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Let M be a compact Riemannian manifold without boundary. We
investigate the integrals of L2-normalized Laplace eigenfunctions
over closed submanifolds. General bounds for these quantities were
obtained by Zelditch [23], and are sharp in the case where M is the
standard sphere. However, as with sup norms of eigenfunctions,
there are many interesting settings where improvements can be
made to these bounds, e.g. where M is a negatively curved surface
and the submanifold is a geodesic (see [6, 18]).

So far, improvements in the nonpositive curvature setting have
been confined to the two-dimensional case (see works of Chen and
Sogge [6]; Sogge, Xi, and Zhang [18]; and the author [20, 22]). Here,
we provide two theorems which extend these results into the higher
dimensional setting. First, we provide an improvement of a half
power of log over the standard bounds provided the submanifold
has codimension 2 and M has strictly negative sectional curvature.
Second, we provide the same improvement for hypersurfaces whose
second fundamental form differs sufficiently from that of spheres
of infinite radius. We use the usual tools, such as the Hadamard
parametrix and the method of stationary phase, but critical to our
argument is a computation of the Hessian of the distance function
on the universal cover of M .
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1. Introduction

1.1. Background

Let (M, g) be a compact n-dimensional Riemannian manifold (n ≥ 2) with-
out boundary. Let ∆g denote the Laplace-Beltrami operator, written in local
coordinates as

∆g = |g|−1/2
∑

i,j

∂i(|g|1/2gij∂j).

Let ej for j = 0, 1, 2, . . . form a Hilbert basis of eigenfunctions of ∆g with
corresponding eigenvalues λj , i.e.

−∆gej = λ2
jej .

We are interested in the relationship between the geometry ofM and asymp-
totic bounds on the means of eigenfunctions over submanifolds as the eigen-
value tends to infinity.

This class of problems has its roots in the theory of automorphic forms,
where bounds on the Fourier coefficients of eigenfunctions along closed geo-
desics are of interest. Using Kuznecov sum formulae, Good [9] and Hejhal [11]
independently obtained bounds

∫

γ
ej ds = O(1)

where M is a compact hyperbolic surface and γ a closed geodesic. Later
Zelditch [23] extended this result to the general Riemannian setting and
obtained a Kuznecov sum formula

(1.1)
∑

λj≤λ

∣

∣

∣

∣

∫

Σ
ej dσ

∣

∣

∣

∣

2

∼ λn−d +O(λn−d−1)

for d-dimensional submanifolds Σ, where dσ is the surface element on Σ.
This provides the general bound,

(1.2)

∣

∣

∣

∣

∫

Σ
ej dσ

∣

∣

∣

∣

= O(λ
n−d−1

2

j ),
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which is optimal on the sphere for any1 submanifold Σ.
In [13], Reznikov extended the bounds in [9, 11] to geodesic circles and

closed horocycles in hyperbolic surfaces of finite area, and put forth a con-
jecture for optimal bounds.

Conjecture 1.1 ( [13]). Let M be a compact hyperbolic surface and γ a
closed geodesic or geodesic circle. Then,

∣

∣

∣

∣

∫

γ
ej ds

∣

∣

∣

∣

= O(λ
−1/2+ϵ
j )

for all ϵ > 0.

It seems the standard techniques will only yield improvements by a power of
log λj over the standard bounds. The conjecture, let alone any polynomial
improvement over the standard bounds, seems a long way off.

The first improvement on (1.2) was obtained by Chen and Sogge [6],
who used the Gauss-Bonnet theorem to show

∣

∣

∣

∣

∫

γ
ej ds

∣

∣

∣

∣

= o(1)

where M is a compact surface with negative sectional curvature and γ is a
geodesic. This result was later improved by Sogge, Xi, and Zhang [18] by pro-
viding an explicit decay of O(1/

√

log λj) under some weaker sectional curva-
ture hypotheses. The author [20] extended [6] and later [18] from geodesics
to a wide class of curves satisfying some curvature conditions, albeit with-
out the weakened sectional curvature hypotheses. The result is summarized
below.

Theorem 1.2 ([22]). Let M be a compact Riemannian surface without
boundary with nonpositive sectional curvature. For each p ∈ M and v ∈
SpM , let k(v) denote the limit of the curvature of the circular arc at p
with center taken out to infinity along the geodesic ray in direction v. Then,

1Indeed, by (1.1) and the fact that the gaps between successive distinct eigenval-
ues on Sn approach a constant (see [21])
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if γ is a closed curve in M such that

κγ ̸= k(v) for all normal vectors v to γ,

then
∫

γ
ej ds = O(1/

√

log λj),

where here κγ denotes the geodesic curvature of γ.

By inspection of the constructions in [20, 22], k is precisely the curvature of
a horosphere as in [10].

There have been a number of recent improvements on the general bounds
assuming some dynamical properties of the geodesic flow. Canzani,
Galkowski, and Toth [5] provided a little-o improvement on bounds on av-
erages of Cauchy data over hypersurfaces of eigenfunctions belonging to a
sequence with defect measure. The author [21] provided a little-o improve-
ment on (1.2) provided the set of looping directions which depart from and
arrive at Σ conormally has measure zero. Using quantum defect measures,
Canzani and Galkowski [3] recently obtained the little-o improvement for a
vast range of situations containing results in [5, 21].

1.2. Statement of results

In this article, we provide a generalization of [22] to nonpositively curved
manifolds of arbitrary dimension. Our first result provides an improvement
of 1/

√

log λj to (1.2) if M has negative sectional curvature and Σ has codi-
mension at least 2.

Theorem 1.3. Let (M, g) be a compact, n-dimensional Riemannian man-
ifold, without boundary, with negative sectional curvature. Let Σ be a closed
d-dimensional submanifold with d ≤ n− 2. Then,

∣

∣

∣

∣

∫

Σ
ej dσ

∣

∣

∣

∣

= O(λ
n−d−1

2

j /
√

log λj),

where dσ denotes the induced measure on Σ.

Our second result treats the codimension 1 case and requires a gener-
alization of the limiting curvature k from the two-dimensional case. First,
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we define the second fundamental form IIΣ of a submanifold Σ to be the
vector-valued bilinear form

IIΣ(X,Y ) = (∇XY )⊥

to be the component of the covariant derivative of Y with respect toX which
lies normal to Σ. For what follows, we appeal to the formalism of [10], [1],
and [8] for stable Jacobi fields, Busemann functions, and horospheres, sum-
marized below.

Let (M̃, g̃) be a Hadamard manifold with nonpositive sectional curvature
(e.g. the universal cover of M). Fix a choice of unit-speed geodesic

γ : R → M̃

t 7→ γ(t).

Fix a vector X at γ(0). A Jacobi field JX along γ is stable if |JX(t)| is
bounded for t ≥ 0. There exists a unique stable Jacobi field JX for any
choice of γ and X. Our choice of γ also provides a Busemann function f ,
defined as

f(x) = lim
t→∞

(dg̃(γ(t), x)− t).

Busemann functions are C2 and convex, and the flow lines of their gradients
are unit-speed geodesics. A horosphere is a level set of a Busemann function.
They are also the hypersurfaces obtained as a limit of spheres containing
some fixed point with centers at γ(t) as t → ∞.

Let p = γ(0) and v = γ′(0). We let H(v) be the horosphere f−1(f(p)),
where f is the Busemann function associated with γ as above. The second
fundamental form of H(v) is then given by

(1.3) IIH(v)(X,Y ) =
〈

−J ′
X(0), Y

〉

v,

where JX is the unique stable Jacobi field along γ with JX(0) = X, and
where J ′

X denotes the covariant derivative with respect to the parameter of
γ. Note IIH(v) is invariant under isometry, and hence is well-defined after

quotienting M̃ by a group of deck transformations to obtain a compact
manifold M . After accounting for differences in convention, we recover two
useful, well-known facts from [1]:

1) IIH(v) is continuous over v in the unit sphere bundle SM .

2) ⟨IIH(v), v⟩ is positive semidefinite.
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(1) and (2) follow, respectively, from the facts that Busemann functions are
C2 and convex.

Our second main result, which pertains to period integrals over hyper-
surfaces, requires hypotheses on the quadratic forms ⟨IIΣ − IIH(v), v⟩ on TΣ
for each unit vector v normal to Σ.

Theorem 1.4. Let (M, g) be as in Theorem 1.3 except allow M to have
nonpositive sectional curvature, and let Σ be a closed hypersurface. If

rank(⟨IIΣ − IIH(v), v⟩) + rank(⟨IIΣ − IIH(−v),−v⟩) ≥ n(1.4)

for each v ∈ SNΣ,

then

(1.5)

∫

Σ
ej dσ = O(1/

√

log λj).

Remark 1.5. The results of Theorems 1.3 and 1.4, and of Corollary 1.6
to follow, still hold if we replace the eigenfunctions by quasimodes Ψλ with
∥Ψλ∥L2 ≤ 1 and with spectral support on the frequency band [λ, λ+ 1

log λ ].
The submanifold Σ need not be closed, either, provided the surface element
dσ is multiplied by some smooth, compactly supported cutoff. This will be
made apparent in the next section.

The arguments in Section 4 allow us to pick out some criteria for hy-
persurfaces which satisfy the hypotheses of Theorem 1.4. As a consequence,
we have the following corollaries. (See Proposition 4.3 and Remark 4.4 for
details.)

Corollary 1.6. Let M and Σ be as in Theorem 1.4. Then Σ satisfies (1.4)
and hence (1.5) if any of the following hold.

1) At each point in Σ, at least n/2 of the principal curvatures of Σ lie
outside the interval [a, b], where 0 ≤ a ≤ b are constants such that

0 ≥ −a2 ≥ K ≥ −b2

on M , where K is the sectional curvature of M .

2) Σ is a geodesic sphere in M .

3) M has strictly negative curvature and Σ is a totally geodesic hypersur-
face.
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Note Theorem 1.4 not only generalizes Theorem 1.2 to hypersurfaces of
arbitrary manifolds, but it is stronger even in the two-dimensional case. In
Theorem 1.4, the curvature of γ is signed, and in Theorem 1.2 it is not. This
lets us apply Theorem 1.4 to all spheres, not just those of some bounded
radius as in [22, Corollary 1.6].

Section 2 is dedicated to reducing Theorems 1.3 and 1.4 to bounds on a
kernel involving the half wave operator. Following this, we lift our compu-
tation to the universal cover (M̃, g̃) of M , which we identify with R

n with
the pullback metric by the Cartan-Hadamard theorem as in [2, 6, 18, 22].
We then rephrase the kernel as a sum of kernels over the group of deck
transformations Γ associated with the covering map. Section 3 is dedicated
to writing these summands as oscillatory integrals, roughly

(1.6)
∑

α∈Γ

∫

Σ

∫

Σ
aα(x, y)e

iλϕα(x,y) dσ(x) dσ(y)

with phase function

ϕα(x, y) = dg̃(αx̃, ỹ)

where x̃ and ỹ are respective lifts of x and y to M̃ , and where dg̃ denotes
the distance function on the universal cover M̃ . Section 4 is dedicated to
computing and bounding derivatives of the phase function so that we can use
the method of stationary phase in Section 5. Theorems 1.3 and 1.4 follow
if we can show each of the non-identity terms of (1.6) is O(λ−d/2) and
O(λ−n/2), respectively, where the constants implied by the big-O notation
are sufficiently uniform.

1.3. Examples and limitations of Theorems 1.3 and 1.4

There are two examples of manifolds which help to illustrate Theorems 1.3
and 1.4: the flat torus and a compact hyperbolic manifold. These two exam-
ples help to motivate the statements of Theorems 1.3 and 1.4. At the same
time, these specific examples show the deficiencies of our main results and
suggest that a more complete picture must be provided with other methods.

The torus. Suppose M is the flat torus Tn = R
n/2πZn. According to The-

orem 1.4, since T
n is flat, we should obtain a decay of O(1/

√

log λj) on
integrals of eigenfunctions ej of the torus over hypersurfaces Σ, provided Σ
has at least n/2 nonzero principal curvatures at each point. In [12], Hezari
and Riviere present the following result on the torus, which has both stronger
hypotheses and (much) stronger bounds than those in Theorem 1.4.
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Theorem 1.7 ([12]). Let Σ be a smooth, compact, embedded, oriented
hypersurface of Tn without boundary with surface measure σ, and suppose
all principal curvatures of Σ are nonzero at each point on Σ. Then,

∫

Σ
eλ dσ = O(λ−1/2+ϵ)

where ϵ is any positive constant, but which is allowed to vanish when n ≥ 5.

Hezari and Riviere explain that the problem comes down to counting lattice
points on spheres, for which there are bounds

(1.7) #{m ∈ Z
n : |m| = λ} = O(λn−2+ϵ) for all ϵ > 0

but where ϵ is allowed to vanish when n ≥ 5. At the same time if Σ is a
rational hyperplane in T

n, one may pick out a sequence of exponentials with
eigenvalues tending to infinity whose restrictions to Σ are a constant. In this
sense, some nonvanishing curvature conditions on Σ are necessary to obtain
decay.

Now consider the situation where d ≤ n− 2. Theorem 1.3 requires that
the sectional curvature of M be strictly negative. However, it is reasonable
to ask if a similar result applies in the flat setting. Consider the specific case
where Σ = T

d × {0}n−d for d ≤ n− 2. By writing eλ as a linear combination
of exponentials and using Cauchy-Schwarz, we obtain

∣

∣

∣

∣

∫

Σ
eλ dσ

∣

∣

∣

∣

≤





∑

|m|=λ

|σ̂(m)|2




1/2

where

σ̂(m) =

∫

Td

e−i⟨x,m′⟩ dx =

{

(2π)d m′ = 0

0 m′ ̸= 0.

where m′ = (m1, . . . ,md) are the first d coordinates of m. This and (1.7)
yields

∣

∣

∣

∣

∫

Σ
eλ dσ

∣

∣

∣

∣

= O(λ
d−2+ϵ

2 ) for all ϵ > 0,

which is better than the bound in Theorem 1.3. Though this computation
applies only to a few specific submanifolds, it suggests that Theorem 1.3
may apply to M with merely nonpositive sectional curvature. However, this
result is inaccessible with the methods used to prove of our main results. In-
deed, we require negative curvature to obtain a uniform constant and finish
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the proof of Theorem 1.3 in Chapter 5.

A compact hyperbolic manifold. Suppose M is a compact hyperbolic
manifold, i.e. the sectional curvature is identically −1. By the corollary,
Theorem 1.4 requires that at least n/2 of the principal curvatures of Σ not
be 1. We ask whether we require the full conditions on Σ to obtain the
improved bound (1.5). Consider the extreme example where Σ is precisely
a horosphere2 in M . Is the standard bound

∫

Σ
eλ dσ = O(1)

sharp like it is for rational hyperplanes in the torus? A recent result by
Canzani, Galkowski, and Toth [5] shows that if eλ is a quantum ergodic
sequence, its average over any hypersurface will be o(1). If we assume the
quantum unique ergodicity conjecture, the standard O(1) bound is never
sharp regardless of the conditions on the curvature of Σ. Whether or not we
obtain an explicit decay of O(1/

√
log λ) for period integrals over horospheres

is an open question.

Note. As of the time of publication, this question has been resolved by
Canzani and Galkowski. In particular if M has Anosov geodesic flow (e.g.
when M has strictly negative curvature) and Σ lifts to a horosphere in M̃ ,
then we obtain the quantitative bound O(1/

√
log λ) on eigenfunction period

integrals over Σ [4, Theorem 4, E].

2. A standard reduction and lift to the universal cover

The following reduction is part of the standard strategy for many problems
dealing with the asymptotic distributions of eigenfunctions on manifolds
(e.g. [2, 6, 17–19, 23] and many others). We follow the example of [17, 19] and
use pseudodifferential operators to microlocalize to cones in T ∗M with small
support. Afterwards we perform a lift to the universal cover as in [2, 6, 18].

2There are no closed horospheres in a compact hyperbolic manifold. However by
Remark 1.5, it suffices to consider a small, embedded piece of a horosphere with
surface measure σ which as been multiplied by some smooth, compactly supported
bump function.
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For both the situations in Theorems 1.3 and 1.4, we will show

(2.1)
∑

λj∈[λ,λ+T−1]

∣

∣

∣

∣

∫

Σ
ej dσ

∣

∣

∣

∣

2

≲ T−1λn−d−1 + eCTλδ

where δ is some exponent less than n− d− 1 and where we set

(2.2) T = c log λ

for some sufficiently small c.
Now we introduce Fermi-type coordinates about Σ. Parametrize a small

neighborhood in Σ with geodesic normal coordinates x′ = (x1, . . . , xd) ∈ R
d.

Then take a smooth, orthonormal frame vd+1, . . . , vn of the normal bundle of
Σ. Writing x = (x′, x⊥) ∈ R

n where x⊥ = (xd+1, . . . , xn) are the remaining
n− d coordinates, the coordinate map

(2.3) (x′, x⊥) 7→ exp(xd+1vd+1(x
′) + · · ·+ xnvn(x

′))

parametrizes a small neighborhood in M containing a piece of Σ. By con-
struction,

(2.4) g(x′, 0) =

[

gΣ(x
′) 0

0 In−d

]

where gΣ is the intrinsic metric on Σ and In−d is the (n− d)× (n− d)
identity matrix. We also note for future use that

gΣ(x
′) = Id +O(|x′|2)

and that the Christoffel symbols associated with the Levi-Civita connec-
tion intrinsic to Σ vanish at x′ = 0 [7]. In particular, we can take the
Christoffel symbols to be as small as desired by shrinking the neighborhood
parametrized by our coordinates.

Take a finite open cover of Σ in M of such coordinate charts and with
it a subordinate partition of unity

∑

i

bi ≡ 1

on Σ. By the Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫

Σ
ej dσ

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

i

∫

Σ
biej dσ

∣

∣

∣

∣

∣

2

≤ CΣ

∑

i

∣

∣

∣

∣

∫

Σ
biej dσ

∣

∣

∣

∣

2

,
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and so (2.1) follows if we can show

(2.5)
∑

λj∈[λ,λ+T−1]

∣

∣

∣

∣

∫

Σ
bej dσ

∣

∣

∣

∣

2

≲ T−1λn−d−1 + eCTλδ

where b is a smooth function on Σ with controllably small support, and the
constants in the bounds are allowed to depend on b. We will take this a step
further and microlocalize to small cones in T ∗M . Take a partition of unity

∑

i

ai ≡ 1

of the sphere Sn−1 ⊂ R
n, and take smooth bump functions β0 and β1 both

supported on a small interval in R and for which β0 ≡ 1 near 0 and β1 ≡ 1
near 1. For each i, we define operators3

(2.6) Bi,λf(x) =
1

(2π)n

∫

Rn

∫

Rn

ei⟨x−y,ξ⟩Bi,λ(x, y, ξ)f(y) dy dξ

with symbol

Bi,λ(x, y, ξ) = β0(|x− y|)β0(|x⊥|)b(x′)β1(|ξ|/λ)ai(ξ/|ξ|),

and similarly

Rλf(x) =
1

(2π)n

∫

Rn

∫

Rn

ei⟨x−y,ξ⟩R(λ;x, y, ξ)f(y) dy dξ

with symbol

Rλ(x, y, ξ) = β0(|x− y|)β0(|x⊥|)b(x′)(1− β1(|ξ|/λ)).

Whenever we write, say Bi,λ, without arguments, we are referring to the
operator itself. When writing Bi,λ(x, y, ξ) with arguments, we are referring

3The purpose of the operator Bλ is to filter out geodesics which depart y and
arrive at x in sufficiently differing directions, as Lemma 3.2 will show in the next
section (see also Figure 1 in Section 3). This strategy was used before by Sogge,
Toth, and Zelditch [17] who obtained improved sup-norm estimates for eigenfunc-
tions on manifolds provided that, at each point, the set of recurrent directions of
geodesics has measure zero.
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to its symbol. We will use this convention for similarly constructed operators.
Note

∫

Σ
bej dσ =

∑

i

∫

Σ
Bi,λej dσ +

∫

Σ
Rλej dσ.

Note the absence of a discrepancy between the left and right sides of the
equation above. Indeed,

∑

i

Bi,λ(x, y, ξ) +Rλ(x, y, ξ) = β(|x− y|)β0(|x⊥|)b(x′),

which is a symbol constant in ξ. By Fourier inversion, the associated operator
acts on a function f by

1

(2π)n

∫

Rn

∫

Rn

ei⟨x−y,ξ⟩β(|x− y|)β0(|x⊥|)b(x′)f(y) dy dξ = β0(|x⊥|)b(x′)f(x),

which is precisely bf when x ∈ Σ. By the same Cauchy-Schwarz argument
as before, (2.5) follows provided we can show

(2.7)
∑

λj∈[λ,λ+T−1]

∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

≲ T−1λn−d−1 + eCTλδ

where Bλ is defined as in (2.6) with symbol

(2.8) Bλ(x, y, ξ) = β0(|x− y|)β0(|x⊥|)b(x′)β1(|ξ|/λ)a(ξ/|ξ|)

where β0, β1, a, and of course b all have adjustably small support, and we
can show

(2.9)
∑

λj∈[λ,λ+T−1]

∣

∣

∣

∣

∫

Σ
Rλej dσ

∣

∣

∣

∣

2

= O(λ−∞) uniformly for T ≥ 1

where Rλ is as above. The latter bound follows from Cauchy-Schwarz in-
equality applied to the integral and the following proposition whose proof
we defer until the end of the section.

Proposition 2.1. Let Rλ be as above.

sup
x∈Σ

∑

λj∈[λ,λ+1]

|Rλej(x)|2 = O(λ−∞).
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We will also use the following generalization of the bound (1.2) to help
us contend with (2.7), whose proof we also defer until the end of the section.

Proposition 2.2. Let Bλ be as above. Then if χ is a (not necessarily non-
negative) Schwartz-class function on R with suppχ̂ adjustably small,

(2.10)
∑

j

χ(λj − λ)

∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

= O(λn−d−1).

A careful choice of nonnegative χ yields

∑

λj∈[λ,λ+1]

∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

= O(λn−d−1)

as a consequence.

Let χ be some nonnegative Schwartz-class function with χ(0) = 1 and
suppχ̂ ⊂ [−1, 1]. Since we can fit some rectangle under the graph of χ, we
have (2.7) provided

(2.11)
∑

j

χ(T (λj − λ))

∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

≲ T−1λn−d−1 + eCTλδ.

To access (2.11), we will make use of the spectrally-defined half-wave oper-
ator,

eit
√

−∆g =
∑

j

eitλjEj

where Ej is the orthogonal projection operator onto the ej-th eigenspace.
The half-wave operator has kernel

eit
√

−∆g(x, y) =
∑

j

eitλjej(x)ej(y)

and so the kernel of the composition Bλe
it
√

−∆gB∗
λ is

Bλe
it
√

−∆gB∗
λ(x, y) =

∑

j

eitλjBλej(x)Bλej(y),
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where here B∗
λ denotes the adjoint of Bλ. We use the Fourier inversion

formula and the expression above to write the left hand side of (2.11) as

1

2πT

∑

j

∫ ∞

−∞
χ̂(t/T )e−itλeitλj(2.12)

×
∫

Σ

∫

Σ
Bλej(x)Bλej(y) dσ(x) dσ(y) dt

=
1

2πT

∫

Σ

∫

Σ

∫ ∞

−∞
χ̂(t/T )e−itλBλe

it
√

−∆gB∗
λ(x, y) dt dσ(x) dσ(y).

Let β be a smooth bump function on R such that β(t) = 1 for |t| ≤ 2 and
β(t) = 0 for |t| ≥ 3. At this point we introduce a constant R to be determined
later, independent of T and λ, and dependent only on the geometry of M
and Σ. We cut the integral (2.12) into β(t/R) and 1− β(t/R) parts and
obtain

=
1

2πT

∫

Σ

∫

Σ

∫ ∞

−∞
β(t/R)χ̂(t/T )e−itλ(2.13)

×Bλe
it
√

−∆g̃B∗
λ(x, y) dt dσ(x) dσ(y)

+
1

2πT

∫

Σ

∫

Σ

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ

×Bλe
it
√

−∆g̃B∗
λ(x, y) dt dσ(x) dσ(y).

We letXT denote the function with Fourier transform X̂T (t) = β(t/R)χ̂(t/T ).
By reversing our argument, we write the first term in (2.13) as

1

T

∑

j

XT (λj − λ)

∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

where XT is Schwartz-class with bounds

|X(k)
T (λj − λ)| ≤ CN,k(1 + |λj − λ|)−N for N, k = 0, 1, 2, . . .

for constants CN,k uniform for T ≥ 1. We apply Proposition 2.2 to obtain
a bound of O(T−1λn−d−1) on the sum above. Indeed, the bounds of the
proposition only depends on the support of X̂T , which is uniform in T , and
bounds on finitely many derivatives of XT .
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Hence, we are done if we can show that

∣

∣

∣

∣

T−1

∫

Σ

∫

Σ

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ(2.14)

×Bλe
it
√

−∆gB∗
λ(x, y) dt dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλδ.

As in [2, 6, 18], we will want to replace the half wave operator of (2.14)
with the cosine operator so that we have Hügen’s principle at our disposal
when we lift to the universal cover. By Euler’s formula,

eit
√

−∆g = 2 cos(t
√

−∆g)− e−it
√

−∆g ,

hence we write what is inside the absolute values in (2.14) as

2

T

∫

Σ

∫

Σ

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ

×Bλ cos(t
√

−∆g)B
∗
λ(x, y) dt dσ(x) dσ(y)

+
1

T

∫

Σ

∫

Σ

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ

×Bλe
−it

√
−∆gB∗

λ(x, y) dt dσ(x) dσ(y).

Setting X̂T (t) = β(t/R)χ̂(t/T ) as before and reversing our reduction, the
latter term is a constant multiple of

(2.15)
∑

j

(

χ(−T (λj + λ))− 1

T
XT (−(λj + λ))

) ∣

∣

∣

∣

∫

Σ
Bλej dσ

∣

∣

∣

∣

2

.

By (2.8),
∫

Rn

(∫

Rn

|Bλ(x, y, ξ)|dξ
)2

dy = O(λn)

and hence by Cauchy-Schwarz we have operator bounds ∥Bλ∥L2→L∞ =
O(λn/2). In particular we have the very cheap, very suboptimal bound

(2.16)

∣

∣

∣

∣

∫

Σ
Bλej

∣

∣

∣

∣

≲ λn/2 uniformly for all j.

At the same time, XT satisfies bounds

|XT (τ)| ≤ CN (1 + |τ |)−N for T ≥ 1, N = 1, 2, . . . .
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Putting this together with our cheap polynomial bound (2.16), we find the
sum in (2.15) is bounded like O(λ−∞). Hence, it suffices to show

∣

∣

∣

∣

∫

Σ

∫

Σ

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ(2.17)

×Bλ cos(t
√

−∆g)B
∗
λ(x, y) dt dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλδ.

We are ready to perform our lift. We now introduce our assumption that
M is nonpositively curved. By the Cartan-Hadamard theorem, we identify
the universal cover M̃ of M with R

n equipped with the pullback g̃ of the
metric g through the covering map. Let Γ denote the group of deck trans-
formations associated with the covering map and let

D =

{

x̃ ∈ M̃ : dg̃(x̃, 0) = inf
α∈Γ

dg̃(αx̃, 0)

}

denote a Dirichlet domain in M̃ with 0 chosen to be a lift of a point on Σ
in the support of Bλ. Let f̃ be a smooth, compactly supported function on
M̃ and set

f(x) =
∑

α∈Γ

f̃(αx̃)

where x̃ is any lift of x to M̃ . Since the covering map is a local isometry,

u(t, x) =
∑

α∈Γ

cos(t
√

−∆g̃)f̃(αx̃)

solves the wave equation (∂2
t −∆g)u = 0 with initial data u(0, x) = f(x) and

∂tu(0, x) = 0, hence

u(t, x) = cos(t
√

−∆g)f(x).

We conclude

(2.18) cos(t
√

−∆g) =
∑

α∈Γ

α∗ cos(t
√

−∆g̃)

where α∗ is the pullback operator through α, e.g. α∗f̃(x̃) = f̃(αx̃). Hence
we will have (2.17) provided

(2.19)
∑

α∈Γ

∣

∣

∣

∣

∫

Σ

∫

Σ
Kα(T, λ;x, y) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλδ
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where
(2.20)

Kα(T, λ;x, y) =

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλB̃λα

∗ cos(t
√

−∆g̃)B̃
∗
λ(x̃, ỹ) dt,

where B̃λ is the operator on M̃ associated with the symbol

(2.21) B̃λ(x̃, ỹ, ξ) =

{

Bλ(x, y, ξ) if x̃, ỹ ∈ D,

0 otherwise,

where x̃ and ỹ are the respective lifts of x and y to the Dirichlet domain
D in the universal cover, and where B̃λα

∗ cos(t
√

−∆g̃)B̃
∗
λ(x̃, ỹ) denotes the

kernel of the composition B̃λα
∗ cos(t

√

−∆g̃)B̃
∗
λ. In (2.21), recall Bλ(x, y, ξ)

has both x- and y-support on a small neighborhood of some fixed point
of Σ, and hence can be uniquely lifted to the Dirichlet domain D in the
universal cover. We note now for future reference that, by Hüygen’s principle,
Kα(T, λ;x, y) is supported on dg̃(x̃, ỹ) ≤ T + 1, after perhaps shrinking the
x̃-support of the symbol B̃λ. Hence, all except for a finite number of terms
in the sum in (2.19) is zero. In fact, by volume comparison [14, Chapter I,
Theorem 1.3], the number of Dirichlet domains within a ball of radius T in
the universal cover is bounded by a constant times eCT . Hence,

(2.22) #{α ∈ Γ : suppKα(T, λ; · , · ) is nonempty} = O(eCT ).

This concludes our reduction, but we still need to prove Propositions 2.1
and 2.2. The proof of Proposition 2.2 is very standard but a bit involved,
requiring a parametrix of the half wave operator and two consecutive appli-
cations of stationary phase. We refer the reader to [15, 17, 19, 21] for similar
arguments.

Proof of Proposition 2.2. With Following the steps in the reduction above,
we write (2.10) as

∣

∣

∣

∣

∫

Σ

∫

Σ

∫ ∞

−∞
χ̂(t)e−itλBλe

it
√

−∆gB∗
λ(x, y) dt dσ(x) dσ(y)

∣

∣

∣

∣

≲ λn−d−1.

By using Hörmander’s parametrix [16, Chapter 4] or by using the Hadamard
parametrix and the arguments in section 5.2.2 of [15], we write

(2.23) eit
√

−∆g(x, y) =

∫

Rn

ei(φ(x,y,ξ)+tp(y,ξ))q(t, x, y, ξ) dξ
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modulo a smooth kernel where q is a zero-order symbol in ξ satisfying

|∂α
ξ ∂

β
t,x,yq(t, x, y, ξ)| ≤ Cα,β(1 + |ξ|)−|α|

for multiindices α and β, and where since the support of χ̂ is small,
χ̂(t)q(t, x, y, ξ) is supported where dg(x, y) is near 0. After perhaps further
restricting the support of χ̂, the phase function φ is defined on the support
of χ̂q, is smooth and homogeneous of degree 1 in ξ, and satisfies

φ(x, y, ξ) = ⟨x− y, ξ⟩+O(|x− y|2|ξ|)

where here x and y are written in Fermi coordinates (2.3). Finally,

p(y, ξ) =

√

∑

i,j

gij(y)ξiξj

is the principal symbol associated with the half-Laplacian
√

−∆g. For x and
y in Fermi coordinates,

∫ ∞

−∞
χ̂(t)e−itλeit

√
−∆g(x, y) dt

=

∫

Rn

∫ ∞

−∞
χ̂(t)q(t, x, y, ξ)ei(φ(x,y,ξ)+t(p(y,ξ)−λ)) dt dξ

= λn

∫

Rn

∫ ∞

−∞
χ̂(t)q(t, x, y, λξ)eiλ(φ(x,y,ξ)+t(p(y,ξ)−1)) dt dξ

= λn

∫

Rn

∫ ∞

−∞
χ̂(t)q(t, x, y, λξ)β1(p(y, ξ))e

iλ(φ(x,y,ξ)+t(p(y,ξ)−1)) dt dξ

+O(λ−∞)

where β1 is as before, that is with small support and with β1 ≡ 1 near 1. The
O(λ−∞) bound on the discrepancy is uniform in x and y, and is obtained
by integration by parts in t. Hence,

∫

Σ

∫

Σ

∫ ∞

−∞
χ̂(t)e−itλBλe

it
√

−∆g̃B∗
λ(x, y) dt dσ(x) dσ(y)

= λn

∫

· · ·
∫

ei⟨x
′−w,η⟩Bλ(x

′, w, η)ei(φ(w,z,ξ)+t(p(z,ξ)−1))χ̂(t)q(t, w, z, ξ)

× β1(|ξ|)ei⟨z−y′,ζ⟩Bλ(y′, z, ζ) dt dx
′ dy′ dw dz dη dζ dξ +O(λ−∞).

We perform the change of variables η 7→ λη and ζ 7→ λζ, and write ξ = ξ′ +
rω in cylindrical coordinates with r ∈ (0,∞) and ω ∈ Sn−d−1. The integral
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on the right hand side is then

= λ3n

∫

· · ·
∫

eiλΦ(t,x′,y′,ξ′,r,ω,w,z,η,ζ)(2.24)

×Q0(λ; t, x
′, y′, ξ′, r, ω, w, z, η, ζ)

× dt dx′ dy′ dξ′ dr dω dw dz dη dζ

where dω denotes the standard volume measure on Sn−d−1,

Φ(t, x′, y′, ξ′, r, ω, w, z, η, ζ) = ⟨x′ − w, η⟩+ φ(w, z, ξ′ + rω)

+ t(p(z, ξ′ + rω)− 1) + ⟨z − y′, ζ⟩,

and

Q0(λ; t, x
′, y′, ξ′, r, ω, w, z, η, ζ)

= χ̂(t)b(x′)b(y′)β0(|x′ − w|)β0(|y′ − z|)q(t, w, z, λ(ξ′ + rω))

× β1(|η|)β1(|ζ|)β1(p(z, ξ′ + rω))a(η/|η|)a(ζ/|ζ|)rn−d−1.

Note all derivatives of a are uniformly bounded for λ ≥ 1.
We will use the method of stationary phase in variables t, x′, ξ′, r, w, z,

η, and ζ. Instead of doing so all at once with eight variables, we break it into
two stages – the first involving w, z, η, and ζ, and the second involving the
remaining four. We begin by fixing x′, y′, and ξ and by performing stationary
phase with respect to w, z, η, and ζ. The gradient of the phase function in
these variables is

∇w,z,η,ζΦ =









−η + ξ +O(|w − z||ξ|)
ζ − ξ +O(|w − z||ξ|)

x′ − w
y′ − z









which, when x′ = y′, has a critical point at w = z = y′ and η = ζ = ξ. The
Hessian matrix at this point is

∇2
w,z,η,ζΦ =









∗ ∗ −I 0
∗ ∗ 0 I
−I 0 0 0
0 I 0 0









which has determinant −1 and signature 0. There is a smooth curve
(w, z, η, ζ) = (x′, y′, η(x′, y′, ξ), ζ(x′, y′, ξ)) on a neighborhood of x′ = y′ on
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which ∇w,z,η,ζΦ = 0 by the implicit function theorem, and ∇2
w,z,η,ζΦ is uni-

formly nondegenerate by continuity. After perhaps restricting the support
of Q0, by [16, Corollary 1.1.8] the integral (2.24) is

= λn

∫

· · ·
∫

eiλΨ(t,x′,y′,ξ′,r,ω)Q1(λ; t, x
′, y′, ξ′, r, ω) dt dx′ dy′ dξ′ dr(2.25)

with phase

Ψ(t, x′, y′, r, ω) = Φ(t, x′, y′, ξ′, r, ω, x′, y′, η(x′, y′, ξ), ζ(x′, y′, ξ))

= φ(x′, y′, ξ) + t(p(y′, ξ)− 1)

and where the amplitudeQ1 has compact support and has uniformly bounded
derivatives in all variables for λ ≥ 1. Next we fix y′ and ω and perform sta-
tionary phase in the remaining variables t, r, x′, and ξ′. We have

∇t,r,x′,ξ′Ψ =









p(y′, ξ)− 1
t∂rp(y, ξ) +O(|x′ − y′|2|ξ|)

ξ′ +O(|x′ − y′||ξ|)
x′ − y′ + t∇ξ′p(y

′, ξ) +O(|x′ − y′|2)









which has a critical point at (t, r, x′, ξ′) = (0, 1, y′, 0) whereat we have the
Hessian

∇2
t,r,x′,ξ′Ψ =









0 1 0 0
1 0 0 0
0 0 ∗ I
0 0 I 0









where in the computations we use

p(y′, ξ) =

√

√

√

√r2 +

d
∑

i,j=0

gijΣ (y
′)ξ′iξ

′
j ,

a consequence of the construction of our Fermi coordinates (2.4). After per-
haps further restricting the support of Q1 (and in particular χ̂), this is our
only critical point for fixed y′ and ω. [16, Corollary 1.1.8] in 2d+ 2 variables
yields the desired bound of O(λn−d−1) for (2.25). □
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Proof of Proposition 2.1. Let χ be as in the proof of Proposition 2.2. It
suffices to show

∑

j

χ(λj − λ)|Rλej(x
′)|2 ≤ CNλ−N N = 1, 2, . . .

uniformly for x′ ∈ Σ. Using a similar reduction as before, the sum on the
left is

1

2π

∫ ∞

−∞
χ̂(t)e−itλRλe

it
√

−∆gR∗
λ(x

′, x′) dt.

Using the argument in the proof of Proposition 2.2, the expression above is

= λ3n

∫

· · ·
∫

eiλΦ(t,x′,w,z,η,ζ,ξ)a(λ; t, x′, w, z, η, ζ, ξ) dt dw dz dη dζ dξ

where

Φ(t, x′, w, z, η, ζ, ξ) = ⟨x′ − w, η⟩+ φ(w, z, ξ) + t(p(z, ξ)− 1) + ⟨z − x′, ζ⟩

and

a(λ; t, x′, w, z, η, ζ, ξ) = χ̂(t)|b(x′)|2β0(|x′ − w|)β0(|x′ − z|)q(t, w, z, λξ)
× (1− β1(|η|))(1− β1(|ζ|))β1(p(z, ξ)).

As before, the critical points of Φ occur only where η = ζ = ξ. By the con-
struction of our coordinates,

p(x′, ξ) = (1 +O(|x′|2))|ξ|

and so we may adjust the support of b so that (1− β1(|ξ|))β1(p(x′, ξ)) ≡ 0.
Hence, the critical points of Φ lie outside the support of the amplitude and
the desired bound follows from nonstationary phase [16, Lemma 0.4.7]. □

3. Kernel bounds

We require a characterization of the kernels Kα defined in (2.20) to pro-
ceed. Note first that if x and y are expressed in our Fermi coordinates (2.3)
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about Σ,

Kα(T, λ;x, y) =
1

(2π)2n

∫∫∫∫

ei⟨x−w,η⟩Bλ(x,w, η)(3.1)

×K(T, λ;αw̃, z̃)ei⟨z−y,ζ⟩Bλ(y, z, ζ) dw dz dη dζ

where w̃ and z̃ are the respective lifts of w and z to the Dirichlet domain D
and

(3.2) K(T, λ; x̃, ỹ) =

∫

(1− β(t/R))χ̂(t/T )e−itλ cos(t
√

−∆g̃)(x̃, ỹ) dt.

We begin by developing a characterization of the kernel K(T, λ; x̃, ỹ) for
x̃, ỹ ∈ M̃ with dg̃(x̃, ỹ) bounded away from zero as in [2, 6, 18]. In what
follows, we draw liberally from Sogge’s text, Hangzhou Lectures on Eigen-
functions of the Laplacian [15], for its arguments and notation, and also
Bérard’s article [2] for asymptotic bounds on derivatives of the distance
function and the coefficients of the Hadamard parametrix. In what follows,
we still impose T = c log λ as in (2.2).

Lemma 3.1. Fix a positive integer m. There exist functions a±(T, λ; x̃, ỹ)
and R(T, λ; x̃, ỹ) depending on m such that

K(T, λ; x̃, ỹ) = λ
n−1

2

∑

±

a±(T, λ; x̃, ỹ)e
±iλdg̃(x̃,ỹ) +R(T, λ; x̃, ỹ)

where if dg̃(x̃, ỹ) ≥ 1,

(3.3) |∆j
x∆

k
ya±(T, λ; x̃, ỹ)| ≤ Cj,ke

Cj,kdg̃(x̃,ỹ) j, k = 0, 1, 2, . . .

and

(3.4) |R(T, λ; x̃, ỹ)| ≲ eCTλ−m.

Moreover if dg̃(x̃, ỹ) ≤ R,

(3.5) |K(T, λ; x̃, ỹ)| ≲ eCTλ−m.
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Proof. By Theorem 2.4.1 and Remark 1.2.5 of [15],

(3.6) cos(t
√

−∆g̃)(x̃, ỹ) =

N
∑

ν=0

αν(x̃, ỹ)∂tEν(t, dg̃(x̃, ỹ)) +RN (t, x̃, ỹ)

where ∂tEν(t, r) is some distribution supported on r ≤ |t|, and if x̃ is ex-
pressed in geodesic normal coordinates about ỹ with metric g̃, the coefficients
αν are defined inductively by

α0(x̃, ỹ) = |g̃(x̃)|−1/4

and

αν(x̃, ỹ) = α0(x̃, ỹ)

∫ 1

0
tν−1∆g̃αν−1(expỹ(t logỹ x̃), ỹ)

α0(expỹ(t logỹ x̃), ỹ)
dt,(3.7)

ν = 1, 2, 3, . . .

where here ∆g̃ operates in the x̃ variable and where logỹ is the inverse of

the exponential map at ỹ. Note αν are defined on all of M̃ since |g̃(x̃)| is
nonvanishing. Finally the remainder term satisfies

(∂2
t −∆g̃)RN (t, x̃, ỹ) = ∆g̃αN (x̃, ỹ)∂tEN (t, dg̃(x̃, ỹ)).

where ∆g̃ operates in the x̃ variable. In addition, the appendix of [2] provides
us with exponential bounds,

|∆j
ỹαν(x̃, ỹ)| ≤ Cje

Cjdg̃(x̃,ỹ) j = 0, 1, 2, . . . ,

which, with the fact that cos(t
√

−∆g̃) is self-adjoint, provide us with the
same bounds on derivatives in x̃

|∆j
x̃αν(x̃, ỹ)| ≤ Cje

Cjdg̃(x̃,ỹ) j = 0, 1, 2, . . .

(see [18]). Proposition 6.1 in the appendix provides us with exponential
bounds on the mixed derivatives,

(3.8) |∆j
x̃∆

k
ỹαν(x̃, ỹ)| ≤ Cj,ke

Cj,kdg̃(x̃,ỹ) j, k = 0, 1, 2, . . . .

The same proposition and Bérard’s exponential bounds on derivatives of the
distance function provide

(3.9) |∆j
x̃∆

k
ỹdg̃(x̃, ỹ)| ≤ Cj,ke

Cj,kdg̃(x̃,ỹ) j, k = 0, 1, 2, . . . .
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From (3.8), (3.9), an energy estimate argument in [15, ➜3.1], and the fact
that ∂tEν(t, r) is supported on r ≤ |t|, we have that RN is Cm and satisfies
bounds

|∂j
tRN (t, x̃, ỹ)| ≤ Cje

Cjdg̃(x̃,ỹ)|t|2N+2−n−j for j = 0, 1, . . . ,m

provided N > m+ n+1
2 . Integration by parts m times yields the bound

(3.10)

∣

∣

∣

∣

∫ ∞

∞
(1− β(t/R))χ̂(t/T )e−itλRN (t, x̃, ỹ) dt

∣

∣

∣

∣

≲ eCN,mTλ−m

as desired by (3.4).
In light of (3.6), (3.8), and (3.9), it suffices to show

(3.11)

∫ ∞

−∞
(1− β(t/R))χ̂(t/T )e−itλ∂tEν(t, r) dt = λ

n−1

2

∑

±

aν±(T, λ; r)e
±iλr

modulo terms whose contributions can be absorbed by the remainder
R(T, λ; x̃, ỹ) since T = c log λ, where aν± satisfy bounds

|∂ℓ
ra

ν
±(T, λ; r)| ≤ Cν,ℓλ

−νPℓ,ν,k,j(r)(3.12)

for ℓ = 0, 1, 2, . . . , T ≥ 1, r ≥ 1

where Pℓ,ν,k,j is some polynomial. By [15, Remark 1.2.5], ∂tEν(t, r) is a finite
linear combination of distributions

(3.13) tj
∫

|ξ|≥1
eirξ1±it|ξ||ξ|−ν−k dξ for j + k = ν, j, k = 0, 1, 2, . . .

modulo smooth terms whose derivatives grow at most polynomially in t
and r. The contribution of these discrepancy terms hence satisfy the same
bounds as (3.5) and may be absorbed by the remainder. The contribution
of each term (3.13) to the integral in (3.11) is

∫

|ξ|≥1

∫ ∞

−∞
tj(1− β(t/R))χ̂(t/T )e−itλeirξ1±it|ξ||ξ|−ν−k dt dξ.

If the sign in the exponent is negative, the integral satisfies good bounds
by integrating by parts in t and may be absorbed into the remainder, so
it suffices only to consider the situation where the sign in the exponent is
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positive. In this case, we perform a change of variables ξ 7→ λξ and obtain
∫

|ξ|≥1

∫ ∞

−∞
tj(1− β(t/R))χ̂(t/T )ei(rξ1+t(|ξ|−λ))|ξ|−ν−k dt dξ

= λn−ν−k

∫

|ξ|≥λ−1

∫ ∞

−∞
tj(1− β(t/R))χ̂(t/T )eiλ(rξ1+t(|ξ|−1))|ξ|−ν−k dt dξ.

Let β1 ∈ C∞
0 (R, [0, 1]) be equal to 1 near 1 and have small support. We

cut the integral in the second line into β1(|ξ|) and (1− β1(|ξ|)) parts. The
latter cut contributes a O(T j−m+1λ−m) term by integrating by parts in the
t variable m times, and we let it be absorbed into the remainder. The β1(|ξ|)
cut comes to

λn−ν−k

∫

Rn

∫ ∞

−∞
tj(1− β(t/R))χ̂(t/T )eiλ(rξ1+t(|ξ|−1))β1(|ξ|)|ξ|−ν−k dt dξ.

We take a moment to note that the integrand is supported on |t| ≥ 2R, and
hence if r ≤ R, the gradient in ξ of the phase satisfies

|∇ξ(rξ1 + t(|ξ| − 1))| = |re1 + tξ/|ξ|| ≥ R

for all t in the support of the integrand by the triangle inequality. Nonsta-
tionary phase and the bounds on our remainder term thus far yields (3.5).

From now on, we take r ≥ R. By a change of coordinates t 7→ rt, we
write the integral as

λn−ν−k

∫

Rn

∫ ∞

−∞
tj(1− β(t/R))χ̂(t/T )eiλ(rξ1+t(|ξ|−1))β1(|ξ|)|ξ|−ν−k dt dξ

= λn−ν−krj+1

∫

Rn

∫ ∞

−∞
tj(1− β(rt/R))χ̂(rt/T )

× eiλr(ξ1+t(|ξ|−1))β1(|ξ|)|ξ|−ν−k dt dξ.

We cut the integral one last time into β1(|t|) and (1− β1(|t|)) components.
By Hüygen’s principle, we only consider the situation where r ≤ T , and
hence β1(|t|)(1− β(rt/R))χ̂(rt/T ) and (1− β1(|t|))(1− β(rt/R))χ̂(rt/T )
have bounded derivatives in t and r of all orders. The norm of the ξ-gradient
of the phase function is

|∇ξ(ξ1 + t(|ξ| − 1))| = |e1 + tξ/|ξ||

which is again bounded away from 0 on the support of (1− β1(|t|)) and so
contributes a term to be absorbed by the remainder by nonstationary phase.
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We write the β1(|t|) cut as I+(T, λ; r) + I−(T, λ; r) where

I±(T, λ; r) = λn−ν−krj+1

∫

Rn

∫ ∞

−∞
tj(1− β(rt/R))β1(±t)χ̂(rt/T )

× eiλr(ξ1+t(|ξ|−1))β1(|ξ|)|ξ|−ν−k dt dξ.

The phase function of I± has a critical point at (t, ξ) = ±(1,−e1) at which
the Hessian of the phase function,

±





0 −1 0
−1 0 0
0 0 I



 ,

is nondegenerate. We write s = λr and subsequently write I± as

λn−ν−k−j−1sj+1

∫

Rn

∫ ∞

−∞
tj(1− β(st/Rλ))β1(±t)χ̂(st/Tλ)

× eis(ξ1+t(|ξ|−1))β1(|ξ|)|ξ|−ν−k dt dξ.

Note for T ≥ 1, the amplitude of the integrand satisfies bounds

∣

∣

∣
∂α
ξ ∂

m
t ∂ℓ

s

[

tj(1− β(st/Rλ))β1(±t)χ̂(st/Tλ)β1(|ξ|)|ξ|−ν−k
]∣

∣

∣
≤ Cν,α,ℓ,mλ−ℓ.

Taking s as the frequency parameter and using the method of stationary
phase [15, Proposition 4.1.2] yields

|∂ℓ
s(e

±isI±)| ≤ Cℓ,ν,k,jλ
n−ν−k−j−1sj−ℓ−n−1

2

from which we obtain

|∂ℓ
r(e

±irλI±(T, λ; r))| ≤ Cℓ,ν,k,jλ
n−1

2
−ν−krj−ℓ−n−1

2 .

(3.11) and (3.12) follow. □

Set

ΓR =

{

α ∈ Γ : sup
x,y∈suppb

dg̃(αx̃, ỹ) ≤ R

}

.

The contribution of the terms of ΓR to the sum (2.19) are O(eCTλ−m) by
(3.5) of the lemma, which is better than we need. Moreover by restricting
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the support of b, we ensure that

(3.14) inf
x,y∈suppb

dg̃(αx̃, ỹ) ≥ R− 1 if α ∈ Γ \ ΓR.

In light of this, what remains is to show that

(3.15)
∑

Γ\ΓR

∣

∣

∣

∣

∫

Σ

∫

Σ
Kα(T, λ;x, y) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλδ.

The next lemma uses the previous to characterize the conjugated kernel
Kα. Here the function of the operators Bλ begins to surface. Conjugating K
by Bλ filters out points x̃ and ỹ in M̃ for which the geodesic connecting ỹ to
αx̃ departs and arrives in dissimilar directions (see Figure 1). This will be
very useful in Section 5, when we need to control the gradient of the phase
function dg̃(αx̃, ỹ). As usual, x̃ and ỹ denote the respective lifts of x and y
to the Dirichlet domain D.

Lemma 3.2. We have

Kα(T, λ;x, y) = λ
n−1

2

∑

±

aα,±(T, λ;x, y)e
±iλdg̃(αx̃,ỹ) +O(eCTλδ)(3.16)

where the amplitude aα,± satisfies bounds

(3.17) |∆j
x∆

k
yaα,±(T, λ;x, y)| ≤ Ci,je

Ci,jdg̃(αx̃,ỹ)

and is supported on suppxBλ × suppxBλ. Moreover, there exists an open
conical neighborhood U ⊂ T ∗M̃ which can be made small by restricting the
support of Bλ such that

(3.18) |aα,±(T, λ;x, y)| ≤ CU,NeCU,Ndg̃(αx̃,ỹ)λ−N N = 1, 2, . . .

for all x and y for which neither of

(γ′(0), α∗γ′(1)) ∈ U × U nor

(−γ′(0),−α∗γ′(1)) ∈ U × U

hold, where γ is the constant-speed geodesic with γ(0) = ỹ and γ(1) = αx̃,
and where γ′ is understood as an element in T ∗M̃ , and where α∗ is the
pullback on the cotangent bundle through α.
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Figure 1: Lemma 3.2 tells us the only relevant terms in the sum are those
with geodesics (the dashed line) starting in U (resp. −U) and ending in αU
(resp. α(−U)).

Proof. By Lemma 3.1, we have

Kα(T, λ;x, y)

=
λ

n−1

2

(2π)2n

∑

±

∫∫∫∫

ei⟨x−w,η⟩Bλ(x,w, η)a±(T, λ;αw̃, z̃)e
±iλdg̃(αw̃,z̃)

× ei⟨z−y,ζ⟩Bλ(y, z, ζ) dw dz dη dζ

+
1

(2π)2n

∫∫∫∫

ei⟨x−w,η⟩Bλ(x,w, η)R(T, λ;αw̃, z̃)ei⟨z−y,ζ⟩

×Bλ(y, z, ζ) dw dz dη dζ.

The second integral on the right hand side is O(eCTλδ) by taking m in (3.4)
greater than 2n− δ and the fact that, by (2.8),

∫

Rn

∫

Rn

|Bλ(x,w, η)| dw dη = O(λn).
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It suffices then to equate the first term to the right hand side of (3.16).
Using a change of variables η 7→ λη and ζ 7→ λζ, this is

λ2n+n−1

2

(2π)2n

∑

±

∫∫∫∫

eiλΦ±(x,y,w,z,η,ζ)A(T, λ;x, y, w, z, η, ζ) dw dz dη dζ

where

Φ±(x, y, w, z, η, ζ) = ⟨x− w, η⟩ ± dg̃(αw̃, z̃) + ⟨z − y, ζ⟩

and by (2.8),

A(T, λ;x, y, w, z, η, ζ)(3.19)

= β0(|x− w|)β0(|z − y|)β0(|x⊥|)β0(|y⊥|)b(x′)b(y′)
× a±(T, λ;αw̃, z̃)a(η/|η|)a(ζ/|ζ|)β1(|η|)β1(|ζ|)

For clarity, we focus only on the Φ+ component; the argument for the al-
ternate sign is the same. The Euclidean gradient of the phase function with
respect to the variables of integration is

∇w,z,η,ζΦ± =









−η +∇w̃dg̃(αw̃, z̃)
ζ +∇z̃dg̃(αw̃, z̃)

x− w
z − y









which has a critical point at (w, z, η, ζ) = (x, y,∇x̃dg̃(αx̃, ỹ),−∇ỹdg̃(αx̃, ỹ))
at which the phase takes the value dg̃(αx̃, ỹ) and has Hessian

∇2
w,z,η,ζΦ± =









∗ ∗ −I 0
∗ ∗ 0 I
−I 0 0 0
0 I 0 0









,

which has determinant −1. We have (3.16) and (3.17) by (3.9), (3.3), and [16,
Corollary 1.1.8]. Consider a conic neighborhood V of R

n containing the
support of a in (3.19) (also (2.8)). In local coordinates (2.3), let U ′ be the
set of (x, ξ) for which x lies in a small open neighborhood of the support of
b in (2.8) and ξ lies in V , and let U ⊂ T ∗M̃ be the set of the duals of the
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vectors of U ′. If ∇x̃dg̃(αx̃, ỹ) lies in the complement of U ′, then

(3.20) | − η +∇x̃dg̃(αx̃, ỹ)| ≥ c > 0

on the support of A for some constant c depending on U ′. Hence,

| − η +∇w̃dg̃(αw̃, z̃)| ≥ c− |∇x̃dg̃(αx̃, ỹ)−∇w̃dg̃(αw̃, z̃)|.

In the next section, we will show that the Hessian of the distance function
is uniformly bounded on the entirety of M̃ × M̃ minus a neighborhood of
the diagonal (see Remark 4.2 and (3.14)). Moreover since x̃, ỹ, w̃, and z̃
are all in the same local coordinates, the Christoffel symbols of the metric
are bounded. Hence, the Euclidean Hessian of dg̃(αx̃, ỹ) in both variables is
uniformly bounded4 in α and

|∇x̃dg̃(αx̃, ỹ)−∇w̃dg̃(αw̃, z̃)| ≤ C(|x− w|+ |y − z|)

by the mean value theorem. We restrict the support of β0 in (3.19) so that
| − η +∇w̃dg̃(αw̃, z̃)| is bounded away from 0 uniformly in α. We remark
that the covector ⟨ · ,∇x̃dg̃(αx̃, ỹ)⟩ with the Euclidean inner product is
precisely the dual of γ′(1)/|γ′(1)| pulled back by α. In particular, if x̃ and
ỹ are such that the dual of γ′(1)/|γ′(1)| is in the complement of U , we
have (3.20). The desired bound (3.18) then follows from (3.9), (3.3), and
nonstationary phase [16, Lemma 0.4.7] in the w variable. The argument is
similar if −∇ỹdg̃(αx̃, ỹ) is in the complement of U . □

Let ΓU denote the subset of Γ for which there exist x and y in the support
of aα,± such that the geodesic γ : [0, 1] → M̃ with γ(0) = ỹ and γ(1) = αx̃
has both γ′(0) ∈ U and α∗γ′(1) ∈ U . Lemma 3.2 and (2.22) show us

∑

α∈(Γ\ΓU )\ΓR

∣

∣

∣

∣

∫

Σ

∫

Σ
Kα(T, λ;x, y) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλ−m

for some m which can be made large. So, (3.15) would follow from

(3.21)
∑

α∈ΓU\ΓR

∣

∣

∣

∣

∫

Σ

∫

Σ
Kα(T, λ;x, y) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλδ.

It is now time to specify the statements we require to prove Theorems
1.3 and 1.4. Recall from (2.1) that the only requirement for the exponent δ

4See (4.2) for the relationship between the Hessian on a manifold and the Eu-
clidean Hessian in local coordinates.
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is that it is less than n− d− 1. Propositions 3.3 and 3.4 along with Lemma
3.2 and (2.22) imply (3.21) under the hypotheses of Theorem 1.3 and The-
orem 1.4, respectively.

Proposition 3.3. Under the hypotheses of Theorem 1.3, we have

∣

∣

∣

∣

∫

Σ

∫

Σ
aα,±(T, λ;x, y)e

±iλdg̃(αx̃,ỹ) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλ−d/2

for α ∈ ΓU \ ΓR,

where the constant C is uniform in α.

Proposition 3.4. Assume the hypotheses of Theorem 1.4. If α ∈ ΓU \ ΓR,

∣

∣

∣

∣

∫

Σ

∫

Σ
aα,±(T, λ;x, y)e

±iλdg̃(αx̃,ỹ) dσ(x) dσ(y)

∣

∣

∣

∣

≲ eCTλ−n/2

where the constant C is uniform in α.

Remark 3.5. If M has strictly negative curvature, then the hypotheses of
Theorem 1.4 contain the hypotheses of Theorem 1.3, and Proposition 3.3
applies for hypersurfaces and gives us a bound of eCTλ−n/2+1/2. This is
not enough to obtain the δ we need in (2.1). The added hypotheses on the
curvature of Σ in Theorem 1.4 allow us use the method of stationary phase in
Section 5 over one more variable, improving the bound by a factor of λ−1/2.

4. Geometry and phase function bounds

We will need some information about the first and second derivatives of
the phase functions in Propositions 3.3 and 3.4. This section will provide
the tools necessary to do so. Specifically, we will compute the Hessian of the
phase function using the second fundamental form of Σ and of spheres in M̃ .
We then verify Definition 1.3 and prove some useful properties of the second
fundamental form of circles of large radius. Finally, we use these properties
to provide good bounds on the Hessian of the phase function. DoCarmo’s
text [7] is our primary reference for this section.

We outline some basic facts before we begin. For a general Riemannian
manifold (M, g) with Levi-Civita connection ∇, the Hessian of f ∈ C∞(M)
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is the quadratic form

(4.1) Hessf(X,Y ) = X(Y f)− (∇XY )f

where X and Y are vector fields on M . For future use we note, in local
coordinates x = (x1, . . . , xn),

(4.2) Hessf

(

∂

∂xi
,

∂

∂xj

)

=
∂2f

∂xi∂xj
−
∑

k

Γk
ij

∂f

∂xk

and so if the Christoffel symbols Γk
ij are small and the first derivatives of f

are bounded, the Hessian of f is nearly the Euclidean Hessian. Suppose Σ is
a submanifold of M with the induced metric g and Levi-Civita connection
∇. By (4.1),

(4.3) HessΣf(X,Y ) = HessMf(X,Y ) + IIΣ(X,Y )f

where X,Y are vectors in Σ and where IIΣ is the second fundamental form
of Σ in M , given by

(4.4) IIΣ(X,Y ) = ∇XY −∇XY = (∇XY )⊥,

the orthogonal projection of∇XY onto the normal bundleNΣ. The Hessians
and the second fundamental form are tensorial and only depend on the value
of X and Y at a point. (For details see [7, Section 6.2].)

4.1. Computing the Hessian of the phase function

We will want to compute the Hessian of the phase functions from Proposi-
tions 3.3 and 3.4, that is the function ϕ : Σ× Σ → R given by

ϕ(x, y) = dg̃(αx̃, ỹ)

where Σ× Σ is endowed with the product metric, where x̃ and ỹ are the
respective lifts of x and y to our Dirichlet domain D in the universal cover,
and where α is a fixed, non-identity deck transformation. By (4.3),

HessΣ×Σϕ(X,Y ) = HessαΣ̃×Σ̃dg̃(X,Y )(4.5)

= HessM̃×M̃dg̃(X,Y ) + IIαΣ̃×Σ̃(X,Y )dg̃

where X and Y are both vectors in Σ× Σ with the same base point, but are
also understood to be their respective lifts to αΣ̃× Σ̃ where appropriate.



✐

✐

“10-Wyman” — 2021/1/4 — 18:23 — page 1545 — #33
✐

✐

✐

✐

✐

✐

Period integrals in nonpositively curved manifolds 1545

To compute the Hessian of the phase function, it suffices to compute the
Hessian of dg̃ on M̃ × M̃ and the second fundamental form of αΣ̃× Σ̃. To
this end, we write

X = X1 ⊕X2 and Y = Y1 ⊕ Y2

where X1 and Y1 are vectors on αΣ̃ and X2 and Y2 are vectors on Σ̃ and
write

HessM̃×M̃dg̃(X,Y ) =
∑

i,j=1,2

HessM̃×M̃dg̃(Xi, Yj) and(4.6)

IIαΣ̃×Σ̃(X,Y )dg̃ =
∑

i,j=1,2

IIαΣ̃×Σ̃(Xi, Yj)dg̃.(4.7)

Note the i ̸= j terms of (4.7) vanish and we are left with

(4.8) IIαΣ̃×Σ̃(X,Y ) = IIαΣ̃(X1, Y1)dg̃ + IIΣ̃(X2, Y2)dg̃.

The next lemma helps us compute the terms in (4.6).

Lemma 4.1. Let x̃ and ỹ be any points in M̃ , let r = dg̃(x̃, ỹ), and let
X1, Y1 ∈ Tx̃M̃ and X2, Y2 ∈ TỹM̃ , and we understand

X1dg̃ = X1dg̃( · , ỹ) and X2dg̃ = X2dg̃(x̃, · ),

and similarly for Yi, i = 1, 2. Then, the following are true.

1) X1dg̃ = |X1| cos θ where θ is the angle between X1 and the first deriva-
tive of the geodesic adjoining ỹ to x̃. In particular, X1dg̃ = 0 if and
only if X1 is perpendicular to this geodesic. This holds similarly for
X2dg̃.

2) We have absolute bounds

|HessM̃×M̃dg̃(X1, Y2)| ≤ 2|X1||Y2|/r and

|HessM̃×M̃dg̃(X2, Y1)| ≤ 2|X2||Y1|/r.

3) Let Sỹ(r) denote the sphere in M̃ with center ỹ and radius r. Then,

HessM̃×M̃dg̃(X1, Y1) = −IISỹ(r)(X
′
1, Y

′
1)dg̃
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where X ′
1 and Y ′

1 are the orthogonal projections of X1 and Y1 onto
Tx̃Sỹ(r), respectively. We similarly have

HessM̃×M̃dg̃(X2, Y2) = −IISx̃(r)(X
′
2, Y

′
2)dg̃.

Proof. Fix X1 and Y2 as above and let σ1, σ2 : (−ϵ, ϵ) → M̃ be curves with

σ′
1(0) = X1 ∈ Tx̃M̃ and σ′

2(0) = Y2 ∈ TỹM̃.

We then define a map

γ : (−ϵ, ϵ)× (−ϵ, ϵ)× [0, 1] → M̃

such that for all u, v ∈ (−ϵ, ϵ),

γ(u, v, 1) = σ1(u) and γ(u, v, 0) = σ2(v),

and where t 7→ γ(u, v, t) traces out the constant-speed geodesic connecting
σ2(v) to σ1(u). Since ∂u, ∂v, and ∂t are coordinate vector fields in the domain
of γ, the Lie brackets

[∂u, ∂t] = 0, [∂v, ∂t] = 0, and [∂u, ∂v] = 0

all vanish. Hence,

0 = [∂u, ∂t]γ = [∂uγ, ∂vγ] = ∇u∂tγ −∇t∂uγ,

where ∇ is the Levi-Civita connection on M̃ and where ∇u and ∇t are
shorthand for the covariant derivative with respect to the vector fields ∂uγ
and ∂tγ. This and similar calculations yield the identities

∇u∂tγ = ∇t∂uγ, ∇v∂tγ = ∇t∂vγ, and ∇u∂vγ = ∇v∂uγ

which we will use repeatedly and without reference. Next, we write

dg̃(σ1(u), σ2(v))
2 =

∫ 1

0
|∂tγ(u, v, t)|2 dt.
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Taking a derivative in u of 1
2d

2
g̃ yields

dg̃∂udg̃ =

∫ 1

0
⟨∂tγ(u, v, t),∇u∂tγ(u, v, t)⟩ dt

=

∫ 1

0
⟨∂tγ(u, v, t),∇t∂uγ(u, v, t)⟩ dt

=

∫ 1

0
∂t⟨∂tγ(u, v, t), ∂uγ(u, v, t)⟩ dt

= ⟨∂tγ(u, v, 1), ∂uγ(u, v, 1)⟩

where the third line is due to the geodesic equation ∇t∂tγ = 0 and the
fourth to the fundamental theorem of calculus. Part (1) of the lemma fol-
lows after noting ∂tγ(0, 0, 1)/dg̃ is the unit vector in the direction of the
geodesic γ(0, 0, t) at t = 1, and after recalling ∂uγ(0, 0, 1) = X1. Next, we
take a derivative in v and obtain

dg̃∂u∂vdg̃ + ∂udg̃∂vdg̃ = ⟨∇v∂tγ(u, v, 1), ∂uγ(u, v, 1)⟩
+ ⟨∂tγ(u, v, 1),∇v∂uγ(u, v, 1)⟩.

Note ∇v∂uγ(u, v, 1) = ∇u∂vγ(u, v, 1) = 0, since γ(u, v, 1) is constant in v.
Hence,

(4.9) dg̃∂u∂vdg̃ + ∂udg̃∂vdg̃ = ⟨∇t∂vγ(0, 0, 1), X1⟩.

We pause here to make a couple observations. First, t 7→ ∂vγ(0, 0, t) is a
Jacobi field along t 7→ γ(0, 0, t) with boundary data

∂vγ(0, 0, 0) = Y2 and ∂vγ(0, 0, 1) = 0.

Observe that ∂u∂vdg̃ is independent of our choice of curves σ1 and σ2, and
that

HessM̃×M̃dg̃(X1, Y2) = X1(Y2dg̃) = ∂u∂vdg̃(σ1(u), σ2(v))

at u = v = 0. To get part (2) of the lemma, we claim the right side of (4.9)
is bounded by |X1||Y2|. Let h(t) denote the inner product of ∂vγ(0, 0, t) with
the parallel vector field w(t) obtained by a translation of ±X1 along γ, with
the sign chosen so that h(0) ≥ 0. Note since ∂vγ(0, 0, t) is a scalar multiple
of w(t) for t = 0 and t = 1, it is a scalar multiple of w(t) for all t. In fact,
∂vγ(0, 0, t) = h(t)w(t). Let R denote the Riemann curvature tensor as in [7],
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and by an abuse of notation, set

R(t) = ⟨R(γ′(t), ∂vγ(0, 0, t))γ
′(t), w(t)⟩.

Then by the Jacobi equation,

h′′(t) +R(t)h(t) =

〈

D2

dt2
∂vγ +R(γ′, ∂vγ)γ

′, w(t)

〉

= 0.

Now,

R(t)h(t)2 = ⟨R(γ′, ∂vγ)γ
′, ∂vγ⟩ ≤ 0

since the sectional curvature of M̃ is nonpositive. In particular, R(t) ≤ 0.
If h is nontrivial, it vanishes only at 1 and hence is nonnegative on [0, 1].
Then,

h′′(t) ≥ 0 for t ∈ [0, 1].

By convexity,

0 ≤ h(t) ≤ h(0)(1− t),

and hence

0 ≥ h′(1) ≥ −h(0).

We know h′(1) is equal to the right hand side of (4.9) up to a sign, and
that |h(0)| ≤ |X1||Y2| by Cauchy-Schwarz. Furthermore, |X1dg̃| ≤ |X1| and
|Y2dg̃| ≤ |Y2| by the triangle inequality. Hence,

|∂u∂vdg̃| =
|⟨∇t∂vγ(0, 0, 1), X1⟩ − (∂udg̃)(∂vdg̃)|

dg̃
≤ 2|X1||Y2|

dg̃
,

as desired.
Finally we prove part (3) of the lemma. Consider geodesic normal

coordinates (x2, . . . , xn) at x̃ of the sphere Sỹ(r). We take an extension
(x1, x2, . . . , xn) of these coordinates to a neighborhood of M̃ , where x1 is
the radial coordinate. By the geodesic equation ∇1∂1 = 0,

HessM̃×M̃dg̃(∂1, ∂1) = ∂1(∂1x1)− (∇1∂1)x1 = 0.

Moreover if i ̸= 1,

HessM̃×M̃dg̃(∂i, ∂1) = ∂i(∂1x1)− (∇i∂1)x1 = −∇1∂ix1,

where ∇i∂1 = ∇1∂i by a similar argument as in the proof of part (1). No-
tice that ∂i is a perpendicular Jacobi field along the x1 coordinate geodesic.
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Hence, ∇1∂i is also perpendicular to the x1 coordinate geodesic, and
∇1∂ix1 = 0. Then,

HessM̃×M̃dg̃(X1, Y1) = HessM̃dg̃(X
′
1, Y

′
1)

where X ′
1 and Y ′

1 are the orthogonal projections of X1 and Y1 onto Tx̃Sỹ(r).
It suffices then to show

HessM̃×M̃dg̃(X1, Y1) = −IISỹ(r)(X1, Y1)dg̃

in the situation where X1 and Y1 are vectors tangent to the sphere Sỹ(r).
In this situation we have Y1dg̃ ≡ 0, whence

HessM̃×M̃dg̃(X1, Y1) = −(∇X1
Y1)dg̃ = −(∇X1

Y1)
⊥dg̃ = −IISỹ(r)(X1, Y1)dg̃,

as desired. □

Remark 4.2. By comparison with the Euclidean case, the Hessian of the
distance function dg̃ in one variable is uniformly bounded for dg̃ ≥ 1 (see [14,
Theorem 1.1]). This, part (2) of Lemma 4.1, and (4.6) show that the Hessian
of dg̃ in both variables is uniformly bounded for dg̃ ≥ 1.

Lemma 4.1, (4.5), and (4.8) combined provide us with the crucial com-
putation

HessΣ×Σϕ(X,Y ) = IIαΣ̃(X1, Y1)dg̃ − IISỹ(dg̃)(X
′
1, Y

′
1)dg̃(4.10)

+ IIΣ̃(X2, Y2)dg̃ − IISαx̃(dg̃)(X
′
2, Y

′
2)dg̃ +R(X,Y )

where

|R(X,Y )| ≤ 2(|X1||Y2|+ |X2||Y1|)/dg̃.

4.2. The second fundamental form of spheres

To provide any useful bounds on HessΣ×Σϕ, we need to understand the
behavior of the second fundamental form of spheres of large radius. Here we
provide quantitative estimates for the perhaps obvious fact that the second
fundamental forms of large spheres are very nearly the second fundamental
forms of horospheres.

The second fundamental forms of spheres and horospheres both satisfy
a revealing ordinary differential equation. Let γ be a geodesic in M̃ and let
X be a unit normal parallel vector field along γ. Moreover suppose J is a
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stable Jacobi field along γ for which J(0) = X. By (1.3) and the observation
that J is a scalar multiple of the parallel transport of X along γ,

⟨IIH(−γ′)(X,X),−γ′⟩ = ⟨DdrJ,X⟩
⟨J,X⟩ .

Differentiating the right hand side shows that ⟨IIH(−γ′)(X,X),−γ′⟩ satisfies
the Riccati equation

(4.11)
d

dr
u+K(X, γ′(r)) + u2 = 0

where K is the sectional curvature of M̃ . The same equation is satisfied if
we replace IIH(−γ′(r)) with IISγ(0)(r). To see this, let J and Y be respective
angular and radial coordinate vector fields of some spherical coordinates
about γ(0), defined on a neighborhood of γ(r) for r > 0. In particular, we
choose Y so that γ′ = Y , J restricts to a Jacobi field along γ with J(0) = 0
and D

drJ(0) = X(0), and

0 = [J, Y ] = ∇JY −∇Y J.

Since J is parallel to X and vanishes uniquely at γ(0), X = J/|J |. Hence,

⟨IISγ(0)(r)(X,X),−γ′⟩ = −⟨∇JX, γ′⟩
⟨J,X⟩ =

⟨X,∇JY ⟩
⟨J,X⟩ =

⟨X,∇Y J⟩
⟨J,X⟩ =

⟨X, D
drJ⟩

⟨J,X⟩ ,

so similarly satisfies (4.11). This ordinary differential equation provides us
with means to bound ⟨IIH(v), v⟩ and to compare the second fundamental
forms of spheres of large radius to those of horocycles.

Proposition 4.3. The following are true.

1) If the sectional curvature K of M satisfies bounds −a2 ≥ K ≥ −b2 for
some nonnegative constants a and b, then

a|X|2 ≤ ⟨IIH(v)(X,X), v⟩ ≤ b|X|2

for all v.

2) For all r > 0,

0 < ⟨IISγ(0)(r)(X,X),−γ′(r)⟩ − ⟨IIH(−γ′(r))(X,X),−γ′(r)⟩ ≤ r−1|X|2.
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Proof. Let X be a unit length, parallel vector field normal to γ and set

u(r) = ⟨IIH(−γ′(r))(X(r), X(r)),−γ′(r)⟩ r ∈ R

and

v(r) = ⟨IISγ(0)(r)(X(r), X(r)),−γ′(r)⟩ r > 0.

Both u and v satisfy (4.11) as argued above.
u ≥ 0 and is uniformly bounded by continuity of IIH(v) and compactness

of SM . If u(r0) > b for some r0 ∈ R, then

u′(r) ≤ b2 − u2(r0) < 0 for r ≤ r0,

which contradicts boundedness. If u(r0) < a, then

u′(r) ≥ a2 − u2(r0) > 0 for r ≤ r0,

which contradicts nonpositivity. (1) follows.
(2) Note,

v′(r)− u′(r) = −(v2(r)− u2(r)).

Since u is bounded and the curvature of small spheres is large, v(r)− u(r) >
0 for small r. Since v′ − u′ = 0 where v = u, v(r)− u(r) > 0 for all r > 0,
hence the lower bound in (2). Then,

v′(r)− u′(r) = −v(r) + u(r)

v(r)− u(r)
(v(r)− u(r))2 ≤ −(v(r)− u(r))2,

which implies the upper bound by an elementary computation. □

Remark 4.4. Part (2) of the proposition above implies the difference be-
tween the second fundamental form of a sphere and that a tangential horo-
cycle is always nondegenerate. This provides us with part (2) of Corol-
lary 1.6 from Theorem 1.4. Part (1) shows that if K is strictly negative,
⟨IIH(v)(X,X), v⟩ is strictly positive definite. Hence, part (3) of the corollary.
Part (1) also shows that the (unsigned) principal curvatures of H(v) fall
in the interval [a, b]. Hence if at each point at least n/2 of the principal
curvatures of Σ fall outside of the interval [a, b],

⟨IIΣ − IIH(v), v⟩ and ⟨IIΣ − IIH(−v),−v⟩

both have rank at least n/2 for each v ∈ SNΣ, from which follows part (1)
of Corollary 1.6.
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5. The conclusion of the proofs of Theorems 1.3 and 1.4

In Section 2, we reduced the problem of bounding integrals of an eigen-
function over our submanifold Σ to bounds on the integral of a cosine wave
kernel. We also microlocalized to small cones covering the cosphere bundle
with base points in Σ and lifted the kernel to a sum over the deck group
in the universal cover. In Section 3 we used the Hadamard parametrix to
described this lifted kernel as an oscillatory integral with geometric phase
function

ϕα : Σ× Σ → R

(x, y) 7→ dg̃(αx̃, ỹ)

where x̃ and ỹ are the respective lifts of x and y to the same Dirichlet
domain in the universal cover, dg̃ is the distance function on M̃ , and α is an
element of the group of deck transformations. Moreover in Lemma 3.2, we
established that the only relevant terms in the sum over the deck group are
those for which there exists a geodesic intersecting both Σ̃ and αΣ̃ nearly
in the normal direction. In Section 4, we computed the first derivatives and
the Hessian of the phase function ϕα as a function on Σ× Σ.

In this section we adapt the tools we developed in Section 4 to local
coordinates to prove Propositions 3.3 and 3.4. The respective main results,
Theorems 1.3 and 1.4, follow. Recall we are trying to bound an oscillatory
integral of the form

(5.1)

∫

Rd

∫

Rd

a(x, y)e±iλϕ(x,y) dx dy

where

ϕ(x, y) = dg̃(αx̃, ỹ)

and

a(x, y) = aα,±(T, λ;x, y).

We have determined much of the behavior of ϕ in the last section, and in
Section 3, we determined that suppa ⊂ suppb× suppb, and

|∂β1
x ∂β2

y a(x, y)| ≤ Cβe
CβT

for multiindices β, among other things.
After taking the supports of b to be small and perhaps taking a smooth

extension of Σ in M , we assume suppb is contained inside a ball B ⊂ R
d
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centered at 0 in our Fermi local coordinates (2.3). Furthermore, we assume
the phase function ϕ is defined on 2B × 2B with the same center but twice
the radius. Fix (x, y) ∈ 2B × 2B and let v1(x, y) and v2(x, y) are the unit
vectors denoting the arriving and departing directions, respectively, of the
geodesic in M̃ starting at ỹ ∈ Σ̃ and ending at αx̃ ∈ αΣ̃. By abuse of nota-
tion, we will also use v1 and v2 to denote their push-forwards to M through
the covering map where appropriate.

We fix a constant ϵ > 0 and consider α ∈ ΓU \ ΓR for which

(5.2) |∇ϕ(x, y)| > ϵ for some (x, y) ∈ 2B × 2B,

where here ∇ is the gradient with respect to the product metric on Σ× Σ.
By Remark 4.2 and (4.10), the Hessian of HessΣ×Σϕ is a uniformly bounded
quadratic form for non-identity α. Hence by the mean value theorem, we
may restrict B so that

|∇ϕ(x, y)| ≥ ϵ/2 for all (x, y) ∈ 2B × 2B

for all α satisfying (5.2). Since the metric tensor of Σ× Σ is nearly the
identity at (0, 0), by taking B small we ensure that the Euclidean gradient
of ϕ in local coordinates is bounded below by ϵ/4. The oscillatory integral
(5.1) is then bounded by a constant multiple of eCNTλ−N for any suitably
large N by Part (1) of Lemma 6.2.

All that remains is the situation where

(5.3) |∇ϕ| ≤ ϵ on 2B × 2B.

Now is when we really capitalize on our ability to take R large and
restrict B and U . Recall that ∇2

x,yϕ is the Euclidean Hessian matrix of ϕ in
the variables x and y. We eventually want to show

(5.4) ∇2
x,yϕ(x, y) =

[

∇2
xϕ(0, 0) 0
0 ∇2

yϕ(0, 0)

]

+ E(x, y)

for all α ∈ ΓU \ ΓR, where E is an error matrix whose entries are con-
trolled by an adjustably small constant uniform in α. By (4.2) and since
the Christoffel symbols of the product metric on Σ× Σ vanish at (0, 0), we



✐

✐

“10-Wyman” — 2021/1/4 — 18:23 — page 1554 — #42
✐

✐

✐

✐

✐

✐

1554 Emmett L. Wyman

may restrict the support of b so that

∂xi
∂xj

ϕ(x, y) = HessΣ×Σϕ(∂xi
, ∂xj

),

∂yi
∂yj

ϕ(x, y) = HessΣ×Σϕ(∂yi
, ∂yj

), and

∂xi
∂yj

ϕ(x, y) = HessΣ×Σϕ(∂xi
, ∂yj

)

modulo some small, controllable error terms for i, j = 1, . . . , d. Hence, it
suffices to show

HessΣ×Σϕ(x, y)(∂xi
, ∂xj

) = HessΣ×Σϕ(0, 0)(∂xi
, ∂xj

),(5.5)

HessΣ×Σϕ(x, y)(∂yi
, ∂yj

) = HessΣ×Σϕ(0, 0)(∂yi
, ∂yj

), and

HessΣ×Σϕ(x, y)(∂xi
, ∂yj

) = 0

modulo small, controllable error terms which are bounded independently of
α. Note the third line follows by taking R in (3.14) large and invoking part
(2) of Lemma 4.1.

Fix indices i and j. We claim that the diameter of the set

{HessΣ×Σϕ(x, y)(∂xi
, ∂xj

) : x, y ∈ B}

can be controlled by taking B and ϵ small and R large. Recall v1 = v1(x, y)
and v2 = v2(x, y) are the unit vectors denoting the arriving and departing
directions, respectively, of the geodesic in M̃ starting at ỹ ∈ Σ̃ and ending
at αx̃ ∈ αΣ̃. By part (2) of Proposition 4.3

⟨IISỹ(dg̃)(∂
′
xi
, ∂′

xj
),−v1⟩ = ⟨IIH(−v1)(∂

′
xi
, ∂′

xj
),−v1⟩

modulo an error term controllable by taking R large. Hence by (4.10), we
have

HessΣ×Σϕ(∂xi
, ∂xj

) = ⟨IIΣ(∂xi
, ∂xj

), v1⟩ − ⟨IIH(−v1)(∂
′
xi
, ∂′

xj
), v1⟩

modulo controllable error terms. The diameter of the set of values achieved
by the first term on the right is controlled by taking v1 close to normal, i.e.
by taking ϵ small and using Lemma 3.2 and part (1) of Lemma 4.1, and
similarly for the second term. The first line of (5.5) follows. The second line
follows similarly. We now have (5.4) and are ready to prove our propositions.
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Proof of Proposition 3.3. We will select d coordinates in which to use the
method of stationary phase in order to obtain the desired bound

(5.6)

∣

∣

∣

∣

∫

Rd

∫

Rd

a(x, y)e±iλϕ(x,y) dx dy

∣

∣

∣

∣

≲ eCTλ−d/2

for (5.1). By an orthogonal change of variables on R
d, we may take ∂xi

for
i = 1, . . . , d to align with the principal directions of Σ at 0. Now,

(5.7) ∂xi
∂xj

ϕ(0, 0) =

{

⟨κi, v1⟩ − ⟨IIH(−v1)(∂
′
xi
, ∂′

xi
), v1⟩ i = j

−⟨IIH(−v1)(∂
′
xi
, ∂′

xj
), v1⟩ i ̸= j

and

∂yi
∂yj

ϕ(0, 0) =

{

⟨κi,−v2⟩ − ⟨IIH(v2)(∂
′
yi
, ∂′

yi
),−v2⟩ i = j

−⟨IIH(v2)(∂
′
yi
, ∂′

yj
),−v2⟩ i ̸= j

modulo controllable errors, where κi = IIΣ(∂xi
, ∂xi

) is the ith principal cur-
vature vector. We can take ϵ small to keep v1 and v2 within a small, bounded
deviation from a normal direction to Σ, and in particular the projections ∂′

xi

form a nearly orthonormal subset of the tangent space of H(−v1). Since M
is compact and has negative curvature per the assumptions of Theorem 1.3,
the sectional curvature of M̃ is bounded above by some negative constant.
Then, by part (1) of Proposition 4.3 and the discussion above,

d
∑

i,j=1

⟨IIH(−v1)(∂
′
xi
, ∂′

xj
),−v1⟩ξiξj ≥ c|ξ|2 and(5.8)

d
∑

i,j=1

⟨IIH(v2)(∂
′
yi
, ∂′

yj
), v2⟩ξiξj ≥ c|ξ|2

for all ξ ∈ R
d and for some positive constant c at (x, y) = (0, 0). We have

trivially that for each i = 1, . . . , d, either

⟨κi, v1⟩ ≥ 0 or ⟨κi,−v1⟩ ≥ 0.

Hence by taking U in Lemma 3.2 small, we can ensure v1 and v2 are close
in TM̃ and that

(5.9) ⟨κi, v1⟩ ≥ −c/2 or ⟨κi,−v2⟩ ≥ −c/2
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for each i = 1, . . . , d. We pick coordinates z = (z1, . . . , zd) where zi = xi if
⟨κi, v1⟩ ≥ −c/2 and zi = yi if ⟨κi,−v2⟩ ≥ −c/2. By reordering, assume that

z = (x1, . . . , xℓ, yℓ+1, . . . , yd)

for some ℓ ∈ {0, 1, . . . , d}, and let w = (y1, . . . , yℓ, xℓ+1, . . . , xd) be the com-
plimentary coordinates. We bound the left side of (5.6) by

∫

Rd

∣

∣

∣

∣

∫

Rd

a(x, y)e±iλϕ(x,y) dz

∣

∣

∣

∣

dw

and use the method of stationary phase on the inner integral to obtain the
desired bound. By (5.4),

∇2
zϕ(x, y) =

[

∇2
x1,...,xℓ

ϕ(0, 0) 0

0 ∇2
yℓ+1,...,yd

ϕ(0, 0)

]

+ E(x, y).

Now by (5.7), (5.8), and our selection of coordinates by (5.9),

|∇2
x1,...,xℓ

ϕ(0, 0)ξ| ≥ c

2
|ξ| for all ξ ∈ R

ℓ

and similarly

|∇2
yℓ+1,...,yd

ϕ(0, 0)ξ| ≥ c

2
|ξ| for all ξ ∈ R

d−ℓ.

Hence if E(x, y) is made small enough,

|∇2
zϕ(x, y)ξ| ≥

c

4
|ξ| for all ξ ∈ R

d, x, y ∈ 2B.

The proposition follows after an application of Lemma 6.2. □

Proof of Proposition 3.4. Let v be the normal vector to Σ which points in
a similar direction to v1 and v2. By the hypotheses (1.4), we select two
subspaces V1 and V2 of TΣ, with respective dimensions ℓ1 and ℓ2 with ℓ1 +
ℓ2 = n, and on which the restriction of the quadratic form ⟨IIΣ − IIH(−v), v⟩
to V1 and the restriction of ⟨IIΣ − IIH(v),−v⟩ to V2 are nondegenerate. In
particular, select local coordinates (x1, . . . , xℓ1) of V1 such that ∂x1

, . . . , ∂xℓ1



✐

✐

“10-Wyman” — 2021/1/4 — 18:23 — page 1557 — #45
✐

✐

✐

✐

✐

✐

Period integrals in nonpositively curved manifolds 1557

forms an orthonormal basis at 0 at which

|⟨IIΣ(∂xi
, ∂xi

)− IIH(−v)(∂xi
, ∂xi

), v⟩| ≥ 4c for i = 1, . . . , ℓ1

for some positive constant c and

⟨IIΣ(∂xi
, ∂xj

)− IIH(−v)(∂xi
, ∂xj

), v⟩ = 0 for i ̸= j.

By ensuring ϵ in (5.3) is sufficiently small, we take

|∂xi
∂xi

ϕ(0, 0)| = |⟨IIΣ(∂xi
, ∂xi

)− IIH(−v1)(∂
′
xi
, ∂′

xi
), v1⟩| ≥ 2c

for i = 1, . . . , ℓ1

and

|∂xi
∂xj

ϕ(0, 0)| = |⟨IIΣ(∂xi
, ∂xj

)− IIH(−v1)(∂
′
xi
, ∂′

xj
), v1⟩| ≤ c/8n for i ̸= j.

We similarly select a parametrization (y1, . . . , yℓ2) of V2 for which

|∂yi
∂yi

ϕ(0, 0)| = |⟨IIΣ(∂yi
, ∂yi

)− IIH(v2)(∂
′
yi
, ∂′

yi
),−v2⟩| ≥ 2c

for i = 1, . . . , ℓ2

and

|∂yi
∂yj

ϕ(0, 0)| = |⟨IIΣ(∂yi
, ∂yj

)− IIH(v2)(∂
′
yi
, ∂′

yj
),−v2⟩| ≤ c/8n for i ̸= j.

By bounding each of the entries of E(x, y) in (5.4) by c/8n, the n× n Hessian
matrix ∇2

x1,...,xℓ1
,y1,...,yℓ2

ϕ(x, y) has diagonal terms whose absolute values are
bounded below by c, and off-diagonal terms bounded by c/4n. It follows
that

|∇2
x1,...,xℓ1 ,y1,...,yℓ2

ϕ(x, y)ξ| ≥ c

2
|ξ| for all ξ ∈ R

n, x, y ∈ 2B.

This and Lemma 6.2 show us
∣

∣

∣

∣

∫

· · ·
∫

a(x, y)ei±λϕ(x,y) dx1 · · · dxℓ1dy1 · · · dyℓ2
∣

∣

∣

∣

≲ eCTλ−n/2

uniformly over the remaining variables xℓ+1, . . . , xn−1 and yℓ+1, . . . , yn−1.
The integral in (5.1) hence satisfies the same bounds. □
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6. Appendix

6.1. Exponential bounds on mixed derivatives

The following proposition allows us to obtain exponential bounds on mixed
derivatives of functions f(x, y) in C∞(M̃ × M̃) if we are only provided with
exponential bounds on pure derivatives in both variables. We use this to
obtain bounds on the mixed derivatives of the amplitudes in Lemma 3.1.

Proposition 6.1. Let (M, g) be a compact, n-dimensional, boundaryless
Riemannian manifold with nonpositive sectional curvature and let (M̃, g̃)
denote the universal cover of M equipped with the pullback metric. Let f :
M̃ × M̃ → R be a function satisfying bounds

|∆j
xf(x, y)| ≤ Cje

Cjdg̃(x,y) and |∆k
yf(x, y)| ≤ Cke

Cjdg̃(x,y)

where dg̃(x, y) ≥ 1. Then,

|∆j
x∆

k
yf(x, y)| ≤ Cj,ke

Cj,kdg̃(x,y) for dg̃(x, y) ≥ 1,

where the constants Cj,k depend only on the constants Cj and Ck and the
manifold.

Proof. Fix x0 and y0 in M̃ and fix a smooth function β ∈ C∞
0 (R, [0, 1]) equal

to 1 near 0 and supported in (−injM, injM). Then let

F (x, y) = β(dg̃(x, x0))β(dg̃(y, y0))f(x, y).

Note

(6.1) |∆j
xF (x, y)| ≤ C ′

je
C′

jdg̃(x0,y0) and |∆k
yF (x, y)| ≤ C ′

ke
C′

kdg̃(x0,y0)

by (3.9) for constants C ′
j and C ′

k which are independent of x, y, x0, and y0.
The cutoffs allow us to interpret F as a function on M ×M . By Sobolev
embedding,

|∆j
x∆

k
yf(x0, y0)| ≤ ∥∆j

x∆
k
yF (x, y)∥L∞(M×M)(6.2)

≤ C∥(I −∆x −∆y)
n+1∆j

x∆
k
yF (x, y)∥L2(M×M)

where we understand ∆x +∆y as the Laplace-Beltrami operator on the
product manifold M ×M . It follows ep(x)eq(y) for p, q = 0, 1, 2, . . . form
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an orthonormal basis of eigenfunctions on M ×M with

(∆x +∆y)ep(x)eq(y) = −(λ2
p + λ2

q)ep(x)eq(y).

We use the shorthand

F̂ (p, q) =

∫

M

∫

M
F (x, y)ep(x)eq(y) dx dy

and write

∥(I −∆x −∆y)
n+1∆j

x∆
k
yF (x, y)∥2L2(M×M)

=
∑

p,q

(1 + λ2
p + λ2

q)
2n+2λ4j

p λ4k
q |F̂ (p, q)|2

≤
∑

p,q

(1 + λ4(n+j+k+1)
p + λ4(n+j+k+1)

q )|F̂ (x, y)|2

= ∥F∥2L2(M×M) + ∥∆n+j+k+1
x F∥2L2(M×M) + ∥∆n+j+k+1

y F∥2L2(M×M).

Finally,

∥F∥2L2(M×M) + ∥∆n+j+k+1
x F∥2L2(M×M) + ∥∆n+j+k+1

y F∥2L2(M×M)

≤ vol(M)2
(

∥F∥2L∞(M×M) + ∥∆n+j+k+1
x F∥2L∞(M×M)

+ ∥∆n+j+k+1
y F∥2L∞(M×M)

)

,

and the proposition follows from (6.1). □

6.2. A stationary phase lemma

The following stationary phase lemma helps us obtain uniform bounds on
(5.1) in both the proofs of Propositions 3.3 and 3.4.

Lemma 6.2. Let

I(λ) =

∫

Rn

a(x)eiλϕ(x) dx

where a is a smooth function on R
n with support contained in the unit ball

B = {x : |x| ≤ 1}, and where ϕ is a smooth function on
√
2B = {x : |x| ≤√

2}.
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1) If |∇ϕ(x, y)| ≥ c on B for some c > 0, then

|I(λ)| ≤ CNλ−N for λ ≥ 1

for N = 1, 2, . . ..

2) If
∣

∣(∇2ϕ)ξ
∣

∣ ≥ c|ξ| for all ξ ∈ R
n

on
√
2B for some c > 0, then

|I(λ)| ≤ Cλ−n/2 for λ ≥ 1.

In both situations (1) and (2), the constants C and CN are polynomials
in c−1 and supB |∂β

xa| and supB |∂β
xϕ| for finitely many multiindices β.

Proof. (1) follows by careful inspection of the nonstationary phase argu-
ment [15, Lemma 4.1.1].

For (2), let γ : [0, ℓ] → R
n be a unit speed curve in

√
2B where

∇ϕ(γ(t)) ̸= 0 for t ∈ (0, ℓ)

and

γ′(t) =
∇|∇ϕ|
|∇|∇ϕ|| .

Setting γ(0) = x0 and γ(ℓ) = x1, the mean value theorem gives us a time
t ∈ (0, ℓ) at which

|∇ϕ(x1)| − |∇ϕ(x0)| = ℓ
d

dt
|∇|∇ϕ(γ(t))||(6.3)

= ℓ
d

dt

∣

∣

∣

∣

∇2ϕ(γ(t))
∇ϕ(γ(t))

|∇ϕ(γ(t))|

∣

∣

∣

∣

≥ ℓc

≥ c|x1 − x0|.

If ϕ has a critical point at some x0 in
√
2B, since ∇2ϕ(x0) is a linear isomor-

phism from R
n → R

n, there exist such flow lines of ∇|∇ϕ| in every direction
starting at x0. Moreover by (6.3), |∇ϕ| ≠ 0 on this neighborhood minus the
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point x0. By an open-closed argument, there exists such a flow line connect-
ing x0 to any other point x ∈

√
2B, and we conclude

|∇ϕ(x)| ≥ c|x− x0| for all x ∈
√
2B

from (6.3). The desired bound on I(λ) follows from this estimate of |∇ϕ(x)|
and careful inspection of the proof of [15, Proposition 4.1.2].

On the other hand, if there are no critical points of ϕ in
√
2B, we have

|∇|∇ϕ|| =
∣

∣

∣

∣

∇2ϕ
∇ϕ

|∇ϕ|

∣

∣

∣

∣

≥ c > 0,

and hence |∇ϕ| has no critical points on
√
2B. In particular, |∇ϕ| attains

a minimum on B only on the boundary. Select such a point x0 on ∂B and
take a unit-speed curve γ with γ(0) = x0 and

γ′(t) = − ∇|∇ϕ|
|∇|∇ϕ|| .

By the same argument as before,

|∇ϕ(x0)| − |∇ϕ(γ(t))| ≥ ct for all t > 0.

Hence, γ(t) never intersects B for t > 0. Moreover since |∇ϕ| is bounded
below on

√
2B, γ must intersect the boundary ∂(

√
2B) at some point x1 at

some time ℓ. Hence,

inf
B

|∇ϕ| = |∇ϕ(x0)| ≥ cℓ ≥ c(
√
2− 1),

and hence we have reduced the problem back to (1). □
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folds, Comm. Partial Differential Equations 17 (1992), no. 1-2, 221–260.

Department of Mathematics, Northwestern University

Evanston, IL 60208, USA

E-mail address: ewyman@math.northwestern.edu

Received September 19, 2018

Accepted May 7, 2019



✐

✐

“10-Wyman” — 2021/1/4 — 18:23 — page 1564 — #52
✐

✐

✐

✐

✐

✐


	Introduction
	A standard reduction and lift to the universal cover
	Kernel bounds
	Geometry and phase function bounds
	The conclusion of the proofs of Theorems 1.3 and 1.4
	Appendix
	References

