ σ(N ×X) into N × (Ĉ)n by taking
the ratios of L2 holomorphic top forms with respect to suitable weights.
Analyticity of the complement of the image follows similarly, too. □

Note that F is unique up to the composition, in the second factor, of an
element of Aut(Cn) that fixes {z; minj |zj | ≤ 1}.

5. The Rigidity of CPn

∗

For the proof of Theorem 0.2, we first recall briefly what Kodaira’s the-
ory [K, Main Theorem and its proof] says for analytic families of fiberwise
hyperplanes in a given analytic family π :M → Dm whose fibers are biholo-
morphically equivalent to CP

n
∗ .

Let H be any hypreplane in π−1(0), i.e. a compact complex analytic
subset of π−1(0) which is a hyperplane in the one-point compactification
CP

n of π−1(0)4. Then the normal bundle of H in M is equivalent to the

4A hyperplane in CP
n is defined to be a nonsingular divisor whose associated

line bundle is of degree one.
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direct sum of the trivial bundle of rank m and the hyperplane section bun-
dle, so that there exist a neighborhood U of 0 ∈ Dm, a neighborhood V
of 0 ∈ Dn, a proper and smooth analytic family ϖ : H → U × V satisfy-
ing dimϖ−1(t, v) = n− 1 for all (t, v) ∈ U × V and a smooth holomorphic
map σ : H → π−1(U) such that π ◦ σ = prU ◦ϖ and σ(ϖ−1((0, 0)) = H. In
[K] this is proved in a somewhat more general situation by an elementary
method of constructing power series and proving their convergence. The
proof of Theorem 0.2 stated below is to be understood in this context.

Proof of Theorem 0.2. Since every automorphism of CP
n
∗ extends to CP

n

as an automorphism and every analytic CP
n-bundle over Dm is analytically

trivial by the Grauert-Oka principle (cf. [G-1]), it suffices to prove that every
point of Dm has a neighborhood say W such that π−1(W ) ∼=W × CP

n
∗ .

Hence we may assume in advance that there exist holomorphic sections say
s0, . . . , sn of the fibration π :M → Dm such that each fiber π−1(t) is spanned
by {s0(t), . . . , sn(t)} and that {s1(t), . . . , sn(t)} spans a compact divisor for
every t. Here a subset A ⊂ π−1(t) is said to be spanned by B ⊂ A if so is
the closure of A in the one-point compactification (∼= CP

n) of π−1(t) with
respect to the projective linear structure of CPn. We shall call A the linear
span of B by an abuse of langulage. For a fixed t, let us denote by ⟨v1, . . . , vp⟩
the linear span of {vj ; 1 ≤ j ≤ p} ⊂ π−1(t). Note that

M∗
t := {⟨v1, . . . , vn⟩; vj ∈ π−1(t), ⟨v1, . . . , vn⟩ is compact} ∼= C

n.

We put M∗ =
∐

t∈Dm M∗
t and call the elements of M∗

t the hyperplanes in
π−1(t). Then M∗ is naturally equipped with a structure of a complex man-
ifold whose local coordinates are associated to the local analytic families of
hyperplanes parametrized by a set of analytic sections of the normal bun-
dles of hyperplanes. In short, M∗ is the component of the Douady space
of M containing ⟨s1(0), . . . , sn(0)⟩, i.e. the (so called) space of displace-
ments of ⟨s1(0), . . . , sn(0)⟩ in M . (See [K] for an explicit construction of
the local coordinates in more general situations.) For any 1 ≤ j ≤ n, let
Aj,t be the set of hyperplanes in π−1(t) that contain sj(t), i.e. the collec-
tion of ⟨v1, . . . , sj(t), . . . , vn⟩ such that (v1, . . . , v̌j , . . . , vn) runs through the
product space

∏

k ̸=j ⟨sk(t), s0(t)⟩ of the lines ⟨sk(t), s0(t)⟩ except for those
points for which ⟨v1, . . . , sj(t), . . . , vn⟩ are noncompact. Then it is clear that
Aj,t

∼= Cn−1 as a complex submanifold of the dual space of CPn, so that the
disjoint union of Aj,t for all t ∈ Dm say Aj is naturally equipped with the
structure of an analytic family of Cn−1 over Dm which is a divisor in M∗.
Notice that

∐

t∈Dm Aj,t are analytic because they are hypersurfaces in the
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Douady space ofM which are defined by the equations corresponding to the
constraints of containing the sections sj(t) (1 ≤ j ≤ n).

By assumption, there exists a C2 exhaustion function φ on M whose
Levi form has at least (m+ 1) positive eigenvalues outside some compact
subset of M . Then, by defining ψ :M∗ → R as

ψ(x) = sup{φ(p); p ∈ x},

it is easily seen that M∗ is 1-convex (cf. [N-S]5). Hence M∗ is Stein since
it obviously contains no compact complex analytic subsets of positive di-
mension (cf. [G-3]). Thus, replacing Dm by a smaller neighborhood of 0 if
necessary, we may assume in advance that the map π∗ :M∗ → Dm induced
by π satisfies the assumption of Theorem 4.3.

Therefore, there exists a biholomorphic map β :M∗ → Dm × Cn com-
muting with the projections in such a way that the local coordinates of M
locally parametrize the hyperplanes

{(t,H); t ∈ D
m and H is a hyperplane in C

n}

via β. Hence, M is identified with an open subset of the Douady space of
Dm × CP

n. Thus M must be biholomorphically equivalent to Dm × CP
n
∗ .

The converse holds because Dm × CP
n
∗ is n-complete with respect to

− log(1− ∥t∥2)− log
∑

j ̸=0

∣

∣

∣

∣

zj
z0

∣

∣

∣

∣

2

.

□

Proof of Corollary 0.1. Let f : Dm → Cn be a continuous function and let
Γf = {(t, f(t)); t ∈ Dm}. Assume that the domain (Dm × Cn) \ Γf is n-
complete. Fixing an open embedding Cn →֒ CP

n and putM = (Dm × CP
n) \

Γf . Then there exists a biholomorphic map say α from M to Dm × CP
n
∗ by

Theorem 0.2, which means that f is holomorphic because α is holomorphi-
cally extendable across Γf . The converse is obvious. □

6. Open questions

Q1. Is every n-complete family of a once-punctured compact complex man-
ifold locally trivial? Namely, given a surjective holomorphic submersion

5See [Ba] for a more detailed exposition in a more general circumstance. See also
[Oh-4] for an alternate method to see the holomorphic convexity of M∗.
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π :M → T such that M is n-complete and π−1(t) ∼= N \ {p} for all t for
some n-dimensional compact complex manifold N and a point p ∈ N , does
it follow that every point t ∈ T has a neighborhood U such that π−1(U) ∼=
U × (N \ {p})?

Q2. Is every complete Kähler family of Cn locally trivial?

Q3. Let π :M → D be a holomorphic submersion such that M is com-
plete Kähler and π−1(t) ∼= Cn for all t ̸= 0. Does it follow that π−1(0) ∼= Cn?

Q4. Is there any reasonable generalization of the theorems in [Y-1, Y-2],
[M-Y] and [B-1, B-2] to n-convex families?
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