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Asymptotic behavior of the nonlinear
Schrodinger equation on exterior domain

ZHEN-HU NING

We consider the following nonlinear Schrodinger equation on exte-
rior domain.

iug + Agu+ia(@)u — |[uPlu =0 (z,t) € Q x (0,400),
(1) ul, =0 t € (0, +00),

u(z,0) = ug(x) x €,
where 1 <p< 22 O CR"(n >3) is an exterior domain and
(R™, g) is a complete Riemannian manifold. We establish Morawetz
estimates for the system without dissipation (a(z) = 0 in ()
and meanwhile prove exponential stability of the system with
a dissipation effective on a neighborhood of the infinity.

It is worth mentioning that our results are different from the
existing studies. First, Morawetz estimates for the system are
directly derived from the metric g and are independent on the
assumption of an (asymptotically) Euclidean metric. In addition,
we not only prove exponential stability of the system with
non-uniform energy decay rate, which is dependent on the initial
data, but also prove exponential stability of the system with
uniform energy decay rate. The main methods are the development
of Morawetz multipliers in non (asymptotically) Euclidean spaces
and compactness-uniqueness arguments.
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1. Introduction
1.1. Notations
Let O be the origin of R” (n > 3) and
(1.1) r(z)=|z|, x=eR"
be the standard distance function of R™. Moreover, let (-,-), div, V, A and
I, = (6i,j)nxn be the standard inner product of R", the standard divergence
operator of R™, the standard gradient operator of R™, the standard Laplace

operator of R™ and the unit matrix,respectively.
Suppose that (R", g) is a smooth complete Riemannian manifold with

(1.2) g= Z gij(x)dxidx;, xeR"
ij=1
Let
(1.3) G(x) = (9i(x))nxn, x€R™
Denote

(1.4)  (X,Y), = (G(z)X,Y), yX\g =(X,X);, X, Y €R? zeR"

Let D be the Levi-Civita connection of the metric g and H be a vector field,
then the covariant differential DH of the vector field H is a tensor field of
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rank 2 as follow:
(1.5) DH(X,Y)(z) = (DyH,X)4(z) X, Y eR}, ze€R".

Let S(r) be the sphere in R with radius r. Then

(1.6) <X, 51> =0, for X € S(r)s, v € R"\O.

Finally, we set div 4, V4 and Ay as the divergence operator of (R", g), the
gradient operator of (R", g) and the Laplace—Beltrami operator of (R, g),
respectively.

1.2. Nonlinear Schrodinger equation

Let © C R™ be an exterior domain with smooth compact boundary I' and
let v(x) be the unit normal vector outside 2 in (R",g) for z € I'. Assume
that the origin O ¢ ). Denote

(1.7) dy = inf || and dy = sup|z|.
zel zel

Then dy > dy > 0. For any constant h > do, we define
(1.8) Q(h) = {z|z € Q, |z| < h}.
We consider the following system:

iug + Agu +ia(z)u — [ulPlu=0 (z,t) € Q x (0,+00),

(1.9) ul. =0 t € (0,+00),
u(z,0) = up(x) x €,
where
n+2
1.10 1<p<
(1.10) P=u—2

and a(x) € C%(Q) is a nonnegative real function satisfying

(1.11) ilelg (a(x) + ‘Vga(x))g + ‘Aga(x)D < +o00.
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Define the energy of the system (1.9) by

1 1
1.12 E(t) =< 2+ |Vgul?)d +/ PHldg,,
(112 0= [ (P +19gu) doy + — [l az,

where

(1.13) dry = +/det (G(x))dz, |u|* = ua, |Vgu|§ = (Vgu, Vyu),.

For the free Schrodinger equation on a Riemannian manifold, many
Strichartz estimates and local energy estimates are given by [6], 8, 9] 111 12,
23, 130, 44}, 49, [53], 54] under the non-trapping assumption and the assump-
tion of an Euclidean metric at infinity. There exists a wealth of literature
on such estimates for the wave equation (see [10] 29, 39 47, (48] [52] and
references therein).

For the linear damped Schrodinger equation on Riemannian manifolds,
the local energy decay in an exterior domain has been proved in [IH4, [13]
35, 51] and many others under the geometric control condition (see [5, [50]).
Under the non-trapping condition on an exterior domain, exponential de-
cay for the global energy has been proved in [7] for the Schrédinger equation
with a dissipation effective on a neighborhood of the infinity. For the nonlin-
ear damped Schrodinger equation on compact manifold or Euclidean space,
many stability results are given by [14] [15], [I7H21] 25] and references therein.
Such results are also based on the non-trapping assumption or geometric
control condition.

The non-trapping assumption and geometric control condition are very
closely related to the geodesic escape. Since the geodesic depends on a non-
linear ODE, they are hard to check. On the other hand, the non-trapping
assumption and geometric control condition are not sufficient to derive
Morawetz estimates for hyperbolic equations on global space. In comparison
to the existing studies, we here take advantage of the metric g to establish
Morawetz estimates for the Schrodinger equation.

As is known, the multiplier method is a simple and effective tool to deal
with the energy estimate on PDEs. In particular, the celebrated Morawetz
multipliers introduced by [45] have been extensively used to study the energy
decay of the wave equation with constant coefficients, see [24], [39] 43}, [46] and
many others. For bounded domains, Yao[56] developed Morawetz multipliers
for the wave equation with variable coefficients, which is a powerful tool in
the analysis of systems with variable coefficients and has been extended by
[16, 57, 59] and many others mentioned in [58]. However, how to establish
the Morawetz estimates in non (asymptotically) Euclidean spaces is still an
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open problem. Therefore, one purpose of this paper is to establish Morawetz
estimates on non (asymptotically) Euclidean spaces.

The organization of our paper goes as follows. In Section 2, we will state
our main results. Then some multiplier identities and key lemmas for prob-
lem will be presented in Section 3. We will show Morawetz estimates for
the nonlinear Schrodinger equation without dissipation in Section 4. Then
proofs of stability of the damped nonlinear Schrédinger equation with non-
uniform decay rate will be presented in Section 5. We will prove stability
of the damped nonlinear Schrodinger equation with uniform decay rate in
Section 6. Finally, the proof for Assumption (Ul) and Assumption (U2)
hereinafter under stronger geometric condition is given in Appendix.

2. Main results
2.1. Well-posedness
Denote
(2.1) C(Q) = {w € C™(Q) and /Q|w|2dxg < +oo}.

(2.2) G ()

{w € C™(Q) and /Q (lw]? + |Vgw|2) day < +oo} :
(2.3)  C3°(Q) = {w € C™(Q) and
/Q ([wf? + [Vgwl2 + | Agul?) dey < —l—oo}.
Let L?(Q2) be the closure of C£°(€2) with respect to the tolopogy
2.4 @)y = [ P,
H1(Q) be the closure of C5°(€) with respect to the tolopogy
(2.5) )y = [ (1w + 9yu) day,
and H2(2) be the closure of C5°(2) with respect to the tolopogy

(2.6) (@) oy = /Q (ol + [Vgwl? + | Agul?) day.
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Denote
(2.7) HNQ) = {w e H(Q), w|, =0}

It is well-known that the system is subcritical and has been studied
extensively in the FEuclidean geometry for large classes of nonlinearities, see
the books [22] 28], and the references therein. On the hyperbolic spaces,
well-posedness and scattering of the system without dissipation have
been proved in [31} 32]. Therefore, throughout the paper, we assume that
the following condition holds true.

Assumption (S). The system ([1.9) is well-posed such that
(2.8) ueC ([0, +oo), HA(Q) ﬂHQ(Q)) .

2.2. Morawetz estimates for the nonlinear Schrédinger equation
in non (asymptotically) Euclidean spaces

The main geometric conditions for Morawetz estimates of the nonlinear
Schrodinger equation in non (asymptotically) Euclidean spaces are given
by the following assumption.

Assumption (A). Assume that

(2.9) a(z) =0, inQ,
(2.10) G(:c)gr - aar’ z €R™,

(2.11) <<(1 — a(z)) G(z) + ;agf") X, X> >0 for X € S(r),, z € Q,
(2.12) det (G(z)) = cor?, z€Q,

where ¢g > 0, d are constants and «(z) is a continuous nonnegative function
defined on R™.

Remark 2.1. Let (r,6)=(r,61,602,...,0,_1) be the polar coordinates of
x € R™ in the Euclidean metric. From (2.10)), we have

n—1
2.13 g=dr?+ vii(r,0)d0;d0;, x € R",
J J
ij=1

which implies 7(z) = |z| is the geodesic distance function of (R", g) from z
to the origin O.
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Remark 2.2. Let Assumption (A) hold true. It follows from relations (4.6)
and (4.7) hereinafter that

— — In /det

(ntd2=1) _n-1, 0ydet(G) 5o,

r r or
(2.14) S G B

T
Then
(2.15) d>2(1—n).
Example 2.1. Let d; = dy and G(z) satisfy
TRT TR®T

2.1 = Ly ——, R",
210 6= "5l (n-T5E) ee

where f(r) is a smooth function defined on [0,400) such that

@17)  J@) =" el zd and f()=1, |o <%
Therefore,
(2.18) G( )3—— eR"
' Vor "o * ’
1 0G(x) m,

. oy - >
(2.19) <<2 5 >X,X> 2r|X|g for X € S(r)sz, |z| > di,
(2.20) det (G(x)) = ™Y for |z| > d;.

Let
(2.21) alz)=1— % d=m(n—1).

Then, , and hold true.

Theorem 2.1. Let Assumption (A) hold true. Assume that

or
. — < .
(2.22) 5, <0 €T

Then there exists a positive constant C such that for d = 2(3 —n),

(2.23) /OT/Q

p+1 T
|U|7~ dx4dt +/0 /QO‘(f)(Wguyj — |up|*)dz,dt < CE(0),
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and for d > 2(3 —n),
2 p+1
/ / <|u| o ) o
x
(2.24) —i—/o /QT(VQUEJ — |u[*)dz,dt < CE(0).

2.3. Stability of the damped nonlinear Schrédinger equation
with non-uniform energy decay rate

The main geometric conditions for stability of the damped nonlinear Schro-
dinger equation with non-uniform energy decay rate are given by the follow-
ing assumption.

Assumption (B). There exist constants Ry > da,0 < 6 < 1 such that

(2.25) <<(1 —§G(z) + ;ﬁ@) X, X> >0 for X €R", z € Q(Ry),

and a(z) satisfies
(2.26) a(z) > ag >0, € (NQRy—e0)) | JT(e1),

for some 0 < 2g1 < g9 < Ry — do, where

(2.27) re) = Jtyee|ly—al<eh
zel

and for any € > 0, there exists C¢ such that
(2.28) ’Aa ’<Ca()+e, v e Q.

To prove the stability of the system (1.9)), the following assumptions are
also considered.

Assumption (U1). LetQcC R™ be a bounded domain with smooth bound-
ary and w be an open subset of € such that

(2.29) w> Jlye@|ly-al<e,
o)

for some & > 0. Assume that w satisfies geometric control condition:
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(GCC) There exists constant Ty > 0 such that for any = € Q) and any
unit-speed geodesic y(t) of (R",g) starting at x, there exists ¢ < Ty such
that v(t) C w.

Then there exists 77 > 0 such that for any 7" > 17, the only solution «
in C([0,T], H'(€)) to the system
(230) {mt +Au=0 (z,t)€Qx(0,T),

u=0 (z,t) € wx (0,7),

is the trivial one u = 0.

Assumption (U2). LetQ C R™ be a bounded domain with smooth bound-
ary and w be an open subset of 2 such that

(2.31) wo Jiye@|ly-al<e
z€8Q

for some § > 0. Assume that w satisfies geometric control condition:
(GCC) There exists constant Ty > 0 such that for any =z € Q and any
unit-speed geodesic y(t) of (R™,g) starting at x, there exists ¢ < Ty such
that v(t) € w.
Then there exists 71 > 0 such that for any 7' > Tj, the only solution u
in C([0,T], H'(Q)) to the system
(2.32) {iut +Agu—ufPftu=0 (x,t) € Q x (0,7),
u=0 (x,t) € wx (0,7T),

is the trivial one u = 0.

Remark 2.3. If 73 = 0, which implies T can be arbitrary small in (2.30)
and (2.32)), Assumption (U1) and Assumption (U2) are called as unique
continuation condition. On Euclidean space, unique continuation condition
for linear(or nonlinear) Schrodinger equation has been proved by [26], 27, [33]
34, 136l 55] and the references therein. On Riemannian manifold, under the
assumption that unique continuation condition for linear Schrédinger equa-
tion holds true, unique continuation condition for the nonlinear Schrédinger
equation was proved by [40] in dimension 3 and [25] in dimension 2 .

By the equivalent relation between the controllability and the observ-
ability estimate [42], Assumption (U1) follows from Theorem 4.4 in [41].
However, a detailed proof of Theorem 4.4 in [41] is not provided.
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Under a stronger geometric condition than (GCC), we can prove As-
sumption (U1l) and Assumption (U2) directly by multiplier methods. See
Proposition ({A.1) and Proposition (A.2)) in the Appendix.

Theorem 2.2. Let Assumption (B), Assumption (U1l) and Assumption
(U2) hold true. Assume that |[uo||r2(q) < Eo. Then there exist positive con-
stants Cy and Co, which are dependent on Ey, such that

(2.33) E(t) < Cie”®tE(0), Vt>0.

2.4. Stability of the damped nonlinear Schréodinger equation
with uniform energy decay rate

The main geometric conditions for stability of the damped nonlinear Schro-
dinger equation with uniform energy decay rate are given by the following
assumption.

Assumption (C). There exist constants Ry > d2,0 < § < 1 such that

(2.34) G(az)g 0 lz| < Ry and det (G(z)) = cor?, € Q(Ry),

or o’
r 0G(x)

(2.35) <<(1—5)G(~’C)+2 or

) X,X>2 0 for X e R}, z € Q(Ry),
where ¢y > 0,d are constants and a(x) satisfies

(2.36) a(x) > a9 >0, zeQ\QRy—eo),

for some 0 < g9 < Ry — do and for any € > 0, there exists C¢ such that
(2.37) ’Aga(x)’ <Cea(z)+e€ z€Q.

Remark 2.4. Let Assumption (C) hold true. It follows from the rela-
tions(4.6) and (4.7)) hereinafter that

(n+d/2—-1) n-1 N 0lny/det (G(x))

2
" " o = Agr =trD"r

v

(2.38) (n— 1)%, x € Q(Ry).
Then

(2.39) d>2(n—1)(6 - 1).
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Theorem 2.3. Let Assumption (C) hold true. Assume that
(2.40) T <o

Then there exist positive constants Cq,Cy such that

(2.41) E(t) < Cie%tE(0), ¥t > 0.

3. Multiplier identities and key lemmas

1835

We need to establish several multiplier identities, which are useful for our

problem.

Lemma 3.1. Let Q C R" be a bounded domain with smooth boundary. Sup-

pose that u(x,t) solves the following equation:

(3.1) iug + Agu+ ia(z)u — |ulP~tu =0 (z,t) € Q x (0, +00).

Let H be a Clvector field defined on Q. Then

T ou >
Re —H(u) ) dI',dt

/0 /aﬁ <8v (®) ) 4

1 /7 ~ 5 2
—|—2/0 /aﬁ (Im(uut)—\vgu|g—p+1
1 T T

= / Im (uHM(@)) dwg’ +/ /ReD’H(Vgﬂ, Vgu)dxdt

2 Ja 0 0o JO

n /0 ! /@ T (a(e)uH (@) deydt

17 _ s 2 ,
(3.2) + 2/0 /ﬁ <Im (uir) — [Vgul, — W!u”“) div yHdz,dt,

u|P+1> (H,D),dT ,dt

where D(z) is the unit normal vector outside 0 in (R", g) for = € 09 and
dl'y denotes the volume element of (I, §), where § is induced by the metric g.
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Moreover, assume that the real function P € 02(6). Then

T
// Im(uat)—|Vgu]2—|u]p+1>Pd:ngdt

//8Q |2 dF dt — //|uy (AyP)dz,dt
(3.3) / /BQRe Ot

Proof. Firstly, we multiply 1) by H (@) and integrate over O x (0,7). We
deduce that

Re (iugH (@) = —Im (uH (@)
= —%Im (wH(u) — uH(u))
_ —%Im (uH (@), — H(ui,))

1 B 1 _
= _ilm (uH(u)), + ilmH(UUt)

(3.4) _ —%Im (uwH(@)), + %Im div , (wiieH) — %Im (uity div M),
Re (H(u)Agu)) = Re (div ,H(2)Vyu — Vou(H, Vyu)g)
= Re div yH(u)Vyu — Re Vyu(H, Vi),
= Re div /H (@) V u — Re DH(V 4, Vyu) — Re D*a(H, Vu)
= Re div yH(a)Vyu — Re DH(V i,V u) — Re D*a(V yu, H)
= Re div 1 () Vyu — Re DH(V i, Vgu) — =H(|Vul?)
= Re div ;H(a)V4u — Re D?—[( g, Vgu)
1. .
(3.5) —5 dlvg(|Vgu]g’H) + §|Vgu]g div 4,
and
Re (ia(z)u — |u|p_1u) H(u) = —Im (a(z)uH(u))
pt1
(3.6) div g (JulPTH) + [u | d1v JH.

Cp+1

The equality (3.2) follows from Green’s formula.
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In addition, by multiplying 1' by P and integrating over Q x (0,7,
we obtain

(3.7) Re (iPuwu) = —Im (Pwat) = Im (Putiy) ,

Re (PulAgu) = Re (div 4PuV u — Vg u(Pu))

1
= Re div yPaV u — P|V ul? — =V, P(|Jul?
g g g*lg 2 g

= Re div yPuVgu — P|V4ul’
(3.8) — %divg\u|2V9P+ %|u!2AgP,
and
(3.9) Re (ia(z)u — |u|p71u) Pu = Re (ia(az)P|u|2) — PlufP™ = —PJufPtL.
The equality follows from Green’s formula. ]

The following lemma will be utilized frequently in our subsequent proof.

Lemma 3.2. Let xy € R" be a fized point. Let H(x) = x — xg, then

(3.10) DH(X,X) = <<G(x) + MaG(w)) X,X> ,

2 or
for X e R}, x € R",

where 7(x) = |z — xo].

Proof. Let x e R", X =>"" | Xia%i € R?. Note that
= 0

(3.11) H(z) =Y (zi— xo’i)(“)xi'

i=1

Then, we deduce that
DH(X,X) En D (xp —x )—(9 9 X; X
’ Rl Ern k 0.k 8xk ’ 8:cj g B

— Z ginin + Z (mk — $O,k) <Daii aim? an>gXin

ij=1 i.j.k=1
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- o 9
= X2+ Z (1 — 2o k) <D > > XiX;

7
sz, Ox; OX;
ijk=1 FYM SR g

n

— X2 (xk xO,k) UX. X

| ’g+ ‘;1 2 Oy,
Z7]7 =

(3.12) - <(G(az) + ?(;)8(;;37)> X,X> :

O

The following lemmas show the relationship between the metric g and
geometric control condition.

Lemma 3.3. Let Q) C R"be a bounded domain and xg € R™ be a fized point.
Assume that there ezists 6 > 0 such that

r(x) 0G(x)

(3.13) <<(1—5)G(:U)+2 7 )X,X>ZO, forXG]Rg,xeﬁ,

where 7(x) = |z — xo|. Then, for any x € Q and any unit-speed geodesic ~(t)
starting at x, if

(3.14) () €D, 0<t<t,
then

2 =
(3.15) to < gsup{|1:—x0|g(x) ‘ xEQ}.

Proof. Let H(x) = x — xg. It follows from (3.10]) that

(3.16) DH(X,X) > §|X[2 forall X €RZ, z € Q.
Note that
(3.17) (Dl =1, Dy (t) = 0.
Then
to to
WA O] = [ 0 )

(3.18) _ /0 " DH (1), (0)dt > Sto,
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Hence

(3.19) to < gsup {1Hly() [z €0}

Lemma 3.4. Assume that

0 0 n
0G(xz) 2 TRT B
(3.21) 5 = —TzG(;U) <In — P > . x| =,

where ro is a positive constant. Then, for any x € S(r3) and any unit-speed
geodesic y(t) starting at x with

(3.22) 7' (0) € S(r2)a,
we have
(3.23) ~(t) € S(r2), Vt>0.

Proof. Note that

(3.24) D(rDr) = Dr @ Dr + rD?r.
With , we obtain
1 10G(z)
2 = —_ —_— ==
(3.25) D r(X,X)—<<TG(a:)+2 o )X,X> 0,

for X € S(r2)z, =€ S(r2). R

Let g be a Riemannian metric induced by ¢ in S(r3) and D be the
associated Levi-Civita connection.

Let 4(t) be a unit-speed geodesic of (S(rz2),g) starting at = € S(r2), then

~

(3.26) <a’<t>,§r> —0, Do) =0, Vi>0,
g
Therefore,

~ ~ - - 0 0
D5 yY (t) = Dy (t) + <Daf(t)’vl(t)7 8r>g g

(3.27) = Dy (t) = D*r(3 (1), 7 (1) - = 0,
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which implies () is also a geodesic of (R", g). O

4. Proofs of Morawetz estimates in non (asymptotically)
Euclidean spaces

Lemma 4.1. Let u(z,t) solve the system (1.9). Then

(4.1) /|u|2d:ng :—2/ / z)|u*dxydt,
Q
T

T
:—2/ / a(z) (|Vgul2 + [ulPt) dagdt

(4.2) / / ul2(Aga(x))daydt,

for any T > 0.

Proof. Multiplying the Schrodinger equation in ((1.9)) by 2% and integrating
over 2 x (0,7, we have

(4.3) /Q\u|2d$g ——2// (2)uldz,.

After multiplying the Schrédinger equation in (1.9) by 2a; and then
integrating over € x (0,7"), we obtain

2
(4.4) /Q <|Vgu|§ + Py 1|u|:0+1> d:vg = —2/ /Im x)uty)dxgdt.

Let P = a(z) and 0= Q(a) in . Substituting into , letting

a — 400, we get

2
/ (|Vgu|§ + p+1|u|p+l> de = —2/ / ) (IVg u|2 + [ulPt) dagdt
)

(4.5) —i—/o /Q|u]2(Aga(a:))da:gdt.
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Lemma 4.2. Let Assumption (A) hold true. Then

(4.6) D% (X, X) > O‘E@ X2 for all X € S(r),, x€Q,
n+d/2—1

r

(4.7) Agr = for x € Q.

Proof. Note that

(4.8) D(rDr) = Dr @ Dr + rD?r.
With (3.10)), we obtain
1 1 0G(x) a(x)
: 2 ={(= - > 2
(4.9) Dr(X,X) <<TG(3:)+2 9 )X,X>_ . | XT3,

for X € S(r)z, =€, and

(4.10) Ay — n ; 1 N O0ln dae: (G(z)) _ n+d7{2 -1 for o € Q.

O
Proof of Theorem [2.1. Let H = % and Q = Q(h) in . It follows from

(3.2), (4.6) and (4.7), that
drl ,dt
//89(h <3V ()> !
2
+ = Im (uu —Vuz—upH) H,D),dl dt
sl () = 9 = ) o,
> 1/ Im (ua, d:z:g / / ]Vgu\g |y ?)dx g dt
2 Jam Q(h)

-1
+//<mw|W| )
1
= / Im (ua, dmg / / gu\g — up|?)dz g dt
2 Jam) Q(h)
T —1
+ Im (uty) — Vg u] - |u\p+1) dxgdt
0 Q(h

T (n-1p-1)
4.11) P g dt.
< +/0/Q mm ul™ dg
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Let P = "1 and 0= Q(h) in . Substituting into , letting

h — 400, we obtain
1 1
/ Im (ui,) dxg‘ <> dzgdt
r

/ / p—l— r >|u|p+1d:ngdt
(x)
/ / — |up|*)da dt

(4.12) < TIIp,

where

T
:/ / e < >dF dt

0

2
/ / <Im (utiy) ]Vgu\z — W]U‘PH) (H,v)qdl gdt
T
/ /y |2—d1“ dt+/ /Re (Pﬂau> dT,dt.
r ov

Since u|r = 0, we obtain Vpgﬁ‘r =0, that is,

3

1
4.1 —
(13) -3

_ Ou
(4.14) Vg = " forz € I'.
Similarly, we have
ou ou Or
(4.15) H(u) = (H,Vgtu)y = s (H,v)g = 5 50 for x € T

Using the formulas (4.14)) and (4.15)) in the formula (4.13]) on the portion T,
with (2.22)), we obtain

2
(4.16) / /‘6“ 8Td1“ dt <0,
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Substituting (4.16]) into (4.12)), we have
1
/Im (uur)dxg‘

/ / )y |P+1dx dt
p+1
X
+/ /(\Vgu|§—\url2)dxgdt
o Jao T
<0.

Note that

(4.18) A, (1> __ntd2-3

1
=) dadt
(1) e

(4.17)

r r

With (4.17), we obtain for d = 2(3 — n),

1 (p-1nr-1)
/Im Uty dmg / / p+1 luPTda,dt

— up|?)dz ydt

(4.19) < 0,

and for d > 2(3 —n),

1 —1)( d/2 —
/Im Uy d$g / / n T;:; / 3) u?dxdt
/ / p+1 )| [ oyt

/ / (=) — up|?)dwdt
(4.20)  <o0.

It follows from ([2.9)), (4.1) and (4.2]) that

(4.21) E(t) = E(0), t>0.

The estimates ([2.23]) and (2.24)) follows from (4.19) and (4.20)). O
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5. Proofs of stability with non-uniform energy decay rate

From Lemma the following lemma holds true.

Lemma 5.1. Let assumption (B) hold true. Then, there exists tg > 0, for
any x € Q(Ry) and any unit-speed geodesic y(t) starting at x, there exists
t < tg such that

(5.1) ~y(t) € 8Q(Ry).

Lemma 5.2. Let assumption (B) hold true. Let u(z,t) solve the system

(@. Then

T T
E(0) +/ E(t)dt < C/ / a(@) (|uf® + [Vgul? + [ulP™) daydt
0 0o Ja

T
(5.2) +C / / u|*dzydt,
0 Q(Ro—¢0)

for sufficiently large T'.

Proof. Let b(x) € C*°(R™) be a nonnegative function satisfying

(5.3) b(x) =1, x€QRyp—e0)\['(e1) and b(z)=0, =& R"\Q(Rp).
Let

(5.4) H(z) =b(x)x, xeR"

It follows from and that

(5.5) DH(X,X) > 6|X|2 forall X € R}, z € Q(Ry—e0)\['(e1),
(5.6) divgH =trDH >nd for all x € Q(Ry — e0)\I'(e1).
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Let # = H and Q = Q(Rp) in . From , we have

1 T r
02/ mmmamm%‘+5/ / IV gul2dz,dt
2 Ja(ry) 0 0 JO(Ro—co)\T(en)
T
—C/./ IV gul2dagdt
0 J(Q2R)\Q(Ro—e0)) UT'(e1)
T
+ / / I (a(e)uH (1)) dagdt
Q(Ro)
/ / (Im wiig) — |Vg u| |u|p+1> div yHdxgdt
Q(Ro)
= / Im (uH(w)) dxg —|—5/ / Vg u|gdxgdt
2 Q(Ro) Q(Ro—eo)\T'(e1)

_C/(/ IV gul2dadt
Q(Ro)\Q(Ro—e0)) UT (e1)

/ /RO Im (a(z)uH (u))dzydt

E / / (1w — [V gul? — ful ) div o Hydt
R())

1)div,H
(5.7) / / Vol et
R, 2(p+ 1)
Let P = diVQHH and Q = Q(Rp) in . Substituting 1D into , we
obtain

;/ [ I (0 ))dizg| —/ /RO [ul* Ay (div g H)dzydt

/ / T (a(a)uH (@) dydt
Q(Ro)
+ 5/ / |Vgu|3d1:gdt
Q(Ro—¢0)\I'(e1)
/ / (p7)|u\p+1d:pgdt
Q(Ro—eo0)\I'(g1) 2(]9 + 1)

(5.8) gc/‘/ (IVgul? + [ufP*h) dagdt.
0 J(Q(Ro)\Q(Ro—20)) UT (1)
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Therefore
T
/ / (\Vgu@—i— [uP) dagdt
Q(Ro—€0)\I'(e1)
< C(E(0)+ E(T))
+C/ / ) (Jul? + [Vgul? + [ufPth) daydt
Q(Ro)
(5.9) +C/ / lu2dz,dt.
0 Q(Ro—Eo)
Hence

/ " Byt < C(B(0) 1 B(T)
0

+c/ / ) (uf? + [V gul? + [uP*) degdt
(5.10) +C / / u|?dx,dt.
0 Q(Rg—ég)

With (4.1) and (4.2), we deduce that

CE(T) < CE(0 +0/ / ) (Juf? + [V gul? + [uf"*) daydt

(5.11) +2/0 /Q]u|2‘Aga(x)’dxgdt,

and

ACE(0) = / 4C E(t)dt — / 4C(E(t)fE(0))dt
< [ Eareac [ [ o) (o 0+ )
0

(5.12) +2C/ /|u|2‘Aga(:c)‘dmgdt.
0 Q
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Substituting ((5.11)) and (5.12)) into (5.10), for T > 4C, with (2.28)), we have

E(0) +/ t)dt < C/ / ) (Ju? + [Vgul? + [uP*) duydt
0
(5.13) e / / gt
0 Q(Ro—&‘o)
The estimate (5.2)) holds true. O

Lemma 5.3. Let assumption (B), assumption (U1) and assumption (U2)
hold true and let T' be sufficiently large. Then for any [[uol|12(q) < Eo, there
exists positive constant C(Ey,T) such that

+ / ! E(t)dt

(5.14) < C(Bo, T / / ) (uf? + [Vgul2 + ) da,dt.

Proof. We apply compactness-uniqueness arguments to prove the conclu-
sion. It follows from (5.2)) that

/E dt<0// ) (Juf? + [V yuf2 + [ulPL) digdt

(5.15) +C/ / lu2dx,dt.
0 Q(Ro—Eo)

Then, if the estimate |i doesn’t hold true, there exist {uk}zozl such that

T
/ / g |2z ydt
0 Ro 80)

(5.16) > k/ / ) (Jugl? + |V guil2 + [ur[P*1) daydt.
Thus,
T
(5.17) E,(0) +/ Ey(t)dt < CEy,
0
where

1
618 B0 = [ (V) dey = [ e,
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Therefore, there exists @y and a subset of {uk}zozl, still denoted by
{Uk}io:p such that

(5.19) uy, — Gy weakly in L2([0,T], HA(Q)),
and
(5.20) uy, — g strongly in L?(Q(Rg — &¢))

for arbitrarily fixed ¢ € [0, T].
Note that
(521)  luk — @32 (qmy—zyy < C(T)Eo, ¥t €[0,T], V1 <k < +oo.

Lebesgue’s dominated convergence theorem yields

(5.22) ug — tg strongly in L2(Q(Ry — o) x (0,T)).
Case a:
T
(5.23) / / it |*dzydt > 0.
0 Q(Ro—¢0)

It follows from (1.11)), (4.1), (4.2) and (5.17)) that there exists C(T) > 0
such that

(5.24) Ei(t) < C(T)Ey, YO<t<T.
Denote
2n q
5.25 g=—+—, ¢'=——
(5.25) (n—2)p g—1
Since 1 < p < Z—fg, then
2n 2n
5.26 *
( ) n-+2 Se9 < n—2
Note that
1 1
q q

then, LY (Q(Ry — o)) is the dual space of L (Q(Ry — £¢)).
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Note that
(5.28) H} (Q(Ro — £0)) < L2 (Q(Ro — <0)).
therefore, it follows from that
(5.29) {Jur|P~tug} are bounded in L°([0, T], LY(Q(Ro — €0))).
Then
(5.30) {|ug|P~tuy} are bounded in LI (Q(Ry — o) x (0,T)).

Hence, there exists a subset of {uk}zozl, still denoted by {uk}zozl, such that

(5.31) g P~ ugp — |to[P~ g weakly in L7 (Q(Rg — g) x (0,T)).
It follows from ([5.16)) that
(5.32) a(z)ip =0 (x,t) € 2 x(0,T).

Therefore, with (5.19) and (5.31]), we obtain

(5 33) itgr + Agﬁo — ‘ﬁo’pfl’llo =0 (.I‘,t) S (Q(Ro — 60) X (O,T)) s
. a(z)ig =0 (x,t) € 2 x(0,T).

With (5.1) and Assumption (U2), we have

(5.34) iy =0, (z,t) € Qx(0,T),
which contradicts .
Case b:
(5.35) o =0 on Q(Ry —ep) x (0,7).
Denote
(5.36) v = uk/\/a for k > 1,
where

T
(5.37) ck = / / |ug|2dz  dt.
0 Q(Ro—¢0)
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Then v, satisfies

- 28 vkt + Agug +da(@)vg — |uglP o, =0 (2,t) € Q x (0,T),
(5.38) =0 te (0,7),

Uk
r

and
T
(5.39) / / v |Pdxydt = 1.
0 Q(Ro—¢0)
It follows from ({5.16]) that
T
(5.40) | > k:/o /Qa(:n) (J0kl? + [V guil? + [l ox[2) digdt.

Therefore, it follows from ([5.15)) that

T
~ ~ 1
(5.41) Ex(0) +/ Ex(t)dt <1+ A <2,
0
where
(5.42) Ei(t) = /Q (lorl® + IV guil2 + [ug P~ |vg|?) daxg.

Hence, there exists vy and a subset of {vk}iozl, still denoted by {Uk};o:p
such that

(5.43) vp — vo weakly in L*([0,T], HE(Q)),

and

(5.44) vy — g strongly in L2(Q(Ry — €o)) for arbitrarily fixed t € [0, 7).
Then by Lebesgue’s dominated convergence theorem, we obtain

(5.45) vp — o strongly in L?(Q(Ry — o) x (0,T)).

It follows from (1.11)), (4.1) and (4.2]) that there exists C(T") > 0 such

that

(5.46) Ey(t) < C(T)Ex(0), YO<t<T.
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With (5.36)) and (5.41]), we obtain

(5.47) Ej(t) < C(T)ER(0) < 2C(T), YO<t<T.
Let ¢, ¢* be given by . Note that
(5.48) HE (Q(Ry — 20)) <> L2 (Q(Ro — ).

Therefore, it follows from (5.47) that

(5.49) {|ve[P~Y0x} are bounded in L*([0,T7], LI(Q(Ro — £0)))-

Hence

T
/ / (gl ox])* dazgdt
0 Q(Ro—¢0)

—1)

alp=1) T 2n
_ // o |25 drydt
0 Q(Ro—so)
c(T)

a(p—1)
(5.50) <¢ ?
With (5.35)), (5.37) and (5.45)), we obtain
g 1 q
(5.51) lim / / [P~ Jog])? iyt = 0.
k—+oo 0 Q(RO_Eo) ( ) g

It follows from (5.40) that
(5.52) a(x)vg =0 (x,t) € Q2 x (0,T).
Therefore, it follows from (5.38)), (5.43) and ([5.51)) that

{’iUOt + Agvo =0 (.’L‘,t) € Q(Ro — 50) X (O,T),

(5.53) a(@)vo = 0 (z,t) € @ x (0,7).

With (5.1)) and Assumption (U1), we have
(5.54) vo =0, (x,t) € Q@ x (0,T).

It follows from ([5.39)) that

T
(5.55) / / lvo|2dzydt = 1,
0 Q(Ro*Eo)

1851
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which contradicts ((5.54)). O

Proof of Theorem[2.4 Let T be sufficiently large. It follows from (4.1]) that
|u][22(q) is non increasing. Hence, with (5.14), we obtain

S+T
B(S) + / E(t)dt
S+T
(5.56) C(By T / / ) (jul? + [V guf? + [l L) degdt,

for any S > 0.
It follows from (4.1)) and ( . ) that

S+T S+T
(5.57) / |u|2d:1:g‘ ~ 9 / / o) |ul2de,dt,
Q S s Q

and
9 s
2 1
(190 + 2l ) s,
S+T
= —2/ / a(x) (|Vguls + [ulPt) degdt
S Q
S+T
(5.58) + / / P (Aga(e))de,dt.
S Q

+T

Therefore, with (5.56)), we deduce that

S+T

E(S) + /5 E(t)dt
< C(Eo, T)(E(S) — E(S +T))

S+T
+C’(E0,T)/ /‘Aga(a:)‘\ulzdxgdt
S Q
S+T

= C(Eoy, T)(E(S) = E(S+T)) - M/Q ’“‘deg‘s

(5.59) + /S o /Q (08, 1| Aga()| — Ma(a)) fufdyt

For sufficiently large M, with (2.28]) we have

(5.60)  E(S) < O(E T)(E(S)—E(S+T))—M/| 24 ‘S”
. < 0 o uj-axg g
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Denote
~ M
.61 E{t)=E®t) + s 2da,.
(5.61) () = B0+ g [, [P,

From (5.60)), we obtain

(5.62) E(S) < C(Ey, T)(E(S) — E(S +T)).
Then
~ Ey,T)—-1~
(5.63) E(S+T) < ME(S).
C(E()a T)
It follows from (1.11} . and (5.61) that there exists C(T) > 0
such that
(5.64) E(S+1t) <C(T)E(S), YO<t<T.

With (5.63)), E(t) is of exponential decay. Hence, there exist
Cl(E()), CQ(E()) >0
such that

(5.65) E(t) < C1(Ey)e 2 E)E(0), vt > 0.

6. Proofs of stability with uniform energy decay rate

Lemma 6.1. Let Assumption (C) hold true. Assume that

or
(6.1) So<0. zel

Let u(z,t) solve the system (1.9). Then

(6.2) E(0) +/ t)dt < C’/ / ) ([ul? + [Vgul2 + [ufPth) daydt,

for sufficiently large T.
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Proof. Let b(z) be a smooth nonnegative function defined on [0, 4+00) satis-
fying

(6.3) b(z)=1, 0<z<Ry—ep and b(z)=0, z>Rp.
Let
(6.4) H(z)=0b(r)z, ze€R"

It follows from ([2.34]), (2.35)) and (3.10|) that

(6.5) DH(X,X)>6|X|> forall X €R}, € Q(Ry— o),
divyH =1+ rAyr
ey (n— L, Olny/det (G@)))
r or
(6.6) =n+d/2 forall X e R}, z € Q(Ry— o).

Let H = H and Q = Q(Ry) in . From , we have

/OT/FRe <gZH(a)> T dt

e ) , 2
+ 2/0 /F <Im (wite) = [Vguly = o 1|u|P+1> (H,v)gdl ydt

T T
> 1/ Im (uH(ﬂ))dxg‘ +5/ / IV gul2dz,dt
2 Ja(r,) 0 0 JQ(Ro—eo)

T
— C/ / ]Vgu\gdxgdt
0 J2eQ(Ro)\Q(Ro—e0)

T
n /0 /Q o (@ uH @)

5 )y (w0 =19 = 20
+ = Im (uiiy) — |Vgu|? — ——|ulP™ | div ,Hdz,dt
2J)o Jar) e p41 g
1 T T
-3 / Im (uH(ﬂ))dxg’ 44 / / IV gul2daydt

Q(Ro) 0 0 JQ(Ro—eo)

T
- C'/ / ]Vgu|§dxgdt
0 IEGQ(Ro)\Q(RQ—&))
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T
" /O /Q o (@ uH @) i

1 T
/ / Im (uity) — |V gul? — |u|p+1> div gHdz,dt
Q(Ro g

1)divH
(6.7) / / NI |y P gt
o, 2 + 1)

Let P = divz-"H and Q = Q(Rp) in . Substituting lb into , we
obtain

1

/ Im (uH (@ ))dxg —/ / [u2Ay(div g H )dx,dt

2 Ja(r,) O(Ro)

+/ / H(u ))dxgdt—i—é/ / ]Vgu\gdxgdt
0 Q(R, Q(Ro—¢0)

T d/2
+/ / (n+d/2)(p — )\u|P+1dxgdt
0 Q(R,

o—co) 2(p+1)

T
(6.8 C/ / |Vgu\§ + |ulP*t) dzgdt + I,
0o Jog

where

HFZ/T/Re <g:j (‘)) dr ,dt
/ /(Im (uttr) = |V gulg — !W"“) (H, V) ydl ydt
(6.9) —/ /IuIQdF dt+/ /Re (pu )dl“ dt.

Since u|p = 0, we obtain prﬂ‘r = 0, that is,

. Ou
(6.10) Vg = i forz €.

Then, with (6.4)), we have

ou ou Or
o Ve =55,

v ov

(6.11) H(u) = (H,Vg4u), = forz € T.
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Using the formulas (6.10]) and (6.11]) in formula on the portion I', with
(6.1), we obtain

(6.12) / / ) dF dt < 0.

Substituting (6.12) into (6.8), we have

1/ Im (uH (@ ))dxg _/ /RO [u2Ay(div , H)dz,dt

/ / T (a(a)uH (@) daydt
Q(Ro)
+ 5/ / |Vgu\§dacgdt
Ro 80)
/ / n+d/2( )‘ |p+1d$gdt
Ro 3() p + 1)

(6.13) gc// (IVgul? + [uP*h) dagdt.
0 Q(Ro)\Q(RQ—éo)

Therefore,
T
/ / ([ufP* + |V gul2) dgdt < C(E(0) + B(T))
0 RO 80
(6.14) + C'/ / |u]2 + 1V, u|2 + |u|p+1) dxgdt.
Q(Ro)
Note that

T T
(6.15) / / lul?dz4dt < C(Ry) / / IV gul>dagdt.
0 Q(RQ*E()) 0 Q(RQ*EU)

Hence

/ ' E(t)dt < C(E(0) + E(T))
0

(6.16) + C/ / ) (Jul® + |V, u|2 + |ulPt) dzydt.
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With (4.1)) and (4.2) , we deduce that

CE(T) < CE(0) + C/ / ) (Jul? + [Vgul? + [ufPth) daydt
(6.17) + ¢ / / uP | ga()|dagar
2 Jo Ja
and
4C 4C
1WCEO0) = | E(t)dt - / (E(t) — E(0))dt
4C 4C
g/ dt+40/ / ) (Jul? + |Vgul? + [uP*h) daydt
0

(6.18)  +20 / / |u|2‘Aga(x)‘d:Ugdt.
Substituting (6.17)) and ( into (| - for T' > 4C', with (| -, we have

(6.19) E(0 / E(t)dt < c/ / ) (Ju? + [Vgul? + [uPT) daydt.
The estimate ((6.2) holds true. O

Proof of Theorem [2.3. From (4.1)), and (6.2)), we deduce that
T
E(0) +/ E(t)dt
’ T
< C(E(0) — E(T)) + C / / ]Aga(x)wuﬁdxgdt
0 Q(Ro—¢0)

— C(E(0) — E(T)) —M/OT/Q|U|2d:cgdt’:
(6.20) + /0 ! /Q s <C’)Aga(m)‘ Y /O ' /Q a(:r;)) Pt

For sufficiently large M, with (2.37)) we have

(6.21) B(0) < C(E(0) — E(T)) M/O /Q\u\2dxgdt‘j.

Denote

(6.22) E{t)=E(t)+M /O ' /Q |u|?daydt.
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From ([6.21]), we obtain

(6.23) E(0) < C(E(0) — E(T)).
Then

~ C—1~
(6.24) E(T) < 5 E(0).

It follows from , , and (6.22) that there exists C(T) > 0

such that

(6.25) E{t) < C(T)E(0), YO<t<T.

With 1) E(t) is exponentially decaying. Hence, there exist C7,Cy > 0
such that

(6.26) E(t) < Cre”“*E(0),Vt > 0. O
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Appendix A. Proofs of Assumption (U1) and
Assumption (U2) under a strong
geometric condition

Let ) C R™ be a bounded domain with smooth boundary and w be an open
subset of ) such that

(A1) wo Jlye®|ly-al<eh
o0

for some £ > 0. B
Assume that the origin O ¢ Q and

0 0 ~

9 _9 n _
(A.2) G(az)ar 5 L€ R"™, and det(G(x)) =cor?, =€,

(A.3) <((1 — §G(z) + gac(;g)) X,X> >0 for X €R”, z€Q,

where 0 < § <1, ¢y > 0 and d are constants.
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Remark A.1. It follows from (4.6 and (4.7) that

(n+d/2-1) n—1+8ln det (G(z))

2
" " o = Agr =trD"r

(A.4) > (n—1)§, z e
Then
(A.5) d>2(n—1)(5-1).

Proposition A.1. There exists T1 > 0 such that for any T > Ti, the only
solution u in C([0,T], H'(2)) to the system

(A.6) {“ +Agu—[upu=0 (a,t) € Qx (0,T),

u="0 (x,t) € wx (0,7,
s the trivial one u = 0.

Proof. Let b(x) € C*°(R™) be a nonnegative function satisfying

(A.7) bz)=1, zeQ\w and bx)=0, R"\Q.
Let
(A.8) H(z) =b(z)x, xeR™

It follows from ((A.2), (A.3) and (3.10) that

(A.9) DH(X,X) > §|X|? forall X € R?, 2 € Q\w,
div H = 14 rA,r

i <n L, Olny/det (G@)))

r or
(A.10) =n+d/2 forall X eR? z¢e\w.
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Leta(x)zom.Let%ZHinandP:diV;Hin (3.3). Sub-
3.2

stituting (3.3)) into (3.2]), we obtain

1 B v 1 (7 ) .
— [ Im (uH(w)) dasg‘ - = |ul“Ag(div gH)dz,dt
2 Jg o 4J)o Jo

I / ! / Re (DH(V4u,Vgu)) dugdt

1)div H
/ / +1f [Pt da ,dt
2(p

(A.11) =
Then
/A ( gU |2 |u|p+1> dxgdt
QN\w
/ (uH (u dacg‘ ’
Q
(A.12) + C/ (IVgul® + [u]* + |ulP*) dzydt.
0 w
Hence

(A.13) / / <|vgu|2 |u|p+1> dydt < 20E(0).

Note that

T T
(A.14) / [ lu?dx,dt < C / [ |V guladagdt.
0 Q 0 Q

Therefore

(A.15) / / <yu\2 + |Vyul® + yu\P“) dzgdt < 20E(0),
which implies
(A.16) (T'— C)E(0) <0.

The assertion (A.6)) holds true. O
By a similar proof with Proposition (A.1]), the following assertion holds.
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Proposition A.2. There exists T1 > 0 such that for any T' > T, the only
solution u in C([0,T], H'(2)) to the system

(A.17)

—~

iug+ Agu=0 (z,t) € Qx (0,7T),
u=0 (x,t) € wx (0,T),

1s the trivial one u = 0.

1]
2]
3]
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