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Rational curves on elliptic K3 surfaces

Salim Tayou

We prove that any non-isotrivial elliptic K3 surface over an alge-
braically closed field k of arbitrary characteristic contains infinitely
many rational curves. In the case when char(k) ̸= 2, 3, we prove this
result for any elliptic K3 surface. When the characteristic of k is
zero, this result is due to the work of Bogomolov-Tschinkel and
Hassett.

1. Introduction

Let X be a K3 surface over an algebraically closed field k. In [2, Corol-
lary 3.28], Bogomolov and Tschinkel prove that when the characteristic of
k is zero and X admits a non-isotrivial elliptic fibration then X contains
infinitely many rational curves. Later, Hassett in [7, Section 9] handled the
general case of arbitrary elliptic complex K3 surfaces. In this note, we extend
the above results to the case where k has positive characteristic.

Theorem 1.1. Let X be an elliptic K3 surface over an algebraically closed

field k. Then X contains infinitely many rational curves in the following

cases:

1) X admits a non-isotrivial elliptic fibration;

2) char(k) ̸= 2, 3.

In characteristic zero, this is the content of [2, Corollary 3.28] and [7,
Section 9]. When k has positive characteristic, the main ingredients in case
(1) are a result on the image of ℓ-adic monodromy representations associated
to non-isotrivial 1-dimensional families of elliptic curves, see Proposition 2.5.
The proof is inspired from [2], though we simplify some arguments presented
there. The proof in case (2) follows the arguments of Hassett in [7, Section 9].
This note is split into two parts. In the first section, some background on
elliptic K3 surfaces is recalled. The main result is proved in the second
section.
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2. Background on elliptic K3 surfaces

Let k be an algebraically closed field of positive characteristic and P1
k the

projective line over k. We recall some facts about elliptic K3 surfaces. For a
more comprehensive introduction, see [8, Chapter 11].

An elliptic K3 surface is a K3 surface X which admits a surjective mor-
phism X

π
−→ P1

k whose generic fiber is a smooth integral curve of genus 1. If
moreover the morphism π admits a section, then X is said to be a Jacobian
elliptic K3 surface. The fibration is said to be non-isotrivial if not all the
smooth fibers are isomorphic. For Jacobian elliptic K3 surfaces, the latter
condition is equivalent to the fact that the j-invariant of the generic fiber is
not in k.

2.1. Tate-Shafarevich group

Let X
π
−→ P1

k be an elliptic K3 surface. For every integer d ≥ 0, one can
associate to X an elliptic K3 surface Jd(X) as follows. If η denotes the
generic point of P1

k, then the generic fiber Xη over k(η) is a smooth integral
curve of genus 1. Then one can associate to it a smooth curve of genus 1,
Jacd(Xη), which coarsly represents the étale sheafification of the functor

Picd : (Sch/k(η))◦ → (Sets), S 7→ Picd(Xη × S)/ ∼ .

Then Jd(X) → P1
k is defined as the unique relatively minimal smooth model

of Jacd(Xη). For d = 0, we denote it simply J(X) and it is a Jacobian
elliptic K3 surface, see [8, Chap.11, Section 4.1] or [4, Thm. 5.3.1] for more
details. For every smooth fiber Xt, t ∈ P1

k, the fiber J(X)t is isomorphic to
the Jacobian elliptic curve associated toXt. Let J(X)sm ⊂ J(X) be the open
set of π-smooth points, viewed as a smooth group scheme over P1

k. Then the
open π-smooth locus Xsm → P1

k is a J(X)sm-torsor over P1
k. Hence for an

arbitrary Jacobian elliptic K3 surface Y → P1
k, define the Tate-Shafarevich

group X(Y ) as the set of isomorphism classes of Y sm-torsors over P1
k. The

group structure on X(Y ) depends on the choice of the section, however the
isomorphism class does not.

Proposition 2.1 (Chap.11, Section 5.2, 5.5(i), 5.6 [8]). Let X →

P1
k be a Jacobian elliptic K3 surface. The Tate-Shafarevich group X(X) is
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isomorphic to the Brauer group Br(X) of X and we have an injective map

X(X) →֒ WC(Xη),

where WC(Xη) is the Weil-Châtelet group of the generic fiber of X → P1
k.

Recall that the Brauer group of X is defined as the étale cohomology
group H2(X,Gm) and recall also that for an elliptic curve E over a field K,
the Weil-Châtelet group, denoted WC(E), is defined as the set of isomor-
phism classes of torsors under E over K, see [8, Chapter 11, Section 5.1].

For every positive integer d and for every smooth fiberXt, t ∈ P1
k, J

d(X)t
is isomorphic to Picd(Xt). Moreover, one has an isomorphism

X J1(X)

P1
k

∼

π1π

and J(Jd(X)) ≃ J(X). In addition, the class [Jd(X)] of Jd(X) in Br(J(X))
is equal to d[X].

For every integers d, d′, we have natural rational maps of algebraic vari-
eties

Jd(X)×P
1
k
Jd′

(X) Jd+d′

(X)

P1
k

For a positive integer ℓ, the diagonal embedding

J1(X) → J1(X)×P
1
k
· · · ×P

1
k
J1(X)

︸ ︷︷ ︸

ℓ times

composed with the rational map above defines a rational map ηℓ which fits
into the following commutative diagram
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J1(X) J ℓ(X)

P1
k

ηℓ

πℓπ

The map ηℓ is defined over the smooth locus of π.

2.2. Rational curves

Let X be a K3 surface over k. A rational curve on X is an integral closed
subscheme C of dimension 1 and of geometric genus 0. Recall the following
existence result, attributed to Bogomolov and Mumford, with a refinement
of Li and Liedtke ([9, Theorem 2.1]).

Proposition 2.2 (Bogomolov-Mumford). Let L be a non-trivial effec-

tive line bundle on a K3 surface X over k. Then L is linearly equivalent to

a sum of effective rational curves.

2.3. Relative effective Cartier divisors

Definition 2.3. Let X → P1
k be an elliptic K3 surface. A relative effective

Cartier divisor on X/P1
k is a closed subscheme M on X such that M → P1

k

is finite flat. If moreover M is irreducible, it is called a multisection.

Given an elliptic K3 surface X and a multisection M on X, the map
M → P1

k is finite flat and its degree is by definition the degree of M.

Let X0 be a smooth fiber of X → P1
k over a point 0 ∈ P1

k. Then we have
a map given by the intersection product

Pic(X)
(X0, )
−−−→ Z.

It sends any multisection to its degree. The image of the above map is a
non-zero subgroup of Z, of finite index. Denote by dX its index. It is called
the degree of the elliptic fibration X → P1

k. Remark that an elliptic fibration
is Jacobian if and only if its degree is equal to one.

Lemma 2.4. Let X → P1
k be an elliptic K3 surface.
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1) The order of [X] in Br(J(X)) is equal to dX .

2) There exists a multisection of degree dM = dX which is a rational

curve.

3) There exists at least one multisection M such that dM = dX and which

is moreover generically étale over P1
k.

Proof. For (2), let M be a multisection of degree dX . By Proposition 2.2, M
is linearly equivalent to a sum of rational curves

∑

iCi. Then there exists a
unique curve Ci which is horizontal and all the others are vertical. Then Ci

satisfies the desired properties.
For (1), notice that Xη is a torsor under the elliptic curve J(X)η and

that dX is the index of Xη, i.e is the greatest common divisor of the degrees
of residue fields of closed points of Xη (see [10, 1]). Since the order of Xη

in WC(J(X)η) is equal to its index by [10, Theorem 1], it implies that the
order of [X] is exactly dX . By [10, Section 5, Theorem 4]1, it is also equal to
the minimal degree of residue fields of separable closed points. Hence there
exists a closed separable point in Xη of degree dX . Taking its closure yields
a separable multisection. This proves (3). □

2.4. Monodromy

Let X
π
−→ P1

k be an elliptic K3 surface. Let U be the largest Zariski open
subset of P1

k over which the map π is smooth. Thus XU → U is a torsor
under the smooth group scheme J(X)U → U . For b ∈ U a closed point and
m prime to p := char(k), the étale fundamental group πét

1 (U, b) of U acts on
the group of m-torsion points in J(X)b and defines a group morphism

ρ : πét
1 (U, b) → Aut

(

lim
←−

gcd(m,p)=1

J(X)b[m]

)

=
∏

gcd(ℓ,p)=1

Aut(TℓJ(X)b).

This action preserves the Weil paring and factors as follows:

ρ : πét
1 (U, b) →

∏

ℓ∧p=1

SL(TℓJ(X)b).

For every prime ℓ, we denote by ρℓ∞ the representation of πét
1 (U, b) on the

Tate module TℓJ(Xb) and denote by ρℓ its reduction modulo ℓ. Then ρℓ∞ is
simply the projection on the ℓ-factor in the previous map. The monodromy

1More precisely, see the proof given there.
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group Γ is the image of πét
1 (U, b) under ρ. The next result on the image of

the monodromy group will be crucial in the proof of Theorem 1.1.

Proposition 2.5 ([3]). If the elliptic fibration is not isotrivial, then there

exists a constant c(k) depending only on k, such that for every ℓ > c(k) the
morphism ρℓ is surjective.

This is the content of [3, Theorem 1.1] where the surjectivity is proven
for the reduction modulo ℓ, then one uses Lemma 2 in [13, IV-23]. Notice
that in [3, Theorem 1.1], the base field is supposed to be finite but one can
check that the proof given there works for perfect fields, as mentioned in the
discussion after Theorem 1.1 in loc.cit.

3. Proof of Theorem 1.1

If X has Picard rank ρ(X) at least 20, then the automorphism group of
X is infinite and hence X contains infinitely many rational curves, see [8,
Chap.13, Remark 1.6] and [2, Theorem 4.1]. Hence we assume that ρ(X) ≤
19.

The elliptic surface X defines a class in the Tate-Shafarevich group
X(J(X)) of J(X), which is isomorphic to the Brauer group Br(J(X)) by
Proposition 2.1. This class is a sum of two elements αp + α, where α has
torsion prime to p and αp is torsion of order pa, for some integer a. Here p
is the characteristic of k. We will construct infinitely many multisections on
X which are rational curves and whose degrees tend to infinity. This will be
enough to prove Theorem 1.1. Denote by dX the degree of X and let ℓ be a
prime number with residue 1 (mod pa) and such that ℓ > max(dX , c(k)),
where c(k) is given by Proposition 2.5. The prime to p torsion part of
Br(J(X)) is a divisible group by [8, Chap. 18, Example 1.5]. The Kummer
exact sequence and the assumption on the Picard rank ensures furthermore
that it is not trivial (see formula (1.8) loc. cit). We can thus find an el-
liptic K3 surface πℓ : Xℓ → P1 such that J(Xℓ) ≃ J(X), ℓ[Xℓ, πℓ] = [X,π]
in Br(J(X)) and dXℓ

= ℓdX . Take for instance αp + αℓ, where αℓ is a non-
trivial element in Br(J(X)) which satisfies ℓ.αℓ = α. Hence J ℓ(Xℓ) ≃ X and
we have a rational map defined at the end of Section 2.1:
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XXℓ

P1
k

ηℓ

ππℓ

By Lemma 2.4, Xℓ contains a rational multisection Mℓ of degree dMℓ
=

dXℓ
= ℓdX . If the restriction of ηℓ to Mℓ is isomorphic to its images above

P1
k then ηℓ(Mℓ) is a rational curve on X of degree divisible by ℓ which is the

desired result. Otherwise, since the multiplication by ℓ map is étale (by [6,
Théorème 2.5]), there exists infinitely many closed points b in the maximal
open subset U ⊂ P1

k where π is smooth, Mℓ,U → U is smooth and two dis-
tinct points P1, P2 in Xℓ,b ∩Mℓ such that ℓ.(P1 − P2) = 0 in J(X)b. Thus,
the point P1 − P2 is a ℓ-primitive torsion point in J(X)b. Let J(X)U [ℓ] → U
be the relative effective Cartier divisor of J(X)U → U of ℓ-torsion points.

Let J(X)U,prim[ℓ] be the relative effective Cartier divisor of non-zero ℓ-
torsion points. Since Xℓ,U is a J(X)U -torsor over U , there is an induced
map:

J(X)U,prim[ℓ]×Mℓ,U → Xℓ,U .(1)

The closure of the image in Xℓ is a curve of Xℓ which intersects Mℓ infinitely
many times by the non-injectivity of ηℓ. Hence Mℓ is isomorphic to an
irreducible component of J(X)U,prim[ℓ]×U Mℓ,U .

3.1. Non-isotrivial case

For ℓ large enough, J(X)U,prim[ℓ] is irreducible by Proposition 2.5. Hence
via its first projection, the above map is surjective over J(X)U,prim[ℓ]. Since
there are ℓ2 − 1 torsion points in each fiber of J(X)U,prim[ℓ] over U , this
implies

dMℓ
= ℓdX ≥ ℓ2 − 1.

This is a contradiction by our assumption on ℓ.

3.2. Isotrivial case

We assume now that the elliptic fibration X → P1
k is isotrivial. Then the

elliptic fibration J(X) → P1
k is also isotrivial. If the characteristic of k is
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different from 2 and 3, which will be assumed henceforth, then we can pro-
ceed following the lines of [7, Section 9]. The image of the étale fundamental
group of U by ρℓ factors through the automorphism group of the geometric
generic fiber of J(X) → P1

k which is cyclic of order 2, 4 or 6, see [14, III.10].
Assume that the fibration J(X) → P1

k has n0 degenerate fibers of type I∗0 ,
n′1 degenerate fibers of type Ia, a > 0, n

′′

1 degenerate fibers of type I∗a , a > 0,
n2 fibers of type II or II∗, n3 fibers of type III or III∗, and n4 fibers of
type IV or IV ∗. For the definition of the type of singularities of fibers, see
[8, Chapter 11, Section 1.3].

By Equation 1, Mℓ,U is an irreducible component of a principal ho-
mogeneous space under J(X)U,prim[ℓ]. Using Riemann-Hurwitz as in the
proof of [7, Theorem 9.9] and noticing that the computations of the rami-
fication contributions of degenerate fibers from [7, Table 1, page 259] hold
for ℓ large enough, see [11, Chapitre III, 17], there exists C > 0 such that
g(Mℓ) ≥ C.c(J) where g(Mℓ) is the geometric genus of Mℓ and

c(J) =
1

2
n0 + n′1 + n

′′

1 +
5

6
n2 +

3

4
n3 +

2

3
n4 − 2.

Since Mℓ is a rational curve, we infer that c(J) ≤ 0. We use now the method
of [7, Proposition 9.6] to classify K3 surfaces that satisfy the last condition.
By Shioda-Tate formula [12, Theorem 6.3]), we have :

ρ(X) = 2 +
∑

s∈P1(k)

(rs − 1) + r(X)

where rs denotes the number of irreducible components of a fiber Xs for s a
closed point in P1

k and r(X) is the rank of the Mordell-Weil group of J(X).
On the other hand, the ℓ-adic Euler formula ([5, Theorem 1.1, Corollary
1.6]2) implies that:

24 =
∑

s∈P1(k)

[χ(Xs)ℓ + αs,ℓ](2)

where, for s ∈ P1
k(k), χ(Xs)ℓ is the ℓ-adic Euler characteristic of the fiber

Xs and αs,ℓ is its wild conductor defined in [5, Section 1]. Recall that rs =
χ(Xs)ℓ if the fiber Xs has reduction type Ia and otherwise rs = χ(Xs)ℓ − 1.
Since the characteristic of k is different from 2 and 3, all the wild conductors
above vanish.

2With the correct sign.
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Combining the two previous formulas, we get:

ρ(X) = 2 +
∑

s∈P1
k(k)

of type Ia

(rs − 1) +
∑

s∈P1
k(k)

not of type Ia

(rs − 2) + r(X)

= 26− n′1 − 2N + r(X)

where N = n0 + n′′1 + n2 + n3 + n4. The assumption that c(J) ≤ 0 implies
that

18 + r(X) + 3n
′

1 + 2n
′′

1 +
4

3
n2 + n3 +

2

3
n4 ≤ ρ(X).

Hence either X has Picard rank equal to 22, or ρ(X) ≤ 20 and thus X is an
element in the list given in [7, Proposition 9.6]. In all these cases, X is either
a Kummer surface or its automorphism group is infinite. In both cases, X
has infinitely many rational curves, see [1, Corollary 4.3] and [2, Lemma 4.9]
for the second case.

3.3. Situation in characteristic 2 and 3

When the characteristic of k is equal to 2 or 3 and the elliptic fibration X →

P1
k is isotrivial then the classification above must be modified to take into

account the wild ramification factors in Equation 2 which do not vanish in
general, apart from special cases, see [12, Section 4.6, Table 2]. For example,
we could have a K3 surface with a single cusp of conductor 24 for which
c(J) = −7

6 and ρ(X) ≥ 2. It would be interesting to investigate these small
rank situations.
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