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On the four vertex theorem for curves

on locally convex surfaces

Shibing Chen, Xu-Jia Wang, and Bin Zhou

The classical four vertex theorem describes a fundamental prop-
erty of simple closed planar curves. It has been extended to space
curves, namely a smooth, simple closed curve in R

3 has at least
four points with vanishing torsion if it lies on a convex surface.
More recently, Ghomi [6] extended this property to curves lying
on locally convex surfaces. In this paper we provide an alternative
approach to the result via the theory of Monge-Ampere equations.

1. Introduction

The classical four-vertex theorem asserts that a simple, closed planar curve
has at least four vertices, namely its curvature has at least four local extrema.
This theorem was first proved by Mukhopadhyaya [14] for closed convex
curves in 1909. Kneser [12] observed that the stereographic projection maps
vertices of a plane curve to vertices of its image on the sphere and used this
to prove the four vertex theorem for all simple closed curves in the plane.
On the sphere, the torsion vanishes at the vertices of the curve. Therefore
the four vertex theorem implies that every simple closed curve on the sphere
has at least four points with vanishing torsion.

This property raised interest to study global behaviour of torsion of a
space curve. It is easy to see that for some space curves the torsion may not
vanish at all, and there are also space curves of which the torsion vanishes
twice only [10]. But it has been proved that a simple closed curve on a convex
surface has at least four points where the torsion vanishes [1, 2, 7, 18], and in
literature this is also called four vertex theorem. An interesting question is
whether every simple closed curve Γ bounding a surface of positive curvature
has at least four points of vanishing torsion [4, 17].

This problem was recently studied by Ghomi [6]. He proved that the
torsion of Γ either vanishes identically, or changes sign at least four times if
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Γ has no inflection points and is the boundary of a locally convex, locally
nonflat (along Γ) surface M which is topologically a disc.

Ghomi’s proof is based on the study of convex caps in the locally con-
vex surface M and is very delicate. In this paper we provide an alternative
approach, by adopting a classical method of stationary osculating planes
and using the existence of generalised solutions to the homogeneous Monge-
Ampère equation [16], or the existence of locally convex surface of vanishing
Gauss curvature [8, 19]. It was proved in [8, 19] that if Γ is the boundary
of a locally convex surface M which is strictly convex near Γ, then Γ also
spans a locally convex surface M0 with vanishing Gauss curvature. The sur-
face M0 can be decomposed as the union of disjoint line segments or planar
topological discs. If M is topologically a disc, one infers that there are at
least two boundary points where the tangent planes of M0 are osculating
to the curve Γ. By local convexity, M0 stays locally on one side of its tan-
gent plane, that means the osculating plane is stationary and so the torsion
changes sign nearby (Lemma 2.5). Hence there are at least four points on
the curve where the torsion vanishes.

Theorem 1.1. Let Γ be a C3 smooth space curve in R
3. Assume the curva-

ture of Γ does not vanish and Γ is the boundary of a bounded locally convex
surface M ⊂ R

3 which is topologically a disc. Then either the torsion of Γ
vanishes identically, or it changes sign at least four times.

In the above theorem, we dropped the local non-flatness condition of
M by Ghomi [6], allowing that Γ locally lies on a plane. We remark that
the non-vanishing curvature condition of Γ is such that the principal normal
vector n and the torsion τ are well defined and continuous, see (2.6) and
(2.7) below for the definition. It was proved that for a generic space curve,
non-vanishing torsion implies non-convexity [5]. Note that we do not assume
any smoothness for M, except that its boundary Γ ∈ C3.

If the torsion τ changes sign four times, it has at least four local max-
imum or minimum. As a result, we have the four vertex theorem for the
torsion.

Corollary 1.2. Under the condition of Theorem 1.1, the torsion of Γ either
vanishes identically, or has at least four local extrema.

In Section 2, we illustrate our idea by proving Theorem 1.1 when M is
the graph of a convex function h over a domain Ω ⊂ R2. In the case when h
is a strictly convex function, the four vertex theorem is well-known but our
approach is of its own interest. Let u be the solution to the Dirichlet problem
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(2.1). Then the graph of u, denotes as M0, can be decomposed as a union
of line segments and planar topological discs. If M is topologically a disc,
so is M0, and there exist two sequences of points pk =: (xk, u(xk)), qk =:
(yk, u(yk)) ⊂ M0 which converges to two boundary points p0, q0 (p0 ̸= q0),
such that the support planes of M0 at pk, qk converge to tangent planes of
M0 at p0, q0, respectively. Moreover, the tangent planes are osculating to
the curve Γ at p0 and q0. Hence Theorem 1.1 is proved in the graph case.

In Section 3, we proved Theorem 1.1 under an additional condition,
namely M satisfies a uniform cone condition. This condition ensures that
for any point p ∈ M, locally M can be represented as a graph of which
the gradient is uniformly bounded. Hence we can use the Perron method to
obtain a sequence of locally convex surfaces which share the same boundary
Γ and converges to a locally convex surface M0 of vanishing Gauss curva-
ture. Again M0 can be decomposed as a union of line segments and planar
discs and there are at least two boundary points p0, q0 at which the tangent
planes of M0 are osculating to the curve Γ. Theorem 1.1 then follows from
Lemma 2.5.

In the last section we show how the uniform cone condition is satisfied
for the locally convex surface M in Theorem 1.1. We can either extend M
to a larger locally convex surface M̃, such that the extended part satisfies
nice geometric properties; or M is the graph of a convex function. Once
the uniform cone condition is satisfied, the proof in Section 3 applies and
Theorem 1.1 follows.

Notation and remarks:

• We use M0 to denote a locally convex surface with vanishing Gauss
curvature, and use M to denote a general locally convex surface.

• K for the Gauss curvature and K for the contact set L ∩M.

2. The graph case

In the graph case, our proof uses solutions to the Dirichlet problem of the
homogeneous Monge-Ampère equation

(2.1)

{

detD2u = 0 in Ω,

u = h on ∂Ω,

where Ω is a bounded domain in R
2, and h is a Lipschitz continuous convex

function on ∂Ω. We do not assume smoothness and uniform convexity of h.
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Lemma 2.1. Assume that there is a Lipschitz continuous, convex function
ũ such that ũ = h on ∂Ω. Then there is a generalised solution u to (2.1).

Proof. The existence of a generalised solution is well known [16]. It is given
by

(2.2) u(x) = sup{L(x) | L is linear and L ≤ h on ∂Ω}.

The existence of a sub-solution ũ means u = h on ∂Ω. □

If Ω is convex and ∂Ω, h ∈ C1, one can prove that u ∈ C1(Ω). Higher reg-
ularity for the homogeneous Monge-Ampère equation (2.1) has been studied
by many authors, see [13] and the references therein.

Let us first introduce some terminology related to convex functions or
locally convex surfaces.

(i) Support plane. Let w be a convex function defined on Ω. At any point
x0 ∈ Ω, there is a support plane of w, namely a linear function L(x)
satisfying L(x0) = w(x0) and L(x) ≤ w(x) in Ω. Let M be the graph
of w, a support plane of w will also be called the support plane of M.

(ii) Denote

Kx0,Lx0
[w] = {x ∈ Ω | Lx0

(x) = w(x)},

where Lx0
is the support plane of w at x0. For brevity we denote

Kx0
= Kx0,Lx0

[w] when no confusion arises. It is a convex set in a
plane.

(iii) Tangent plane. A support plane Lx0
is called a tangent plane of w if

(2.3) |w(x)− Lx0
(x)| = o(|x− x0|)

for x near x0. A convex function may not have tangent plane at non-
smooth points. However at a boundary point, there is always a tangent
plane if the boundary is C1 and w is C1 on the boundary. In fact, let
x0 be a boundary and assume that ∂Ω is locally given by

(2.4) x2 = ρ(x1) with ρ(0) = ρ′(0) = 0,

for some function ρ ∈ C1. By the convexity of w, the lateral derivative

∂+
x2
w(0) = lim

t→0+

1

t
(w(te2)− w(0))
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exists. Since w is C1 on ∂Ω and ∂Ω is also C1 smooth, the derivative
∂x1

w(0) also exists. Hence there is a plane Lx0
passing through the

point p0 = (x0, w(x0)) whose gradient is equal to (∂x1
w(0), ∂+

x2
w(0)).

The plane Lw0
is then the tangent plane of w at x0, or the tangent

plane of M at p0. The normal of Lp0
will be denoted as ν = ν(p0), and

will be called the normal of M at p0.

(iv) ς-segment. We call a segment ℓ in Ω a ς-segment (with respect to a
convex function u), if both of its endpoints lie on ∂Ω and u is linear
on ℓ, and denote a ς-segment ℓ as ℓy if y is a point on ℓ.

A basic property from the definition (2.2) is that Kx0
can be spanned by

Kx0
∩ ∂Ω, namely for any point p ∈ Kx0

, there exists at most three points
p1, p2, p3 ∈ Kx0

∩ ∂Ω such that p =
∑3

i=1 tipi, where ti ∈ [0, 1] and
∑

ti = 1.
For any interior point x0 ∈ Ω, the set Kx0

is either a ς-segment or it has
positive measure. In the latter case, for any point p ∈ ∂Kx0

\∂Ω, there exists
a ς-segment ℓp on the boundary ∂Kx0

. There are at most countably many
points {xk; k = 1, 2, . . . } ⊂ Ω such that the sets Kxk

are different from each
other and have positive measures.

Lemma 2.2. Let u be the generalised solution in Lemma 2.1. Assume that
∂Ω ∈ C1 and h ∈ C1. Let ℓy1

⊂ Ky1
, ℓy2

⊂ Ky2
and ℓy3

⊂ Ky3
be three differ-

ent ς-segments. Assume that Ky1
,Ky2

and Ky3
are also different from each

other. Then ℓy1
, ℓy2

and ℓy3
cannot share a same endpoint.

Proof. For if ℓy1
, ℓy2

and ℓy3
share the same endpoints xb ∈ ∂Ω, then at

least one of the segments Ky1
∩Ky2

and Ky2
∩Ky3

is transversal to ∂Ω. It
implies that u is not C1 on the boundary, a contradiction to the assumption
u = h ∈ C1 on ∂Ω. □

In the following, we assume that the domain Ω is a topological disc, so
that a ς-segment divides Ω into two separate parts.

Lemma 2.3. Let u be the generalised solution in Lemma 2.1. Assume that
∂Ω ∈ C1 and h ∈ C1. Then there exist two sequences of ς-segments {ℓyk

}
and {ℓzk} such that yk → y0 ∈ ∂Ω, zk → z0 ∈ ∂Ω, y0 ̸= z0, and the normal
of ℓyk

, ℓzk converge to that of ∂Ω at y0, z0, respectively.

Proof. Let ℓ be a ς-segment. It divides Ω into two parts, Ω− ℓ = Ω1 ∪ Ω2.
We show that there is a sequence of ς-segments {ℓyk

} in Ω1 such that yk →
y0 ∈ ∂Ω and the normal of ℓyk

converge to that of ∂Ω at y0.
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Let y1 be a point on ℓ. If Ω1 = Ky1
, then u is linear in Ω1 and we

may choose any sequence yk which converges to a boundary point y0 ̸∈
ℓ. Otherwise there exists a ς-segment ℓy for some point y ∈ Ω1\Ky1

. The
segments ℓy1

and ℓy bound a sub-domain of Ω1, denoted as Ωℓy1 ,ℓy
. That is

Ωℓy1 ,ℓy
= {x ∈ Ω1 | ∃ an open smooth curve c ⊂ Ω1 connecting y to y1,

passing through x, such that c ∩ ℓy1
= ∅, c ∩ ℓy = ∅ }.

Here we say a smooth curve is open if it does not include its two endpoints.
Then the measure |Ωℓy1 ,ℓy

| > 0. Denote A = sup{|Ωℓy1 ,ℓy
| | ℓy is a ς-segment

in Ω1}. Choose a sequence of ς-segments ℓyk
⊂ Ω1 such that

(2.5) lim
k→∞

|Ωℓy1 ,ℓyk
| = A.

We claim that yk fulfils the requirements in Lemma 2.3.
By choosing a subsequence, we may assume that |Ωℓy1 ,ℓyk

| is strictly
increasing. By choosing a sub-sequence, we may assume that ℓyk

converges
to a limit. Then the limit is either a ς-segment in Ω or a point on ∂Ω. Hence
the measure of Ω1 − Ωℓy1 ,ℓyk

converges to 0.
If the limit is a single point xb on the boundary ∂Ω, the C1 regularity

of ∂Ω implies that the normal of ℓyk
converges to that of ∂Ω at xb. If the

limit is a segment, then apparently the segment lies on the boundary ∂Ω,
and the normal of ℓyk

converges to that of ∂Ω too.
Similarly there is a sequence of ς-segments {ℓzk} in Ω2 such that zk →

z0 ∈ ∂Ω and the normal of ℓzk converge to that of ∂Ω at z0. By Lemma 2.2,
we see that y0 ̸= z0. □

For clarity let us assume that yk and zk are the middle points of ℓyk

and ℓzk . Let Lyk
and Lzk be the support planes of u at yk and zk. Then

Lyk
and Lzk sub-converge to support planes Ly0

and Lz0 of u at y0 and z0,
respectively.

Lemma 2.4. Assume that ∂Ω and h are C3 smooth, and the curvature of
the curve Γ = {(x, h(x)) ∈ R

3 | x ∈ ∂Ω} does not vanish. Then Ly0
and Lz0

are respectively osculating planes of Γ at y0 and z0.

Proof. Let {r(s) | s ∈ [0, T ]} be a parametrization of Γ by its arclength.

Denote by t = r′(s) =: ∂r(s)
ds the unit tangent vector of Γ at r(s), and by

(2.6) n = κ−1t′(s) =: κ−1dt(s)

ds
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the principal normal vector, where κ is the curvature of Γ. By the condition
that the curvature κ does not vanish, n is well-defined.

By choosing a proper coordinates we may assume that y0 = 0 and ∂Ω is
locally given by (2.4), so that e2 = (0, 1, 0) is the inner normal of ∂Ω at y0.
We may also assume that u(0) = 0 and that Ly0

= {x3 = 0}. Hence to prove
that Ly0

is an osculating plane of Γ at y0, it suffices to prove that n = e2.
Let us express the support plane Lyk

by

x3 = Lk(x) = akx1 + bkx2 + ck.

Let pk = (pk1, p
k
2, p

k
3) and qk = (qk1 , q

k
2 , q

k
3 ) be the endpoints of the ς-segments

ℓk, with pk ⊂ {x1 < 0} and qk ⊂ {x1 > 0}. Noting that Γ is tangent to the
x1-axis at 0, we have p

k
3 = o

(

|pk1|
)

and qk3 = o
(

|qk1 |
)

, which implies that ak →
0. Noting also that Lyk

→ Ly0
= {x3 = 0}, we also have bk → 0.

By definition, we have n = limk→∞(t(pk)− t(0))/|pk|, where t(p) is the
unit tangent vector of Γ at p. Denote n = (n1, n2, n3) and t = (t1, t2, t3). By
our choice of the coordinates, we have t(0) = e1 = (1, 0, 0). By definition,
n ⊥ t. Hence n1 = 0. It is also easy to see that n3 = limk→∞ t3(p

k)/|pk| = 0.
Indeed, since t(pk) is a vector contained in the support plane Lyk

and ak →
0, bk → 0, we have n3 → 0 as k → 0. Therefore we have proved that n = e2
at 0. □

The following lemma is a classical result [1](see also Lemma 6.12 in [6]).
It says that the torsion changes sign at a point where the osculating plane
is a support plane, namely locally the curve lies on one side of the plane.

Lemma 2.5. Let {r(s) | s ∈ [−a, a]} be a local parametrization of Γ by its
arclength. Assume the curvature of Γ does not vanish, and L0 = {x3 = 0} is
the osculating plane of Γ at s = 0. Assume that Γ lies above L0, and r(±a)
are disjoint from L0. Then the torsion of Γ changes sign along r(s) from
s = −a to s = a. In particular, the torsion vanishes at s = 0.

At s = 0 the torsion of Γ vanishes and L0 is a stationary osculating
plane. A point with vanishing torsion is called inflection point in literature
[2, 11] (the terminology of inflection has different meaning in [6]). Lemma
2.5 can be easily seen by the definition of the torsion, which is given by

τ = −n · b′,
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where b = t× n is the binormal vector and b′ = d
dsb(s). It can be explicitly

written as

(2.7) τ =
det(r′, r′′, r′′′)

∥r′ × r′′∥2
=

(r′ × r′′) · r′′′

∥r′ × r′′∥2
.

Theorem 1.1 in the graphic case now follows immediately.

Theorem 2.6. Let Γ be a C3-smooth curve in R
3. Assume that the pro-

jection of Γ on {x3 = 0} is a simple curve which bounds a topological disc
Ω. Assume that there is a Lipschitz continuous, convex function ũ on Ω
such that Γ is the boundary of the graph of ũ. Then the torsion of Γ either
vanishes identically, or changes sign four times.

Proof. Let y0, z0 be the points in Lemma 2.4. Consider the Dirichlet problem
(2.1). If the boundary value function h is a linear function, then the torsion
of Γ vanishes identically. Otherwise Ky0

is a proper subset of ∂Ω. Let Jy0
and

Jz0 be disjoint neighbourhoods of Ky0
∩ ∂Ω and Kz0 ∩ ∂Ω, respectively. By

Lemma 2.5, there exist two points p1, p2 ∈ Jy0
such that the torsion τ(p1) > 0

and τ(p2) < 0. Similarly there exist two points q1, q2 ∈ Jz0 such that the
torsion τ(q1) > 0 and τ(q2) < 0. Moreover the points y0, p1, q2, z0, q1, p2 are
in a monotone, anti-clockwise order. Hence there is a point between p1 and
q2, and a point between p2 and q1, where the torsion vanishes. □

Remark 2.1. The property that y0, p1, q2, z0, q1, p2 in a monotone, anti-
clockwise order is due to the convexity of the surface. If one can find os-
culating planes of Γ at k different points y1, . . . , yk ∈ Γ, then the torsion
changes sign at these points and we infer that the torsion vanishes at least
at 2k points on Γ. This property is also true for locally convex surfaces
treated in the subsequent sections.

3. Proof of Theorem 1.1 under condition (H)

First we recall the definition for locally convex hypersurfaces [19].

Definition 3.1. A locally convex hypersurface M in R
n+1 is an immer-

sion of an n-dimensional oriented and connected manifold N (possibly with
boundary) in R

n+1, i.e., a mapping f : N → M ⊂ R
n+1, such that ∀ x ∈ N ,

∃ a neighbourhood ωx ⊂ N which satisfies the proprties: (i) f is a homeo-
morphism from ωx to f(ωx); (ii) f(ωx) is a convex graph; (iii) the convexity
of f(ωx) agrees with the orientation.
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Figure 0.

Since the surface is immersed, self-intersection may occur. Therefore
it is convenient to identify a point on M with the corresponding point
on the manifold N . Namely when we refer to a point p ∈ M, we actually
mean a point x ∈ N such that p = f(x). Similarly we say ωp ⊂ M is a
neighbourhood of p if it is the image of a neighbourhood in N of x, and
a set E ⊂ M is connected if it is the image of a connected set in N , and
so on. Let U be a subset of Rn+1 containing p ∈ M, we denote by U ∩p M
the (intrinsic) connected component of U ∩M containing p. For any interior
point p ∈ M, by Definition 3.1 there is a neighbourhood ωp ⊂ M, which can
be represented as a graph of a convex function.

Definition 3.2. The cone

(3.1) Cp,ξ,r,α := {q ∈ R
n+1

∣

∣ |q − p| < r, ⟨q − p, ξ⟩ ≥ |q − p| cosα}

is called an inner contact cone of M at p if it lies on the concave side of ωp

(i.e. the cone and ωp lie on the same side of a support hyperplane of ωp at
p) and

Cp,ξ,r,α ∩ ωp = {p},

where ξ is the axis of the cone. We sayM satisfies the uniform cone condition
with radius r and aperture α if M has an inner contact cone at all points
with the same r and α.

For the convenience of our statement, we introduce a notation. Let M be
a locally convex surface. Assume ω ⊂ M can be represented as a graph of a
convex function v defined in a domain Ω. Let u be another convex function in
Ω satisfying u ≥ v in Ω and u = v on ∂Ω. Removing ω from M and replacing
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it by the graph of u, we obtain a new locally convex hypersurface M1. We
will call this replacement an operation. If a locally convex hypersurfaces M1

can be obtained from M by performing finitely many times operations, we
will denote M1 ⪯ M. The set of all locally convex hypersurfaces M′ ⪯ M
will be denoted as QM. Note that for any M′ ⊂ QM, we have ∂M′ = ∂M.

Condition (H). The uniform cone condition holds for all locally convex
hypersurfaces in QM, with uniform α and r for all members in QM.

The uniform cone condition, introduced in [19], is a key ingredient in
our treatment of locally convex hypersurfaces. It enables us to prove the
existence of locally convex hypersurafces with vanishing Gauss curvature
(or constant Gauss curvature [8, 19]). For any point p ∈ M, if the uniform
cone condition holds, then there exists a constant r > 0 such that ωp :=
Br(p) ∩p M can be represented as a graph of a Lipschitz continuous, convex
function v over a domain Ω. Let u be the solution to

(3.2)

{

detD2u = 0 in Ω,

u = v on ∂Ω.

Now we remove ωp from M and replace it by the graph of u over Ω, and
denote the resulting hypersurface by M1. Then M1 ⪯ M and A(M1) ≤
A(M), where A(·) denotes the area functional of hypersurfaces. We choose
the point p such that A(M)−A(M1) is maximized.

Assume that condition (H) holds. Then we can repeat the above op-
eration, and obtain a sequence of locally convex hypersurfaces Mk, with
the monotonicity Mk+1 ⪯ Mk for all k ≥ 0. For any sequence of points
pk ∈ Mk, the uniform cone condition ensures that Br(pk) ∩pk

Mk is the
graph of a uniformly Lipschitz continues convex function. Hence Mk sub-
converges to a locally convex hypersurface M0. One easily verifies that M0

has vanishing Gauss curvature and the boundary ∂M0 = ∂M.
If hypersurfaces in QM does not satisfy the uniform cone condition, then

singularities, such as sharp edges and multiplicity two planes, may occurs
in the above process. Under condition (H), Mk is locally Lipschitz contin-
uous and no further regularity is required. Therefore we have the following
existence of locally convex hypersurfaces of vanishing Gauss curvature.

Theorem 3.3. Given a locally convex hypersurface M, assume the condi-
tion (H) holds. Then there exists a locally convex immersion M0 such that
the Gauss curvature KM0

= 0 and ∂M0 = ∂M.
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We point out that the condition (H) is satisfied in the following three
situations.

(I) M is the graph of a locally convex, Lipschitz continuous function v on
a bounded domain Ω. In this case the axis in the cone (3.1) is e3, and
α depends only on the Lipschitz constant of v. Note that if a convex
function u satisfies u ≥ v in a sub-domain ω ⊂ Ω and u = v on ∂ω,
then ∥u∥Lip(ω) ≤ ∥v∥Lip(ω). We may also allow that v is multi-valued
(the graph of v is a locally convex hypersurface).

(II) M can be extended across its boundary to a locally convex hypersur-
face M̃ such that M̃ is locally strictly convex near ∂M̃. This is the
case discussed in [19]. We will explain the idea briefly after Lemma
3.4.

(III) M can be extended across its boundary to a locally convex hypersur-
face M̃ with the following property. There is a constant θ0 > 0, such
that for any point p0 ∈ ∂M, the angle between Lp0

and L′
p0

is greater
than θ0, where Lp0

is the tangent plane of M at p0 (defined in (2.3)),
L′
p0

is the tangent plane of M̃ −Mo at p0, and Mo = M− ∂M.
Note that in case (III), if M1 ∈ QM and Lp0,1 is the tangent plane

of M1 at p, the angle between Lp0,1 and L′
p0

is also greater than θ0.

The uniform cone condition in cases (II) and (III) is based on the following
property of locally convex hypersurfaces [3, 9, 19].

Lemma 3.4. Let M be a bounded, locally convex surface with boundary
∂M. Assume that ∂M is on a plane L. Then M is convex, namely it is on
the boundary of a convex body.

Lemma 3.4 was proved by the technique of moving parallel planes [9, 19].
Let L = {x3 = 0}. Move the paraboloid x3 = ϵ(x21 + x22) from a low position
upwards until it touches M at some point p0. Then M is strictly convex at
p0. Let Lp0

be a local support plane of M at p0. One can move Lp0
slightly

to cut off a convex cap. One can keep moving the parallel plane and show
that the cap is always convex, until it touches the boundary. As ϵ can be
arbitrarily small, the lemma is proved.

We can apply the above technique to prove the uniform cone condition.
For any interior point p0 ∈ M, if Kp0

= M∩p0
Lp0

contains no boundary
point of M, we can move Lp0

slightly to cut off a convex cap, and keep
moving the plane and show that the cap is always convex, until it touches
the boundary. From the conditions in (II) or in (III), there is an inner contact
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cone at p0, see Figure 1. Moreover, the aperture α and radius r of the
cone can be determined by the geometry of M̃ near the boundary ∂M and
the diameter of M. Therefore the aperture α and radius r of the inner
contact cone is uniformly bounded from below for all locally convex surface
M′ ⊂ QM. We refer the reader to [19] for details.

p0

Figure 1.

By Theorem 3.3, we can adapt the method in Section 2 to prove Theo-
rem 1.1, under condition (H). In the following we assume n = 2, and N is a
topological disk.

As in Section 2 we denote, for any interior point p0 of M0,

Kp0,Lp0
= Lp0

∩p0
M0,

where Lp0
is a local support plane of M0 at p0. As before we denote, for

brevity, that Kp0
= Kp0,Lp0

when no confusion arises. A basic property is
that Kp0

can be spanned by Kp0
∩ ∂M, otherwise the Gauss curvature of

M0 wouldn’t vanish everywhere. Therefore Kp0
is either a segment or a

planar disc in M0. If it is a segment, both endpoints are boundary points
of M0. If it is a planar disc, then for any point p ∈ ∂Kp0,Lp0

\∂M, there is
a line segment ℓp ⊂ Kp0

of which both endpoints are boundary points. For
convenience we call a segment ℓ in M0 a ς-segment if both of its endpoints
lie on ∂M0.

Similarly to Lemma 2.2 we have

Lemma 3.5. Let f : N → M0 ⊂ R
3 be a locally convex immersion such

that the Gauss curvature KM0
= 0. Assume that ∂M0 is C1 smooth. Let

ℓp1
⊂ Kp1

, ℓp2
⊂ Kp2

and ℓp3
⊂ Kp3

be three different ς-segments. Assume
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that Kp1
,Kp2

and Kp3
are also different from each other. Then ℓp1

, ℓp2
and

ℓp3
cannot share a same endpoint.

We can also establish the following lemma in correspondence to
Lemma 2.3.

Lemma 3.6. Let f : N → M0 ⊂ R
3 be a locally convex immersion such

that KM0
= 0. Suppose that ∂M0 is C1 smooth curve. Then, there exists

two sequences of ς-segments {ℓpk
} and {ℓqk} such that pk → p0, qk → q0,

p0 ̸= q0, and Lpk
, Lqk converge to Lp0

, Lq0, the support planes of M0 at p0,
q0, respectively.

Proof. The argument is similar to the proof of Lemma 2.3. Let ℓ be a ς-
segment such that f−1(ℓ) divides N into two parts, N − f−1(ℓ) = N1 ∪N2.
Let p1 be the middle point of ℓ. If N1 = f−1(Kp1

∩p1
M0), then M0 is linear

in f(N1) and we are through. Otherwise for any point p ∈ f(N1)−Kp1
,

there is a ς-segment ℓp in Kp. The curves f
−1(ℓp1

) and f−1(ℓp) bound a sub-
domain of N1, which we denote as Nℓp1 ,ℓp

. Denote A = sup{|Nℓp1 ,ℓp
| | ℓp is

a ς-segment in f(N1)}. Choose a sequence of ς-segments ℓpk
⊂ M0 such that

limk→∞ |Nℓp1 ,ℓpk
| = A. By Lemma 3.5 we can follow the proof of Lemma 2.3

to show that {pk} fulfils the requirements in Lemma 3.6. Similarly, we can
find the desired sequence {qk} in f(N2). □

Now, we can prove Theorem 1.1 under the assumption (H).

Proof of Theorem 1.1 under condition (H). By Theorem 3.3, there exists a
locally convex surface M0 such that KM0

= 0 and ∂M0 = Γ. Using Lemma
3.5 and 3.6, and by the same proof of Lemma 2.4 (because locally M0 is a
graph), we see that Lp0

and Lq0 are osculating planes of Γ at p0 and q0, re-
spectively. Hence the torsion of Γ vanishes at p0 and q0. Moreover, by Lemma
2.5, there exist points p1, p2, q1, q2 such that τ(p1) < 0, τ(p2) > 0, τ(q1) <
0, τ(q2) > 0, and p1, p0, p2, q1, q0, q2 are cyclicly oriented on Γ. Therefore τ
changes sign four times. □

4. Verification of Condition (H)

Let M be a locally convex surface with C3 smooth boundary Γ. Assume
that Γ has non-vanishing curvature. In this section we show that either
condition (H) is fulfilled, or there exist two points p0, q0 ∈ Γ and two (local)
tangent planes Lp0

and Lq0 , which are osculating planes of Γ at p0 and q0,
respectively. In the former case, Theorem 1.1 was proved in Section 3. In
the latter case, Theorem 1.1 holds automatically (by Lemma 2.5).
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At any given boundary point p0 ∈ Γ, we can uniquely define five unit
vectors, the unit tangent vector t, the principal normal vector n (see proof
of Lemma 2.4), the binormal vector b = t× n, the normal ν of the surface
M (see definition after (2.4)), and γ = ν × t. Here γ is perpendicular to Γ,
tangential to the surface M and pointing to the side of M. There are two
separate cases:

Case (a): γ · n > −1, namely γ ̸= −n;

Case (b): γ · n = −1, namely γ = −n.

The proof of Theorem 1.1 will be carried out in two subsections.

4.1. Case (a) is true everywhere on Γ. In this case we show that M can
be extended along Γ such that the extended part is strictly convex.
This is the case (II) discussed in Section 3. Hence the uniform cone
condition (H) is satisfied and Theorem 1.1 holds by Section 3.

4.2. Case (b) occurs somewhere on Γ. In this case we will divideM into two
parts, corresponding respectively to the cases (I) and (III) in Section 3.
Hence the uniform cone condition (H) is satisfied and Theorem 1.1
also holds.

4.1. Case (a) is true everywhere on Γ

Observe that the quantity γ · n is lower semicontinuous, as a function on
the curve Γ. Indeed, let Lp be the tangent plane of ωp0

at p ∈ Γ, as defined
above. If p → p0 and Lp converges to L0, then L0 is a support plane of
ωp0

at p0, namely ωp0
stays on one side of L0. Therefore if Case (a) holds

everywhere on Γ, there is a positive constant δ0 > 0 such that

(4.1) γ · n ≥ −1 + δ0

everywhere on Γ.
As Γ is C3 smooth, the normal vector n is C1 smooth only (n is C2

if Γ is a planar curve). We choose two C2 smooth unit vector fields n̂ and
b̂ on Γ, satisfying n̂ · n > 1− 1

4δ0 and b̂ · b > 1− 1
4δ0, respectively. For any

point p0 ∈ Γ, choose the coordinates such that p0 is the origin, and at p0,
n̂ = e2, b̂ = e3, such that t · e1 ≥ 1− 1

2δ0. Then by (4.1), locally ωp0
can be

represented as the graph of a convex function. Replacing the parameter s
by −s if needed, we may assume that ωp0

lies above the plane {x3 ≥ 0}.
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Corresponding to the point p0, we define a curve ℓp0
, which is given by

(4.2) ℓp0
=

{

(x1, x2, x3) ∈ R
3 | x1 = 0, x3 = −

δ0
4
x2 +Mx22, x2 ∈ [0,M−2]

}

,

where M > 1 is a large constant. Then ℓp0
is a curve in the plane spanned

by the vectors n̂ and b̂. Note that the point p0 is arbitrarily chosen, so for
any point p ∈ Γ we have defined a curve ℓp.

The extended part of M is then the union of all the curves ℓp,

(4.3) M′ =
⋃

p∈Γ

ℓp.

As n̂ and b̂ are C2 smooth, the extended part M′ is also C2-smooth.
Near the origin p0, in the above coordinates,M′ is the graph of a function

v. We calculate the Hessian matrix of v at 0,

(4.4)

vx1x1
(0) ≥

1

8
δ0κ,

|vx1x2
(0)| ≤ C,

vx2x2
(0) = 2M.

Hence D2v(0) is positive definite if M is chosen large. By the C2 smoothness
of M′, we see that D2v is positive definite and v is uniformly convex in a
neighbourhood of Γ.

4.2. Case (b) occurs somewhere on Γ

Note that if Case (b) holds at some point p0 ∈ Γ, then the tangent plane Lp0

is an osculating plane of Γ at p0. Hence by Lemma 2.5, Theorem 1.1 holds
if Case (b) occurs at two different points. Therefore we may assume that
Case (a) holds everywhere on Γ except one point p0 ∈ Γ, or an arc A ⊂ Γ
containing p0, and contained in the tangent plane Lp0

of M at p0.
Choose the coordinates such that Lp0

= {x3 = 0} and locally M lies
above the plane {x3 = 0}. Denote M−

h = M∩p0
{x3 < h}. Denote K0 =

M∩p0
Lp0

. We have two cases:

(i) K0 ∩ (∂M\A) = ∅, and

(ii) K0 ∩ (∂M\A) ̸= ∅.

In case (i), for any given point q0 ∈ A, we choose the (x1, x2)-axes such
that q0 is the origin, t(q0) = e1, n(q0) = −e2 and γ = e2. We restrict to the
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piece ω =: M−

h ∩q0 {x2 ≥ 0}. Then, the positive curvature of Γ and A ⊂ Lp0

implies that A is locally strictly convex (if A is not a single point). Hence
A ∩q0 {x2 ≥ 0} = {q0} is a single point. For sufficiently small constant ϵ > 0,
the plane {x3 = ϵx2} (denote this plane by Kq0) cuts off a cap Cϵ from ω,
and ∂Cϵ ∩ ∂ω = {q0}. Then, let

M0 := M−

h

⋂





⋃

q0∈A

{x ∈ R
3 : x is above Kq0}



 .

Hence the slope of the tangent plane of M0 at q0 is greater than ϵ > 0. It
implies that Case (a) holds at q0 for the locally convex surface M0. Hence
for M0, Case (a) is true everywhere on Γ. Therefore by the argument in
➜4.1, Theorem 1.1 holds.

In case (ii), the set A′ = K0 ∩ (Γ−A) is not empty, and ∀ q0 ∈ A′, the
vector n(q0) is transversal to the plane Lp0

. Hence by the positive curvature
of Γ, q0 must be an isolated point in A′, namely A′ consists of finitely many
isolated points. Hence K0 is either a ζ-segment, or a planar (topological)
disc in the plane Lp0

.

Lemma 4.1. For δ > 0 sufficiently small, the locally convex surface M∩p0

{x3 < δ} satisfies the uniform cone condition (H).

Proof. Denote Γ1 = Γ ∩p0
Bδ(p0) and Γ2 = Γ ∩q0 Bδ(q0), where q0 ∈ A′ is

any given point, and δ > 0 is a small constant. Since n(q0) is transversal to
the plane Lp0

but n(p0) ⊂ Lp0
. The convex hull of Γ1, Γ2 and the segment

p0q0 contains a ball, whose centre is close to the middle of the segment.
Hence M∩p0

{x3 < δ} can be represented is a radial graph with respect to
center of the ball. □

Denote
M−

h = M∩p0
{x3 < h},

M+
h = M−M−

h/2.

Note that M−

h and M+
h overlaps in the part {h/2 ≤ x3 ≤ h}. When h > 0

is small, by Lemma 4.1 the uniform cone condition is satisfied for M−

h . Note
that the boundary ∂M+

h consists of two parts, one in ∂M+
h ∩ {x3 ̸=

h
2} and

the other one on ∂M+
h ∩ {x3 =

h
2}. In ➜4.1 we have made an extension of

M+
h on the part in ∂M+

h ∩ {x3 ̸=
h
2}. For the part ∂M+

h ∩ {x3 =
h
2}, the

plane Lh = {x3 =
h
2} makes a local expansion for M+

h . They corresponds
respectively to the cases (II) and (III) in Section 3. Therefore the uniform
cone condition holds for M+

h too.
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Therefore by Theorem 3.3, there is a locally convex surface N+ of van-
ishing Gauss curvature with the boundary ∂M+

h . Removing M+
h from M

and gluing back by N+, we get a locally convex surface M1. Next we apply
Theorem 3.3 to M−

1,h =: {x3 < h} ∩p0
M1 and obtain a locally convex sur-

face N− of vanishing Gauss curvature with the boundary ∂M−

1,h. Removing

M−

1,h from M1 and gluing back by N−, we get a locally convex surface M2.
Assume that we have the locally convex surfaces M1, . . . ,Mk. Denote

M−

k,h = Mk ∩p0
{x3 < h} andM+

k,h = Mk −M−

k,h/2. Carrying out the above
operations, we therefore obtain a sequence of locally convex surfaces
{Mk}

∞
k=1. They satisfies the monotonicity Mk+1 ⪯ Mk for all k ≥ 1. By

Lemma 4.1, the condition (H) is satisfied uniformly for this sequence. Hence
the sequence converges to a limit surface M0 of vanishing Gauss curva-
ture with the boundary ∂M0 = Γ. Therefore Theorem 1.1 follows from the
argument in Section 3.
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