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Complex Finsler vector bundles with

positive Kobayashi curvature

Huitao Feng†, Kefeng Liu‡, and Xueyuan Wan

In this short note, we prove that a complex Finsler vector bundle
with positive Kobayashi curvature must be ample, which partially
solves a problem of S. Kobayashi posed in 1975. As applications,
a strongly pseudoconvex complex Finsler manifold with positive
Kobayashi curvature must be biholomorphic to the complex projec-
tive space; we also show that all Schur polynomials are numerically
positive for complex Finsler vector bundles with positive Kobayashi
curvature.

Introduction

Let π : E → M be a holomorphic vector bundle over compact complex man-
ifold M . In this paper, we always assume that rankE = r, dimM = n. It is
well-known that E is ample in the sense of Hartshorne if and only if the
hyperplane line bundle OP (E∗)(1) is a positive line bundle over

P (E∗) = (E∗ \ {0})/C∗

(see [13, Proposition 3.2]), i.e. OP (E∗)(1) admits a positive curvature metric.
Understanding the relations between the algebraic positivity and the geo-
metric positivity is an important problem. When E itself admits a Hermitian
metric of Griffiths positive curvature (see e.g. [15, Definition 2.1]), then E is
an ample vector bundle. In [12], Griffiths conjectured that its converse also
holds, namely there exists a Hermitian metric of Griffiths positive curvature
on E if E is ample. If M is a curve, H. Umemura [21] and Campana-Flenner
[7] gave an affirmative answer to this conjecture. For the general case, B.
Berndtsson [4] proved that E ⊗ detE is Nakano positive, C. Mourougane
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and S. Takayama [16] proved that SkE ⊗ detE is Griffiths positive for any
k > 0.

In 1975, S. Kobayashi [14] obtained the following equivalent description
on the ampleness in Finsler setting. The related notations will be introduced
in Section 1 in this paper. More precisely,

Theorem 0.1 (Kobayashi [14, Theorem 5.1]). E is ample if and only
if there exists a strongly pseudoconvex complex Finsler metric on E∗ with
negative Kobayashi curvature.

Furthermore, in [14, Section 5, Page 162], S. Kobayashi posed the fol-
lowing problem:

Problem 0.2. It is reasonable to expect that E is ample if and only if it
admits a complex Finsler structure of positive curvature. The question is
whether E admits a complex Finsler structure of positive curvature if and
only if E∗ admits a complex Finsler structure of negative curvature.

In this paper, we partially solve this problem affirmatively and obtain

Theorem 0.3. Let π : E → M be a holomorphic vector bundle over the
compact complex manifold M . If E admits a strongly pseudoconvex complex
Finsler metric with positive Kobayashi curvature, then E is ample.

It is easy to see that E admitting a Hermitian metric of Griffiths positive
curvature is equivalent to the existence of a Griffiths negative Hermitian
metric on the dual bundle E∗. However, in the Finslerian case, it is very
difficult to find such a simple duality as in the Hermitian situation. A natural
and direct way suggested by S. Kobayashi [14, Section 5, page 162] is: for
a given complex Finsler structure G in E, considering the complex Finsler
structure G∗ on E∗ defined by

G∗(z, ζ∗) = sup
G(z,ζ)=1

|⟨ζ∗, ζ⟩|2,

and trying to check that G has positive curvature if and only if G∗ has
negative curvature. Apparently, this is very hard to be achieved due to the
difficulty in finding more computable relationships between G and G∗. On
the other hand, we know that if the Finsler metric G is (fiberwise) strictly
convex and has positive (resp. negative) curvature, then the dual metric
G∗ has negative (resp. positive) curvature (see [9, Theorem 2.5] or [18]).
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However, it is unknown whether the ampleness of E guarantees the existence
of a convex strictly plurisubharmonic Finsler metric on E∗.

In the following we first briefly introduce our approach to Theorem 0.3.
For a strongly pseudoconvex complex Finsler metric G on E (cf. Defi-

nition 1.1), we still denote by G the induced metric on the tautological line
bundle OP (E)(−1). Then the (1, 1)-form

√
−1∂∂̄ logG admits a decomposi-

tion (cf. [10, 14], also Proposition 1.5):

√
−1∂∂̄ logG = −Ψ+ ωFS ,

where ωFS is a vertical (1, 1)-form and positive definite along each fiber
of p : P (E) → M , and Ψ, the Kobayashi curvature of the Finsler metric G
named in [10], is a horizontal (1, 1)-form. The Finsler metric G is of positive
(negative) Kobayashi curvature if Ψ > 0(< 0) along horizontal directions (cf.
Definition 1.3).

If E admits a strongly pseudoconvex complex Finsler metric with pos-
itive Kobayashi curvature, we prove that P (E∗) is projective (cf. Lemma
2.1). In order to prove E is ample or OP (E∗)(1) is positive, from our Lemma
2.2, it suffices to show for any holomorphic line bundle F on P (E∗), there
exists a positive integer m0 such that

H i(P (E∗),OP (E∗)(m)⊗ F ) = 0, i > 0, m ≥ m0.(0.1)

Let p : P (E) → M and p1 : P (E∗) → M denote the natural projections.
Since the Picard group of P (E∗) has the following simple structure

Pic(P (E∗)) ≃ Pic(M)⊕ ZOP (E∗)(1),

there exist a line bundle F1 on M and an integer a ∈ Z such that F =
p∗1F1 ⊗OP (E∗)(a). Now by the Serre duality and [3, Theorem 5.1], for any
integer m ≥ −a, we get (cf. Proposition 2.4) for the proof of the following
isomorphisms)

H i(P (E∗),OP (E∗)(m)⊗ F ) ∼= H i(M,Sm+aE ⊗ F1)

∼= Hn−i(M,Sm+aE∗ ⊗ F ∗
1 ⊗KM )

∼= Hn−i(P (E),OP (E)(m+ a)⊗ p∗(F ∗
1 ⊗KM )).

As pointed by Demailly [9, Section 5.9, Page 247], for any locally free sheaf
F , it holds that

Hq(P (E),OP (E)(m)⊗F) = 0, q ̸= n, m ≥ m0
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for some integer m0 > 0. By taking F = p∗(F ∗
1 ⊗KM ), we finally get (0.1)

and therefore the ampleness of E.
Now we give some applications on Theorem 0.3. The following two direct

corollaries follow from the famous theorems of S. Mori [17, Theorem 8],
W. Fulton and R. Lazarsfeld [11, Theorem I]:

Corollary 0.4. If (M,G) is a strongly pseudoconvex complex Finsler man-
ifold with positive Kobayashi curvature, then M is biholomorphic to Pn.

Note that when the above Finsler metric G is induced from a Kähler
metric on M , Y.-T. Siu and S.-T Yau in [20] proved this result in a direct
geometric way.

Corollary 0.5. All Schur polynomials are numerically positive for complex
Finsler bundles with positive Kobayashi curvature.

This article is organized as follows. In Section 1, we shall fix the notations
and recall some basic definitions and facts on complex Finsler vector bundles,
positive (negative) Kobayashi curvature. In Section 2, we will prove our main
Theorem 0.3. In Section 3, we will give two applications on Theorem 0.3 and
prove Corollary 0.4, 0.5.

1. Complex Finsler vector bundle

In this section, we shall fix the notations and recall some basic definitions
and facts on complex Finsler vector bundles. For more details we refer to
[6, 9, 10, 14, 22].

We will use z = (z1, . . . , zn) to denote a local holomorphic coordinate
system on M and use {ei}1≤i≤r to denote a local holomorphic frame of E.
Then any element v in E can be written as

v = viei ∈ E,

where we adopt the summation convention of Einstein. In this way, one gets
a local holomorphic coordinate system of the complex manifold E:

(z; v) = (z1, . . . , zn; v1, . . . , vr).(1.1)

Definition 1.1 ([14]). A Finsler metric G on the holomorphic vector bun-
dle E is a continuous function G : E → R satisfying the following conditions:

F1) G is smooth on Eo = E \ {0};
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F2) G(z, v) ≥ 0 for all (z, v) ∈ E with z ∈ M and v ∈ π−1(z), andG(z, v) =
0 if and only if v = 0;

F3) G(z, λv) = |λ|2G(z, v) for all λ ∈ C.

Moreover, G is called strongly pseudoconvex if it satisfies

F4) the Levi form
√
−1∂∂̄G on Eo is positive definite along each fiber

Ez = π−1(z) for z ∈ M .

Clearly, any Hermitian metric on E is naturally a strongly pseudoconvex
complex Finsler metric on it.

We write

Gi = ∂G/∂vi, Gj̄ = ∂G/∂v̄j , Gij̄ = ∂2G/∂vi∂v̄j ,

Giα = ∂2G/∂vi∂zα, Gij̄β̄ = ∂3G/∂vi∂v̄j∂z̄β , etc.,

to denote the differentiation with respect to vi, v̄j (1 ≤ i, j ≤ r), zα, z̄β (1 ≤
α, β ≤ n).

If G is a strongly pseudoconvex complex Finsler metric on M , then there
is a canonical h-v decomposition of the holomorphic tangent bundle TEo of
Eo (see [6, ➜5] or [10, ➜1]).

TEo = H⊕ V.

In terms of local coordinates,

H = spanC

{

δ

δzα
=

∂

∂zα
−Gαj̄G

j̄k ∂

∂vk
, 1 ≤ α ≤ n

}

,(1.2)

V = spanC

{

∂

∂vi
, 1 ≤ i ≤ r

}

.

The dual bundle T ∗Eo also has a smooth h-v decomposition T ∗Eo = H∗ ⊕
V∗:

H∗ = spanC{dzα, 1 ≤ α ≤ n},(1.3)

V∗ = spanC{δvi = dvi +Gj̄iGαj̄dz
α, 1 ≤ i ≤ r}.

With respect to the h-v decomposition (1.2), the (1, 1)-form
√
−1∂∂̄ logG

has the following decomposition.



✐

✐

“3-Wan” — 2021/1/5 — 1:47 — page 1330 — #6
✐

✐

✐

✐

✐

✐

1330 H.-T. Feng, K.-F. Liu, and X.-Y. Wan

Proposition 1.2 ([2, 14]). Let G be a strongly pseudoconvex complex
Finsler metric on E, one has

√
−1∂∂̄ logG = −Ψ+ ωV

on Eo, where Ψ and ωV are given by

Ψ =
√
−1Rij̄αβ̄

viv̄j

G
dzα ∧ dz̄β , ωV =

√
−1

∂2 logG

∂vi∂v̄j
δvi ∧ δv̄j ,(1.4)

with

Rij̄αβ̄ = −
∂2Gij̄

∂zα∂z̄β
+Gl̄k ∂Gil̄

∂zα
∂Gkj̄

∂z̄β
.

Definition 1.3 ([10, Definition 1.2]). The form Ψ defined by (1.4) is
called the Kobayashi curvature of the complex Finsler vector bundle (E,G).
A strongly pseudoconvex complex Finsler metric G is said to be of positive
(respectively, negative) Kobayashi curvature if

(

Rij̄αβ̄

viv̄j

G

)

is a positive (respectively, negative) definite matrix on Eo.

Remark 1.4. Note that the positive (resp. negative) Kobayashi curvature
is a natural generalization of Griffiths positive (resp. negative) of a Hermitian
vector bundle (cf. [15, Definition 2.1]). In fact, if a Finsler metric comes from
a Hermitian metric, then the Finsler metric has positive (resp. negative)
Kobayashi curvature is equivalent to Griffiths positive (resp. negative).

Let q denote the natural projection

q : Eo → P (E) := Eo/C∗(1.5)

(z; v) 7→ (z; [v]) := (z1, . . . , zn; [v1, . . . , vr]),

which gives a local coordinate system of P (E) by

(z;w) := (z1, . . . , zn;w1, . . . , wr−1)(1.6)

=

(

z1, . . . , zn;
v1

vk
, . . . ,

vk−1

vk
,
vk+1

vk
, . . . ,

vr

vk

)
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on

Uk := {(z, [v]) ∈ P (E), vk ̸= 0}.

Denote by ((logG)b̄a)1≤a,b≤r−1 the inverse of the matrix

(

(logG)ab̄ :=
∂2 logG

∂waw̄b

)

1≤a,b≤r−1

and set

δwa = dwa + (logG)αb̄(logG)b̄adzα.(1.7)

By using the coframe {δwa} of V∗, there is a well-defined vertical (1, 1)-form
on P (E) by

ωFS :=
√
−1

∂2 logG

∂wa∂w̄b
δwa ∧ δw̄b.(1.8)

From [22, Lemma 1.4, Remark 1.5, Proposition 1.6] one has

Proposition 1.5. (i) q∗ωFS = ωV ;

(ii)
√
−1∂∂̄ logG = −Ψ+ ωFS on P (E);

(iii) A Finsler metric G is strongly pseudoconvex if and only if ωFS is
positive definite along each fiber of p : P (E) → M .

Proof. (i) is exactly [22, Lemma 1.4] and (ii) follows directly from (i). The
proof of (iii) can be found in [22, Proposition 1.6]. For readers’ convenience,
we give the proof here.

By Definition 1.1, G is strongly pseudoconvex if (Gij̄) is a positive defi-
nite matrix, which gives a Hermitian metric ⟨·, ·⟩ on the vertical subbundle V.
Denote v = vi ∂

∂vi . If G is strongly pseudoconvex, then for any u = ui ∂
∂vi ∈ V,

(−
√
−1)ωV (u, ū) =

1

G2
(GGij̄ −GiGj̄)u

iūj

=
1

G2
(∥u∥2∥v∥2 − |⟨u, v⟩|2) ≥ 0,

the equality holds if and only if u = λv for some constant λ ∈ C. So ωV has
r − 1 positive eigenvalues and one zero eigenvalue. Since ωV (v, v) = 0 and
q∗(v) = 0 and by (i), ωFS is positive definite along each fiber of p : P (E) →
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M . Conversely, if ωFS is positive definite along each fiber, then ωV = q∗ωFS

has r − 1 positive eigenvalues and one zero eigenvalue. So ωV (v, v) = 0 and

Gij̄u
iūj =

1

G
|Giu

i|2 +G(−
√
−1)ωV (u, u) ≥ 0.

Moreover, Gij̄u
iūj = 0 if and only if u = λv and Giv

i = 0, if and only if
λ = 0. So (Gij̄) is a positive definite matrix. □

2. Positive Kobayashi curvature

In this section, we will prove a complex Finsler vector bundle with positive
Kobayashi curvature must be ample.

Let G be a strongly pseudoconvex complex Finsler metric on E with
positive Kobayashi curvature, that is,

√
−1∂∂̄ logG = −Ψ+ ωFS(2.1)

with Ψ > 0 on horizontal subbundle H, and ωFS > 0 along each fiber of
p : P (E) → M . Then

Lemma 2.1. If E admits a strongly pseudoconvex complex Finsler metric
with positive Kobayashi curvature, then P (E∗) is projective.

Proof. From [10, Lemma 2.3], the first Chern class c1(detE) satisfies

c1(detE) = c1(E) = −
∫

P (E)/M
c1(OP (E)(1))

r(2.2)

=

[

−
∫

P (E)/M

(
√
−1

2π
∂∂̄ logG

)r
]

=

[

r

(2π)r

∫

P (E)/M
Ψ ∧ ωr−1

FS

]

.

By assumption,
∫

P (E)/M Ψ ∧ ωr−1
FS is a positive (1, 1)-form onM , which yields

that detE is a positive line bundle. By take k large enough, the line bundle

p∗1(detE)k ⊗OP (E∗)(1) → P (E∗)

is also a positive line bundle, where p1 : P (E∗) → M . By Kodaira embedding
theorem, P (E∗) is projective. □
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The following lemma can be found in the proof of [19, Lemma 5.2].

Lemma 2.2. Let L → M be a line bundle over projective manifold M ,
and satisfies for any line bundle F over M , there exists an integer m0 > 0,
H i(M,F ⊗ Lm) = 0 for i > 0, m ≥ m0. Then L is a positive line bundle
over M .

Proof. For any coherent sheaf F over the projective algebraic manifold M ,
there is a resolution

0 → K → ⊕snEn → · · · → ⊕s2E2 → ⊕s1E1 → F → 0,

where the Ei are holomorphic line bundles over M . By the Hilbert syzygy
theorem, K = V for some holomorphic vector bundle V on M . Hence for m
sufficiently large, we obtain

H i(M,Lm ⊗F) = Hn+i(M,Lm ⊗ V ) = 0, i > 0, m ≥ m0(2.3)

for some positive integer m0. By Cartan-Serre-Grothendieck theorem, see
e.g. [19, Theorem 5.1], L is a positive line bundle. □

The following vanishing theorem appeared in [9, Section 5.9], which can
be proved by Andreotti-Grauert theorem [1, Theorem 14].

Lemma 2.3. If E admits a strongly pseudoconvex complex Finsler metric
with positive Kobayashi curvature, then for any holomorphic line bundle F
on P (E) there exists an integer m0 > 0 such that

Hq(P (E),OP (E)(m)⊗ F ) = 0, q < n, m ≥ m0.(2.4)

Proof. By Serre duality, one has

Hq(P (E),OP (E)(m)⊗ F )(2.5)

∼= Hn+r−1−q(P (E),OP (E)(−m)⊗ F ∗ ⊗KP (E)).

Since the curvature form of OP (E)(−1) is

√
−1∂̄∂ logG = Ψ− ωFS ,(2.6)

which has n positive eigenvalues at each point of P (E), so OP (E)(−1) is
(r − 1)-positive. By Andreotti-Grauert theorem [1, Theorem 14] (see also
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[8, Proposition 2.1]), OP (E)(−1) is (r − 1)-ample, that is, for any coherent
sheaf F on P (E) there exists a positive integer m0 such that

H i(P (E),F ⊗OP (E)(−m)) = 0, i > r − 1, m ≥ m0.

By taking F = F ∗ ⊗KP (E) one gets

Hn+r−1−q(P (E),OP (E)(−m)⊗ F ∗ ⊗KP (E)) = 0,(2.7)

q < n, m ≥ m0.

Combining with (2.5) completes the proof. □

Our main result in this section is the following.

Theorem 2.4. If E admits a strongly pseudoconvex complex Finsler metric
with positive Kobayashi curvature, then E is ample.

Proof. From Lemma 2.1, 2.2, it suffices to show for any holomorphic line
bundle F on P (E∗), there exists a positive integer m0 such that

H i(P (E∗),OP (E∗)(m)⊗ F ) = 0, i > 0, m ≥ m0.(2.8)

Denote p : P (E) → M and p1 : P (E∗) → M . Since the Picard group of P (E∗)
has the following simple structure,

Pic(P (E∗)) ≃ Pic(M)⊕ ZOP (E∗)(1),(2.9)

so there exist a line bundle F1 on M and an integer a ∈ Z such that

F = p∗1F1 ⊗OP (E∗)(a).(2.10)

It follows that

OP (E∗)(m)⊗ F = OP (E∗)(m+ a)⊗ p∗1F1.(2.11)
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For any integer m ≥ −a, one has

H i(P (E∗),OP (E∗)(m)⊗ F )(2.12)

∼= H i(P (E∗),OP (E∗)(m+ a)⊗ p∗1F1) by (2.11)

∼= H i(M,Sm+aE ⊗ F1) by [3, Theorem 5.1]

∼= Hn−i(M,Sm+aE∗ ⊗ F ∗
1 ⊗KM )

by Serre duality, see e.g. [19, Corollary 2.11]

∼= Hn−i(P (E),OP (E)(m+ a)⊗ p∗(F ∗
1 ⊗KM ))

by [3, Theorem 5.1]

= 0, i > 0, m ≥ m0 by Lemma 2.3.

Thus, E is ample. □

3. Applications

In this section, we will give some applications of Theorem 0.3. From The-
orem 0.3, it is possible that many related results under the assumption of
ampleness could be valid by changing the assumption of ampleness into the
existence of a strongly pseudoconvex complex Finsler metric with positive
Kobayashi curvature. Among them we only mention here the following two
famous theorems due to S. Mori [17, Theorem 8], W. Fulton and R. Lazars-
feld [11, Theorem I].

In [17], Mori proved the following theorem, which solves Hartshorne’s
conjecture.

Theorem 3.1 ([17, Theorem 8]). Every irreducible n-dimensional non-
singular projective variety with ample tangent bundle defined over an alge-
braically closed field k of characteristic ≥ 0 is isomorphic to the projective
space Pn

k .

In the case k = C, by Theorem 0.3, we obtain

Corollary 3.2. If (M,G) is a strongly pseudoconvex complex Finsler man-
ifold with positive Kobayashi curvature, then M is biholomorphic to Pn.

Note that when the above Finsler metric G is induced from a Kähler
metric on M , Y.-T. Siu and S.-T Yau in [20] proved this result in a direct
geometric way.
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Let P ∈ Q[c1, . . . , cr] be a weighted homogeneous polynomail of degree
n, the variable ci being assigned weight i. We say that P is numerically
positive for ample vector bundles (resp. complex Finsler vector bundles of
positive Kobyashi curvature) if for every projective variety M of dimension
n, and every ample vector bundle E (resp. complex Finsler vector bundles
E of positive Kobyashi curvature) over M , the Chern number

∫

M
P (c1(E), . . . , cr(E)) > 0,(3.1)

where r = rankE. Denote by Λ(n, r) the set of all partitions of n by non-
negative integers < r. Thus an element λ ∈ Λ(n, r) is specified by a sequence

r ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with
∑

λi = n.(3.2)

Each λ ∈ Λ(n, r) gives rise to a Schur polynomial Pλ ∈ Q[cl, . . . , cr] of degree
n, defined as the n× n determinant

Pλ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cλ1
cλ1+1 · · · cλ1+n−1

cλ2−1 cλ2
· · · cλ2+n−2

...
...

. . .
...

cλn−n+1 cλn−n+2 · · · cλn

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(3.3)

where by convention c0 = 1 and ci = 0 if i ̸∈ [0, r]. The Schur polynomials
Pλ(λ ∈ Λ(n, r)) form a basis for the Q-vector space of weighted homogeneous
polynomials of degree n in r variables. Given such a polynomail P , write

P =
∑

λ∈Λ(n,r)

aλ(P )Pλ (aλ(P ) ∈ Q)(3.4)

In [11], W. Fulton and R. Lazarsfeld obtained the following theorem, which
generalized the result of S. Bloch and D. Gieseker [5].

Theorem 3.3 ([11, Theorem I]). The polynomial P is numerically pos-
itive for ample vector bundles if and only if P is non-zero and

aλ(P ) ≥ 0 for all λ ∈ Λ(n, r).

Combining with Theorem 0.3, we obtain

Corollary 3.4. All Schur polynomials are numerically positive for complex
Finsler bundles with positive Kobayashi curvature.
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We should stress that how to prove these two famous theorems in a
purely differential geometrical method is still widely open.
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