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Holomorphic families of Fatou-Bieberbach

domains and applications to

Oka manifolds

Franc Forstnerič and Erlend Fornæss Wold

We construct holomorphically varying families of Fatou-Bieberbach
domains with given centres in the complement of any compact
polynomially convex subset K of Cn for n > 1. This provides a
simple proof of the recent result of Y. Kusakabe to the effect that
the complement Cn \K of any polynomially convex subset K of
Cn is an Oka manifold. The analogous result is obtained with Cn

replaced by any Stein manifold with the density property.

1. Introduction

A Fatou-Bieberbach domain in Cn is a proper subdomain Ω ⊊ Cn which is bi-
holomorphic to Cn. No such domains exists for n = 1, but they are plentiful
for any n > 1; see the survey of this topic in [3, Chapter 4]. In particular, the
basin of attraction of an attracting fixed point of a holomorphic automor-
phism of Cn (or in fact of any complex manifold) is biholomorphic to Cn, cf.
[11] and [3, Theorem 4.3.2]. Furthermore, for any compact polynomially con-
vex set K ⊂ Cn (n > 1) and point p ∈ Cn \K there is a Fatou-Bieberbach
domain Ω ⊂ Cn such that p ∈ Ω and K ∩ Ω = ∅; this is a special case of
[5, Proposition 9] where the same result is shown with p replaced by any
compact convex set.

In this note we prove the following more general result in this direction.

Theorem 1.1. Let K be a compact polynomially convex set in Cn for some
n > 1, L be a compact polynomially convex set in CN for some N ∈ N, and
f : U → Cn be a holomorphic map on an open neighbourhood U ⊂ CN of L
such that f(z) ∈ Cn \K for all z ∈ L. Then there are an open neighbourhood
V ⊂ U of L and a holomorphic map F : V × Cn → Cn such that for every
z ∈ V we have that F (z, 0) = f(z) and the map F (z, · ) : Cn → Cn \K is
injective. Hence, Ωz := {F (z, ζ) : ζ ∈ Cn} is a Fatou-Bieberbach domain in
Cn \K for each z ∈ V .

1697



✐

✐

“5-Forstneric” — 2021/2/16 — 21:05 — page 1698 — #2
✐

✐

✐

✐

✐

✐
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A proof of this result based solely on Andersén-Lempert theory is given in
Section 2; it also applies if CN is replaced by an arbitrary Stein manifold, and
also to variable fibres Kz ⊂ Cn, z ∈ L, with polynomially convex graph (see
Remark 2.2). For a convex parameter space L ⊂ CN we prove the analogous
result with Cn replaced by an arbitrary Stein manifold having the density
property; see Theorem 3.1.

These two theorems immediately imply the following recent and very
interesting result of Yuta Kusakabe.

Theorem 1.2. (Kusakabe, [9, Theorem 1.2 and Corollary 1.3].) For any
compact holomorphically convex subset K in a Stein manifold Y with the
density property the complement Y \K is an Oka manifold. In particular,
the complement Cn \K of any compact polynomially convex set K in Cn for
n > 1 is an Oka manifold.

This is the first result in the literature which gives a large class of Oka
domains in Cn for any n > 1, and it provides an affirmative answer to a long-
standing problem. As noted in [9, Corollary 1.4], it follows from Theorem 1.2
and [4, Theorem 1.1] that for any compact polynomially convex set K in Cn

(n > 1), the complement Cn \K (like any n-dimensional Oka manifold) is
the image of a strongly dominating holomorphic map Cn → Cn \K.

Recall that a complex manifold Y is said to be an Oka manifold if every
holomorphic map from a neigbourhood of a compact (geometrically) convex
set L in a Euclidean space CN into Y is a uniform limit on L of entire maps
CN → Y (see [3, Definition 5.4.1]; this is also called the convex approxi-
mation property and denoted CAP). By [3, Theorem 5.4.4], holomorphic
maps S → Y from any reduced Stein space S to an Oka manifold Y satisfy
all natural Oka-type properties. In his recent paper [8], Kusakabe showed
that a complex manifold Y is Oka if (and only if) is satisfies the following
condition:

(∗) For any compact convex set L ⊂ CN , open set U ⊂ CN containing L,
and holomorphic map f : U → Y there are an open set V with L ⊂ V ⊂ U
and a holomorphic map F : V × Cm → Y with F (· , 0) = f |V such that

∂

∂ζ

∣∣∣
ζ=0

F (z, ζ) : Cm → Tf(z)Y is surjective for every z ∈ V.

Amap F with these properties is called a dominating holomorphic spray over
f |V . This is a restricted version of condition Ell1 introduced by Gromov [6,
p. 72] (see also [7]). In [8], Kusakabe used the technique of gluing sprays
from [3, Sect. 5.9] to show that this condition implies CAP, so Y is an Oka
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manifold. Conversely, it has been known before that every Oka manifold
satisfies condition Ell1 (see [3, Corollary 8.8.7]).

Theorem 1.1 provides a very special dominating spray with values in
Cn \K over any given holomorphic map f : L→ Cn \K, thereby proving
Theorem 1.2 in the case Y = Cn. In exactly the same way, Theorem 3.1
implies the general case of Theorem 1.2.

Kusakabe also proved in [9, Theorem 4.2] that certain closed noncompact
sets in Stein manifolds Y with the density property have Oka complements.
He constructed a holomorphically varying family f(z) ∈ Ωz ⊂ Y \K (z ∈ L)
of nonautonomous basins with uniform bounds (i.e., basins of random se-
quences of automorphisms of Y which are uniformly attracting at f(z) ∈
Y \K); these are elliptic manifolds as shown by Fornæss and Wold [2],
hence Oka. When Y = Cn, the domains Ωz can be chosen Fatou-Bieberbach
domains by using Theorem 1.1 with variable fibres (cf. Remark 2.2). Kusak-
abe’s proof of [9, Theorem 4.2] can also be modified so as to provide a family
of Fatou-Bieberbach domains in the general situation under consideration.

2. Proof of Theorem 1.1

We shall use some standard facts concerning polynomial convex sets; we
refer the reader to the monograph by E. L. Stout [12]. Firstly, if K1,K2 ⊂
Cn is a pair of disjoint compact sets such that K1 ∪K2 is polynomially
convex, then for any polynomially convex set K ′

1 ⊂ K1 the union K ′

1 ∪K2

is also polynomially convex. Secondly, every compact polynomially convex
set K ⊂ Cn is the zero set of a nonnegative plurisubharmonic exhaustion
function ρ : Cn → [0,+∞) which is strongly plurisubharmonic on Cn \K.
Choosing a sequence c1 > c2 > · · · > 0 with limi→∞ ci = 0 and setting Ki =
{ρ ≤ ci} ⊃ K yields a decreasing sequence of compact polynomially convex
sets with Ki+1 contained in the interior of Ki for every i ∈ N.

Let f , K and L be as in the theorem. We replace L by a slightly big-
ger polynomially convex set (still denoted L) contained in U and such that
f(z) ∈ Cn \K for all z ∈ L. Choose a sequence Ki ⊃ K as above, with K1

chosen close enough to K such that f(z) ∈ Cn \K1 for every z ∈ L. The
compact set L×Ki ⊂ CN+n is polynomially convex for every i ∈ N. Apply-
ing the change of coordinates ψ(z, ζ) = (z, ζ − f(z)) replaces f by the zero
function, and for every i ∈ N the set

(1) Si = ψ(L×Ki) ⊂ L× Cn ⊂ CN+n
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is polynomially convex and does not intersect CN × {0}n. Hence,

(L× {0}n) ∪ S1

is polynomially convex. Therefore, there is a small closed ball B ⊂ Cn cen-
tred at 0 ∈ Cn such that (L×B) ∩ S1 = ∅ and (L×B) ∪ S1 is polynomially
convex. Since Si ⊂ S1 is polynomially convex, it follows that (L×B) ∪ Si
is polynomially convex for each i ∈ N.

The following lemma will be used in the inductive construction.

Lemma 2.1. (Assumptions as above.) Let B′ ⊂ Cn be a closed ball centred
at the origin with B ⊂ (B′)◦. Then, there are an open neighbourhood U ′ ⊂ U
of L and a biholomorphic map Φ : U ′ × Cn → U ′ × Cn of the form Φ(z, ζ) =
(z, ϕ(z, ζ)) such that

(a) Φ approximates the identity map as closely as desired on L×B and
Φ(z, 0) = (z, 0) for all z ∈ U ′,

(b) Φ(S1) ∩ (L×B′) = ∅, and

(c) the set Φ(S2) ∪ (L×B′) is polynomially convex.

Proof. Choose r > 1 such that rB = B′. Let θt(z, ζ) = (z, tζ) for z ∈ CN ,
ζ ∈ Cn, and t ∈ C. We have that (L×B′) ∩ θr(S1) = ∅ and

(2) (L×B′) ∪ θr(S1) = θr((L×B) ∪ S1) is polynomially convex.

Consider the isotopy of biholomorphic maps ϕt on a neighbourhood of
(L×B) ∪ S1 in CN+n for t ∈ [1, r] which equals the identity map on a neigh-
bourhood of L×B and equals θt on a neighbourhood of S1. Note that θt(S1)
is disjoint from L×B and the union (L×B) ∪ θt(S1) is polynomially convex
for all t ∈ [1, r] (since it is contained in θt((L×B) ∪ S1) = (L× tB) ∪ θt(S1)
which is polynomially convex). Hence, by the parametric Andersén-Lempert
theorem (see Kutzschebauch [10] or [3, Theorem 4.12.3]) there is a holo-
morphic automorphism of CN+n of the form Φ(z, ζ) = (z, ϕ(z, ζ)) which
approximates the identity map on L×B, it agrees with the identity on
L× {0}n, and it approximates θr on S1. Hence, conditions (a) and (b) in
the lemma hold. Assuming that the approximations are close enough, we
have Φ(S2) ⊂ θr(S1). Note that Φ(S2) is polynomially convex. In view of
(2) it follows that Φ(S2) ∪ (L×B′) is polynomially convex as well which
gives condition (c). □
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Proof of Theorem 1.1. We apply the push-out method described in [3, Sec-
tion 4.4]. Using Lemma 2.1 we inductively construct a decreasing sequence
of open neighborhoods Uk of L and holomorphic automorphisms Φk(z, ζ) =
(z, ϕk(z, ζ)) of Uk × Cn such that, setting

Φk = Φk ◦ Φk−1 ◦ · · · ◦ Φ1 : Uk × Cn → Uk × Cn,

the following conditions hold for every k ∈ N.

(i) Φk approximates the identity map as closely as desired on L× kB and
Φk(z, 0) = (z, 0) for all z ∈ Uk.

(ii) Φk(Sk) ∩ (L× (k + 1)B) = ∅. (Here, Sk is given by (1).)

(iii) The set Φk(Sk+1) ∪ (L× (k + 1)B) is polynomially convex.

Indeed, Lemma 2.1 furnishes the first map Φ1 with B′ = 2B and the sets
S2 ⊂ S1; every subsequent step is of the same form by just increasing the
indices. Assuming that the approximations are close enough, [3, Proposi-
tion 4.4.1 and Corollary 4.4.2] show that the limit Φ = limk→∞Φk exists
uniformly on compacts on the domain

Ω =
{
(z, ζ) ∈ L× Cn : Φk(z, ζ) is a bounded sequence

}

=

∞⋃

k=1

(Φk)−1(L× kB),

and for every z ∈ L, Φ(z, · ) maps the fibre Ωz = {ζ ∈ Cn : (z, ζ) ∈ Ω} bi-
holomorphically onto Cn. By condition (ii) the set S = ψ(L×K) does not
intersect Ω (it has been pushed to infinity by the sequence Φk). Hence, the
inverse map Φ−1(z, ζ) = (z, φ(z, ζ)) provides a holomorphic family of Fatou-
Bieberbach maps φ(z, · ) : Cn → Cn (z ∈ L) such that φ(z, 0) = 0 and its im-
age does not intersect the set K − f(z). The map F (z, ζ) = φ(z, ζ) + f(z)
for z ∈ L and ζ ∈ Cn satisfies the conclusion of the theorem. □

Remark 2.2. The above proof also applies in the case when the product
L×K is replaced by a compact polynomially convex set K̃ ⊂ CN+n pro-
jecting onto L whose fibres Kz (z ∈ L) depend on z. The conclusion remains
the same, that is, given a holomorphic map f : L→ Cn with f(z) ∈ Cn \Kz

for all z ∈ L, there is a holomorphically variable family of Fatou-Bieberbach
domains f(z) ∈ Ωz ⊂ Cn \Kz for all z ∈ L.
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3. Fatou-Bieberbach domains in Stein manifolds with the

density property

In this section we give a version of Theorem 1.1 with Cn replaced by an
arbitrary Stein manifold with the density property. (See Varolin [14] or [3,
Definition 4.10.1] for this notion.) Every such manifold has dimension > 1.
The following result is similar to Theorem 1.1, but we impose the extra
condition that the set L is geometrically convex.

Theorem 3.1. Let X be a Stein manifold with the density property, K
be a compact holomorphically convex set in X, L be a compact convex set
in CN for some N ∈ N, and f : U → X be a holomorphic map on an open
neighbourhood U ⊂ CN of L such that f(z) ∈ X \K for all z ∈ L. Then
there are a neighbourhood V ⊂ U of L and a holomorphic map F : V × Cn →
X with n = dimX such that for every z ∈ V we have that F (z, 0) = f(z) and
the map F (z, · ) : Cn → X \K is injective.

Hence, Ωz := {F (z, ζ) : ζ ∈ Cn} ⊂ X \K is a Fatou-Bieberbach domain
of the first kind (i.e., biholomorphic to Cn) for each z ∈ V .

The proof of Theorem 3.1 depends on the following interpolation result
for graphs. We denote by distX a distance function on X compatible with
the manifold topology.

Lemma 3.2. Let X,K,L, U and f be as above, and let z0 ∈ L be arbi-
trary. Then for any ϵ > 0 there exist a neighbourhood V ⊂ U of L and a
fibred holomorphic automorphism ϕ(z, x) = (z, φ(z, x)) of V ×X such that
ϕ(z, f(z)) = (z, f(z0)) for all z ∈ V , and distX(φ(z, x), x) < ϵ for all z ∈ L
and x ∈ K.

Proof. We may assume that z0 = 0 ∈ CN . Let V1, . . . , Vm be complete holo-
morphic vector fields on X such that V1(x), . . . , Vm(x) span the tangent
space TxX for all x ∈ X (such exist by [3, Proposition 5.6.23] since X
is Stein and has the density property). Let ψ1,s, . . . , ψm,s denote their re-
spective flows, s ∈ C. Consider the map Ψ : Cm ×X → X defined for s =
(s1, . . . , sm) ∈ Cm and x ∈ X by

Ψ(s1, . . . , sm, x) = ψm,sm ◦ · · · ◦ ψ1,s1(x).

Note that Ψ(s, · ) ∈ Aut(X) for every s ∈ Cm. Then the partial differen-
tial ∂s|s=0Ψ(s, f(0)) has maximal rank n = dimX, so there exists an n-
dimensional linear subspace Λ ⊂ Cm on which this differential has rank n.
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We may assume that Λ = Cn × {0}m−n. Write s = (s′, s′′), with s′ ∈ Cn and
s′′ ∈ Cm−n, and set Ψ̃s′ := Ψ((s′, 0′′), · ) ∈ Aut(X). It follows that there ex-
ists δ > 0 such that the map s′ 7→ Ψ̃s′(f(0)) is an embedding of the open
δ-ball Bδ ⊂ Cn centred at 0 ∈ Cn onto an open neighbourhood of f(0) ∈ X.

We replace L by a slightly larger convex set L′ ⊂ U with L ⊂ (L′)◦ with-
out changing the notation. We also choose a compact holomorphically con-
vex set K ′ ⊂ X containing K in its interior and such that f(z) ∈ X \K ′ for
all z ∈ L. Set ft(z) = f(t · z) for z ∈ L and t ∈ [0, 1]. Consider the isotopy
ϕt(z, x) defined to be the identity near L×K ′ and ϕt(z, f(z)) = (z, f1−t(z)),
0 ≤ t ≤ 1 on the graph Z := {(z, f(z)) : z ∈ L} ⊂ CN ×X. The image of ϕt
is the disjoint union of L×K ′ and the holomorphic graph of f1−t over
L, so it is holomorphically convex in CN ×X. By using [3, Proposition
3.3.2] (a fibred version of the tubular neighbourhood theorem for Stein
manifolds) along with the Oka-Grauert principle we can extend ϕt to a
fibred isotopy of injective holomorphic maps on an open neighbourhood of
Z in CN ×X. Since X has the density property, given η > 0 there is a fi-
bred holomorphic automorphism ϕ̃(z, x) = (z, φ̃(z, x)) of L×X such that
distX(φ̃(z, f1(z)), f(0)) < η for z ∈ L and distX(φ̃(z, x), x) < ϵ/2 for z ∈ L
and x ∈ K ′ (see [10] and [3, Theorems 4.10.5 and 4.12.3]). Note that f1 = f .
If η > 0 is chosen small enough, there exists for each z ∈ L a unique point
λ(z) ∈ Bδ ⊂ Cn such that Ψ̃λ(z)(f(0)) = φ̃(z, f(z)). The fibred holomorphic
automorphism

ϕ(z, x) =
(
z, Ψ̃−1

λ(z)(φ̃(z, x))
)
, z ∈ L, x ∈ X

then satisfies the lemma provided η > 0 is chosen small enough. □

We will also need the following basic result which we include lacking
a reference. (The existence of a Fatou-Bierberbach domain of the first kind
containing a point p ∈ X was proved by Varolin [13], but this is not sufficient
for our purpose.)

Lemma 3.3. Let X be a Stein manifold with the density property, let
K ⊂ X be a holomorphically convex compact set, and let p ∈ X \K. Then
there exists a Fatou-Bieberbach domain Ω ⊂ X \K of the first kind such that
p ∈ Ω.

Proof. LetK ′ be a holomorphically convex compact set inX containingK in
its interior and such that p /∈ K ′. Choose a local holomorphic coordinate ϕ :
Up → Cn on X such that p ∈ Up ⊂ X \K ′ and ϕ(p) = 0. Denote by Bδ the
open ball of radius δ centred at the origin in Cn. Let δ > 0 be chosen small
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enough such that Bδ ⊂ ϕ(Up) and ϕ−1(Bδ) ∪K
′ is holomorphically convex

in X. Let F : Cn → Cn be the automorphism F (z1, . . . , zn) = ( z12 , . . . ,
zn
2 ).

Since X has the density property, we can apply [3, Theorem 4.10.5] to ap-
proximate the map which equals ϕ−1 ◦ F ◦ ϕ on a neighbourhood of ϕ−1(Bδ)
and equals the identity map on a neighbourhood of K ′ to obtain a sequence
Gj ∈ Aut(X) such that for any k ∈ N we have that Gk ◦ · · · ◦G1(K) ⊂ K ′,
and setting Fj = ϕ ◦Gj ◦ ϕ

−1 we have that

s · ∥z∥ ≤ ∥Fj(z)∥ ≤ r · ∥z∥, j ∈ N

on Bδ, with 0 < s < 1
2 < r < 1 and r2 < s < 1. Now, following [15, proof of

Theorem 4] we have that the abstract basin of attraction, or the tail space
Ω̃ (see [1]) associated to {Fj}j∈N, is biholomorphic to Cn, and the basin of

attraction Ω of the sequence {Gj}j∈N is biholomorphic to Ω̃. □

Proof of Theorem 3.1. This is an immediate consequence of Lemmas 3.2
and 3.3. □
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