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We describe an operation which modifies a Lagrangian submani-
fold L in a symplectic manifold (M,ω) such as to produce a new
immersed Lagrangian submanifold L′, which as a smooth mani-
fold is obtained by surgery along a framed sphere in L. Intuitively,
this can be described as collapsing an isotropic disc with bound-
ary on L to a point. The inverse operation generalizes classical
Lagrangian surgery. We also describe corresponding immersed La-
grangian cobordisms between L and L′. After removal of their sin-
gular locus, we obtain examples of embedded Lagrangian cobor-
disms with precisely two ends. As an application, we use this
construction to produce interesting examples of Lagrangian cobor-
disms between Clifford and Chekanov tori.
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1. Introduction

A fundamental question in symplectic geometry is what manifolds arise
as the Lagrangian submanifolds of a given symplectic manifold (M2n, ω).
This question has different flavours and levels of difficulty, depending on
whether one asks for embedded or immersed Lagrangian submanifolds, and
on whether one incorporates constraints such as exactness or monotonicity.
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1424 Luis Haug

A natural attempt to construct new Lagrangian submanifolds is to mod-
ify given ones by some sort of surgery operation. There is one well known
construction which resolves the transverse double points of a Lagrangian
immersion ι : L→M by replacing neighbourhoods of them by copies of
D1 × Sn−1. For example, if L is connected, oriented and immersed with a
unique double point, then the resulting Lagrangian L′ is embedded and dif-
feomorphic to the connected sum L#(S1 × Sn−1), provided that the surgery
can be performed compatibly with the orientation. This operation, which we
will refer to as Lagrangian 0-surgery, is due to Lalonde–Sikorav [11] for n = 2
and to Polterovich [14] for general n.

Terminology and notation

In all of the following, “Lagrangian submanifolds” will generally be allowed
to be immersed with transverse double points. We will usually not make
a notational distinction between abstract smooth manifolds L and their
immersed images in M ; that is, whenever we have a Lagrangian immersion
ι : L→M , we will slightly abuse notation and denote its image ι(L) ⊂M
also by L.

1.1. Surgery of smooth manifolds

On the level of abstract smooth manifolds (i.e., not taking into account the
Lagrangian embedding), the passage from L to L′ by Lagrangian 0-surgery
replaces an embedded copy of S0 ×Dn by a copy of D1 × Sn−1. This is a
special case of the following more general operation originally due to Milnor
[13]: Whenever a smooth n-dimensional manifold L contains an embedding
φ : Sk ×Dn−k → L, one can cut out φ(Sk ×Dn−k) and replace it by a copy
of Dk+1 × Sn−k−1, such as to obtain a new manifold

L′ = (L∖ φ(Sk ×Dn−k)) ∪φ(Sk×Sn−k−1) (D
k+1 × Sn−k−1).

This works because ∂(Sk ×Dn−k) = Sk × Sn−k−1 = ∂(Dk+1 × Sn−k−1). We
say that the manifold L′, which inherits a smooth structure from L in
a canonical way, is obtained from L by k-surgery (a.k.a. surgery of index

k + 1).
Surgery theory is closely connected to cobordism theory. The manifold L′

resulting from k-surgery on a manifold L is cobordant to L via a cobordism

V = ([0, 1]× L) ∪{1}×φ(Sk×Dn−k) D
k+1 ×Dn−k,
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i.e., a cobordism that arises from the cylinder [0, 1]× L by attaching a (k +
1)-handleDk+1 ×Dn−k along {1} × φ(Sk ×Dn−k). This cobordism is called
the trace of the corresponding surgery.

1.2. Lagrangian antisurgery

Let now L ⊂M be a Lagrangian submanifold containing an embedded copy
of Sk ×Dn−k. It is natural to ask if the manifold L′ obtained by k-surgery
on L can again be embedded or immersed into M as a Lagrangian subman-
ifold. The answer to a sufficiently strong version of this question is certainly
negative: For example, a closed orientable manifold L that can be embedded
in Cn must have Euler characteristic χ(L) = 0. However, k-surgery changes
the Euler characteristic according to χ(L′) = χ(L) + (−1)k+1 + (−1)n−k−1,
and hence does not preserve its vanishing if n is even. So in this case no
result of a single k-surgery on L admits a Lagrangian embedding into Cn.

In this paper we will describe a construction which implements k-surgery
for Lagrangian submanifolds under certain conditions. Let L ⊂M be a La-
grangian submanifold containing an embedding φ : Sk ×Dn−k → L together
with an isotropic surgery disc D, that is, an embedded isotropic (k + 1)-disc
D ⊂M intersecting L cleanly along S = φ(Sk × {0}) and otherwise disjoint
from L (this terminology is borrowed from [6]).

Theorem 1.1. The manifold L′ obtained by k-surgery on L with respect to

the embedding φ : Sk ×Dn−k → L admits a Lagrangian immersion L′ →M
whose image agrees with L outside of an arbitrarily small neighbourhood of

D, and such that in this neighbourhood it has exactly one transverse double

point. Moreover, there exists an immersed Lagrangian cobordism V : L′
❀ L

given by a Lagrangian immersion of the trace of the k-surgery into T ∗R×M ,

whose singular locus is a 1-dimensional family of double points along the end

corresponding to L′.

The construction of L′ and V : L′
❀ L, and hence the proof of Theo-

rem 1.1, is the content of Section 2. We refer to the operation that passes
from L to L′ as Lagrangian k-antisurgery. The idea behind the terminol-
ogy is that the operation creates a double point, in contrast to Lagrangian
0-surgery, which resolves a double point. To give a quick and intuitive de-
scription, one could say that Lagrangian k-antisurgery modifies a Lagrangian
L by collapsing an isotropic (k + 1)-disc with boundary on L to a point.

The local model for the immersed Lagrangian (k + 1)-handle which en-
ables us to build the cobordism V , as well as the idea of implanting it
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along an isotropic disc, is inspired by a construction of Dimitroglou-Rizell
appearing in [6], which implements k-surgery for Legendrian submanifolds
and builds corresponding Lagrangian cobordisms (in a different sense of the
word, see Section 2.4).

1.3. Lagrangian cobordisms

The notion of Lagrangian cobordism appearing in Theorem 1.1 is that
of Biran–Cornea [3], adapted to the immersed setting in an obvious way:
Two ordered collections (ιi : Li →M)ri=1, (ι

′
j : L

′
j →M)sj=1 of immersed La-

grangian submanifolds ofM are called Lagrangian cobordant if there exists a
smooth cobordism (V ;

∐
i Li,

∐
j L

′
j) together with a Lagrangian immersion

V → [0, 1]× R×M ⊂ T ∗R×M such that for some small δ > 0, we have

V |[0,δ)×R =

r∐

i=1

[0, δ)× {i} × Li and

V |(1−δ,1]×R =

s∐

j=1

(1− δ, 1]× {j} × L′
j .

Here we use the notation V |U := V ∩ (U ×M) to denote the part of V that
lies over some subset U ⊂ T ∗R, and we identify T ∗R ∼= R× R in the stan-
dard way. The Lagrangian submanifold V ⊂ T ∗R×M is called an immersed

Lagrangian cobordism with negative ends (Li)
r
i=1 and positive ends (Lj)

r
j=1,

and this relationship is denoted by V : (L′
1, . . . , L

′
s) ❀ (L1, . . . , Lr). In this

article we will only deal with the case r = s = 1, i.e., with Lagrangian cobor-
disms

V : L′
❀ L

with a single positive and a single negative end.
Lagrangian cobordisms have recently attracted a lot of interest due to

the fact that, provided certain monotonicity assumptions hold, they pre-
serve Floer theoretic invariants and encode information about the Fukaya
category, see [3, 4] and also the recent [12]. So far, there have been essen-
tially two known constructions of Lagrangian cobordisms, which are based
on Hamiltonian isotopy resp. Lagrangian 0-surgery. Extending the toolkit for
building new ones, such as those provided by Theorem 1.1 and Theorem 1.2
below, was one of the motivations for the present paper.
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1.4. Desingularization

The newly created double point p of the Lagrangian L′ resulting from La-
grangian antisurgery can be resolved by Lagrangian 0-surgery. Provided that
L is embedded, this yields a Lagrangian L♮ which is also embedded and dif-
feomorphic to L′#Pn or to L′#Qn, where Pn = S1 × Sn−1, and Qn is the
mapping torus of an orientation-reversing involution of Sn−1.

There are in fact two families of such resolutions which correspond to
the two ways ordering the sheets meeting at p ∈ L′ (as is always the case
for Lagrangian 0-surgery). We will show that there exists one such family
such that for all L♮ in that family which are of sufficiently small size (in
the sense of Definition 3.1), one can in fact extend the resolution such as
to simultaneously remove the singular locus of the immersed Lagrangian
cobordism V : L′

❀ L produced by Theorem 1.1:

Theorem 1.2. There exists a choice of ordering of the sheets meeting at

the double point p ∈ L′ such that for all L♮ in the corresponding family of

resolutions of p which are of sufficiently small size, there exists an embed-
ded Lagrangian cobordism V ♮ : L♮

❀ L which coincides with the immersed

cobordism V : L′
❀ L outside of a small neighbourhood of the singular locus

of V . As a smooth manifold, V ♮ is diffeomorphic to the manifold obtained

from [0, 1]× L by consecutively attaching a (k + 1)-handle and a 1-handle.

The construction which constitutes the proof of Theorem 1.2 will be
given in Section 4. As stated in Theorem (1.1), the singular locus of V looks
like a line of double points (see Proposition 4.1 for a precise description of
the singularity of the correponding model the passage from V to V ♮ replaces
a neighbourhood of it by a Lagrangian 1-handle.

One should note at this point that our construction of antisurgery cobor-
disms cannot be replaced by simply appealing to the h-principle [7] satisfied
by immersed Lagrangian cobordisms: Indeed, this would not provide the
amount of information about the singular locus that we need in order to
control the topology of the result of desingularizing the immersed cobor-
dism by a version of Lagrangian surgery.

1.5. Reversing the construction

Lagrangian antisurgery constructs from a Lagrangian L ⊂M an new La-
grangian L′ with one (additional) double point. Changing perspectives, we
can view L as the result of resolving a double point of L′ by an operation
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which is an (n− k − 1)-surgery on the level of smooth manifolds, and which
we therefore refer to as Lagrangian (n− k − 1)-surgery. We will discuss this
point of view in Section 3.

In the case k = n− 1, this reversed operation is the same as classical
Lagrangian 0-surgery, up to Lagrangian isotopy. That is, if L′ is the result
of an (n− 1)-antisurgery on L, then L can be obtained back from L′ by
classical Lagrangian 0-surgery followed by a Lagrangian isotopy, and vice
versa. As a consequence, for k = n− 1 the ends of the desingularized anti-
surgery cobordisms V ♮ : L♮

❀ L are both resolutions of the Lagrangian L′

by Lagrangian 0-surgery. Recall that Theorem 1.2 only asserts the existence
of such a cobordism for L♮ belonging to one of the two families of resolutions
p ∈ L′. The next proposition identifies which one it is:

Proposition 1.3 (See Proposition 4.4). The ends of the desingular-

ized cobordism V ♮ : L♮
❀ L resulting from (n− 1)-antisurgery on L belong

to distinct families of resolutions of p ∈ L′ by Lagrangian 0-surgery.

1.6. Cobordisms between Clifford and Chekanov tori

As an application of Theorem 1.2, we will construct cobordisms between
Clifford tori T 2

Cl(a) and Chekanov tori T 2
Ch(A) in R4. These are monotone

Lagrangian tori which, in both cases, are specified uniquely up to Hamil-
tonian isotopy by the areas a,A > 0 of any disc of Maslov index 2 with
boundary on them.

Theorem 1.4 (See Theorem 5.1). For every choice of a < A with a/A
sufficiently close to 1, there exists a Lagrangian cobordism T 2

Cl(a) ❀ T 2
Ch(A)

which as smooth a manifold is obtained from [0, 1]× T 2 by successively at-

taching a 2-handle and a 1-handle.

To put Theorem 1.4 into context, recall first the classical fact that there
does not exist a Hamiltonian isotopy between any two Chekanov and Clifford
tori [5, 8]. Since the relation of being Lagrangian cobordant is a generaliza-
tion of the relation of being Hamiltonian isotopic (as Hamiltonian isotopies
give rise to Lagrangian suspension cobordisms L❀ ϕt(L), see [3]), this fact
can also be viewed as a restriction on the type of Lagrangian cobordisms
that can exist between Clifford and Chekanov tori.

One way of disproving the existence of a Hamiltonian isotopy between
T 2
Cl(A) and T

2
Ch(A) is to note that the numbers of pseudoholomorphic discs

of Maslov index 2 through a generic points on these tori are different (this



✐

✐

“7-Haug” — 2021/1/5 — 2:03 — page 1429 — #7
✐

✐

✐

✐

✐

✐

Lagrangian antisurgery 1429

number is 1 for the Chekanov torus, but 2 for the Clifford torus), while
the existence of a Hamiltonian isotopy between them would imply that
these counts are the same. A similar argument precludes the existence of
any monotone Lagrangian cobordism between T 2

Cl(A) and T
2
Ch(A), because

such cobordisms also preserve counts of Maslov 2 discs [3, 5]. In particu-
lar, the statement of Theorem 1.4 cannot be extended to include the case
a = A, because the resulting cobordism would be automatically monotone
(see Proposition 5.2).

In fact, one can adapt the argument used to prove the latter to obtain
the following statement: There does not exist a Lagrangian cobordism V :
T 2
Cl(A) ❀ T 2

Ch(a) with a < A (i.e., connecting a Clifford torus to a smaller

Chekanov torus, in contrast to Theorem 1.4) and with the property that

(1) inf
{
ω(σ) | σ ∈ π2(T

∗
R× R

4, V ), ω(σ) > 0
}
= a.

Indeed, if one assumes that such a cobordism exists, one arrives at a con-
tradiction when considering the number of Maslov 2 discs with boundary of
the cobordism passing through a generic point and representing the push-
forward of the unique class in H2(R

4, T 2
Ch(a)) represented by a Maslov 2

pseudoholomorphic disc: On the one hand, this number would have to be
independent of the chosen point, as property (1) ensures that there can be
no bubbling and hence that the corresponding moduli space is compact. On
the other hand, it would need to be 1 for a point on the Chekanov end, but
0 for a point on the Clifford end.

In contrast to that, there is no obvious obstruction to the existence of
a cobordism T 2

Cl(a) ❀ T 2
Ch(A) with property (1), i.e., from a Clifford torus

to a larger Chekanov torus, as compactness of the moduli space of discs
described is not guaranteed in this situation.

To connect these observations with Theorem 1.4, note that a cobordism
between Lagrangian 2-tori whose topology is that of a 1-antisurgery cobor-
dism, i.e., as described in the theorem, has property (1) if A = k · a for some
k ∈ N (this follows e.g. from Proposition 5.2). Therefore, it seems plausible
to conjecture that the rôle of Clifford and Chekanov in Theorem 1.4 can-
not be swapped, i.e., that a cobordism of this topology connecting a Clifford
torus T 2

Cl(A) to a smaller Chekanov torus T 2
Ch(a) does not exist. (Note how-

ever that this is just a conjecture, as the existence of such a cobordism for
a/A close to 1 is not ruled out by the arguments in the previous paragraph).
On the other hand, it is likely that one can extend the statement of Theo-
rem 1.4 to give the existence of an antisurgery cobordism T 2

Cl(a) ❀ T 2
Ch(A)
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for any choice of 0 < a < A by deforming the local model for antisurgery
suitably (cf. Section 5.2).

While the quest for the “simplest” Lagrangian cobordism connecting
given Clifford and Chekanov tori is interesting and subtle, we note that the
existence problem for such tori is completely flexible if one does not con-
strain the topology of the cobordisms one considers: As mentioned above,
immersed Lagrangian cobordisms are governed by an h-principle, and an
immersed cobordism can always be turned into an embedded one by remov-
ing all transverse double points by Lagrangian 0-surgery (which are the only
singularities after applying a small perturbation).

1.7. Relation to other work

As mentioned before, one important source of inspiration for our construc-
tion is the surgery construction for Legendrian submanifolds appearing in
[6]. The local model for the immersed Lagrangian handle we use can be
traced back to [1, 2], where it appears in a slightly different guise. It seems
that the passage from L to L♮ in the case n = 2 and k = 1 is identical to
an operation described in [15]. The article [12] is an exploration of relations
between Lagrangian surgery and Lagrangian cobordisms in a different di-
rection. Cobordisms as described in Theorem 1.4 have recently also been
constructed by Jeff Hicks [10] using Lefschetz fibrations.

2. Lagrangian antisurgery

In this section we will explain the construction of immersed Lagrangian (k +
1)-handles Γ ⊂ T ∗R× T ∗Rn for 0 ≤ k ≤ n− 1, which will serve as the local
models for the construction of the cobordisms appearing in Theorem 1.1.
Theses handles are immersed Lagrangian cobordisms

Γ : Λ′
❀ Λ

diffeomorphic to Dk+1 ×Dn−k and whose ends are Lagrangian submani-
folds Λ ≈ Sk ×Dn−k and Λ′ ≈ Dk+1 × Sn−k−1 of T ∗Rn. The construction
is inspired by a similar one in [6] (see Section 2.4 for the precise relationship).

Throughout, we will use the standard symplectic form on T ∗R× T ∗Rn

given by

ωstd = dx0 ∧ dy0 +
n∑

i=1

dxi ∧ dyi,
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Figure 1: The auxiliary functions σ : R → R≥0 and ρ : R≥0 → R≥0 used in
the construction of the Lagrangian handles Γ which will serve as the local
models for the Lagrangian antisurgery cobordisms.

where x0, y0 and x1, . . . , xn, y1, . . . , yn are the usual coordinates on T ∗R resp.
T ∗Rn.

2.1. Construction of Γ

The handle Γ will be defined as the union of the graphs of exact 1-forms
+dF and −dF , where F : U → R is a function defined on a certain subset
U ⊂ R× Rn.

As a first step in defining U and F , consider smooth functions σ : R →
R≥0 and ρ : R≥0 → R≥0 satisfying

1) σ(x0) = 0 for x0 ≤ δ,

2) σ(x0) = 1 + ε for x0 ≥ 1− δ,

3) σ′(x0) > 0 for δ < x0 < 1− δ,

and

1) ρ(r2) = 1 for r2 close to 0,

2) ρ(r2) = 0 for r2 ≥ 1 + 2ε,

3) −1/(1 + ε) < ρ′(r2) ≤ 0 for all r2 ∈ R≥0

for certain small constants ε, δ > 0. Denote by r2, s2 : Rn → R≥0 the func-
tions given by r2(x) = x21 + · · ·+ x2k+1 and s2(x) = x2k+2 + · · ·+ x2n, where
x = (x1, . . . , xn) ∈ Rn. Then define a function f : R× Rn → R by

(2) f(x0,x) = r2 + σ(x0)ρ(r
2)− s2 − 1

for (x0,x) ∈ R× Rn, where r2 ≡ r2(x) and s2 ≡ s2(x).
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Consider now the set U = {(x0,x) ∈ R× Rn | f(x0,x) ≥ 0} and define
F : U → R by

(3) F (x0,x) = f(x0,x)
3/2.

The restriction of F to int(U) is smooth, with differential given by

(4) dF =
3

2
f(x0,x)

1/2
(
σ′(x0)ρ(r2)dx0 + (1 + σ(x0)ρ

′(r2))dr2 − ds2
)
.

Note that dF extends to a section of T ∗R× T ∗Rn defined on all of U which
vanishes along ∂U = {f(x0,x) = 0}; we will denote this extended section by
dF as well. The graphs Γ± ⊂ T ∗R× T ∗Rn of ±dF : U → T ∗R× T ∗Rn are
Lagrangian submanifolds with boundary, and the tangent spaces along the
boundary are given by

TΓ±|∂Γ±
= T (N∗(∂U))|∂U,

where N∗(∂U) denotes the conormal bundle of ∂U . Hence Γ+ and Γ− fit
together smoothly along ∂U, in the sense that their union

(5) Γ = Γ+ ∪ Γ− = {((x0,x),±dF (x0,x)) | (x0,x) ∈ U}

is a submanifold of T ∗R× T ∗Rn which is embedded near ∂U. The singular
locus Γs ⊂ Γ along which Γ is not embedded is the set of points (x0,x) ∈
intU at which dF vanishes, which is given by

(6) Γs = {((x0, 0), (0, 0)) ∈ T ∗
R× T ∗

R
n | x0 ≥ 1− δ},

see Proposition 4.1; that is, Γs is a 1-dimensional family of double points.
Γ is the immersed image of a (k + 1)-handle Dk+1 ×Dn−k , and more-

over an immersed Lagrangian cobordism

Γ : Λ′
❀ Λ

in the sense of Section 1.3. To see the latter and to describe the ends, set
Ux0

= {x ∈ Rn | (x0,x) ∈ U} for x0 ∈ R and define Fx0
: Ux0

→ R to be the
function given by Fx0

(x) = F (x0,x) for x ∈ Ux0
. Since Fx0

is independent
of x0 if either x0 ≤ δ or x0 ≥ 1− δ, it follows that the part of Γ lying over



✐

✐

“7-Haug” — 2021/1/5 — 2:03 — page 1433 — #11
✐

✐

✐

✐

✐

✐

Lagrangian antisurgery 1433

(−∞, δ]× R ∪ [1− δ,∞)× R ⊂ T ∗R is

(7) (−∞, δ]× {0} × Λ ∪ [1− δ,∞)× {0} × Λ′

with

(8)
Λ = {(x,±dF0(x)) ∈ T ∗

R
n | x ∈ U0},

Λ′ = {(x,±dF1(x)) ∈ T ∗
R
n | x ∈ U1}.

This shows that Γ is a Lagrangian cobordism (up to modifying the ends in
an obvious way).

2.2. Isotropic surgery discs

We will now describe the situation in which it is possible to implant the local
model described above, such as to produce from a given Lagrangian L a new
immersed Lagrangian L′ together with a Lagrangian cobordism V : L′

❀ L.
The following definition is an adaptation of Definition 4.2 in [6] to our

setting.

Definition 2.1. Let L ⊂M be a Lagrangian submanifold and let S ⊂ L be
a embedded k-sphere with trivializable normal bundle. An isotropic surgery

disc for S consists of the following data:

1) An embedded isotropic (k + 1)-disc D ⊂M such that
• ∂D = S,
• intD ∩ L = ∅,
• any vector field X ⊂ TD|S which is outward-pointing normal to
S = ∂D is nowhere contained in TL.

2) A symplectic subbundle E of (TD)ω such that TD ⊕ E = (TD)ω ,
and a symplectic trivialization Ψ : D × Cn−k−1 → E such that the La-
grangian subbundle Ψ(S × Rn−k−1) of E|S is contained in TL|S .

We will usually denote isotropic surgery discs simply by D, omitting the
bundle E and its trivialization Ψ from the notation.

An isotropic surgery disc D ≡ (D,E,Ψ) for a sphere S ⊂ L determines
a homotopy class of trivializations of the normal bundle of S ⊂ L as fol-
lows: Let Y ⊂ TL|S be a vector field which is normal to S ⊂ L and such
that ω(X,Y ) > 0 for a vector field X ⊂ TD|S which is outward-pointing
normal to S (such a vector field Y exists due to the assumption on such
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X in Definition 2.1). Then the subbundle Ψ(S × Rn−k−1)⊕ RY of TL|S is
complementary to TS and of rank n− k, and thus it spans the normal bun-
dle of S ⊂ L. Since the space of all such vector fields Y is non-empty and
contractible, the corresponding trivialization is determined up to homotopy.

Example 1. The prototypical example for the situation described in Def-
inition 2.1 is given by the Lagrangian Λ ⊂ T ∗Rn described in (8) and the
k-sphere

S0 = {(x,y) ∈ T ∗
R
n | x21 + · · ·+ x2k+1 = 1,(9)

xk+2 = · · · = xn = 0,y = 0};

the obvious choice of isotropic surgery disc for S0 ⊂ Λ is

D0 = {(x,y) ∈ T ∗
R
n | x21 + · · ·+ x2k+1 ≤ 1,(10)

xk+2 = · · · = xn = 0,y = 0}

together with the symplectic subbundle

(11) E0 = ⟨∂xk+2
, . . . , ∂xn

, ∂yk+2
, . . . , ∂yn

⟩

of (TD0)
ω and the identification Ψ0 : D0 × Cn−k−1 → E0 taking D0 ×

Rn−k−1 to the subbundle ⟨∂xk+2
, . . . , ∂xn

⟩ and D0 × iRn−k−1 to the sub-
bundle ⟨∂yk+2

, . . . , ∂yn
⟩.

Assume that we are in the situation of Definition 2.1, i.e., that we have
a Lagrangian L with a sphere S ⊂ L and a corresponding isotropic surgery
disc D ≡ (D,E,Ψ). Let ϕ : D0 → D be a diffeomorphism; together with the
symplectic trivialization Ψ : D × Cn−k−1 × E, this determines an isomor-
phism of symplectic vector bundles T ∗D0 ⊕ E0

∼= T ∗D ⊕ E (here we use the
notation of Example 1). An application of the isotropic neighbourhood the-
orem then yields an extension of ϕ to a symplectomorphism

ϕ : W0 → W

between appropriate Darboux-Weinstein neighbourhoodsW0 ⊃ D0 andW ⊃
D of the discs in T ∗Rn resp.M , and we may assume that this extension sat-
isfies

(12) ϕ(Λ ∩W0) = L ∩W .
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To see this, note that the condition that the outward normal vector field to
S ⊂ D is nowhere tangent to L guarantees that one can arrangeDϕ(TΛ|S0

) =
TL|S ; after adjusting ϕ by a Hamiltonian isotopy and possibly shrinking the
Weinstein neighbourhoods, one obtains (12).

2.3. Implantation of the local model and proof of Theorem 1.1

We now explain how to implant the local model and give the definition
of Lagrangian antisurgery and of the corresponding Lagrangian cobordism.
This will complete the proof of Theorem 1.1 (up to the description of the
singular locus of the cobordism, for which we refer to Proposition 4.1).

As before, we assume that we have a Lagrangian L containing an em-
bedded sphere S ⊂ L together with an isotropic surgery disc D. To prepare
the construction, consider the neighbourhood of D0⊂T ∗Rn (see Example 1)
given by

(13) U0 =
{
(x,y) ∈ T ∗

R
n | r2 < 1 + 2ε, s2 < 2ε, ∥y∥2 < 6

√
2ε(1 + 4ε)

}

and denote by Uc
0 the complement of U0 in T

∗Rn. The following lemma shows
that the part of the model cobordism Γ that projects to Uc

0 ⊂ T ∗Rn lies over
R ⊂ T ∗R and is “cylindrical”:

Lemma 2.1. We have Γ ∩ (T ∗R× Uc
0) = R× (Λ ∩ Uc

0) = R× (Λ′ ∩ Uc
0).

Proof. We first claim that for ((x0,x), (y0,y)) = ((x0,x),±dF (x0,x)) ∈ Γ
with r2 < 1 + 2ε, we already have (x,y) ∈ U0. To see that, recall that the
set U ⊂ R× Rn over which Γ lives is characterized by f(x0,x) ≥ 0, where
f(x0,x) = r2+σ(x0)ρ(r

2)−s2−1. Since r2 7→ r2+σ(x0)ρ(r
2)−1 is strictly

increasing (this follows from the assumptions that σ(x0) ≤ 1 + ε for all x0
and−1/(1 + ε) < ρ′(r2) for all r2) with value 2ε at r2 = 1 + 2ε for every x0 ∈
R, it follows that s2 < 2ε. Moreover, one can read off from the expression (4)
for dF (x0,x) that the bound on ∥y∥2 is satisfied whenever r2 < 1 + 2ε and
s2 < 2ε. Let now ((x0,x), (y0,y)) ∈ Γ ∩ (T ∗R× Uc

0). As a consequence of the
claim above, we obtain r2 ≥ 1 + 2ε, and hence (4) for dF (x0,x) simplifies to
dF (x0,x) =

3
2(r

2 − s2 − 1)1/2(dr2 − ds2), as ρ(r2) ≡ 0 for r2 ≥ 1 + 2ε. Since
this has vanishing dx0 component y0 = 0 and is independent of x0, it follows
that ((x0,x), (y0,y)) = ((x0,x), (0,y)) lies in R× (Λ ∩ Uc

0) and in R× (Λ′ ∩
Uc
0). Thus Γ ∩ (T ∗R× Uc

0) is contained in both of these sets. The inclusions
in the other direction are obvious. □
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The neighbourhood U0 of D0 can be made arbitrarily small by letting the
parameter ε tend to zero. In particular, by choosing the parameter ε suffi-
ciently small, we may assume that the closure U0 is contained in a Weinstein
neighbourhood W0 of D0 as described in Section 2.2, i.e., such that we have
a symplectic identification ϕ : W0 → W with a Weinstein neighbourhood W
of D.

Definition 2.2. Given such choices of ε and ϕ, we define the immersed
Lagrangian L′ ⊂M obtained from L by Lagrangian k-antisurgery along the
isotropic disc D by

(14) L′ = (L ∩Wc) ∪ ϕ(Λ′ ∩W0),

and its immersed Lagrangian trace V : L′
❀ L by

(15) V = R× (L ∩Wc) ∪ (id× ϕ)(Γ ∩ (T ∗
R×W0)),

using the symplectomorphism id× ϕ : T ∗R×W0 → T ∗R×W .

The fact that the pieces which we glue in fit together as required is
a consequence of Lemma 2.1, which implies that ϕ(Λ′ ∩ (W0 ∖ U0)) = L ∩
(W ∖ U) and (id× ϕ)(Γ ∩ (T ∗R× (W0 ∖ U0))) = R× (L ∩ (W ∖ U)), where
U = ϕ(U0); hence the pieces of Λ

′ resp. Γ we glue overlap with corresponding
pieces of L resp. R× L as required.

The Lagrangian submanifold L′ ⊂M given by Definition 2.2 is the im-
mersed image of the manifold obtained from L by a k-surgery along S with
respect to the trivialization of the normal bundle of S ⊂ L determined by
the surgery disc D. The Lagrangian cobordism V : L′

❀ L is the immersed
image of the trace corresponding to that surgery.

2.4. Relation to the construction in [6]

The Lagrangian handle Γ constructed in this section is closely related to the
Lagrangian handle constructed by Dimitroglou-Rizell in [6, Section 4]. To
make the connection precise, consider the function

F̂ : U → R, (x0,x) 7→ F (x0,x) · x0,

where U ⊂ R× Rn and F : U → R are as defined in Section 2.1. The han-
dle in [6] is obtained by gluing the graphs Γ̂± ⊂ T ∗(R× Rn) of ±dF̂ : U →
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T ∗(R× Rn), in analogy with the construction of Γ in 5, such as to obtain

Γ̂ = Γ̂− ∪ Γ̂+ = {((x0,x),±dF̂ (x0,x)) | (x0,x) ∈ U}.

The part of Γ̂ lying over U ∩ {x0 > 0} is then mapped to R× J1(Rn),
the symplectization of the 1-jet space of Rn, using a symplectic identification
T ∗(R>0 × Rn) ∼= R× J1(Rn), which results in a Lagrangian cobordism with
ends which are cylindrical over Legendrian submanifolds of J1(Rn) (see e.g.
the introduction of [6] for the relevant definitions). In particular, the result
is not a Lagrangian cobordism in the sense of [3] (and neither is Γ̂), as it
does not have the required cylindrical ends described in Section 1.3.

3. Lagrangian antisurgery and surgery

In this section we explain the relationship between Lagrangian (n− 1)-
antisurgery and classical Lagrangian 0-surgery [14]. We start by recalling
the construction of Lagrangian 0-surgery as described e.g. in [3, Section 6.1].

3.1. Classical Lagrangian 0-surgery

Let γ = (a, b) : R → T ∗R be an embedded smooth curve satisfying

γ(t) = (t, 0), t ∈ (−∞,−κ],
a(t) < 0 < b(t), t ∈ (−κ, κ),
γ(t) = (0, t), t ∈ [κ,∞),

(16)

where κ > 0 is a small parameter, see Figure 2. Then consider the embedding

(17) hγ : R× Sn−1 → T ∗
R
n, (t,x) 7→ (a(t)x, b(t)x)

where Sn−1 = {x ∈ Rn | ∥x∥2 = 1} is the unit sphere in Rn. The image of hγ
is an embedded Lagrangian submanifold of T ∗Rn which outside of the ball
B2n

κ of radius κ centered at 0 ∈ T ∗Rn coincides with Rn × {0} ∪ {0} × Rn.
We can also view this Lagrangian as the orbit of γ, viewed now as living in
T ∗R× {0} ⊂ T ∗Rn, under the SO(n)-action on T ∗Rn given by

(18) A(x,y) = (Ax, Ay)

for A ∈ SO(n).
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Figure 2: A curve γ of the type used in the definition of Lagrangian 0-
surgery.

Given now a Lagrangian L ⊂M with a transverse double point p ∈ L,
we can implant this local model using a Darboux chart which identifies
neighbourhoods of the sheets of L meeting at p with neighbourhoods of 0 in
Rn × {0} resp. in {0} × Rn. The result is a new Lagrangian submanifold

(19) L♯ ⊂M.

For a fixed choice of Darboux chart, any two choices of γ subject to the
specification in (16) are related by isotopies that are constant outside of
compact sets, and these induce Lagrangian isotopies of the corresponding
versions of L♯. Modifying this specification so that −γ ∪ γ lies in the first
and third quadrants of T ∗R, instead of the second and fourth ones as in the
description above, has the same effect as reversing the order of the sheets in
the above sense and leads results in a second family of resolutions which are
Lagrangian isotopic to one another. Resolutions which do not belong to the
same family are usually not globally Lagrangian or even smoothly isotopic,
and sometimes even distinct as smooth manifolds (e.g., orientable in one
case, but non-orientable in the other case).

In the case that L is the union of two Lagrangian submanifolds L− and
L+ that intersect transversely at p ∈ L− ∩ L+, we denote by

L−#L+

the result of any 0-surgery resulting from implanting the local model in such
a way that locally L− gets identified with Rn × {0} while L+ gets identified
with {0} × Rn.1

1This is the convention used e.g. in [3]. Other papers, such as [14], use the opposite
convention.
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Within each family of resolutions which are Lagrangian isotopic through
such “local” isotopies (i.e., induced by isotopies of 0-surgery models), the
obstruction to being Hamiltonian isotopic is the difference between their
sizes in the sense of the following definition:

Definition 3.1. Let L♮ be the resolution a transverse double point p ∈ L
obtained by implanting a local model for Lagrangian 0-surgery as described
above. We define the size of the resolution to be the symplectic area between
the curve γ and the coordinate axes in the local model (the shaded region
in Figure 2).

We note that one could give a more flexible definition of Lagrangian 0-
surgery including versions with non-positive size (by removing the require-
ment that γ be contained in a quadrant); however, we only consider surgeries
of positive size.

3.2. Lagrangian 0-surgery and (n − 1)-antisurgery

We now explain the connection between Lagrangian 0-surgery and Lagran-
gian (n− 1)-antisurgery, and how to see that the two operations are inverse
to one another up to Lagrangian isotopy.

Recall that Lagrangian (n− 1)-antisurgery replaces an embedded copy
of Λ ∼= Sn−1 ×D1 in a Lagrangian L by an immersed copy of Λ′ ∼= Dn × S0,
in which the two copies ofDn intersect transversely at a double point p in the
resulting Lagrangian L′. This double point can be resolved by Lagrangian
0-surgery. To see that this resolution can be implemented in such a way that
the resulting Lagrangian2 L♭ is Lagrangian isotopic to L, we first consider the
local situation for the case n = 1, for which the antisurgery model is depicted
in Figure 3. The green arcs are the parts of Λ which, when performing
antisurgery, are cut out and replaced by the singular red part such as to
produce Λ′. If one applies Lagrangian 0-surgery to Λ′ in such a way that the
curve γ in Figure 2 gets mapped to the dotted blue arc in Figure 3, then the
resulting non-singular Lagrangian Λ♭ is evidently Lagrangian isotopic to the

2The notation L♭ is chosen to distinguish this resolution from L♮, the one that
comes up in Theorem 1.2 (as they belong to distinct families of resolutions, see
Proposition 4.4).
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Figure 3: The figure shows the intersection of Λ ⊂ T ∗Rn, the local model
for the non-singular end of antisurgery (in green), and Λ′ ⊂ T ∗Rn, the local
model for the singular end of antisurgery (in red), with the plane T ∗R1 ⊂
T ∗Rn. By performing Lagrangian 0-surgery along the dotted arc, one can
reverse the effect of (n− 1)-antisurgery up to Lagrangian isotopy.

original Λ. Note that Λ♭ belongs to the family of resolutions modelled by

λ+#λ−,

where λ± = T(0,0)Λ
′
± are the tangent spaces to Λ′

± = {(x,±dF1(x)) ∈ T ∗Rn |
x ∈ U1}, the sheets of the singular end of the antisurgery cobordism (cf.
Section 2.1); this can be read off Figure 3, taking into account that Λ′

+ is
the sheet which is contained in the first and third quadrants, while Λ− is
the sheet contained in the second and fourth quadrants.

In order to transfer this observation to the case n > 1, note that the
local models for both (n− 1)-antisurgery and 0-surgery are orbits of the
respective one-dimensional local models (viewed as living in the (x1, y1)-
coordinate subspace T ∗R1 of T ∗Rn), under the SO(n)-action described in
(18). One can use this action to extend a Lagrangian isotopy between the
curves Λ ∩ T ∗R1 and Λ♭ ∩ T ∗R1 in T ∗R1 to a Lagrangian isotopy between
Λ and Λ♭ in T ∗Rn in an SO(n)-equivariant way.
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Conversely, if we first perform Lagrangian 0-surgery at a transverse dou-
ble point p of a Lagrangian L′ to obtain a new Lagrangian L, we can re-
verse this operation by (n− 1)-antisurgery after applying a suitable La-
grangian isotopy to L. The Lagrangian disc required for that can be con-
structed by applying the SO(n)-action described in (18) to an embedded
curve γD : [0, 1] → T ∗R connecting a point on im(γ) to 0 ∈ T ∗R in the local
model for 0-surgery, see Figure 2.

3.3. Lagrangian vs. Hamiltonian isotopy

To obtain a more refined picture, and in particular to show that the result
of successively applying Lagrangian (n− 1)-antisurgery and 0-surgery to a
Lagrangian L is generally not Hamiltonian isotopic to L, we will compare
the symplectic areas bounded by the ends of the local model for (n− 1)-
antisurgery.

More precisely, we will compute the difference between the areas of the
bounded regions enclosed by the curves Λ ∩ T ∗R1 resp. Λ′ ∩ T ∗R1 and the
line {x1 =

√
1 + 2ε}, i.e., twice the difference between the two shaded areas

in Figure 4. The description of the ends in Section 2.1 shows that

Λ ∩ T ∗
R1 = {(x1,±dF0(x1) ∈ T ∗

R1 | x1 ≥ 1}
Λ′ ∩ T ∗

R1 = {(x1,±dF1(x1) ∈ T ∗
R1 | x1 ≥ 0},

where F0(x1) = (x21 − 1)3/2 and F1(x1) = (x21 + (1 + ε)ρ(x21)− 1)3/2. Since
F0(x1) = F1(x1) for x1 ≥

√
1 + 2ε, the area difference we are interested in is

2

(∫ √
1+2ε

1

∂F0

∂x1
dx1 −

∫ √
1+2ε

0

∂F1

∂x1
dx1

)
= 2
(
F0(

√
1 + 2ε)− F0(1)

)

− 2
(
F1(

√
1 + 2ε)− F1(0)

)

= 2
(
(2ε)3/2 − (2ε)3/2 + ε3/2

)

= 2ε3/2,

using that ρ(0) = 1 and ρ(1 + 2ε) = 0. In particular, this computation jus-
tifies that the singular end is depicted as lying below the nonsingular end
near x1 =

√
1 + 2ε in Figure 3.

Note that an application of Lagrangian 0-surgery to resolve the double
point of the singular end Λ′ leads to a Lagrangian Λ♭ which together with
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Figure 4: The areas enclosed by Λ ∩ T ∗R1 resp. Λ
′ ∩ T ∗R1 and the line {x1 =√

1 + 2ε}, where Λ and Λ′ are the ends of model cobordism Γ corresponding
to (n− 1)-antisurgery.

the line {x1 = 1 + 2ε} bounds less area than the local model Λ′ for the non-
singular end. Consider now again a Lagrangian L♭ resulting from applying
successively Lagrangian (n− 1)-antisurgery and 0-surgery to a Lagrangian
L. As a consequence of this local picture, any Lagrangian isotopy from L to
L♭ that comes from a Lagrangian isotopy between the respective curves in
the local model has non-vanishing flux and is therefore not Hamiltonian.

3.4. Lagrangian surgery of higher index

Lagrangian antisurgery produces from a Lagrangian submanifold L a new
Lagrangian submanifold L′ with an additional double point. Switching the
rôles of input and output, we can interpret L as the result of an operation
which resolves a singularity of L′ by replacing an immersed copy of Dn−p ×
Sp ⊂ L′ by an embedded copy of Sn−p−1 ×Dp+1 ⊂ L. In the case p = 0, i.e.,
when L′ is the result of Lagrangian (n− 1)-antisurgery on L, we have seen
in Section 3.1 that the inverse operation is classical Lagrangian 0-surgery up
to Lagrangian isotopy. In view of that, we propose the following definition:

Definition 3.2. We say that L can be obtained from L′ by Lagrangian p-
surgery if L′ can be obtained by applying Lagrangian (n− p− 1)-antisurgery
a Lagrangian L̃ which is Lagrangian isotopic to L.

It would be interesting to characterize the admissibility of a given im-
mersed Lagrangian L′ for Lagrangian p-surgery by a geometric condition
analogous to the existence of an isotropic surgery disc. A necessary condition
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Figure 5: The central fibre of a Whitney degeneration.

is of course that L′ contains an immersed copy of Dn−p × Sp which is ob-
tained by implanting a suitable piece of the immersed Lagrangian Λ′ ⊂ T ∗Rn

described in (8). Observe that the part of Λ′ lying over {0} × Rp is the image
of a Whitney type immersion Sp → T ∗Rp ∼= {0} × T ∗Rp ⊂ T ∗Rn, obtained
from the standard Whitney immersion

(20) Sp → T ∗
R
p, (x, y) 7→ (x, yx) = (x,

√
1− |x|2x)

for (x, y) ∈ Sp ⊂ Rp × R, by rescaling. This motivates the following defini-
tion:

Definition 3.3. Let L′ ⊂M be a Lagrangian submanifold containing the
image of a Lagrangian immersion ι : Dn−p × Sp →M which is an embed-
ding away from {0} × Sp and such that Š = ι({0} × Sp) has precisely one
transverse double point. We call ι(Dn−p × Sp) ⊂ L′ a Whitney degeneration

if the following holds: There exists an embedded isotropic p-disc Ď ⊂M
with boundary on Š and containing the double point of Š in its inte-
rior, together with a Weinstein neighbourhood N ∼= (TĎ)ω/TĎ ⊕ T ∗Ď of
Ď such that upon a suitable symplectic identification of N with a sub-
set of T ∗Rn−p × T ∗Rp, Š is the image of a Whitney type immersion Sp →
{0} × T ∗Rp (see Figure 5).

There a two basic symplectic invariants that one can associate to a Whit-
ney degeneration ι(Dn−p × Sp) ⊂ L′ with p > 0. The first one is the sym-
plectic area of the element of H2(M,L′) represented by the teardrop shown
in Figure 5. The second one is the pair of Maslov indices of the discs created
when resolving the double point by either of the two topologically differ-
ent ways of Lagrangian 0-surgery; we will compute these Maslov indices for
Whitney degenerations coming from Lagrangian antisurgery in Section 4.8.
Note that, in view of these computations, the second invariant yields an ob-
struction to resolving a given Whitney degeneration ι(Dn−p × Sp) ⊂ L′ by
Lagrangian p-surgery.
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As an example for the fact that containing a Whitney degeneration is
not sufficient for being able to perform Lagrangian p-surgery, consider the
Whitney sphere Sn

Wh ⊂ T ∗Rn itself. It obviously contains Whitney degener-
ations ι(Dn−p × Sp) for every 0 ≤ p ≤ n− 1, but it is not possible to perform
Lagrangian p-surgery on Sn

Wh for any p > 0: This would lead to a compact
embedded Lagrangian L ⊂ T ∗Rn with vanishing area class, which we know
not to exist. Indeed, L would be diffeomorphic to Sn−p−1 × Sp+1, which
has H1(L) = 0 for p /∈ {0, n− 2}; in the case p = n− 2, we would create an
isotropic 2-disc whose boundary generates H1(L) ∼= Z, and hence the area
class would vanish as well.

4. Desingularization

Our aim in this section is to turn the immersed antisurgery cobordisms V :
L′

❀ L constructed in Section 2.3 into embedded cobordisms V ♮ : L♮
❀ L

by simultaneously resolving the singularities of V and L′, and thus prove
Theorem 1.2.

4.1. The singular loci of Γ and Λ′

Recall from Section 2.1 that the Lagrangian (k + 1)-handle Γ : Λ′
❀ Λ, which

serves as the local model for the cobordisms corresponding to k-antisurgery,
is defined as the union of the graphs of ±dF for a function F : R× Rn → R.
The locus Γs where Γ fails to be embedded is given by the points (x0,x) ∈
intU where dF (x0,x) = 0, which is where the graphs of ±dF intersect each
other. Using this description, we obtain the following proposition.

Proposition 4.1. The singular locus of the antisurgery handle Γ : Λ′
❀ Λ

is given by

(21) Γs = {((x0, 0), (0, 0)) ∈ T ∗
R× T ∗

R
n | x0 ≥ 1− δ}.

Proof. Recall from Section (2.1) that

dF =
3

2
f(x0,x)

1/2
(
σ′(x0)ρ(r2)dx0 + (1 + σ(x0)ρ

′(r2))dr2 − ds2
)
.



✐

✐

“7-Haug” — 2021/1/5 — 2:03 — page 1445 — #23
✐

✐

✐

✐

✐

✐

Lagrangian antisurgery 1445

Since f(x0,x) > 0 for (x0,x) ∈ intU, the vanishing of dF (x0,x) is equivalent
to

(22)

σ′(x0)ρ(r2)dx0 = 0,

(1 + σ(x0)ρ
′(r2))dr2 = 0,

ds2 = 0.

The conditions imposed on σ and ρ imply that these equations are simul-
taneously satisfied if and only if x0 ≥ 1− δ and x = 0, meaning that the
singular locus of Γ is as described in (21). To see this, note that the condi-
tions σ(x0) ≥ 0 and −1/(1 + ε) < ρ′(r2) ≤ 0 imply 1 + σ(x0)ρ

′(r2) > 0, so
the second equation in (22) can only hold when dr2 = 0; together with the
third equation ds2 = 0, we conclude that x = 0. Since ρ(0) = 1, the first
equation simplifies to σ′(x0)dx0 = 0 and thus x0 ≤ δ or x0 ≥ 1− δ; since
(x0, 0) /∈ U for x0 < 1− δ, only the second of these possibilities leads to a
solution of (22). □

Recall that the part of Γ that lies over [1− δ,∞)× R ⊂ T ∗R is cylindri-
cal of the form

(23) Γ|[1−δ,∞)×R = [1− δ,∞)× {0} × Λ′ ⊂ T ∗
R× T ∗

R
n.

Proposition 4.1 therefore implies that the positive end Λ′ of Γ has a double
point at x = 0 and is embedded away from that. The tangent spaces

(24) λ± = T(0,0)Λ
′
±

to the two sheets of Λ′ at the double point are spanned by

(25)
∂xi

± 3f1(0)
1/2∂yi

, i = 1, . . . , k + 1,

∂xi
∓ 3f1(0)

1/2∂yi
, i = k + 2, . . . , n,

where f1(0) = f(1, 0); since f1(0) ̸= 0, this shows that λ+ and λ− intersect
transversely.

The transverse double point of Λ′ can be removed by Lagrangian 0-
surgery such as to produce an embedded Lagrangian submanifold Λ♮ ⊂
T ∗Rn. More interestingly, we will see below that one can resolve the sin-
gular locus Γs of Γ and turn the immersed cobordism Γ : Λ′

❀ Λ into an
embedded Lagrangian cobordism Γ♮ : Λ♮

❀ Λ.
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Figure 6: The singularity of Γ is modelled by η+ × λ+ ∪ η− × λ−, where
η± ⊂ T ∗R are the curves depicted here, and λ± ⊂ T ∗Rn are transversely
intersecting Lagrangian subspaces.

4.2. Implantation of a Lagrangian 1-handle

To resolve the singular locus Γs of Γ, we replace a neighbourhood of Γs with
a Lagrangian 1-handle arising as a subset of the trace of surgery cobordism
Rn#iRn

❀ (Rn, iRn) constructed in [3, Section 6.1].3 The explanations be-
low and Proposition 4.2 serve to justify that the cutting and isotoping in
Biran–Cornea’s construction can be performed in such a way as to exactly
match up the resulting Lagrangian 1-handle with the given “boundary con-
dition” that is created when one removes a neighbourhood of Γs from Γ.

Let η± : R → T ∗R be curves given by η±(x) = (x,±y(x)), where y : R →
R≥0 is a smooth function such that y(x) > 0 for x < 0 and y(x) = 0 for x ≥ 0
(see Figure 6). Let λ± ⊂ T ∗Rn be two transversely intersecting Lagrangian
subspaces. Then

W = η+ × λ+ ∪ η− × λ−

is an immersed Lagrangian submanifold of T ∗R× T ∗Rn whose singular locus
is R≥0 × {0}. We view W as an immersed Lagrangian cobordism W : λ− ∪
λ+ ❀ (λ−, λ+) and will use it as our local model for a neighbourhood of Γs.

Proposition 4.2. There exists an embedded Lagrangian cobordism W ♮ :
λ−#λ+ ❀ (λ−, λ+), which topologically is a 1-handle ∼= D1 ×Dn, such that

W ♮ and W coincide outside of an arbitrarily small neighbourhood of the

singular locus R≥0 × {0} of W .

Proof. We will show how to perform the construction of Biran–Cornea’s
trace cobordism [3] corresponding to the Lagrangian surgery of λ± in such

3A Lagrangian 1-handle as needed here could also be obtained by modifying our
construction of the 1-handle corresponding to (n− 1)-antisurgery given in Section
2.1 in such a way that the components of the positive end lie over disjoint curves
in T ∗R, thus making the 1-handle embedded.
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way that the result agrees with W outside of an arbitrarily small neighbour-
hood of the singular locus R≥0 × {0} of W . We assume that λ− = Rn × {0}
and λ+ = {0} × Rn for notational simplicity.

Choose a curve γ : R → T ∗R, γ(t) = (a(t), b(t)), as in Section 3.1 and
let L = λ−#λ+ ⊂ T ∗Rn be the result of the corresponding 0-surgery of λ±.
Then define

(26) ϕγ : R× Sn → T ∗
R
n+1

to be the composition of the map R× Sn → T ∗Rn+1, (t,x) 7→ (a(t)x, b(t)x),
with a rotation of the first factor of T ∗Rn+1 = T ∗R× T ∗Rn by π

4 . Let

W ′ = (imϕγ)|{(x,y)∈T ∗R|x≤0}

be the part of the image of ϕγ that lies over the half-plane {(x, y) ∈ T ∗R | x ≤
0} (using the notation introduced in Section 1.3). Note thatW ′ is a manifold
with boundary, and the boundary ∂W ′ is given by

L0 = {(0, 0)} × L.

In the rest of the proof, we will describe how to adjust W ′ such that a
cylindrical end R≥0 × L can be glued on, and such that the resulting La-
grangian looks like W = η+ × λ+ ∪ η− × λ− outside of a small neighbour-
hood of R≥0 × {0} ⊂ T ∗R× T ∗Rn.

To start, let N be a Weinstein neighbourhood of the Lagrangian R×
L ⊂ T ∗Rn+1 which is of the form N = T ∗R×NL, where NL ⊂ T ∗Rn is a
Weinstein neighbourhood of L, and such that the map πN : N → R× L
induced by the canonical projection in the cotangent bundle is of the form

(27) πN = πT ∗R × πNL
,

where πT ∗R and πNL
are the corresponding maps for R ⊂ T ∗R and L ⊂ N

(in particular, πT ∗R : T ∗R → R is simply the projection onto the first factor
of T ∗R ∼= R× R).

Let U ′
0 ⊂W ′ be a neighbourhood of L0 = ∂W ′ in W ′. By shrinking it

if necessary, we may assume that U ′
0 lies entirely in the Weinstein neigh-

bourhood N and that it is the graph of a closed 1-form α0 over the subset
U0 = (−3ε0, 0]× L ⊂ R× L for some small ε0 > 0. Note that α0 is exact be-
cause its restriction to L0 vanishes (as L0 is contained in R× L) and because
U ′
0 retracts onto L0. Moreover, α0 vanishes on L0 and hence any primitive

of α0 is constant on L0. We denote by g0 : U0 → R the primitive of α0 which
vanishes on L0.
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Figure 7: Construction of the function ξg0 whose Hamiltonian flow is used in
the proof of Proposition 4.2 to adjust Biran–Cornea’s Lagrangian 1-handle
W ′ to match the local model W of the singular locus of the antisurgery
cobordism away from a small neighborhood of its singular locus.

Consider now the subset

(28) U ′
0 ∩
(
T ∗

R× (Bn
2κ(λ+)

c ∪Bn
2κ(λ−)

c)
)

ofW ′, where Bn
2κ(λ±)

c denote the complements in λ± of the balls Bn
2κ(λ±) ⊂

λ± of radius 2κ (it could also be written as U ′
0 ∩
(
T ∗Rn ×B2κ(T

∗Rn)c),
where B2κ(T

∗Rn)c is the complement of a ball in T ∗Rn). This subset has
two components which are contained in ℓ± ×Bn

2κ(λ±)
c ⊂ T ∗R× L, where

ℓ± are the lines in T ∗R given by y = ∓x, i.e. the graphs of d(∓1
2x

2); in fact,
these components are the graphs of α0 = dg0 over (−3ε0, 0]×Bn

2κ(λ±)
c ⊂

U0. Using this and the split nature (27) of πN , it follows that the restrictions
of g0 to (−3ε0, 0]×Bn

2κ(λ±)
c, which we denote by g±0 , depend only on x ∈ R

and are in fact given by g±0 (x) = ∓1
2x

2, see Figure 7.
Let now ξ : U0 → R be a cut-off function which depends only on x ∈ R

and which satisfies ξ(x) ≡ 0 for x ∈ (−3ε0,−2ε0], ξ(x) ≡ 1 for x ∈ [−ε0, 0],
and

(29) ± (ξ(x)g±0 (x))
′ ≤ ±(g±0 )

′(x)

for all x; it is not hard to verify that this last condition can be satisfied.
Then denote by Φ : N → N the time-one map of the Hamiltonian flow of
−ξg0. We will use Φ to adjust W ′ as required.

By construction, Φ takes U ′
0 ∩ ((−ε0, 0]× T ∗Rn) to (−ε0, 0]× L and

leaves U ′
0 ∩ ((−3ε0,−2ε0]× T ∗Rn) fixed. We can therefore extend Φ to a

map

Φ̂ :W ′ → T ∗
R× T ∗

R
n
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Figure 8: Projection ofW ′ resp. Φ(W ′) to T ∗R, whereW ′ is Biran–Cornea’s
Lagrangian 1-handle and Φ is the time-one map of the Hamiltonian flow of
the function ξg0 constructed in the proof of Proposition 4.2 in order to adjust
W ′ as required.

defined on all of W ′ that leaves W ′ ∩ ((−∞,−2ε0]× T ∗Rn) fixed and that
takes W ′ ∩ ((−ε0, 0]× T ∗Rn) to R× L. The last statement implies that we
can extend Φ̂(W ′) by a cylindrical end such that it becomes a valid La-
grangian cobordism.

Note that the restrictions of Φ to the components of (28) are of the
form ϕ± × id, where ϕ± are the time-one maps of the Hamiltonian flows
of the restrictions of ξg0 to the corresponding components of U0 ∩ (T ∗R×
(Bn

2κ(λ+)
c ∪Bn

2κ(λ−)
c)). In other words, Φ moves these sets in the direc-

tion of the fibres of T ∗R. The extended map Φ̂ therefore takes W ′ ∩ (T ∗R×
(Bn

2κ(λ+)
c ∪Bn

2κ(λ−)
c)) to η̃+ ×Bn

2κ(λ+)
c ∪ η̃− ×Bn

2κ(λ−)
c, where η̃± =

ϕ±(η±). It follows from the inequalities (29) that the curves η̃± are entirely
contained in the upper resp. lower half-planes and only intersect along the x-
axis; that is, up to a horizontal shift they are of the type describe right before
this proposition. Using an appropriate symplectomorphism ψ : T ∗R → T ∗R
of the form (x, y) 7→ (f(x), g(x, y)), we can match up the curves η̃± with η±.
(Such a symplectomorphism exists provided that the functions y, ỹ defining
η±, η̃± via η±(x) = (x,±y(x)) etc. satisfy limx→0 y(x)/ỹ(x) → 1, see Lemma
4.3; this condition can be guaranteed by choosing the cut-off function ξ ap-
propriately.)

Applying ψ × id to Φ̂(W ′) and gluing on a cylindrical end hence yields
a Lagrangian cobordism W ♮ that agrees with W outside of an arbitrarily
small neighbourhood of the singular locus of W . □
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Lemma 4.3. Let ηi : R → T ∗R, x 7→ (x, yi(x)), i = 0, 1, be curves as de-

scribed above for which limx→0−(y0(x)/y1(x)) = 1. Then there exists a sym-

plectomorphism Ψ : T ∗R → T ∗R taking η0± to η1±.

Proof. We will construct a diffeomorphism of the form Ψ(x, y) =
(f(x), g(x, y)). For such Ψ to be a symplectomorphism, we need

∣∣∣∣
(
∂xf 0
∂xg ∂yg

)∣∣∣∣ = ∂xf · ∂yg = 1

everywhere, which implies

g(x, y) =
y

∂xf(x)

up to an additive constant. In order for Ψ to take ±η0 to ±η1, we need

g(x,±y0(x)) = ±y1(f(x)),

for x < 0 and f(x) = x for x ≥ 0. In view of the previous equation, this is
equivalent to the ordinary differential equation

∂xf(x) =
y0(x)

y1(f(x))

for x < 0. Provided that limx→0−(y0(x)/y1(x)) = 1, this ODE has a solution
which extends to a function f : R → R with f(x) = x for x ≥ 0. □

4.3. Surgery of the singular locus of Γ

In suitable Darboux coordinates, a neighbourhood U(Γs) of the singular
locus Γs of Γ looks like (η− ×Bn

r (λ−)) ∪ (η+ ×Bn
r (λ+)), where B

n
r (λ±) de-

notes a ball of radius r in λ± = T(0,0)Λ
′
± and with curves η± as described

in the previous subsection, up to a shift to the right by 1− δ and up to
restricting them from R to [−ν,∞) for some small ν > 0. Explicitly, we can
take η±(x) = (x,±3

2(σ(x)− 1)1/2σ′(x)).
Having set up such an identification, we can use Proposition 4.2 to re-

place this neighbourhood with a corresponding piece of the 1-handle W ♮ :
λ−#λ+ ❀ (λ−, λ+). More precisely, we can take a 1-handleW ♮ as described
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there with 2κ < r and replace

(30) U(Γs) ∩
(
T ∗

R×
(
Bn

2κ(λ+)
c ∪Bn

2κ(λ−)
c
))c

with

(31) W ♮ ∩
(
T ∗

R×
(
Bn

2κ(λ+)
c ∪Bn

2κ(λ−)
c
))c

.

We assume here tacitly that the 1-handle W ♮ has been pruned analogously
to restricting the curves η± from R to [−ν,∞), i.e., by removing the parts
lying over η±((−∞, ν)). With this in mind, the boundaries of (30) and (31)
are both given by ∂v ∪ ∂h with

∂v = {η+(−ν)} ×Bn
2κ(λ+) ∪ {η−(−ν)} ×Bn

2κ(λ−)

∂h = η+([−ν,∞))× ∂Bn
2κ(λ+) ∪ η−([−ν,∞))× ∂Bn

2κ(λ−),
(32)

which makes the cutting and pasting along this “attaching region” possible.
The outcome of this operation is an embedded Lagrangian cobordism

(33) Γ♮ : Λ♮
❀ Λ,

where Λ♮ is the result of resolving the double point of Λ′ by an application of
Lagrangian 0-surgery which is locally modelled on λ−#λ+. By choosing the
curve γ used in the proof of Proposition 4.2 sufficiently small, we can guar-
antee that Γ♮ and Γ coincide outside of an arbitrarily small neighbourhood
of Γs in T ∗Rn+1.

4.4. Proof of Theorem 1.2

Suppose that we have a Lagrangian L ⊂M with an embedded sphere S ⊂ L
and an isotropic surgery disc D for S. Repeating the construction in Sec-
tion 2.3, but replacing Γ by Γ♮, the desingularized Lagrangian cobordism
constructed in Section 4.3, and consequently Λ by Λ♮, we produce a La-
grangian cobordism

V ♮ : L♮
❀ L,

where L♮ is a Lagrangian obtained by resolving the double point created
when performing antisurgery on L along the isotropic disc D by an applica-
tion of Lagrangian 0-surgery. The cobordism V ♮ is embedded if L is embed-
ded, and it can be arranged to agree with with the corresponding V : L′

❀ L
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outside of an arbitrarily small neighbourhood of its singular locus by choos-
ing the parameter κ sufficiently small. Topologically, this cobordism is the
concatenation of the traces corresponding to first performing k-surgery on
L and then 0-surgery on the result L′ of the first step; in other words, V ♮

is obtained from [0, 1]× L by first attaching a (k + 1)-handle and then a
1-handle.

This completes the proof of Theorem 1.2. □

4.5. The Lagrangian isotopy class of the resolution

Recall from Section 3.1 that there are two families of resolutions of the
double point of Λ′ by Lagrangian 0-surgery which depend on a choice of order
of sheets near the double point (and correspond to Lagrangian isotopy classes
of 0-surgery models). It is important to note that in the construction leading
to the desingularized antisurgery cobordism V ♮ : L♮

❀ L whose existence is
asserted by Theorem 1.2 we do not have a choice regarding which of these
families the desingularized end Λ♮ belongs to, as Proposition 4.2 only gives
the existence of a Lagrangian cobordism (λ−, λ+) ❀ λ−#λ+ (as opposed to
(λ−, λ+) ❀ λ+#λ−).

Recall from Section 3.2 that in the case k = n− 1, both L and L♮

are resolutions of p ∈ L′, the double point created when applying (n− 1)-
antisurgery to L, by Lagrangian 0-surgery. In this situation, we have:

Proposition 4.4. The ends of the desingularized cobordism V ♮ : L♮
❀ L

resulting from (n− 1)-antisurgery on L belong to distinct families of reso-

lutions of p ∈ L′ by Lagrangian 0-surgery.

Proof. As observed in Section 3.2, Λ belongs to the family of resolutions of
Λ′ locally given by λ+#λ−, while L♮ belongs to the family of resolutions
locally given by λ−#λ+. □

4.6. The size of the resolution.

Let L′ be the singular end of a Lagrangian cobordism V : L′
❀ L arising

from antisurgery with parameter ε. In the following we present evidence
that the size of a Lagrangian 0-surgery (in the sense of Definition 3.1) which
can be applied to L in such a way that the cobordism can be desingularized
simultaneously, is upper bounded by 2ε3/2.

Consider the intersection of the model cobordism Γ with the plane T ∗R×
{(0, 0)} ⊂ T ∗R× T ∗Rn. By setting x = (0, 0) ∈ T ∗Rn in (4), one can see that
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Figure 9: The intersection of the antisurgery cobordism Γ with the plane
T ∗R× {(0, 0)} ⊂ T ∗R× T ∗Rn. The dotted line shows the intersection of
the Lagrangian 1-handle used for desingularization with the plane T ∗R×
{(0, 0)}.

this intersection consists of a curve that bounds a teardrop-shaped region
as shown in Figure 9. The Lagrangian 1-handle that we use in order to
resolve the singularity of Γ also intersects T ∗Rn × {(0, 0)} in a curve, which
is obtained by restricting the map ϕγ : R× Sn → T ∗Rn+1 (26) modelling
this handle to I × {(1, 0, . . . , 0)} ⊂ R× Sn for a suitable interval I ⊃ [−κ, κ]
(with κ as in the description of the local model for Lagrangian 0-surgery
(16)); after the implanting the 1-handle, this curve lies inside the teardrop
(the part of the 1-handle that projects to the coordinate axes in the local
model projects to the boundary curve of the teardrop after implantation).

This picture suggest that the area of the teardrop is an upper bound for
the size of the Lagrangian 0-surgery (the area of the shaded region in Fig-
ure 9) that we can perform on the positive end of the antisurgery cobordism
in such a way that we can simultaneously desingularize the latter. A simple
computation using again (4) shows that the area of the teardrop is 2ε3/2.

4.7. Orientability

The result of abstract k-surgery on an orientable manifold L is always ori-
entable if k ≥ 1, since the Dk+1 × Sn−k−1 we glue in has a connected bound-
ary in that case (or rather, every component has a connected boundary—
this includes the case k = n− 1). In the case k = 0, orientability depends
on whether D1 × Sn−1 is glued consistently along its two boundary compo-
nents. Let

Pn = S1 × Sn−1 and Qn = D1 × Sn−1/ ∼ ,

where ∼ identifies {1} × Sn−1 with {−1} × Sn−1 using an orientation-
reversing involution of Sn−1 such as (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn) (so
Qn is the mapping torus of such an involution). The result of 0-surgery on
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L is diffeomorphic to L#Pn in the orientable case and to L#Qn in the
non-orientable case.

Returning to the Lagrangian setting, assume that the L we start with
is orientable. When passing from L to L′ by k-antisurgery, we replace an
embedded copy of Sk ×Dn−k (a subset of Λ) by an immersed copy ofDk+1 ×
Sn−k−1 with a transverse double point (a subset of Λ′), and we resolve this
double point by 0-surgery when passing from L′ to L♮. Thus L♮ is obtained
from L by replacing an embedded copy of Sk ×Dn−k−1 by an embedded
copy (a subset of Λ♮) of either

(Dk+1 × Sn−k−1)#Pn or (Dk+1 × Sn−k−1)#Qn

in the case k < n− 1 (for k = n− 1, Dk+1 × Sn−k−1 = Dn × S0 is not con-
nected). The first possibility leads to L♮ being orientable, the second to
L♮ being non-orientable; the next proposition states when which of these
alternatives holds.

Proposition 4.5. Let L be an orientable Lagrangian and let L♮ be the

result of k-antisurgery on L and subsequent desingularization, for some k
with 0 < k < n− 1. Then L♮ is orientable if k is odd and non-orientable if

k is even.

Proof. Note first that the result of abstract k-surgery on L is always ori-
entable when 0 < k < n− 1. Whether L♮ is orientable or not is a local ques-
tion that depends on whether the copy of R× Sn−1 we glue in when per-
forming Lagrangian 0-surgery on Λ′ matches up orientations of the sheets
Λ′
± which induce the same orientation of Λ′. Assuming that such orientations

for Λ′
± have been chosen, it follows from [14, Theorem 4]4 that the result is

orientable iff (−1)n(n−1)/2+1Λ′
+ · Λ′

− = 1, where Λ′
+ · Λ′

− denotes the inter-
section index with respect to the symplectic orientation oω of the ambient
manifold.

To find such orientations for Λ′
±, consider first the orientations o± which

the projections Λ′
± → Rn × {0} to the zero-section match up with the stan-

dard orientation of Rn × {0}. These are represented by the ordered bases
of λ± = T(0,0)Λ

′
± listed in (25). By continuously deforming these to bases of

T(x,y)Λ
′ with (x,y) in the boundary of Λ′

± (such as (x,y) = ((0, . . . , 0,
√
ε),

4When applying Polterovich’s theorem, one needs to take into account that our
convention for the direction of surgery handles is opposite to the one in [14]; ac-
cording to which our handle is directed “from λ+ to λ−”; this becomes clear by
inspection of the description of the model handle in [14, Section 1.8].
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(0, . . . , 0))), one can see that o± induce different orientations of Λ′; a choice
of orientations inducing the same orientation of Λ′ is hence given by o+ and
−o−.

To compute Λ′
+ · Λ′

− when Λ′
± carry the orientations ±o±, note first that

o+ ⊕ o− is represented by the ordered basis

(
∂x1

+ ∂y1
, . . . , ∂xk+1

+ ∂yk+1
, ∂xk+2

− ∂yk+2
, . . . , ∂xn

− ∂yn
,

∂x1
− ∂y1

, . . . , ∂xk+1
− ∂yk+1

, ∂xk+2
+ ∂yk+2

, . . . , ∂xn
+ ∂yn

)

of R2n ∼= T(0,0)T
∗Rn. The linear map taking this basis to the symplectic basis

(
∂x1

, ∂y1
, . . . , ∂xn

, ∂yn

)

has determinant (−1)n(n−1)/2+k+12n, and thus o+ ⊕ o− = (−1)n(n−1)/2+k+1oω.
It follows that

o+ ⊕ (−o−) = (−1)n(n−1)/2+k
oω,

and therefore

(−1)n(n−1)/2+1Λ′
+ · Λ′

− = (−1)k+1,

from which the claimed statement follows. □

Remark 4.6. For k = 0, it is possible that the manifold L′ resulting from
abstract 0-surgery on an orientable L is already non-orientable, in which
case L♮ is also non-orientable; if, however, L′ is orientable, the statement of
Proposition 4.5 applies to the resulting L♮. For k = n− 1, it is possible that
L∖ (Sn−1 ×D1) is disconnected, in which case L♮ is orientable.

4.8. Computation of Maslov indices

Consider again Λ♮, i.e., the resolution of the singular end Λ′ of the (k + 1)-
handle Γ : Γ′

❀ Γ corresponding to k-antisurgery for which a desingularized
cobordism Γ♮ : Λ♮

❀ Λ (33) exists. Note that Λ♮ is diffeomorphic to either
(Dk+1 × Sn−k−1)#Pn or (Dk+1 × Sn−k−1)#Qn, with Pn and Qn as defined
in Section 4.7. For k satisfying 0 ≤ k < n− 2, we have

H2(T
∗
R
n,Λ♮) ∼= Z

and there exists a preferred generator σ ∈ H2(T
∗Rn,Λ♮) characterized by

the positivity of its symplectic area. In the proof Proposition 4.7 below we
will describe σ by describing a loop ℓ on Λ♮ representing ∂σ ∈ H1(Λ

♮) ∼=
H2(T

∗Rn,Λ♮) (this description also extends to the case k = n− 2).
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Figure 10: The intersections of the singular end Λ′ of the antisurgery cobor-
dism and its resolution Λ♮ with the plane T ∗Rn ⊂ T ∗Rn. The loop ℓ repre-
sents the boundary of the generator σ ∈ H2(T

∗Rn,Λ♮) whose Maslov index
is computed in Proposition 4.7.

Proposition 4.7 computes the Maslov index µ(σ) of this generator, and
in particular shows that µ(σ) is non-positive for every k satisfying 1 ≤ k ≤
n− 2. As a consequence, Lagrangians resulting from k-antisurgery and sub-
sequent desingularization for k in that range are never monotone.

Proposition 4.7. Assume that 0 ≤ k < n− 1. The Maslov index of σ ∈
H2(T

∗Rn,Λ♮) is given by µ(σ) = 1− k.

Proof. Denote by Ri the xi-coordinate subspace of Rn and by T ∗Ri the
(xi, yi)-coordinate subspace of T ∗Rn, for i = 1, . . . , n. To compute µ(σ), we
will represent ∂σ by a loop ℓ in Λ♮ ∩ T ∗Rn and compute how the tangent
spaces to Λ♮ twist as we traverse ℓ.

Recall from Section 2.1 that we described the handle Γ : Λ′
❀ Λ as the

union of the graphs of ±dF for a certain function F . Specializing the formula
(4) for dF to the case x0 = 1, we see that the differential of F1 = F (1, ·) is

(34) dF1 =
3

2
f1(x)

1/2
(
(1 + (1 + ε)ρ′(r2))dr2 − ds2

)

with f1(x) = f(1,x) = r2 + (1 + ε)ρ(r2)− s2 − 1 (see Section 2). In partic-
ular, at points of the form x = (0, . . . , 0, xn) ∈ Rn is given by dF1(x) =
−3(ε− x2n)

1/2xndxn, and hence

Λ′ ∩ T ∗
Rn = {(xn,∓3(ε− x2n)

1/2xn) ∈ T ∗
Rn | x2n ≤ ε},

as depicted in the left part of Figure 10, where the blue segment corresponds
to +dF1 and the red segment to −dF1. Differentiation of (34) shows that the
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tangent space to Λ′
± = graph(±dF1) over x = (0, . . . , 0, xn) ∈ Rn is spanned

by

(35)

∂xi
± 3f1(x)

1/2∂yi
, i = 1, . . . , k + 1

∂xi
∓ 3f1(x)

1/2∂yi
, i = k + 2, . . . , n− 1

∂xn
∓ 3

(
f1(x)

1/2 − f1(x)
−1/2x2n

)
∂yn

, i = n.

Note that the last vector is proportional to f1(x)
1/2∂xn

∓ 3
(
f1(x)− x2n

)
∂yn

,
so it approaches a multiple of ∂yn

as x2n → ε (which is the conormal direction
to {f1(x) = 0} ⊂ Rn at x = (0, . . . , 0,±ε1/2)). Moreover, (35) shows that all
these tangent spaces split as direct sums of 1-dimensional subspaces of the 2-
dimensional planes T ∗Ri ⊂ T ∗Rn; in particular, the tangent spaces to Λ′

± at
the origin are of the form λ± = λ1± × · · · × λn±, where λ

i
± is a 1-dimensional

subspaces of T ∗Ri for i = 1, . . . , n.
To see how the 0-surgery by which we pass from Λ′ to Λ♮ affects the

picture, recall from Section 3.1 that in order to obtain Λ♮, we use a symplec-
tomorphism Φ : T ∗Rn → T ∗Rn which identifies neighbourhoods of the ori-
gin in Rn × {0} resp. {0} × Rn with neighbourhoods of the origin in Λ′

− =
{(x,−dF1(x)) ∈ T ∗Rn | x ∈ U1} resp. Λ′

+ = {(x,+dF1(x)) ∈ T ∗Rn | x ∈ U1}
(cf. the explanation in Section 4.5). After perturbing Λ′ a bit such that
it agrees with λ− ∪ λ+ near the origin, we may assume that Φ is linear
and of the form ϕ1 × · · · × ϕn with linear maps ϕi : T ∗R → T ∗Ri that take
R× {0} to λi− and {0} × R to λi+. Using such an identification, we glue
in a Lagrangian copy of D1 × Sn−1 which is given by a part of the image
of the map hγ : R× Sn−1 → T ∗Rn defined in (17). Figure 10 shows what
Λ♮ ∩ T ∗Rn looks like.

We now compute µ(σ). Let ℓ be the loop on Λ♮ ∩ T ∗Rn shown in Fig-
ure 10 traversed in counterclockwise direction, which is a representative
of ∂σ ∈ H1(Λ

♮). The black segment of ℓ is the image of the restriction of
Φ ◦ hγ : I × Sn−1 → T ∗Rn to I × {(0, . . . , 0,−1)}, where I ⊂ R is a small
interval containing 0. Differentiation of (17) shows that the tangent space
of Λ♮ at Φ ◦ hγ(t, (0, . . . , 0,−1)) = Φ(−a(t)en,−b(t)en) is spanned by

(36)
Φ ◦Dhγ(∂xi

) = ϕi(a(t)ei, b(t)ei), i = 1, . . . , n− 1,

Φ ◦Dhγ(∂t) = ϕn(−ȧ(t)en,−ḃ(t)en);

here e1, . . . , en are the standard basis vectors of Rn.
The formulas (35) and (36) show that the loop in the Lagrangian Grass-

mannian GrL(T
∗Rn) induced by ℓ is contained in GrL(T

∗R1)× · · · ×
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Figure 11: Computation of the Maslov index µ(σ) of the generator σ ∈
H2(T

∗Rn,Λ♮) whose boundary is represented by the loop ℓ in Figure 10.
The corresponding loop in GrL(T

∗Rn) is a direct sum of loops in GrL(T
∗Rj),

j = 1, . . . , n, which are shown here.

GrL(T
∗Rn) ⊂ GrL(T

∗Rn), i.e., it is a direct sum of loops in GrL(T
∗Rj).

Figure 11 indicates what the pieces of these loops corresponding to the
pieces of ℓ look like; the pictures can be deduced from formulas (35), (36).
One can read off from these pictures the Maslov indices of the loops in
GrL(T

∗Rj), which for j = 1, . . . , k + 1 are −1, for j = k + 2, . . . , n− 1 are
0, and for j = n is 2; the Maslov index of σ is their sum, µ(σ) = 1− k. □

5. Cobordisms between Clifford and Chekanov tori

Assume that a Lagrangian L possesses a Lagrangian surgery disc D and
let L′ be the result of (n− 1)-antisurgery on L along D. As discussed in
Section 3.1, this implies that L can be obtained by resolving a double point
of L′ and then applying a Lagrangian isotopy. The positive end of the desin-
gularized antisurgery cobordism V : L♮

❀ L is also a resolution of the same
double point of L′ by Lagrangian 0-surgery; as stated in Proposition 4.4, L
and L♮ belong to distinct families of such resolutions.

5.1. Clifford and Chekanov tori

We now specialize to the case in which L is the Whitney sphere S2
Wh in C2.

Resolving its double point by Lagrangian 0-surgery produces a Lagrangian
torus which is monotone, since the boundary of the Lagrangian disc created
when performing this surgery generates one summand of H1 of the torus
and has Maslov index 0.
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In fact, the two topologically different types of resolving the double point
yield a Clifford type torus T 2

Cl in one case and a Chekanov type torus T 2
Ch in

the other case. One can see that by viewing each of the three Lagrangians
as obtained by rotating certain curves γ : S1 → C, i.e., as

Lγ = {(γ(eis)eit, γ(eis)e−it) ∈ C
2 | s, t ∈ [0, 2π]}.

To obtain S2
Wh in that way, one uses a figure-8 curve γWh with a double

point at the origin and symmetric with respect to the involution z 7→ −z (to
be precise, this yields the image of the standard Whitney immersion S2 →
T ∗R2 ∼= C2 given in (20) under a linear symplectomorphism). Resolving the
double point of S2

Wh by 0-surgery has the same result as resolving the double
point of the figure-8 curve in such a way that it stays symmetric with respect
to z 7→ −z, and then rotating the resulting curve. The two different ways of
performing this surgery yield a connected curve γCl enclosing the origin in
one case, and a disconnected curve γCh whose components do not enclose
the origin in the other case, see Figure 12. The corresponding Lagrangian
tori are T 2

Cl resp. T
2
Ch up to Hamiltonian isotopy, see e.g. [8, 9].

For better compatibility of this description with our setting, it is useful
to note that one can also view the Lagrangians S2

Wh, T
2
Cl and T 2

Ch as or-
bits of curves γ ⊂ T ∗R1 under the standard SO(2)-action on T ∗R2 given by
A · (x,y) = (Ax, Ay) for A ∈ SO(2). Namely, there exists a linear symplec-
tomorphism C2 → T ∗R2 which is equivariant with respect to the S1-action
on C2 given by eit · (z1, z2) = (eitz1, e

−itz2) and the standard SO(2)-action
on T ∗R2 (identifying SO(2) ∼= S1 in the usual fashion), and that takes the
plane {(z, z) ∈ C2 | z ∈ C} to the (x1, y1)-plane T

∗R1 ⊂ T ∗R2. Explicitly,

Figure 12: The curves used for constructing S2
Wh, T

2
Cl and T

2
Ch.
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Figure 13: Antisurgering the Chekanov torus.

this symplectomorphism is given by

(
a1 + ib1, a2 + ib2

)
7→ 1

2

(
a1 + a2, b1 − b2, b1 + b2,−a1 + a2

)

for (z1 = a1 + ib1, z2 = a2 + ib2) ∈ C2; on the right-hand side, the first two
coordinates correspond to the 0-section, and the last two to the fibre.

5.2. Cobordisms between the tori

In what follows, we denote by T 2
Cl(A) and T 2

Ch(A) Clifford and Chekanov
tori for which a disc of Maslov index 2 has area A > 0 (i.e., for which the
monotonicity constant is 1

2A); moreover, we denote by S2
Wh(A) the Whitney

sphere for which a generator of H2(T
∗R2, S2

Wh)
∼= Z has area A. In all cases,

A is half of the area bounded by the respective curves in Figure 12.
The following theorem constructs cobordisms between a Chekanov and

a Clifford torus by first applying 1-antisurgery to the Chekanov torus such
as to obtain a Whitney sphere, and then desingularizing the corresponding
antisurgery cobordism to get a cobordism whose positive end is a Clifford
torus.

Theorem 5.1. For every choice of a < A with a/A sufficiently close to

1, there exists a Lagrangian cobordism T 2
Cl(a) ❀ T 2

Ch(A) which as smooth

a manifold is obtained from [0, 1]× T 2 by successively attaching a 2-handle

and a 1-handle.

Proof. Consider a curve γCh of the type required for constructing a Chekanov
torus T 2

Ch(A), i.e., as in the lower right part of Figure 12 and such that
the area bounded by each component is A. By performing 0-antisurgery
on γCh, we obtain an immersed curve γWh which after rotation yields a
Whitney sphere S2

Wh(α), see Figure 13. It follows from the computation
in Section 3.3 that the areas A and α are related by α = A− 2ε3/2, where
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ε is the size parameter of the antisurgery model we implant. If we subse-
quently resolve the double point of γWh by implanting a local model for
Lagrangian 0-surgery of size δ (in the sense of Definition 3.1), we obtain a
curve γCl bounding area 2(α+ δ), which after rotating yields a Clifford torus
T 2
Cl(α+ δ).

By inspecting the definitions of the antisurgery models in Section 2.1,
one sees easily that the model for 1-antisurgery in T ∗R2 is the SO(2)-orbit
of the model for 0-antisurgery in T ∗R, viewing the latter as living in T ∗R1 ⊂
T ∗R2. Similarly, the Lagrangians T 2

Ch(A) and S2
Wh(α) are SO(2)-orbits of

the curves γCh, γWh, as noted at the end of Section 5.1. Combining these
statements and the fact that γWh is the result of 0-antisurgery on γCh, we
see that S2

Wh(α) is the result of 1-antisurgery on T 2
Ch(A) (and thus T 2

Ch(A)
is the result of 0-surgery on S2

Wh(α)).
Consider now the desingularized antisurgery cobordism correponding

to the 1-antisurgery that takes T 2
Ch(A) to S2

Wh(α). This cobordism has as
its negative end T 2

Ch(A) and as its positive end a resolution by 0-surgery
of S2

Wh(α) of the form T 2
Cl(α+ δ) for small δ > 0 (using Proposition 4.4),

i.e., it is a cobordism T 2
Cl(α+ δ) ❀ T 2

Ch(A). Moreover, it has the claimed
topology by Theorem 1.2. Recalling the relation α = A− 2ε3/2, one sees
that with this construction one can obtain a cobordism T 2

Cl(a) ❀ T 2
Ch(A)

for any 0 < a < A for which a/A is sufficiently close to 1 by making ε and δ
sufficiently small. □

It seems likely that one can deform the curve γCh and the antisurgery
model in such a way that the area parameter α describing the size of
the Whitney sphere S2

Wh(α) that comes up in the proof of Theorem 5.1
is arbitrarily close to 0. This would imply the existence of a cobordism
T 2
Cl(a) ❀ T 2

Cl(A) for any choice of 0 < a < A (cf. the discussion in Sec-
tion 1.6).

On the other hand, it is not possible to construct a cobordism T 2
Cl(A) ❀

T 2
Ch(A), i.e., between Clifford and Chekanov type tori of the same size, by our

method. Indeed, such a cobordism would be monotone by Proposition 5.2
below, which would imply equality of counts of pseudoholomorphic discs of
Maslov index 2 through a given point on both ends, as first observed in
[5] (see also [3, 4]). However, it is well known that these counts are differ-
ent for T 2

Cl and T 2
Ch. The same argument shows that one cannot build a

Lagrangian cobordism between the monotone Clifford and Chekanov tori
in CP 2 or S2 × S2 by this method, since the monotonicity constant of any
monotone Lagrangian there is determined by that of the ambient manifold
(in particular, it is the same for Clifford and Chekanov type tori).
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Proposition 5.2. Let V ♮ : L♮
❀ L be a Lagrangian cobordism obtained by

desingularizing a cobordism arising from (n− 1)-antisurgery on an embedded

Lagrangian submanifold L of a symplectic manifold (M,ω). If H1(M) = 0,
then the map H2(M,L)⊕H2(M,L♮) → H2(T

∗R×M,V ♮) induced by the in-

clusions of the ends is surjective. In particular, if L and L♮ are both mono-

tone with the same monotonicity constant, then V ♮ is monotone as well.

Proof. As a smooth manifold, V ♮ is obtained from the cylinder [0, 1]× L by
successively attaching an n-handle and a 1-handle. One can see from this
description that the map H1(L)⊕H1(L

♮) → H1(V
♮) induced by the inclu-

sion of the ends is surjective; in fact, there exist a generator γ ∈ H1(L
♮) such

that the restriction of this map to H1(L)⊕ Zγ → H1(V
♮) is surjective. Con-

sider now the following commutative diagram, where the horizontal arrows
come from the exact sequences of the various pairs and the vertical ones are
induced by inclusions:

H2(M)⊕2 //

��

H2(M,L)⊕H2(M,L♮) //

��

H1(L)⊕H1(L
♮) //

��

H1(M)⊕2

��

H2(T
∗R×M) // H2(T

∗R×M,V ♮) // H1(V
♮) // H1(T

∗R×M)

Since the first and third vertical maps are surjective and the fourth is an
isomorphism as H1(M) = 0 by assumption, it follows from the 4-lemma that
the map H2(M,L)⊕H2(M,L♮) → H2(T

∗R×M,V ♮) is also surjective.
The last statement follows easily by observing that the pullbacks of

the area and Maslov homomorphisms H2(T
∗R×M,V ♮) → R by the natural

inclusions L,L♮ →֒ V ♮ of the ends are the corresponding homomorphisms
H2(M,L) → R resp. H2(M,L♮) → R. □

5.3. Successive antisurgery/surgery for Clifford
and Chekanov tori

As discussed in Sections 3.2 and 3.3, the result of successively applying
(n− 1)-antisurgery to a Lagrangian L and then 0-surgery to the resulting
L′ leads to a Lagrangian L♮ which is Lagrangian isotopic to the original
L (for one of the two topologically different ways of implanting the local
model for 0-surgery), but not Hamiltonian isotopic to L. In particular, if
L is a torus of Clifford or Chekanov type, then the resulting L♮ obtained
that way is again a torus of the same type. Assume that we perform the
two operations as described in Section 5.2, i.e., by first operating on the
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level of curves and then rotating. Note that if we start with a Chekanov
torus T 2

Cl(A), then the Whitney sphere obtained by antisurgery has area
less than A, as can be seen from Figure 13, and hence the resulting T 2

Ch(a)
has a smaller area parameter than the original one. On the other hand, if
we start with a Clifford torus T 2

Cl(a), then the resulting T 2
Cl(A) has larger

area parameter. It would be interesting to investigate if this observation can
be used to give another proof of the fact that T 2

Cl(A) and T 2
Ch(A) are not

Hamiltonian isotopic.
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Pavillon André-Aisenstadt, 2920 Chemin de la tour
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