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The Chow cohomology of affine

toric varieties

Dan Edidin and Ryan Richey

We study the Fulton-Macpherson Chow cohomology of affine toric
varieties. In particular, we prove that the Chow cohomology van-
ishes in positive degree. We prove an analogous result for the op-
erational K-theory defined by Anderson and Payne.

1. Introduction

Toric varieties are a rich source of examples for studying delicate questions in
both ordinary and equivariant intersection theory. A classical result is that
both the Chow and cohomology rings of a smooth projective toric variety
are isomorphic to the Stanley-Reisner ring of the associated fan. For singu-
lar varieties, however, there is no natural intersection product on algebraic
cycles. In this case a natural ring to consider is Fulton and Macpherson’s
Chow cohomolgy ring.

If X is a scheme then an element c of the Chow cohomology ring A∗
op(X)

is a collection of operations on the Chow groups of any scheme X ′ mapping
to X which satisfy appropriate compatibility conditions. If X is smooth then
a basic result states that the Chow cohomology ring can be identified with
the usual Chow ring, Moreover, a deep result of Fulton and Sturmfels [FS]
states that the Chow cohomology ring of a complete toric variety is the ring
of Minkowski weights of the associated fan. However, for arbitrary singular
schemes, including non-proper toric varieties, little is known about the Chow
cohomology ring.

In a situation where a linear algebraic group acts on a scheme there
is a corresponding equivariant Chow cohomology ring which was defined
in [EG]. In a fundamental paper Payne [Pay] calculated the T -equivariant
Chow cohomology ring of an arbitrary toric variety and identified it with the
ring of piecewise polynomial functions on the corresponding fan. However,
as noted by Katz and Payne [KP], the relationship between equivariant and
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ordinary Chow cohomology is quite subtle and there is no immediate way
to use Payne’s result to obtain information about the non-equivariant Chow
cohomology rings of non-complete toric varieties.

The main result of this paper, Theorem 4.1, is to show that the (non-
equivariant) Chow cohomology ring of any affine toric variety vanishes in
degree greater than zero. By contrast, the Chow homology groups of an
affine toric variety need not vanish and can have both torsion and non-
torsion elements.

Although their coordinate rings have prime cycles which are not ratio-
nally equivalent to 0, our result shows that the Chow cohomology rings of
affine toric varieties behave like that of affine spaces. As observed by Gube-
ladze [Gub], singular affine toric varieties constitute a class of intuitively
contractible varieties naturally generalizing affine spaces. In particular, all
vector bundles are trivial so the Grothendieck ring is isomorphic to Z. In a
parallel result we also prove, Theorem 5.1, that the operational K-theory
ring defined by Anderson and Payne in [AP] is also isomorphic to Z. Again,
the Grothendieck group of coherent sheaves of an affine toric variety need
not be isomorphic to Z; see Example 5.7.

Our Chow cohomology result fits into a framework developed in [ES].
There, the first author and Satriano show that for spaces, such as toric
varieties, which are good moduli spaces of smooth Artin stacks, elements
of the Chow cohomology ring have canonical representatives as topologically
strong cycles on the corresponding stack.

Based on the results of [ES] the authors of the present paper have a
conjectural description of the Chow cohomology ring of an arbitrary toric
variety in terms of strong complete intersection cycles on the corresponding
canonical stack. For precise statements see [Ric, Conjectures 5.2.8–5.2.9]. As
noted in [Ric] our results here imply that the conjectures hold for affine toric
varieties.

1.1. Outline of the proof

The proof of Theorem 4.1 uses Kimura’s fundamental exact sequence for
Chow cohomology [Kim] and the stack-theoretic results proved in [ES].

If X(σ) is the affine toric variety defined by a cone σ generated by
primitive vectors u1, . . . , uk, then we denote by σ∗ the fan obtained by star
subdivision with respect to the ray generated by v = u1 + · · ·+ uk. The
map of toric varieties X(σ∗) → X(σ) is a blowup with exceptional divisor
E = V (ρv). Using Kimura’s exact sequence for Chow cohomology, we show
that in order to prove that Ak

op(X(σ)) = 0 for k > 0, it suffices to prove the
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restriction map Ak
op(X(σ∗)) → Ak

op(E) is injective. Here Ak
op(X(σ)) denotes

the k-th Chow cohomology group. See Section 3 for a precise definition.
Denote by E and X (σ∗) the corresponding toric canonical stacks. Us-

ing the results of [ES] we can show that Ak(X(σ∗))Q → Ak(E)Q is injective
by showing that the corresponding map of Chow rings of smooth stacks
Ak(X (σ∗)) → Ak(E) is injective. By computing the Chow rings of toric
canonical stacks we show directly that the corresponding map is in fact
an isomorphism. This shows that Ak(X(σ))Q = 0 for k > 0. The proof con-
cludes by using results of Hausel and Sturmfels [HS] to show that the Chow
cohomology of any affine toric variety is torsion free.

The proof for operational K-theory uses a similar stategy. Here we com-
bine Anderson and Payne’s [AP] results with Theorem 5.4 to obtain the
desired result.

Since this paper was first submitted, the authors gave a second proof of
Theorems 4.1 and 5.1 using different techniques. This appears in [ERi].
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2. Background on toric varieties and canonical stacks

2.1. Basic toric terminology

Following [Ful2] or [CLS], let K be be an algebraically closed field, N and
M be rank n dual lattices over Z (which will be the lattices of 1-parameter
subgroups and characters of a torus), and let σ be a strongly convex, rational,
and polyhedral cone in NR = N ⊗Z R. From σ, we can construct the dual
cone σ∨ in MR which satisfies the property that σ∨ ∩M is a semigroup. The
affine toric variety X(σ) is defined as: X(σ) := Spec(k[(σ∨ ∩M)]).

A fan ∆ in NR is a collection of cones satisfying the following two prop-
erties: each face of a cone is in ∆, and the intersection of every two cones is
a face of each. Each cone in ∆ generates an affine toric variety which glue
together to define a normal toric variety X(∆) with an action of the torus
TN = X({0}). Conversely, it is well known that every normal variety con-
taining a dense torus whose action extends to an action on the total variety
arises from a fan.
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The orbit-cone correspondence associates to each cone σ in a fan ∆ a
torus orbit O(σ) of dimension n− dimσ. We denote the closure of O(σ) by
V (σ). The orbit closure is a finite union of orbits corresponding to the faces
of σ.

Torus equivariant morphisms of toric varieties X(∆′) → X(∆) corre-
spond to morphisms of lattices φ : N ′ → N which send cones of ∆′ into
cones of ∆. Various algebro-geometric properties of the morphism can be
understood in terms of conditions on the associated map of lattices. In par-
ticular, properness is equivalent to the condition that φ−1(|∆|) = |∆′|. If φ
is the identity map, then we say ∆′ is a refinement of ∆. In what follows,
we will be interested in the inverse image of a closed subscheme made up of
orbit closures, especially in the case that ∆′ is a refinement of ∆.

Theorem 2.1. [CLS, Lemma 3.3.21 and Proposition 11.1.10] With nota-
tion as above, suppose σ is a cone in ∆ with orbit closure V (σ) ⊂ X(∆). If
σ1, . . . , σk denote the minimal cones of ∆′ such that σ is minimal over φ(σi)
then the irreducible decomposition of the inverse image of V (σ) is:

ϕ−1(V (σ)) =

k
⋃

i=1

V (σi).

In particular, in the case of a refinement, σi can be characterized as the
minimal cones intersecting the relative interior of σ.

There is a special refinement which will be important in the remainder
of the paper - the star subdivision. Geometrically, this corresponds to the
blowup of X(∆) along a 0-dimensional subscheme supported at a distin-
guished point γσ. Specifically, given a cone σ, let u1, . . . , uk be the primitive
generators of the rays of σ, and let v(σ) =

∑k
i=1 ui. The star subdivision

of σ, see [CLS, Definition 3.3.13], is the fan denoted σ∗ whose maximal cones
are all of the form Cone(µ, v(σ)) where µ ⊂ σ is a facet.

As a final remark, recall that a cone is smooth if the minimal generators
of the rays form part of an integral basis of N , and that a cone is simplicial
if the minimal generators are linearly independent over R. A fan is smooth
or simplicial if each of its cones are smooth or simplicial respectively. It is
well known that the toric variety X(∆) is smooth if and only if each cone
in ∆ is smooth.
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2.2. Cox construction of a toric variety

The Cox construction produces any toric variety as the good quotient of
an open subscheme of affine space by the action of a diagonalizable group
G. Following [CLS, Chapter 5], we briefly recall the salient details of the
construction. Given a full-dimensional fan ∆ on a lattice N , the total coor-
dinate ring of X(∆) is the polynomial ring k[xρ : ρ ∈ ∆(1)] freely generated
by the variables xρ. Suppose n = |∆(1)| such that An = Spec(k[xρ]), then
for each cone σ ∈ ∆, define the monomial:

xσ =
∏

xρi
where {ρi} are the rays not contained in σ.

Furthermore, define B(∆) = (xσ)σ∈∆ to be the ideal generated by these
monomials. The exceptional set of ∆ is the following closed subscheme of An:

Z(∆) = V(B(∆)) ⊂ An.

The closed set Z(∆) has an explicit, combinatorial description. Recall
that a primitive collection of rays is a collection of rays that satisfies the
following two properties: the collection is not contained in a single cone of ∆,
but every proper subset is contained in a cone of ∆. For each primitive col-
lection of rays {ρi}, we can generate a linear subspace given by V ((xρi

)i∈I).

Proposition 2.2. [CLS, Proposition 5.1.6] The irreducible components of
Z(∆) are in bijection with the linear subspaces V((xρi

)i∈I) where I is a
primitive collection of rays.

Given a fan ∆, let Σ∆ denote the fan generated by cones σ = Cone(eρ :

ρ ∈ σ(1)) ⊂ R|∆(1)| where σ runs through the cones of ∆.

Proposition 2.3. [CLS, Proposition 5.1.9] (a) X(Σ∆) = An \ Z(∆).
(b) The map eρ 7→ uρ defines a map of lattices ZΣ(1) → N that is com-

patible with the fans Σ∆ ⊂ R∆(1) and ∆ ⊂ NR.

Remark 2.4. Note that if σ is a cone of ∆, then the orbit closure V (σ) is
the image of the linear subspace V({xρ}ρ∈σ(1)).

The diagonalizable group G is constructed as follows: suppose dim(∆) =
k, then the morphism of lattices Zn → Zk defined by sending the canonical
basis vectors to the minimal generators of rays of ∆ has finite cokernel;
hence, the dual map is injective, and we set L to be the cokernel of this
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map. The group G is defined to be Hom(L,Gm), the group of characters of
L, which injects into the torus of An.

Theorem 2.5. [CLS, Theorem 5.1.11(a)] Under the above notation, the
toric map (An \ Z(∆)) → X(∆) identifies X(∆) as the good quotient
(An \ Z(∆)) /G.

2.3. Canonical toric stacks

Given a full-dimensional fan ∆ on a lattice N and its associated toric variety
X(∆), the canonical toric stack is a smooth quotient stack possessing a
special relationship with X(∆). Following [GS, Section 5], there are two
equivalent definitions for the canonical stack. The first is given in terms
of the Cox construction, and the second constructs X (∆) as a toric stack
arising from a canonical stacky fan. The theory of stacky fans is worked out
in [GS] and provides a combinatorial gadget for toric stacks analogous to
fans for toric varieties. A stacky fan is a pair (∆, β : N → L) where ∆ is
a lattice on N and β is a morphism of lattices with finite cokernel, and β
induces a surjective morphism of tori TN → TL with kernel Gβ .

Following [GS, Section 3], toric morphisms between toric stacks arising
from stacky fans (∆′, N ′ → L′), (∆, N → L) correspond to morphisms of lat-
tices which are compatible with the stacky fans: specifically, φ : N ′ → N and
Φ : L′ → L are morphisms of lattices such that for every cone σ ∈ ∆′, φ(σ)
is contained in a cone of ∆ and the following diagram commutes:

N ′ φ
//

β′

��

N

β

��

L′ Φ
// L

Definition 2.1. The canonical stack of X(∆) will be denoted by X (∆) and
is equipped with a toric morphism X (∆) → X(∆); it can be constructed in
either of the following ways:

1) The Cox construction of a toric variety produces an open subscheme
U ⊂ A|∆(1)| and a diagonalizable group G such that X(∆) ∼= U/G,
[CLS, Theorem 5.1.11]. The canonical stack of X(∆) is the quotient
stack [U/G] with morphism [U/G] → X(∆).

2) Equivalently, let (Σ∆, β : Z|∆(1)| → N) be the stacky fan where β is de-
fined by sending the canonical basis vectors to the primitive generators
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of ∆, and Σ∆ is the canonical fan defined in the previous section. The
toric stack associated to this stacky fan is the canonical stack X (∆).

Furthermore, the toric morphism X (∆)→X(∆) is easily constructed
from the following morphism of stacky fans:

Z|∆(1)| N

N N

Recall [Alp, Definition 4.1], that a morphism from an Artin stack to an
algebraic space is a good moduli space morphism if it is cohomologi-
cally affine and Stein. In the context of quotient stacks, this is a natural
generalization of good quotients. As a consequence of [GS, Theorem 6.3],
the following holds:

Theorem 2.6. [GS, Example 6.23] The canonical stack morphism X (∆) →
X(∆) is a good moduli space morphism.

Example 2.7. Let σ denote the cone generated by {(1, 0, 1), (0,−1, 1),
(−1, 0, 1), (0, 1, 1)} in R3, then X(σ) is a 3-dimensional, affine, singular toric
variety with four rays. Let β : Z4 → Z3 be defined by sending the canon-
ical basis vectors to the primitive generators of σ; note, the preimage of
σ under β is the cone defining A4. Furthermore, the cokernel of the dual
of β is Z4 → Z3 defined as the matrix [1,−1, 1,−1]; hence, if we apply
D(−) := Hom(−,Gm) to this cokernel, we see that Gβ = Gm and defines
an action of A4 with weights (1,−1, 1,−1). Thus, the canonical stack of
X(σ) is X (σ) = [A4/Gm].

3. Chow cohomology of algebraic schemes and stacks

LetX be a scheme (or more generally an algebraic space) defined over a field.
Following [Ful1], let Ak(X) denote the group of dimension k cycle classes
modulo rational equivalence. If X is equidimensional, let Ak(X) denote the
group of codimension k cycle classes modulo rational equivalence. In addi-
tion if X is smooth, then the intersection product on Ak(X) as constructed
in [Ful1, Chapter 6.1] makes A∗(X) into a commutative, graded ring. For
general schemes, without any assumptions on non-singularity, [Ful1, Chap-
ter 17] constructs a graded ring A∗

op(X) := ⊕k≥0A
k
op(X) defined as follows:
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an element c ∈ Ak
op(X) is a collection of homomorphisms of groups:

c(k)g : ApX
′ → Ap−kX

′

for every morphism g : X ′ → X which are compatible with respect to proper
pushforward, and flat and l.c.i. pullbacks (see [Ful1, Definitions 17.1 and
17.3]). If α ∈ ApX

′ then following [Ful1, Notation p.320] we denote c(k)(α) by
c ∩ α. The product is given by composition and turns A∗

op(X) into a unital,
associative, graded ring called the Chow cohomology ring of X. More-
over, if X has a resolution of singularities (e.g. if X is a toric variety) then
A∗

op(X) is known to be commutative. If X is smooth, then [Ful1, Corollary

17.4] proves that the Poincaré-Duality map Ak
op(X) → Ak(X) = An−k(X),

c 7→ c ∩ [X], is an isomorphism of rings where the intersection product agrees
with the product given by composition.

Remark 3.1. In [Ful1, Chapter 17] the Chow cohomology ring is denoted
A∗(X) without the inclusion of the subscript op, regardless if X is smooth
or not. We will deviate from this convention to emphasize the distinction
between operational classes in the smooth and non-smooth cases.

For smooth quotient stacks X = [Z/G], the Chow ring A∗(X ) is iden-
tified with the G-equivariant Chow ring A∗

G(Z) by [EG]. Furthermore, if
π : X → X is any morphism between a stack and an algebraic space1, [ES,
Proposition 2.10] proves that there is a pullback map π∗ : A∗

op(X) → A∗(X ),
c 7→ c ∩ [X ]. In this paper we make essential use of the following result.

Theorem 3.2. [ES, Theorem 1.1] If X is a smooth, connected, properly
stable Artin stack with good moduli space π : X → X, then the pullback π∗

is injective after tensoring with Q.

Since X (∆) → X(∆) is a good moduli space morphism, we conclude
that A∗

op(X(∆))Q injects into A∗(X (∆))Q. If ∆ is simplicial, then X (∆) is
Deligne-Mumford and the inclusion is an isomorphism.

3.1. Chow cohomology of toric varieties

For toric varieties, the generators and relations of the Chow groupsAk(X(∆))
can be explicitly computed. By [Ful2, Chapter 5.1], Ak(X(∆)) is generated

1Because the good moduli space of a quotient stack need not be a scheme, [ES]
considers maps from stacks to algebraic spaces. Since the moduli space of a toric
stack is always a toric variety, this generality is not strictly needed here.
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by the classes [V (σ)] where σ has codimension k. Furthermore, the group of
relations between these generators is generated by all relations of the form:

[div(xu)] =
∑

σ

⟨u, nσ,τ ⟩ [V (σ)],

where τ runs over all cones of codimension k + 1 which are a face of σ, u
runs over a generating set of M(τ), and nσ,τ is a lattice point of σ whose
image generates the one-dimensional lattice Nσ/Nτ . In the case that X(∆)
is smooth, the above description can be used to compute A∗

op(X(∆)) since

Ak
op(X(∆)) = An−k(X(∆)). However when X(∆) is not smooth, there are

only a few known techniques to compute A∗
op(X(∆)). In particular, for com-

plete toric varieties, the Chow cohomology ring can also be derived from the
above description of Chow groups by the following theorem:

Theorem 3.3. [FS, Proposition 1.4, Theorem 2.1] If X is a complete toric
variety, then Ak

op(X) ∼= Hom(Ak(X),Z), and the Chow cohomology is also
isomorphic to the ring of Minkowski weights on ∆.

However, for non-complete toric varieties this isomorphism fails as the
following example demonstrates.

Example 3.4. Let σ denote the cone generated by {(1, 0, 1), (0,−1, 1),
(−1, 0, 1), (0, 1, 1)} in R3 as seen above. One can compute that A2(X(σ)) =
Z/2⊕ Z which does admit non-trivial morphisms A2(X(σ)) → Z. However,
by Theorem 4.1, A2

op(X(σ)) = 0.

3.1.1. Computing Chow cohomology: Kimura’s exact sequence.
There is a second technique to compute the Chow cohomology of a toric va-
riety using Kimura’s exact sequence. This sequence injects A∗

op(X(∆)) into
the Chow cohomology of any envelope of X(∆). Recall, a morphism X ′ → X
is an envelope if it is proper and for every closed subvariety V ⊂ X, there
exists a closed subvariety V ′ ⊂ X ′ mapping onto V such that the restriction
V ′ → V is birational.

Proposition 3.5. [Kim, Theorem 2.3] Let X ′ → X be an envelope which
is an isomorphism outside of S ⊂ X and E ⊂ X ′, then

(1) 0 → A∗
op(X) → A∗

op(X
′)⊕A∗

op(S) → A∗
op(E)

is exact.
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If X ′ → X is proper and surjective, then the above sequence is exact
after tensoring with Q. Payne proved [Pay, Lemma 1] that any proper bira-
tional, toric morphism is an envelope. In particular, if ∆′ is any refinement
of ∆, then A∗

op(X(∆)) injects into A∗
op(X(∆′)) [Kim, Lemma 2.1]. We make

essential use of this fact in our proof of Theorem 4.1.

3.2. Chow rings of canonical toric stacks

The Chow ring of X (∆) admits a simple presentation using equivariant Chow
groups. Following [CE, Section 2], let n = |∆(1)|, V = An, U = V \ Z(∆), G
the diagonalizable group such that X (∆) = [U/G] and X(G) the character
group of G. The excision exact sequence ([Ful1, Prop. 1.8]) for equivariant
Chow groups implies A∗(X (∆)) is a quotient of A∗

G(V ) = A∗
G(pt); the latter

A∗
G(pt) will be denoted by A∗

G. By [EG], A∗
G
∼= Z[X(G)] where the latter is

the symmetric algebra of the character group of G. By construction of X (∆),
the action of G on V is faithful; hence, G injects into Gn

m and induces
a surjection of character groups X(Gn

m) → X(G). This surjection further
induces a surjection of equivariant Chow rings A∗

Gn
m
→ A∗

G leading us to the
following definition:

Definition 3.1. The linear equivalence ideal of ∆ is defined to be:

L(∆) := ker(A∗
Gn

m
→ A∗

G).

Equivalently, it is the linear ideal generated by the relations among the
image of X(Gn

m) in X(G). Hence, A∗
G = A∗

Gn
m
/L(∆).

Suppose L1, . . . , Lk are the irreducible components of Z(∆), then by [CE,
Propositions 2.1 and 2.2], A∗

G(U) is the quotient of A∗
Gn

m
modulo the linear

equivalence ideal and the ideal generated by the equivariant fundamental
classes of Li.

Definition 3.2. The Stanley-Reisner ideal of ∆ is the ideal Z(∆) gen-
erated by the equivariant fundamental classes of the irreducible components
of Z(∆).

Thus, by [CE, Propositions 2.1 and 2.2], the Chow ring of X (∆) has the
following presentation:

Theorem 3.6. Under the above notation,

A∗(X (∆)) ∼= A∗
G/Z(∆) ∼= A∗

Gn
m
/(L(∆),Z(∆)).
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Each of the terms in the above presentation can be explicitly com-
puted. If e1, . . . , en denotes the canonical basis of characters for X(Gn

m), and
t1, . . . , tn denote their first Chern classes, then A∗

Gn
m
= Z[t1, . . . , tn]. For the

linear equivalence ideal, let v1, . . . , vk be a basis for ker(X(Gn
m) → X(G)),

then L(∆) is the ideal generated by corresponding first Chern classes of
v1, . . . , vk: if vi =

∑

j aijej , then
∑

j aijtj ∈ L(∆). For the Stanley-Reisner
ideal, suppose Li = V (xi1 , . . . , xil) where x1, . . . , xn are coordinates for V ,
then the equivariant fundamental class of Li is ti1 · · · til .

Remark 3.7. Since we know the irreducible components of Z(∆) corre-
spond to the primitive collections of ∆, Z(∆) is equivalently generated by
the monomials corresponding to primitive collections. Explicitly, if {ρi1 , . . . ,
ρik} is a primitive collection corresponding to an irreducible component of
Z(∆), then the monomial ti1 · · · tik is the equivariant fundamental class of
this component.

Example 3.8. Let σ be the cone considered in the previous examples. Since
X(σ) is affine, Z(σ) = 0. Furthermore, L(σ) is generated by the relations
(s1 − s3, s2 − s4, s1 + · · ·+ s4). Hence, A

∗(X (σ)) is a polynomial ring in one
variable.

Example 3.9. Suppose we star subdivide σ to produce the fan σ∗. The
Chow cohomology of the canonical stack of σ∗ has the following presenta-
tion: the Stanley-Reisner ideal is the ideal (s1s3, s2s4) since {ρ1, ρ3} and
{ρ2, ρ4} are the primitive collections of σ∗. Furthermore, the linear equiva-
lence ideal is defined by the equations (s1, s3, s2 − s4, s1 + · · ·+ s5). Hence,
A∗(X (σ∗)) = Z[s1, s2]/(s

2
1, s

2
2).

4. Chow cohomology of affine toric varieties

In this section, we will establish our main result, the vanishing of the Chow
cohomology of an affine toric variety.

Theorem 4.1. For any affine toric variety X(σ),

Ak
op(X(σ)) = 0 for k > 0.

In particular, A∗
op(X(σ)) = Z.

To slightly simplify the notation we will assume that the cone is full
dimensional. If σ is not full dimensional then X(σ) = T ×X(σ) where T
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is a torus and σ is a full-dimensional cone and our full-dimensional proof
readily adapts to this case.

The proof will be divided into the following subsections.

4.1. Kimura’s exact sequence

Let σ∗ denote the star subdivision of σ with respect to v = v(σ), ρv the
corresponding ray in σ∗, and φ : X(σ∗) → X(σ) the associated toric mor-
phism. Note, this morphism is an isomorphism outside of S := V (σ) and
E := φ−1(S).

Lemma 4.2. Under the above notation, E = V (ρv).

Proof. By construction, ρv is contained in the interior of σ, and if τ is a cone
of σ∗ non-trivially intersecting the interior of σ, then τ necessarily contains
ρv. Hence, ρv is the unique minimal cone of σ∗ intersecting the interior of
σ. The Lemma then follows from the description of Theorem 2.1. □

Furthermore, S is 0-dimensional and irreducible, hence, A0(S) = Z and
Ak(S) = 0 for k > 0. Therefore, if we apply Kimura’s exact sequence to φ,
we obtain the following exact sequence:

0 → Ak
op(X(σ)) → Ak

op(X(σ∗)) → Ak
op(V (ρv)) for k > 0.

Thus, to showAk
op(X(σ)) = 0 for k > 0, it suffices to showAk

op(X(σ∗)) →
A∗

op(V (ρv)) is injective. To accomplish this, in Sections 4.2 and 4.3 we show
that it suffices to consider the Chow rings of the associated canonical stacks.
In Section 4.4 we will show that these Chow rings are in fact isomorphic.

4.2. A commutative diagram of canonical stacks

Let X (σ∗) → X(σ∗) and E → E denote the canonical stacks of X(σ∗) and
E respectively, and let E → X(σ∗) denote the inclusion. The goal of this
subsection is to show that we can construct a closed embedding E → X (σ∗)
such that the following diagram of canonical stacks and moduli spaces is
commutative:

(2)

E X (σ∗)

E X(σ∗)
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Let Σσ∗ denote the fan of A|σ∗(1)| \ Z(σ∗). It is equipped with a morphism
X(Σσ∗) → X(σ∗) as in the canonical stack construction. If n = |σ(1)|, let
x1, . . . , xn+1 be coordinates on A|σ∗(1)| such that xn+1 corresponds to the
ray ρv. By Remark 2.4 we have a commutative diagram of G-quotients

(3)

(V(xn+1) \ Z(σ∗)) X(Σσ∗)

E X(σ∗)

where G is the group acting on X(Σσ∗) such that X (σ∗) = [X(Σσ∗)/G].
We will show that [(V(xn+1) \ Z(σ∗)/G] is the canonical stack of the toric
variety E.

We begin with the following basic result on toric varieties:

Lemma 4.3. A collection of rays of σ∗ is primitive if and only if the cor-
responding collection in Star(ρv) is primitive.

Proof. Let C be a primitive collection of σ∗ and let C ′ be the associated
collection in Star(ρv). If D

′ ⊂ C ′ is a proper subset and D ⊂ C denotes the
corresponding subset, then since D is contained in some cone, it follows that
D′ will be contained in the image of that cone. Similarly, if C ′ ⊂ τ(1), then
C ⊂ τ would contradict C being primitive. Thus, if C is primitive, then C ′

is primitive; the converse holds by a similar argument. □

The existence of the commutative diagram (2) now follows from the following
lemma.

Lemma 4.4. Let E denote the canonical stack over E. Then E is isomor-
phic to the quotient stack [(V(xn+1) \ Z(σ∗))/G].

Proof. By definition, E is the toric variety with fan Star(ρv) in the quotient
lattice N(ρv). Since Star(ρv) is spanned by the n rays ρ1, . . . , ρv in N(ρv)
we see that the canonical stack is the quotient of a

[(An \ Z(Star(ρv))) /G
′] where G′ = ker(Tn → TN(ρv))

and Tn is the n-dimensional torus Hom(Z| Star(ρv)(1)|,Gm). By Lemma 4.3,
a collection of rays in Star(ρv) is primitive if and only if the corresponding
rays in σ∗ are primitive. Thus if we identify V(xn+1) = An then the open
sets An \ Z(Star(ρv)) and V(xn+1) \ Z(σ∗) are equal. We claim that G = G′
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and the action of G′ on An \ Z(Star(ρv)) coincides with the action of G
on V(xn+1) \ Z(σ∗) under this isomorphism. Indeed, this follows from the
commutativity of the following diagram of character groups:

0 Zk−1 Zn X(G′) 0

0 Zk Zn+1 X(G) 0

The vertical maps are the duals of the canonical quotient maps for the
primitive generators of ρv and en+1 respectively. □

Remark 4.5. Note that unless σ∗ is a resolution of singularities, diagram
(3) is not cartesian. The following example shows that even if σ∗ is a sim-
plicialization the diagram fails to be Cartesian.

Example 4.6. Consider the cone σ with ray generators given by {(1, 1, 1),
(−1, 0, 1), (1, 0, 1), (0,−1, 1)}, and its associated star subdivision σ∗ ob-
tained by adding the ray generator (1, 0, 4) and subdividing appropriately.
We claim that in this example, E is not scheme-theoretically saturated
with respect to π. Following [ES, Remark 3.4], since dim(E) = dim(E) and
π(E) = E, it suffices to show E is not a strong divisor.

With the notation as in this section, the action of G2
m on A5 \ V (x1, x3) ∪

V (x2, x4) is given by the matrix:





3 −2 1 −2 0

2 −3 0 −3 1





If E is strong, then the ideal (x5) is generated by an invariant function
on each open set D(x1x2), D(x2x3), D(x3x4), and D(x1x4). However, on
D(x1x2) where x1, x2 are invertible, the weight (0, 1) of x5 cannot be ex-
pressed as an integral linear combination of the weights (3, 2) and (−2,−3)
for x1, x2 respectively; thus, E is not strong. Note that (0, 1) can be expressed
rationally in terms of these weights on each affine open set and it is easy to
check that (x155 ) is locally generated by an invariant function.

4.3. The injectivity result of [ES]

Since the canonical stack morphisms are good moduli space morphisms, we
have that A∗

op(E)Q ⊂ A∗(E)Q and A∗
op(X(σ∗))Q ⊂ A∗(X (σ∗))Q. Hence, by
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combining these injections with the main result of the previous section and
Kimura’s exact sequence, the following diagram commutes:

0 Ak
op(X(σ))Q Ak

op(X(σ∗))Q Ak
op(E)Q

Ak(X (σ∗))Q Ak(E)Q

Since the vertical maps are injections, to show Ak
op(X(σ∗)) → Ak

op(E)
is injective at least over Q, it suffices to show A∗(X (σ∗))Q → A∗(E)Q is an
injection. In fact, we claim this map is an isomorphism over Z.

4.4. The pullback of Chow rings of canonical stacks
is an isomorphism

Theorem 4.7. Let E → X (σ∗) be the injective morphism given by Lemma
4.4, then the pullback induces an isomorphism A∗(E) ∼= A∗(X (σ∗)).

Proof. By the previous lemma, E ∼= [(V(xn+1) \ Z(σ∗))/G] ⊂ X (σ∗) =
[(An+1 \ Z(σ∗))/G]. Hence, the Chow rings of the canonical stacks are the
following equivariant Chow rings:

A∗(X (σ∗)) = A∗
G(A

n+1 \ Z(σ∗)), and A∗(E) = A∗
G(V (xn+1) \ Z(σ∗)).

Since Z(σ∗) does not contain xn+1, we can write V(xn+1) \ Z(σ∗) = An \ Z ′

and An+1 \ Z(σ∗) = (An \ Z ′)× A1 for the obvious exceptional set Z ′ ⊂ An.
In particular, the inclusion of canonical stacks is the quotient byG of the zero
section An \ Z ′ ⊂ (An \ Z ′)× A1 of a G-equivariant vector bundle over An \
Z ′. Hence, the pullback in G-equivariant Chow groups along this inclusion
is an isomorphism. □

Thus, Ak
op(X(σ))Q=0 for k>0. The final step will be to show Ak

op(X(σ))
is torsion-free.

4.5. Chow cohomology of semi-projective toric varieties
is torsion-free

From [HS], a toric variety X(∆) is semi-projective if it has at least one
torus fixed point and the natural map X(∆) → Spec(Γ(OX(∆))) is projec-
tive; equivalently, it is semi-projective if ∆ has full-dimensional convex sup-
port and X(∆) is quasi-projective. Hence, for an affine toric variety X(σ),
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any regular subdivision (for example a star subdivision) ∆ of σ produces a
semi-projective toric variety X(∆) which is projective over X(σ). In partic-
ular, let σ′ be a resolution of singularities of σ obtained by regular subdivi-
sions, then by [Kim, Lemma 2.1], A∗

op(X(σ)) ⊂ A∗
op(X(σ′)). Hence, it suffices

to show A∗
op(X(σ′)) is torsion-free where X(σ′) is a smooth semi-projective

toric variety.

Remark 4.8. For a smooth projective toric variety, [Ful2, Section 5.2]
demonstrates that its Chow ring is torsion-free by producing a Bialynicki-
Birula decomposition from a particular ordering of the maximal dimensional
cones.

In [HS, Section 2], Hausel and Sturmfels generalize the construction of
[Ful2, Section 5.2] to smooth semi-projective toric varieties by utilizing the
moment map associated to a 1-parameter subgroup, and in particular, they
construct the Bialynicki-Birula decomposition of a smooth semiprojective
variety by producing a collection of locally closed subsets {Uj} satisfying
the following properties:

1) Each Ui is a union of orbits, and hence, the closure of Ui is a union of
Uj ’s.

2) X(σ′) is the disjoint union of the Ui’s.

3) Each Ui
∼= An−ki .

In particular, by [EH, Definition 1.16], this decomposition of X(σ′) is an
affine stratification. By [Tot], the classes of Ui form a basis for A∗(X(σ′)),
and hence, A∗(X(σ′)) is necessarily torsion-free. Thus, since A∗

op(X(σ)) ⊂
A∗(X(σ′)), it follows that A∗

op(X(σ)) is torsion-free, and by combining all of
the previous subsections, this concludes the proof of the main theorem. □

The argument presented in this subsection can be utilized to demonstrate
that the Chow cohomology rings of a wide class of toric varieties are torsion-
free. As a natural generalization of semi-projectivity, we say that a toric
variety X(∆) is semi-proper if it has at least one torus fixed point and the
natural map X(∆) → Spec(Γ(OX(∆))) is proper.

Theorem 4.9. Let X(∆) be any semi-proper toric variety, then A∗
op(X(∆))

is torsion-free.

Proof. By the toric Chow’s lemma [CLS, Theorem 6.1.18], there exists a pro-
jective toric variety X(∆′), and toric morphism X(∆′) → X(∆), where ∆′ is
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a smooth refinement of ∆, such that the mapX(∆′) → X(σ) factors through
X(∆) → X(σ). Hence, by [Kim, Lemma 2.1], A∗

op(X(∆)) ⊂ A∗(X(∆)) and
the latter is torsion-free by the previous arguments in this section. □

Example 4.10. Let σ denote the cone generated by {(1, 0, 1), (0,−1, 1),
(−1, 0, 1), (0, 1, 1)} in R3, then σ∗ is actually a resolution of singularities of
σ. In particular, the vertical maps in the square

Ak
op(X(σ∗))

��

// Ak
op(E)

��

Ak(X (σ∗))
≃

// Ak(E)

are isomorphisms. Furthermore, E = V (ρv) = P1×P1, and we can explicitly
compute A∗(X (σ∗)) as:

A∗(X (σ∗)) = Z[s1, . . . , s4, s]/(s1 − s3, s2 − s4, s1 + · · ·+ s4 + s, s1s3, s2s4).

Hence, s1=s3, s2=s4, and s=−2s1−2s2; and A∗(X (σ∗))=Z[s1, s2]/(s
2
1, s

2
2)

is clearly isomorphic to the Chow ring of P1 × P1 as predicted by Theo-
rem 4.7. This calculation also directly verifies that A∗

op(X(σ)) is torsion free
since it injects into the ring Z[s1, s2]/(s

2
1, s

2
2) which has no Z-torsion.

5. Operational K-theory

In this part we prove Theorem 5.1. The proof is similar to the proof of
Theorem 4.1 so we give an extended sketch. The main technical difficulty
is establishing a version of the injectivity result of [ES] for operational K-
theory

5.1. Notation and background on operational K-theory

We briefly recall the notation and basic results on operational K-theory
defined by Anderson and Payne in the paper [AP].

Following [AP], if X is a scheme (or more generally a stack) we de-
note by K0(X) the Grothendieck group of coherent sheaves, and K0(X) the
Grothendieck group of perfect complexes. If X has an ample family of line
bundles, then K0(X) is the same as the naive Grothendieck group of vector
bundles.

For any scheme X, Anderson and Payne define the operational K-
theory opK0(X) ofX as follows. An element c ∈ opK0(X) is a collection of
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operators cf : K0(X
′) → K0(X

′) indexed by morphisms X ′ f
→ X compatible

with proper pushforward, flat and l.c.i. pullback.
For any scheme X, there is a canonical map opK0(X) → K0(X) given

by c 7→ cidX
(OX). If X is smooth, then [AP, Corollary 4.5] states that this

map is an isomorphism. They also prove [AP, Proposition 5.3] that the
groups opK0(X) satisfy descent for Chow envelopes. In particular, the exact
sequence (1) also holds for operational K-theory.

Theorem 5.1. For any affine toric variety X(σ), opK0(X(σ)) = Z.

5.2. The injectivity theorem for operational K-theory

Lemma 5.2. If X ′ f
→ X is an envelope (resp. proper surjective), then the

pullback map on operational K-theory f∗ : opK0(X) → opK0(X ′) is injec-
tive (resp. rationally injective).

Proof. The pushforward map f∗ : K0(X
′) → K0(X) is surjective (resp. ra-

tionally surjective) by [Ful1, Lemma 18.3(6)]. Given this fact, the proof is
identical to the proof of [Kim, Lemma 2.1] with operational K-theory re-
placing Chow cohomology. □

The following is the K-theoretic analogue of [ES, Proposition 2.10].

Proposition 5.3. If X → X is a good moduli space morphism and X has
a resolution of singularities, then there is a pullback opK0(X) → K0(X ),
c 7→ c(OX ′). In general this map is defined with Q coefficients.

Proof. Assuming X admits a resolution of singularities, then there is a
birational proper morphism f : X ′ → X with X ′ a smooth scheme. Let
X ′ = X ′ ×X X and let f : X ′ → X be the morphism of stacks obtained
by base change. If c ∈ opK0(X) then since opK0(X ′) = K0(X

′) = K0(X ′)
we can identify f∗c with an element of K0(X ′). Since pullbacks in K-
theory of vector bundles exist for arbitrary morphisms, we obtain a class
(π′)∗f∗c ∈ K0(X ′). Using the same name for its image in K0(X

′) under the
map K0(X ′) → K0(X

′) which takes a vector bundle to the class of the cor-
responding coherent sheaf, we define π∗c to be g∗(π

′)∗f∗c ∈ K0(X ). The
projection formula implies that this definition is independent of the choice
of resolution X ′. □

We now obtain the K-theoretic analogue of the injectivity result proved
in [ES].
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Theorem 5.4. Let π : X → X be a properly stable, good moduli space mor-
phism with X a smooth Artin stack with generically trivial stabilizer and
X a scheme. Then the pullback π∗ : opK0(X) → K0(X ) is injective after
tensoring with Q.

Proof. By [ERy, Corollary 7.2], there is a commutative diagram of stacks
and good moduli spaces

X ′

π′

��

g
// X

π

��

X ′ f
// X

with X ′ a smooth tame stack with smooth coarse space X ′ such that the
map f : X ′ → X is proper and birational. By Lemma 5.2, we know that
f∗ : opK0(X) → opK0(X ′) is injective after tensoring with Q. Thus, it
suffices to prove that π′∗ : opK0(X ′) → K0(X

′) is injective after tensoring
with Q. In other words, we are reduced to the case that X is a smooth tame
stack with smooth coarse moduli spaceX. In this case opK0(X) = K0(X) =
K0(X). By the Riemann-Roch theorem for smooth schemes, the Chern char-
acter ch: K0(X)Q ≃ A∗(X)Q is an isomorphism. The Chern character com-
mutes with the pullback π∗ : K0(X) → K0(X ), and the pullback map in
Chow groups π∗ : A∗(X)Q → A∗(X )Q is an isomorphism. Hence, the map π∗

is necessarily injective2. It follows from functoriality of the Riemann-Roch
map that the composition K0(X)Q → K0(X )Q → A∗(X )Q is injective. □

5.3. K-theory of toric canonical stacks

Like the Chow ring, the K-theory of a canonical toric stack X (∆) admits a
simple Stanley-Reisner type presentation.

The K-theoretic linear equivalence ideal of ∆ is defined to be:

KL(∆) := ker (R(Gn
m) → R(G)) .

If e1, . . . , en is the canonical basis of characters, then

R(Gn
m) = Z[e1, e

−1
1 , . . . , en, e

−1
n ] and KL(∆)

2Note that the Chern character ch: K0(X ) → A∗(X ) is defined because the hy-
pothesis ensures that X is a quotient stack by [EHKV]. The Chern character is
surjective but not injective. See [Edi] for a discussion of the Riemann-Roch theo-
rem on tame stacks.



✐

✐

“3-Edidin” — 2021/2/16 — 15:42 — page 1664 — #20
✐

✐

✐

✐

✐

✐

1664 D. Edidin and R. Richey

is generated by expressions of the form ea1

1 · · · ean

n − 1 with a1e1 + · · ·+
anen ∈ ker (X(Gn

m) → X(G)).

Definition 5.1. The K-theoretic Stanley-Reisner ideal of ∆ is the
ideal KZ(∆) generated by the equivariant K-theoretic fundamental classes
of the irreducible components of Z(∆).

If V (xi1 , . . . , xik) ⊂ An is a linear subspace then [V ] =
∏k

j=1(1− e−1
ij

) in

KGm
(An) = Z[e1, e

−1
1 , . . . , en, e

−1
n ]. Using the excision sequence for equivari-

ant K-theory, we obtain the analogue of Theorem 3.6:

Theorem 5.5. With notation as above,

K0(X (∆)) ∼= R(G)/KZ(∆) ∼= Z[e1, e
−1
1 , . . . , en, e

−1
n ]/(KL(∆) +KZ(∆)).

Example 5.6. Once again, let σ be the cone of Example 2.7, and let σ∗

be its star subdivision as in Example 3.9. Then K(X (σ∗)) is the quotient
of the character algebra of G5

m, Z[e1, e
−1
1 , e2, e

−1
2 , e3, e

−1
3 , e4, e

−1
4 , e, e−1], by

the K-theoretic ideal of linear relations and the K-theoretic Stanley-Reisner
ideal. In our case, the K-theoretic ideal of linear relations is generated by
(e1e

−1
3 − 1, e2e

−1
4 − 1, e1e2e3e4e− 1), and the K-theoretic Stanley-Reisner

ideal is generated by (1− (e1e3)
−1, 1− (e2e4)

−1). Thus,

K0(X (σ∗)) ≃ Z[e1, e2]/(e
2
2 − 1, e21 − 1) = K0(P

1)⊗K0(P
1).

5.4. Completion of the proof

The proof now proceeds as the proof of Theorem 4.1. Using the analogue of
Kimura’s exact sequence for operational K-theory [AP] and Proposition 5.3,
we are reduced to showing (with the same notation as in Section 4.2) that
the restriction K0(E) → K0(X ) is an isomorphism. This fact follows from
the Stanley-Reisner description ofK(X ) and the same formal argument used
in the proof of Theorem 4.7.

Finally, if X is any smooth variety such that A∗(X) is torsion free, then
K(X) is also torsion free. This follows from the fact that the natural map
Ak(X) → Grk K

0(X), [V ] 7→ [OV ] is surjective and becomes an isomorphism
after tensoring with Q [Ful1, Examples 15.1.5, 15.2.16]. Hence, the same
argument used in the proof of Theorem 4.9 imples that opK0(X(∆)) is
torsion free for any semi-proper toric variety. In particular, opK0(X(σ)) is
torsion free for an affine toric variety.
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Example 5.7. Let σ be the cone of Example 2.7. In Example 3.4, we
showed that rkA∗(X(σ)) ≥ 2. Thus, by the Riemann-Roch theorem for sin-
gular schemes rkK0(X(σ)) ≥ 2, hence opK0(X(σ)) ̸= K0(X(σ)) even after
tensoring with Q.
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