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The Dehn twist on a sum of two

K3 surfaces

P. B. Kronheimer1 and T. S. Mrowka2

Ruberman gave the first examples of self-diffeomorphisms of four-
manifolds that are isotopic to the identity in the topological cat-
egory but not smoothly so. We give another example of this phe-
nomenon, using the Dehn twist along a 3-sphere in the connected
sum of two K3 surfaces.

1. Introduction

A 2-dimensional Dehn twist is a non-trivial self-diffeomorphism of an annu-
lus, fixing the two boundary circles pointwise. As a generalization of this,
for any n ≥ 2, there is a self-diffeomorphism of the n-manifold [0, 1]× Sn−1,

δn : [0, 1]× Sn−1 → [0, 1]× Sn−1

having the form δn(t, s) = (t, αt(s)), where α : [0, 1] → SO(n) is a loop based
at the identity element lying in the non-trivial homotopy class. We can
arrange that δn is the identity near both boundary components, and this
allows to extend δn to a diffeomorphism of any n-manifold X provided
only that an embedding of [0, 1]× Sn−1 in X is given. The resulting dif-
feomorphism δ : X → X is referred to as a Dehn twist along the sphere
Sn−1 ⊂ [0, 1]× Sn−1. In particular if X is a connected sum X1 #X2, then
one can consider the Dehn twist along the separating sphere in the neck. In
this paper, we shall prove:

Theorem 1.1. Let Z be the connected sum K3 #K3, and let δ : Z → Z be
a Dehn twist along the separating S3 in the neck. Then the diffeomorphism
δ is not isotopic to the identity.

1The work of the first author was supported by the National Science Foundation
through NSF grant DMS-1707924.

2The work of the second author was supported by the National Science Founda-
tion through NSF grant DMS-1808794.
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It is evident that δ induces the identity map on homology, and by results
from [8, 16, 17], applicable to closed simply-connected four-manifolds in gen-
eral, it follows that δ lies in the identity component of the homeomorphism
group Top(Z). Theorem 1.1 implies that it does not lie in the identity com-
ponent of Diff(Z). The first example of this phenomenon – an element in
the kernel of the map π0(Diff(X)) → π0(Top(X)) for a smooth 4-manifold
X – was given by Ruberman in [18]. Additional examples were presented
later by Baraglia and Konno in [2]. The theorem above provides the first
example where the Dehn twist on a connected sum of simply connected
4-manifolds has been shown to be non-trivial.

The techniques we employ here are drawn from the same toolkit that has
been used to detect other non-smoothability results for families in dimen-
sion four: gauge theory (here the Seiberg-Witten equations), the numerical
invariants of families that they can be used to define [11, 18, 19], and the
homotopy refinements of these that one may construct in the spirit of [6]
and [21].

The next statement, which is a corollary of the theorem above, was
proved earlier by Baraglia and Konno in [4]. (The version here is not explic-
itly stated in [4], but an equivalent reformulation, Proposition 2.1 below, is
a special case of their results, as we explain in the next section.)

Proposition 1.2 (cf. [4]). Let X ′ be the 4-manifold with boundary ob-
tained by removing an open ball from a K3 surface. Let δ : X ′ → X ′ be the
diffeomorphism supported in the interior of X ′ obtained by a Dehn twist
along a 3-sphere parallel to the boundary. Then δ is not isotopic to the iden-
tity element in the group Diff(X ′, ∂X ′) of diffeomorphisms which fix the
boundary pointwise.

In this paper, we will reprove Proposition 1.2, using Bauer-Furuta invari-
ants for families in a slightly different way, and we will deduce Theorem 1.1
using a product theorem for connect sums modeled on [5].

2. Families of spin manifolds

To explain the connection between Proposition 1.2 and the results of [4],
consider first the action of Diff(K3 ) on the frame bundle F (K3 ) and the
resulting map e : Diff(K3 ) → F (K3 ) which one obtains by applying this
to a basepoint θ in F (K3 ). By the results of [7, 15], the map e is a fibration
whose fiber (the stabilizer of θ) has the weak homotopy type of the group
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Diff(X ′, ∂X ′). The exact sequence of the fibration gives

π1(Diff(K3 ))
e∗−→ π1(F (K3 )) −→ π0(Diff(X ′, ∂X ′).

The fundamental group of F (K3 ) is Z/2 (as it is for any simply-connected
spin manifold), and the class of the Dehn twist δ in π0(Diff(X ′, ∂X ′)) is the
image of the generator of π1(F (K3 )). The assertion in Corollary 1.2, that δ
is non-trivial, is therefore equivalent to saying that the map

(1) e∗ : π1(Diff(K3 )) → Z/2

is zero.
The map e∗ can be interpreted in yet another way. Given a loop γ in

Diff(K3 ), form the fiber bundle E → S2 with fiber K3 , using γ as the
clutching function. Then e∗[γ] is equal to the evaluation of w2(TE) on any
section of E. An elementary restatement of the vanishing of e∗ is therefore
the following:

Proposition 2.1 ([4]). Let E → S2 be a smooth fiber bundle, with fiber a
K3 surface. Then the Stiefel-Whitney class w2(TE) is zero.

The above proposition is a consequence of [4, Corollary 1.3] and the
arguments of [4, Section 4.2]. As shown in [3], the corresponding statement
in the topological category is false: there is a non-smoothable topological
family of K3 surfaces over S2 which has non-trivial Stiefel-Whitney class.

There is a third reformulation of Propositions 1.2 and 2.1, which is the
one most convenient for our discussion of the Bauer-Furuta invariants below.
To set up the general context, letX be a smooth, oriented, closed 4-manifold,
which we assume at present is connected and simply connected with even
intersection form. In the absence of a Riemannian metric, a “spin structure”
on X can be defined as a lift of the structure group of the oriented frame
bundle of X, from SL(4,R) to the double cover S̃L(4,R). Our hypotheses
imply that X admits a spin structure s, which is unique up to isomorphism.
The group of automorphisms of s is the group of order 2 generated by the
deck transformation of the double cover.

We write SDiff(X) for the group of orientation-preserving diffeomor-
phisms of X. The group SDiff(X) has a double cover DiffSpin(X) →
SDiff(X) consisting of pairs (f, i), where f : X → X is a diffeomorphism
and i : f∗(s) → s is an isomorphism of spin structures. Given an element
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h ∈ DiffSpin(X), we can form a mapping torus Xh fibering over the cir-
cle B = [0, 1]/ ∼, together with a spin structure s

h on the vertical tangent
bundle of the fibration.

As a special case we can consider the element τ = (1, t) in DiffSpin(X),
where 1 denotes the identity on X and t denotes the deck transformation of
the spin structure. We shall prove,

Proposition 2.2 ([4]). If X is a K3 surface, then the involution τ in
DiffSpin(X) is not in the identity component. Equivalently, the family of
spin manifolds (Xτ , sτ ) over the circle B is not isomorphic to the trivial
family B × (X, s).

It follows from the discussion that this proposition is an equivalent
reformulation of both Propositions 1.2 and 2.1. Indeed, the double cover
DiffSpin(X) → SDiff(X) is classified by a map π1(SDiff(X)) → Z/2
which is easily identified with the map e∗ in (1). Proposition 2.2 says that
this double cover is trivial for K3 , which is equivalent therefore to the van-
ishing of e. We will prove Proposition 2.2 in section 4, after introducing the
tools from Seiberg-Witten theory in section 3.

3. Bauer-Furuta invariants for spin families

To fix our conventions and context, we summarize in this section the tech-
niques of finite-dimensional approximation, as applied to the Seiberg-Witten
equations on 4-manifolds, first for a single 4-manifold as in [6, 9], and then
for families of 4-manifolds over a base, as developed and explored first in
[21], and later in [1, 3, 20], for example. We focus on the case that X is
equipped with a spin structure, rather than a more general spinc structure,
and we assume that b1(X) = 0.

So let X be a closed, oriented 4-manifold with b1 = 0. Let s be a spin
structure on X. After equipping with the manifold with a Riemannian met-
ric, the spin structure gives rise to spin bundles S+, S− over X, Clifford mul-
tiplication γ : Λ1 ⊗ S+ → S−, and the Dirac operator D : Γ(S+) → Γ(S−).
The Seiberg-Witten map is a non-linear Fredholm map between Hilbert
spaces,

SW : W+ → W−.

Unwrapping this a bit, we have

W+ = V+ ⊕ U+, W− = V− ⊕ U−,
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where V± are suitable Sobolev completions of Γ(S±), and U+, U− are
Sobolev completions of respectively Ω1(X) and Ω+(X)⊕ Ω0(X)/R. The
Seiberg-Witten map has the form SW = l + c, where l is the Fredholm op-
erator

l = D ⊕ (d+, d∗)

and c has the form

c(a, ϕ) =
(

γ(ia, ϕ), q(ϕ, ϕ̄)
)

where q is a bilinear term.
Now let W− ⊂ W− be a finite-dimensional subspace, large enough

that W− + im(l) = W−. Set W+ = l−1(W−). The corresponding finite-
dimensional approximation to the Seiberg-Witten map is constructed in [6]
as the map

sw = (ρ ◦ SW ) :W+ →W−,

where ρ : W− \ S
(

(W−)⊥
)

→W− is a suitable retraction. It is shown in [6]
that if W− is sufficiently large, then the image of SW does not intersect
the unit sphere S((W−)⊥) in the orthogonal complement, so the composite
ρ ◦ SW is indeed defined. The finite-dimensional approximation is a proper
map and extends to the one-point compactifications as a map of spheres:

(2) [sw ] ∈ [W+
∞,W

−

∞].

We will take W− always of the form V − ⊕ U−, in which case also
W+ = V + ⊕ U+. Furthermore, V± are quaternion vector spaces and D is
quaternion-linear, and we are therefore able to insist also that V ± are quater-
nion vector subspaces.

The operator (d+ + d∗) is injective with cokernel H+(X), the space of
harmonic self-dual 2-forms. We may choose U− to contain this space, so that

U− = u− ⊕H+

and l : U+ → u− is a linear isomorphism. A choice of orientation of H+ then
allows us to identify the orientation lines of U+ and U−. The vector spaces
V ± are naturally oriented themselves, because they are quaternion vector
spaces. In all then, the orientation ofH+ allows us to identify the orientation
lines of W±.

Let M be a regular fiber of the finite-dimensional approximation sw ,
over a point p ∈W−. As the fiber of map between relatively oriented vector
spaces, M is naturally a stably framed manifold. The results of [6] imply
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that, provided W− is sufficiently large, the fiber M is compact, and its
framed cobordism class depends only on X and the orientation of H+, not
on the choice of Riemannian metric or on the choice ofW−. Here “sufficiently
large” means only thatW− should contain a subspaceW−

∗ (g) which depends
on the metric g. The dimension of M is

d = −
1

4
(2e+ 3σ) + 1,

where e and σ are the Euler number and signature of X.
Framed cobordism classes of d-manifolds are classified by the stable d-

stem πsd = πd+N (SN ) for N large. Instead of referring to the regular fiber of
sw , we can refer directly to the homotopy class of the map sw itself, as a
map between spheres as in (2). For the purposes of this paper, we use the
following stripped-down version of the Bauer-Furuta invariant:

Definition 3.1. The Bauer-Furuta invariant of the spin manifold (X, s),
with the chosen orientation of H+, is the framed cobordism class η(X) of
the regular fiber of sw , for any metric g and any choice of W− containing
W−

∗ (g).

Now suppose instead of a single 4-manifold we have a smooth fiber bun-
dle X → B over a compact base. Let s be a given fiberwise spin structure,
and let a family of Riemannian metrics be given. The spaces W+ and W−

are now bundles over B, and SW is a bundle map. After choosing a suit-
able finite-rank subbundle W− ⊂ W−, we have finite-dimensional approxi-
mations sw :W+ →W−, where W+ = V + ⊕ U+ and W− = V − ⊕ U− are
finite-rank vector bundles over B. This construction is defined whenever
W− is sufficiently large, which can be taken to mean that W− contains a
certain subbundle W−

∗ depending on the metric. The map sw is proper and
therefore extends to the fiberwise one-point compactifications: it becomes a
map of based sphere bundles, with a homotopy class

[sw ] ∈ [W+
∞,W

−

∞].

Let s be a smooth section of W− → B, transverse to sw . The inverse
image sw−1(s) is then a compact manifold M with a map to B. The dimen-
sion of M is dim(B) + d, where d is the invariant of the 4-dimensional fiber,
as above.

To go further, we impose extra conditions to ensure that we can stably
trivialize the bundles W± canonically. First, the bundles V ± are quater-
nionic, and Sp(N) is 2-connected. So if we require that dimB ≤ 2, then
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these bundles have preferred trivializations. To trivialize the stable differ-
ence bundle U+ ⊖ U− is again equivalent to trivializing H+ viewed now as a
bundle over B. There is an action of π1(B) on the homology H2(Xb) of the
fiber Xb. If we impose the condition that this action is trivial, then H+ is a
maximal positive-definite subbundle of the trivial vector bundle H2(Xb;R),
and it therefore has a preferred trivialization as B ×H+(Xb) because the
space of maximal positive-definite subspaces of H2(Xb;R) is a contractible
subset of the Grassmannian. An orientation of H+ for any fiber therefore
completely determines a trivialization.

At this point, the map p :M → B has a relative stable framing: a stable
trivialization of TM ⊖ TB. It is convenient in the exposition to make M
itself stably framed, and to do so we ask that B have a stable framing of its
tangent bundle. We are specifically interested in the case that B is the circle
equipped with the stable framing which bounds the framed disk. Recall from
the introduction, that if (X, s) is a spin 4-manifold and h ∈ DiffSpin(X, s),
then we can construct a spin family (Xj , sh) over the base B = S1 as the
mapping torus of h. The Bauer-Furuta construction now produces a framed
manifold M(Xh, sh). We summarize this as follows.

Definition 3.2. Let (X, s) be a closed, oriented spin 4-manifold with b1 = 0
and let h ∈ DiffSpin(X, s) be an element which acts trivially on H2(X).
Equip the circle B with the bounding stable framing and let M be the
resulting framed manifold of dimension 1 + d, defined as M = sw−1(s), for
a generic section s of W−. The Bauer-Furuta invariant η(Xh, sh) of h is
the framed cobordism class ofM , or equivalently the corresponding element
of πsd+1.

Our choice to give B the framing which bounds means that the invariant
η is zero for the trivial product family over B. So if η(Xh, sh) is non-zero,
then h is not in the identity component of DiffSpin(X, s).

Remark. As the discussion makes clear, the construction in this form
applies equally well if B is, for example, a 2-sphere. Thus, if (X, s) is a
spin manifold with b1 = 0, then the construction provides a homomorphism
π1(DiffSpin(X, s)) → πsd+2.

4. Calculation for the twisted K3 family

Let X again be a closed, oriented 4-manifold with b1 = 0, equipped with a
spin structure s. Let τ ∈ DiffSpin(X, s) be the deck transformation of s,
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the generator of the kernel of DiffSpin(X, s) → SDiff(X). We can form
the spin family (Xτ , sτ ) over B, and the invariant η(Xτ , sτ ).

Proposition 4.1. If the signature of X is equal to 16 mod 32 (i.e. if the
complex index of D is 2 mod 4), then the Bauer-Furuta invariant of the
twisted spin family (Xτ , sτ ) over the circle B is given by a product

η(Xτ , sτ ) = η1 × η(X, s),

as a cobordism class of stably framed (d+ 1)-manifolds. Here η1 is the non-
trivial element of πs1, represented by the circle with Lie-group framing, and
η(X, s) is the Bauer-Furuta invariant of (X, s), as a stably framed d-manifold.
If the signature of X is equal to 0 mod 32, then η(Xτ , sτ ) is zero.

Corollary 4.2. If X is a K3 surface, then η(Xτ , sτ ) is non-zero.

Proof of the Corollary. The Bauer-Furuta invariant of K3 with its unique
spin structure s is the class η1, represented by the Lie-framed circle. The
signature of K3 is 16, so the proposition above tells us that the invariant
of the family (Xτ , sτ ) is η1 × η1. This is the generator of the stable 2-stem,
πs2 = Z/2. □

Proposition 2.2 follows directly from this result, as do the reformulations,
Propositions 1.2 and 2.1.

Proof of Proposition 4.1. Let

sw :W+ →W−

be the finite-dimensional approximation of the Seiberg-Witten map for the
spin manifold X itself, equipped with some metric g. As usual we write
W+ = V + ⊕ U+ and similarly with W−. The vector spaces V ± are quater-
nion vector spaces, and we adopt the convention that the quaternion scalars
I, J , K act on the left. The circle group acts on V + and V − by left-
multiplication by eIθ. We extend this action to all of W± by making the
action trivial on U±. The Seiberg-Witten map commutes with this circle
action, as does its finite-dimensional approximation.

Over the interval [0, 1], form the trivial product bundles [0, 1]×W±. For
any θ ∈ [0, π], let W+

θ → B be the vector bundle obtained by identifying
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{1} ×W+ with {0} ×W+ using left-multiplication by eIθ:

{1} ×W+ eIθ× ·
−→ {0} ×W+.

Define W−

θ → B similarly.
The map sw commutes with eIθ, so it gives rise to a bundle map over

B, for each θ,

swθ :W
+
θ →W−

θ .

When θ = 0, this is (the finite-dimensional approximation to) the Seiberg-
Witten map for the trivial family B × (X, s) over the circle. When θ = π
this is the Seiberg-Witten map for the twisted family (Xτ , sτ ), because the
involution τ acts as −1 on the spin bundles S±.

We now wish to compare the two proper bundle maps

sw0 :W
+
0 →W−

0

swπ :W+
π →W−

π .

On the one hand we have a proper isotopy between them, given by the
bundle maps

(3) swθ :W
+
θ →W−

θ ,

for θ ∈ [0, π]. However, multiplication on the left by eIθ is not a quaternion-
linear transformation for intermediate values θ ∈ (0, π), so we do not have
an isotopy through a family of quaternion vector bundles V ±

θ . The trivializa-
tions of V ±

π arising from their quaternionic structure may be different than
the trivializations they aquire from the trivial bundles V ±

0 via this isotopy.
To compare the trivializations, we construct a different isotopy over

[0, π]×B between the vector bundles V ±

0 and V ±
π . To do so we trivialize the

fiber V + of the trivial bundle V +
0 as Hn. We construct a vector bundle Ŵ+

θ

over B, for θ ∈ [0, π], in just the same was as we defined W+
θ before, but

now using right-multiplication by eIθ on H
n instead of left-multiplication.

We do the same with Ŵ−

θ . The Seiberg-Witten map does not commute with
this action, so does not define a bundle map; but we are concerned only with
the trivializations. Because right-multiplication is quaternion linear, we now
have vector bundles Ŵ±

θ , providing an isotopy over [0, π]×B between W±

0

and W±

θ , and the “V ” summands of these are quaternion vector bundles.
The trivialization of W±

θ that we are required to use is the one that arises
from the trivial bundle via this new isotopy.
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To compare the trivializations that arise via these two different isotopies,
consider composing the first with the second. On the H

n summand corre-
sponding to V +, we have an isotopy over [0, 2π]×B from the trivial bundle
over B with fiber R4n back to itself. The total bundle over [0, 2π]×B is con-
structed from the trivial bundle over [0, 2π]× [0, 1] by identifying the fibers
using a certain path [0, 2π] → SO(4n). This path is the concatenation of a
first path from 1 to −1 given by left multiplication by eIθ with a second path
from −1 to 1 given by right multiplication by eIθ. In the case n = 1, such a
path from 1 to 1 belongs to the non-trivial homotopy class in π1(SO(4)). In
general it is non-trivial in π1(SO(4n)) if and only if n is odd.

The same arguments apply toW− as well, so when we consider a relative
framing of W+

π ⊖W−
π , we see that the stable framing acquired from the

trivial bundle by the isotopy (3) is equal to the quaternionic framing if

dimH V
+ − dimH V

−

is even. Otherwise, the framings differ by the non-trivial map B → SO . (This
difference is half the complex index of D.)

In terms of the stably framed manifold Mτ representing the Bauer-
Furuta invariant of the twisted family (Xτ , sτ ), the conclusion is that Mτ is
framed-cobordant to the product B ×M (and therefore to ∅) if the index of
D is 0 mod 4, and is framed-cobordant to L×M if the index is 2 mod 4,
where L is the circle with non-zero framing. □

5. Connected sums

Let (X, sX) and (Y, sY ) be two spin 4-manifolds. We suppose that both have
b1 = 0 so that our exposition of the Bauer-Furuta invariants applies. Remove
standard balls from each and identify collars of the boundary 3-spheres by
a diffeomorphism ψ so as to form the oriented connected sum X #0 Y . We
write CX and CY for these (closed) collars and

ψ : CX → CY

for the diffeomorphism. Let α : [0, 1] → SO(4) be a closed loop in the non-
trivial homotopy class. For each t ∈ [0, 1] we can form a connected sum
X #t Y , using ψ ◦ α(t) in place of ψ. The 4-manifolds X #0 Y and X #1 Y
are identical, so we may form a family of 4-manifolds over the circle B =
[0, 1]/ , which we write as

(4) p : X #α Y → B.
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The derivative of ψ identifies the frame bundles of the two collars. Lift
this to an isomorphism ψ̃ of the spin bundles sX |CX

→ sY |CY
. There are two

such lifts: ψ̃ and ψ̃ ◦ τ , where τ is the deck transformation: choose one of
them. Thought of as a path in Diff(CX), there is a unique lifting of α to a
path α̃ in DiffSpin(CX , sX) starting at the identity. Because the homotopy
class of α in SO(4) is non-trivial, its lift is not a closed loop and we have
α̃(1) = τ . So if we equip B ×X with the twisted family of spin structures sτ

and equip B × Y with the product family, then we can form a spin family

(5) (Xτ #α Y, s
τ
X #α̃ sY ) .

We could also do the twist τ on the side of Y rather than X.

Proposition 5.1. For the family of 4-manifolds (4) over the circle B with
fiber X #0 Y , equipped with the family of spin structures (5), the Bauer-
Furuta invariant η is given by

η1 × η(X, sX) × η(Y, sY )

if σ(X) is 16 mod 32, and zero otherwise.

Remark. There is an asymmetry in the conclusion here (only the signature
of X matters, not the signature of Y ) because of the asymmetry in the
construction of the family of spin structures.

Proof. Let us abbreviate our notation a little by taking the spin structures
as implied. We write Xτ for the family over B with twisted spin structure,
and we write Xτ #α Y for the result of summing Y to each fiber of Xτ using
the path α to vary the gluing. The assertion of the proposition can then be
rephrased (using Proposition 4.1) as:

η(Xτ #α Y ) = η(Xτ ) × η(Y ).

This is the product formula for the Bauer-Furuta invariants from [5], ex-
tended to the case of families.

The proof from [5] extends without much difficulty. To clarify this, we
repeat the main setup steps from [5], in the families context. Let Za → B
be a finite collection of closed 4-manifolds over a base B, indexed by a ∈ A,
a finite set. Let Z be the disjoint union. For each a, suppose there is a
decomposition of Za as a fiberwise connected sum, realized explicitly by a
smooth embedding of a family of collars Ca over B. That is, Ca ⊂ Za is a
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bundle over B with fiber [−1, 1]× S3, which we take to be equipped with a
family of metrics isometric to the standard one on each fiber. Let C →֒ Z
be the union of the families of collars Ca. We can write

Z = Z+ ∪ Z−, C = Z+ ∩ Z−

where Z+ and Z− are families of manifolds with boundary, with boundary
components indexed by A. Let σ : C → C be an automorphism of C over
the base B, which permutes the components by an even permutation of A.
Let Zσ be obtained as the union of Z+ and Z−, attached along C using the
automorphism σ.

If Z is given a fiberwise spin structure, and if σ : C → C is lifted to
an isomorphism of spin families, then Zσ also acquires the structure of a
spin family over B. We have Bauer-Furuta invariants arising from finite-
dimensional approximations sw and swσ for these two families. (For a dis-
joint union, the Seiberg-Witten map SW is defined to be the fiber product
over B.)

In the case that B is a point, the construction of Zσ from Z is the same
setup as in [5], and in Section 3 of that paper as series of homotopies is
constructued, to show that that finite-dimensional approximations sw and
swσ are homotopic. The same homotopies can be applied fiberwise over B,
because all the estimates can be made uniformly over the compact base.
This establishes that sw and swσ are properly homotopic bundle maps over
B. As in [5], the application to a connected sum of two manifolds is deduced
by considering the case that |A| = 3 and taking the fibers of Z to be

(X # S4) ⊔ (S4 # Y ) ⊔ (S4 # S4).

A cyclic permutation σ of order 3 is even and the resulting family Zσ has
fibers

(X # Y ) ⊔ (S4 # S4) ⊔ (S4 # S4).

A family of 4-spheres over the circle has two possible spin structures, related
by the twist τ , but the resulting two spin families are isomorphic. The Bauer-
Furuta invariant of either family is represented by the identity map between
zero-dimensional vector bundles over B, which contributes trivially. So the
homotopy between sw and swσ identifies the invariant of the family with
fibers X # Y with that of the family with fibers X ⊔ Y . □

We now return to the first theorem stated in this paper.
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Proof of Theorem 1.1. Consider the case that X and Y are both K3 sur-
faces, and form the family of 4-manifolds

p : X #α X → B, (X = K3 ).

There is a unique spin structure up to isomorphism on the fiber, and there
are two ways to equip the family over B with fiberwise spin structures. In the
notation of the constructions above, these are the spin familiesXτ #α X and
X #α X

τ . The previous proposition says that the Bauer-Furuta invariant
for each of these families is (η1)

3, because η(X) = η1. The cube of η1 is the
element of order 2 in πs3 = Z/24, and in particular is non-zero. It follows that
the underlying family of smooth 4-manifolds X #α X is a non-trivial family
over the circle. The monodromy of this family is the mapping class of the
Dehn twist δ supported in the collar where the connected sum construction
is made. It follows that δ is not isotopic to the identity. □

6. Additional remarks

More Dehn twists

The non-triviality of δ in Proposition 1.2 is a question raised in a more
general form by Giansiracusa in [10]. To describe this, let X be a simply-
connected, closed, spin 4-manifold, and let X(n) be obtained from X by
removing n disjoint balls. Let Diff(X(n), ∂) denote the group of diffeomor-
phisms which are the identity in a neighborhood of the boundary, so that
there is map

Diff(X(n), ∂) → Diff(X(n)).

It is shown in [10] that the corresponding map on π0 has kernel equal to either
(Z/2)n−1 or (Z/2)n. The ambiguity results from the question of whether
the particular diffeomorphism δ(n), defined as the composite of the Dehn
twists around the n disjoint spheres parallel to the boundary components,
is isotopic to the identity in Diff(X(n), ∂). For given X, the answer to this
question is independent of n. Proposition 1.2 is the statement that δ(n) is
non-trivial in the case of a K3 surface. As pointed out in [10], the isotopy
class of δ(n) is trivial if w2(X) is non-zero, and is also trivial in the case of
S2 × S2 as one can see by using a circle action on the manifold.
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Homotopy K3 surfaces

It follows from the results of [14] and [6] that η(X) = η1 for any homotopy
K3 surface X. Theorem 1.1 therefore applies equally well to homotopy K3
surfaces.

Exploiting equivariance of sw

The Seiberg-Witten maps sw are equivariant for the action of the group
Pin(2) ⊂ Sp(1) generated by the circle eIθ and the element J . These act by
multiplication on the quaternion vector spaces V ±. On U± the circle action
is trivial and J acts by −1. This extra structure is exploited in [9] and in
[5, 6], but we have not used it here except in an auxiliary role, to construct
an isotopy in the proof of Proposition 4.1. It would be interesting to see if
the equivariant version can be used to extend Theorem 1.1 to some other
cases.

Higher dimensions

In higher dimensions, the possible non-triviality of the boundary Dehn twist
in Proposition 1.2 is a question addressed in detail by Kreck in [12] for
almost-parallelizable (k − 1)-connected 2k-manifolds; and in the same set-
ting, the results there allow one to determine when a Dehn twist on the neck
of a connected sum is non-trivial. Specifically, let X be a (k − 1)-connected
and almost-parallelizable 2k-manifold, and let X ′ denote the manifold-with-
boundary obtained by removing a ball. Then in the notation of [12] there is
assigned to X an element ΣX of order at most two in the group Θ2k+1 of
homotopy spheres of dimension one higher. This assignment is additive for
connected sums, and if the dimension of X is at least 6, then ΣX is zero
if and only if the Dehn twist on the sphere parallel to the boundary of X ′

is zero in π0(Diff(X ′, ∂X ′)). For a connected sum X1#X2, it can also be
deduced from [12] that the Dehn twist around the neck is trivial if and only
if ΣX1

is zero in the quotient Θ2k+1/(ΣX1#X2
). Since these elements have

order at most 2, this criterion for non-triviality is simply that ΣX1
and ΣX2

are both non-zero.
As an example of the computations in [12], if the dimension is 8, then ΣX

is non-zero if the index of the Dirac operator on X is odd. If the index of the
Dirac operator on X is even, then the vanishing of ΣX is dependent on the
smooth structure. As a special case, if X is the exotic sphere of dimension
8, then the Dehn twist in the neck of X#X is a non-trivial element of
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π0(Diff(X#X)). In this case, the connected sum X#X is S8 and it is
presented as the union of two balls: the non-triviality of the Dehn twist
arises from the non-standard parametrization of the standard 7-sphere along
which the Dehn twist is performed.
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