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In this paper, we prove some differentiable sphere theorems and
topological sphere theorems for submanifolds in Kähler manifold,
especially in complex space forms.

1 Introduction 1195

2 Preliinaries 1201

3 Some algebraic estimates 1204

4 Proof of Theorem A 1210

5 Proof of Theorem B 1222

6 Proof of Theorem C and Theorem D 1227

References 1234

1. Introduction

The study of the relation between curvature and topology is a fundamental
problem in differential geometry. Sphere theorems play an important role in
such a study. There are two types of differentiable sphere theorems: one is
for the Riemannian manifold itself (i.e., intrinsic version), the other is for
submanifolds in a Riemannian manifold (i.e., extrinsic version). The typical
example of the former one is the classical 1/4-pinched differentiable sphere
theorem, which states that a compact Riemannian manifold M of dimension
n ≥ 4 with pointwise 1/4-pinched sectional curvature is diffeomorphic to a

∗L. Sun is the corresponding author.
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spherical space form. This theorem was finally proved by Brendle-Schoen
([3], [4]).

The study of sphere theorems for submanfolds in a Riemannian man-
ifolds also has a long history. At first, people concerned on the rigidity
sphere theorems for minimal submanifolds in unit sphere. For example, Si-
mons ([18]) and Chern-do Carmo-Kobayashi ([5]) showed that for a com-
pact minimal submanifold Mn in unit sphere Sn+p, if |B|2 ≤ n

2− 1

p

, then M

is either totally geodesic, or a Clifford hypersurface, or a Veronese surface
in S4. Later on, Li-Li ([12]) proved that M is either totally geodesic or a
Veronese surface in S4 if |B|2 ≤ 2

3n. Topological sphere theorems for sub-
manifolds have also been considered. Lawson-Simons ([10]) considered the
vanishing theorem of integral current in an n-dimensional submanifold in
unit sphere (the case of submanifold in Euclidean space was considered by
Xin ([20]) and showed that an n-dimensional submanifold in unit sphere with
|B|2 < min{n− 1, 2

√
n− 1} is a homotopy sphere. Leung ([11]) proved that

an n-dimensional minimal submanifold in unit sphere with |B|2 < n and
n > 3 is homeomorphic to a sphere. Later on, Shiohama and Xu ([17]) im-
proved Lawson-Simons’ result to complete submanifold in space forms with
nonnegative sectional curvature. By using mean curvature flow, Andrews-
Baker ([1]) proved a differentiable sphere theorem for submanifolds in Rn+p

under the pinching assumption relating |B|2 and |H|2. Recently, Cui-Sun
([6]) and Gu-Xu ([7], [21], [22], etc.) also proved some topological and differ-
entiable sphere theorems for submanifolds in general Riemannian manifold.
Furthermore, Li-Wang ([13]) proved some differentiable sphere theorems for
Lagrangian submanifolds in complex space form. In general, the conditions
of sphere theorems for submanifolds in a Riemannian manifold are expressed
in terms of the scalar curvature, Ricci curvature or the sectional curvature
and the mean curvature of the submanifold, as well as the sectional curvature
of the ambient manifold.

In this paper, we will consider sphere theorems for submanifolds in
Kähler manifold, which are special cases comparing with the above men-
tioned results for general Riemannian manifold. Contrary to the above men-
tioned sphere theorems, we will express the condition in terms of the holo-
morphic sectional curvature of the ambient manifold instead of its sectional
curvature.

Let M be a smooth n-dimensional submanifold of a Kähler manifold
N2m. We will denote the curvature tensors on M and N by R and K,
respectively. Recall that the sectional curvature is given by

K(X,Y ) := K(X,Y,X, Y )
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and the holomorphic sectional curvature is given by

K(X) := K(X, JX) := K(X, JX,X, JX),

where X and Y are tangent vector fields on M . Denote the minimal and
maximal holomorphic sectional curvatures by

(1.1) K̃min := min
|X|=1

K(X), K̃max := max
|X|=1

K(X).

Our first theorem is as follows:

Theorem A. Let M be a smooth n(≥ 2)-dimensional closed simply con-
nected submanifold of a Kähler manifold N2m. If the scalar curvature of M
satisfies the following condition:
(1.2)

RM ≥











3n2+8
4 K̃max − n2−n+4

2 K̃min +
n−2
n−1 |H|2, if K̃min ≥ 0;

3n2+8
4 K̃max − n2−n+8

2 K̃min +
n−2
n−1 |H|2, if K̃min ≤ 0 ≤ K̃max;

3(n2−n+2)
4 K̃max − n2−n+8

2 K̃min +
n−2
n−1 |H|2, if K̃max ≤ 0,

and we further assume that the strict inequality holds for some point x0 ∈ M
if K̃max = K̃min. Then M is diffeomorphic to Sn.

Recall that a submanifold M in a Kähler manifold N is said to be totally
real in N if JTx(M) ⊂ Nx(M) for each x ∈ M , where J is the complex
structure on N and Nx(M) is the normal space of M in N at x. When the
submanifold is totally real, Theorem A can be improved to be the following:

Corollary 1.1. Let M be a smooth n(≥ 2)-dimensional closed simply con-
nected totally real submanifold of a Kähler manifold N2m. If M satisfies the
following condition:

RM ≥ 3(n2 − n+ 2)

4
K̃max −

n2 − n+ 4

2
K̃min +

n− 2

n− 1
|H|2,

and we further assume that the strict inequality holds for some point x0 ∈ M
if K̃max = K̃min = 0. Then M is diffeomorphic to Sn.

In particular, when N is a complex space form with constant holomor-
phic sectional curvature c, we have:

Corollary 1.2. Let M be a smooth n(≥ 2)-dimensional closed simply con-
nected totally real submanifold of complex space form N2m with holomorphic
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sectional curvature c. If M satisfies the following condition:

RM ≥ (n− 2)(n+ 1)

4
c+

n− 2

n− 1
|H|2,

and we further assume that the strict inequality holds for some point x0 ∈ M
if c = 0. Then M is diffeomorphic to Sn.

Next, we plan to examine differentiable sphere theorems under Ricci
curvature pinching condition.

Theorem B: For fixed 0 < ε ≤ 1, set δ(ε, n) = ((n−4)ε+2)2

4(2+(n2−4n+2)ε) . Let M be a

smooth n(≥ 4)-dimensional closed simply connected submanifold of a Kähler
manifold N2m. If M satisfies the following condition:

Ric
[2]
min ≥







































3n+4ε
2 K̃max − (n− 1 + 2ε)K̃min + δ(ε, n)|H|2,

if K̃min ≥ 0;
3n+4ε

2 K̃max − (n− 1 + 4ε)K̃min + δ(ε, n)|H|2,
if K̃min ≤ 0 ≤ K̃max;

3(n−1+ε)
2 K̃max − (n− 1 + 4ε)K̃min + δ(ε, n)|H|2,
if K̃max ≤ 0,

(1.3)

and the strict inequality holds for some point x0 ∈ M . Then M is diffeomor-
phic to Sn.

Corollary 1.3. For fixed 0 < ε ≤ 1, set δ(ε, n) = ((n−4)ε+2)2

4(2+(n2−4n+2)ε) . Let M be

a smooth n(≥ 4)-dimensional closed simply connected totally real submani-
fold of a Kähler manifold N2m. If M satisfies the following condition:

Ric
[2]
min ≥ 3(n− 1 + ε)

2
K̃max − (n− 1 + 2ε)K̃min + δ(ε, n)|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is diffeomor-
phic to Sn.

Corollary 1.4. For fixed 0 < ε ≤ 1, set δ(ε, n) = ((n−4)ε+2)2

4(2+(n2−4n+2)ε) . Let M be

a smooth n(≥ 4)-dimensional closed simply connected totally real submani-
fold of complex space form N2m with holomorphic sectional curvature c. If
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M satisfies the following condition:

Ric
[2]
min ≥ n− 1− ε

2
c+ δ(ε, n)|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is diffeomor-
phic to Sn.

Remark 1.5. If ε = 1, then δ(ε, n) = 1
4 .

For a submanifold in a Kähler manifold, we also have the following topo-
logical sphere theorem:
Theorem C: Let M be a smooth n(≥ 4)-dimensional closed simply con-
nected submanifold of a Kähler manifold N2m. If the scalar curvature of M
satisfies the following condition:
(1.4)

RM ≥











3n2+16
4 K̃max − n2−n+8

2 K̃min +
n−3
n−2 |H|2, if K̃min ≥ 0;

3n2+16
4 K̃max − n2−n+16

2 K̃min +
n−3
n−2 |H|2, if K̃min ≤ 0 ≤ K̃max;

3(n2−n+4)
4 K̃max − n2−n+16

2 K̃min +
n−3
n−2 |H|2, if K̃max ≤ 0,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.

Corollary 1.6. Let M be a smooth n(≥ 4)-dimensional closed simply con-
nected totally real submanifold of a Kähler manifold N2m. If M satisfies the
following condition:

RM ≥ 3(n2 − n+ 4)

4
K̃max −

n2 − n+ 8

2
K̃min +

n− 3

n− 2
|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.

In particular, when N is a complex space form with constant holomor-
phic sectional curvature c, we have (comparing with Corollary 1.2):

Corollary 1.7. Let M be a smooth n(≥ 4)-dimensional closed simply con-
nected totally real submanifold of complex space form N2m with holomorphic
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sectional curvature c. If M satisfies the following condition:

RM ≥ n2 − n− 4

4
c+

n− 3

n− 2
|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.

Theorem D: Let M be a smooth n(≥ 4)-dimensional closed simply con-
nected submanifold of a Kähler manifold N2m. If M satisfies the following
condition:
(1.5)

Ric
[4]
min ≥











(3n+ 4)K̃max − 2(n+ 1)K̃min +
1
2 |H|2, if K̃min ≥ 0;

(3n+ 4)K̃max − 2(n+ 3)K̃min +
1
2 |H|2, if K̃min ≤ 0 ≤ K̃max;

3nK̃max − 2(n+ 3)K̃min +
1
2 |H|2, if K̃max ≤ 0,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.

Corollary 1.8. Let M be a smooth n(≥ 4)-dimensional simply connected
compact totally real submanifold of a Kähler manifold N2m. If M satisfies
the following condition:

Ric
[4]
min ≥ 3nK̃max − 2(n+ 1)K̃min +

1

2
|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.

In particular, if N is a complex space form, then we have the following
topological sphere theorem for totally real submanifold (comparing with
Remark 1.5):

Corollary 1.9. Let M be a smooth n(≥ 4)-dimensional simply connected
compact totally real submanifold of a complex space form N2m with holo-
morphic sectional curvature c. If M satisfies the following condition:

Ric
[4]
min ≥ (n− 2)c+

1

2
|H|2,

and the strict inequality holds for some point x0 ∈ M . Then M is homeo-
morphic to Sn.
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Remark 1.10. All results mentioned above are sharp.

• Consider the totally embedding CPn/2(4) ⊂ CPm(4) where n is an
even number. Then Ric = (n+ 2)g and RM = n(n+ 2). Thus The-
orem A, Theorem B, Theorem C and Theorem D are sharp.

• Consider Mp,µ :=Sn−p
(

µ√
1+µ2

)

×Sp
(

1√
1+µ2

)

(

⊂Sn+1(1)
)

⊂CPn+1(4)

where 0 < µ < 1, then Mp,µ is a totally real submanifold of CPn+1(4).
Moreover,

RM1,µ
− n− 2

n− 1
|H|2 − (n− 2)(n+ 1) = −n− 2

n− 1
µ2 → 0, as µ → 0,

RM2,µ
− n− 3

n− 2
|H|2 − (n2 − n− 4) = −2(n− 4)

n− 2
µ2 → 0, as µ → 0.

Therefore, Corollary 1.1, Corollary 1.2, Corollary 1.6 and Corollary
1.7 are optimal.

• For ε = 1, Corollary 1.3, Corollary 1.4 are optimal for n = 4. Corol-
lary 1.8 and Corollary 1.9 are optimal for n = 4. We refer the reader
to [22].

In another paper, we will consider differentiable sphere theorems and
topological sphere theorems for Lagrangian submanifods in Kähler manifold
([19]). Similar argument can also prove some sphere theorems for submani-
folds in Sasaki space forms.

2. Preliinaries

In this section, we will provide some basic materials about Kähler manifold
that will be used in the proof of the main theorems. First recall the follow-
ing expression of the sectional curvature and curvature tensor in terms of
holomorphic sectional curvature:

Lemma 2.1 (cf. [9]). Let N be a Riemannian manifold and X, Y , Z, W
be vector fields on N . Then we have

24K(X,Y, Z,W ) = K(X + Z, Y +W ) +K(X − Z, Y −W )(2.1)

+K(X +W,Y − Z) +K(X −W,Y + Z)

−K(X + Z, Y −W )−K(X − Z, Y +W )

−K(X +W,Y + Z)−K(X −W,Y − Z).
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Lemma 2.2 (cf. [23]). Let N be a Kähler manifold and X, Y be vector
fields on N . Then we have

32K(X,Y ) = 3K(X + JY ) + 3K(X − JY )−K(X + Y )(2.2)

−K(X − Y )− 4K(X)− 4K(Y ).

Putting (2.2) into (2.1), we get that

Corollary 2.3. Let N be a Kähler manifold and X, Y , Z, W be vector
fields on N . Then we have

256K(X,Y, Z,W ) = K(X + Z + JY + JW ) +K(X + Z − JY − JW )

−K(X + Z + JY − JW )−K(X + Z − JY + JW )

+K(X − Z + JY − JW ) +K(X − Z − JY + JW )

−K(X − Z + JY + JW )−K(X − Z − JY − JW )

+K(X +W + JY − JZ) +K(X +W − JY + JZ)

−K(X +W + JY + JZ)−K(X +W − JY − JZ)

+K(X −W + JY + JZ) +K(X −W − JY − JZ)

−K(X −W + JY − JZ)−K(X −W − JY + JZ).(2.3)

Let Mn be an n-dimensional submanifold in Riemannian manifold Nd.
Choose local orthonormal frame {e1, . . . , ed} on N so that {e1, . . . , en} are
tangent to M and {en+1, . . . , ed} are normal to M . Denote R and K the
curvature tensors on M and N , respectively, and hαij = ⟨B(ei, ej), eα⟩ the
component of the second fundamental form of M in N . The mean curva-
ture vector is given by H =

∑d
α=n+1H

αeα, where H
α =

∑n
i=1 h

α
ii. Then the

Gauss equation can be written as

(2.4) Rijkl = Kijkl +

d
∑

α=n+1

(hαikh
α
jl − hαilh

α
jk).

In particular, the Ricci curvature and the scalar curvature satisfies

Ric(ei) = Rii =

n
∑

j=1

Kijij +

d
∑

α=n+1

n
∑

j=1

[hαiih
α
jj − (hαij)

2],

RM =

n
∑

i,j=1

Kijij + |H|2 − |B|2.(2.5)
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Fix p ∈ M , X,Y ∈ TpM and an orthonormal basis {e1, . . . , en} of TpM ,
the following notations will be used in this paper:

Ric(X,Y ) =

n
∑

i=1

R(X, ei, Y, ei), Ricjj = Ric(ej , ej),

[ei1 , . . . , eik ] = span{ei1 , . . . , eik}, ∀1 ≤ i1 < i2 < · · · < ik ≤ n,

Ric[k][ei1 , . . . , eik ] =

k
∑

j=1

Ricijij ,

Ric
[k]
min(p) = min

[ei1 ,...,eik ]⊂TpM
Ric[k][ei1 , . . . , eik ],

where Ric[k][ei1 , . . . , eik ] is called the k-th weak Ricci curvature of
[ei1 , . . . , eik ], which was first introduced by Gu-Xu in [7].

At the end of this section, we will state some lemmas which will be
crucial in the proof of our main theorems. The first result is due to Aubin:

Lemma 2.4 ([2]). Let M be a compact n-dimensional Riemannian mani-
fold. If M has nonnegative Ricci curvature everywhere and has positive Ricci
curvature at some point, then M admits a metric with positive Ricci curva-
ture everywhere.

A Riemannian manifold M is said to have nonnegative (positive, respec-
tively) isotropic curvature, if

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 0(> 0, respectively)

for all orthonormal four-frames {e1, e2.e3.e4}. This conception was intro-
duced by Micallef-Moore and they proved the following topological sphere
theorem:

Lemma 2.5 ([14]). Let M be a compact simply connected n(≥ 4)-dimen-
sional Riemannian manifold which has positive isotropic curvature, then M
is homeomorphic to a sphere.

In addition, Micallef-Wang proved the following topological result for
manifold with positive isotropic curvature:

Lemma 2.6 ([15]). Let M be a closed even-dimensional Riemannian man-
ifold which has positive isotropic curvature, then b2(M) = 0.
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Furthermore, Seshadri proved the following result for manifold with non-
negative isotropic curvature:

Lemma 2.7 ([16]). Let M be a compact n-dimensional Riemannian man-
ifold. If M has nonnegative isotropic curvature everywhere and has positive
isotropic curvature at some point, then M admits a metric with positive
isotropic curvature.

The 1/4-differentiable sphere theorem was finally proved by Brendle-
Schoen ([3], [4]) using the Ricci flow method. They proved that:

Theorem 2.8 ([3]). Let (M, g0) be a compact, locally irreducible Rieman-
nian manifold of dimension n(≥ 4) with curvature tensor R. Assume that
M × R2 has nonnegative isotropic curvature, i.e.,

(2.6) R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ ∈ [−1, 1]. Then
one of the following statements holds:

(i) M is diffeomorphic to a spherical space form;
(ii) n = 2m and the universal covering of M is a Kähler manifold bi-

holomorphic to CP
m;

(iii) The universal covering of M is isometric to a compact symmetric
space.

3. Some algebraic estimates

In this section, we will prove some algebraic estimates that are used in the
proof of the main theorems.

In this section, we always assume n ≥ 4. We say that R is an algebraic
curvature on Rn if R is a fourth tensor such that for every x, y, z, w ∈ Rn,

{

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z) = R(z, w, x, y),

R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

Let {ei}ni=1 be an orthonormal frame of Rn.
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Example 3.1. If B = (hαij) : R
n × Rn −→ Rp is a bilinear operator, we ob-

tain an algebraic curvature tensor R̃ defined by:

R̃ijkl :=

p
∑

α=1

hαikh
α
jl −

p
∑

α=1

hαilh
α
jk, ∀1 ≤ i, j, k, l ≤ n.

Lemma 3.2. Let R be an algebraic curvature tensor R. Suppose there is a
constant c such that for every orthonormal four-frames {e1, e2, e3, e4},

R1212 +R1234 ≥ c,

then for every λ, µ∈ [−1, 1] and every orthonormal four-frames {e1, e2, e3, e4}

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥
(

1 + λ2
) (

1 + µ2
)

c.

Proof. The assumption implies that for every orthonormal four-frames
{e1, e2, e3, e4},

R1212 − |R1234| ≥ c.

The Bianchi identity yields that

R1234 =R1324 +R1432.

Therefore,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

= R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµ(R1324 +R1432)

≥ R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424

−
(

1 + λ2µ2
)

|R1324| −
(

λ2 + µ2
)

|R1432|
= (R1313 − |R1324|) + λ2 (R1414 − |R1432|)
+ µ2 (R2323 − |R2314|) + λ2µ2 (R2424 − |R2413|)

≥
(

1 + λ2 + µ2 + λ2µ2
)

c

=
(

1 + λ2
) (

1 + µ2
)

c.

□
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Lemma 3.3. Let R be an algebraic curvature tensor R. Suppose there is a
constant c such that for every orthonormal four-frames {e1, e2, e3, e4},

R1313 +R2323 +R1234 ≥ c,

then for every λ ∈ [−1, 1] and every orthonormal four-frames {e1, e2, e3, e4}

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 ≥
(

1 + λ2
)

c.

Proof. A straightforward verification. □

Lemma 3.4. Let B = (hαij) : R
n × Rn −→ Rp is a bilinear operator. Define

Hα :=
∑n

i=1 h
α
ii and

R̃ijkl :=

p
∑

α=1

hαikh
α
jl −

p
∑

α=1

hαilh
α
jk, for all 1 ≤ i, j, k, l ≤ n.

Then for all orthonormal four-frames {e1, e2, e3, e4}, we have

(3.1) R̃1212 + R̃1234 ≥
1

2





∑p
α=1 (H

α)2

n− 1
−

n
∑

i,j=1

p
∑

α=1

(

hαij
)2



 ,

with equality holds if and only if hαii = hα11 + hα22 for all i ̸= 1, 2 and hαij = 0
for all distinct i, j with {i, j} ≠ {1, 2}. We also have

(3.2)

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥
∑p

α=1 (H
α)2

n− 2
−

n
∑

i,j=1

p
∑

α=1

(

hαij
)2

.

Proof. For the proof of this Lemma, we refer the reader to Gu-Xu’s paper
[7]. We only need to notice that (3.1) follows from the inequality

(3.3) 2hαmmhαll ≥
∑

i ̸=j

(hαij)
2 +

(Hα)2

n− 1
−

n
∑

i,j=1

(hαij)
2,

for all distinct m, l, and the equality holds if and only if

(3.4) hαii = hαmm + hαll, for all i ̸= m, l.

Furthermore, (3.2) follows from the inequality

(3.5) 2hαpph
α
qq + 2hαmmhαll ≥

∑

i ̸=j

(hαij)
2 +

(Hα)2

n− 2
−

n
∑

i,j=1

(hαij)
2,



✐

✐

“10-Sun” — 2020/12/10 — 23:30 — page 1207 — #13
✐

✐

✐

✐

✐

✐

Sphere theorems for submanifolds in Kähler manifold 1207

for all distinct p, q,m, l, and the equality holds if and only if

(3.6) hαii = hαpp + hαqq = hαmm + hαll, for all i ̸= p, q,m, l. □

Lemma 3.5. Let B and R̃ be as in Lemma 3.4. Assume

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ 2D, for all 1 ≤ i < j ≤ n,

then for every 0 < ε ≤ 1 and all orthonormal four-frames {e1, e2, e3, e4}

R̃1212 + R̃1234 ≥
1

ε

[

D − ((n− 4)ε+ 2)2

8 (2 + (n2 − 4n+ 2) ε)

∑

α=1

(Hα)2

]

.

Proof. The proof can be found in [6]. For reader’s convenience, we give
another but direct proof. Set

hαij := h̊αij +
1

n
Hαδij , Tα :=

1

n
Hα.

One can check that

n
∑

i,j=1

(

hαij
)2

=

n
∑

i,j=1

(

h̊αij

)2
+ n (Tα)2 , for all 1 ≤ α ≤ p.

Denoted by R̃ii :=
∑n

j=1 R̃ijij , we get

R̃ii = Hαhαii −
n
∑

j=1

p
∑

α=1

hαijh
α
ij

= (n− 1)

p
∑

α=1

(Tα)2 +

p
∑

α=1



(n− 2)Tαh̊αii −
n
∑

j=1

(

h̊αij

)2



 .

Thus,

1

2

2
∑

i=1

R̃ii = (n− 1)

p
∑

α=1

(Tα)2

+
1

2

p
∑

α=1



(n− 2)Tα
2
∑

i=1

h̊αii −
n
∑

j=1

2
∑

i=1

(

h̊αij

)2



 ,
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1

n− 2

n
∑

i=3

R̃ii = (n− 1)

p
∑

α=1

(Tα)2

+
1

n− 2

p
∑

α=1



(n− 2)Tα
n
∑

i=3

h̊αii −
n
∑

j=1

n
∑

i=3

(

h̊αij

)2



 .

By assumption,

R̃ii + R̃jj ≥ 2D, ∀1 ≤ i < j ≤ n,

then

1

2

2
∑

i=1

R̃ii ≥ D,
1

n− 2

n
∑

i=3

R̃ii ≥ D.

Now for every ε ∈ (0, 1], we get

D ≤ ε

2

2
∑

i=1

R̃ii +
1− ε

n− 2

n
∑

i=3

R̃ii

= (n− 1)

p
∑

α=1

(Tα)2 +
nε− 2

2

p
∑

α=1

Tα
2
∑

i=1

h̊αii −
ε

2

p
∑

α=1

n
∑

j=1

2
∑

i=1

(

h̊αij

)2

− 1− ε

n− 2

p
∑

α=1

n
∑

j=1

n
∑

i=3

(

h̊αij

)2

= ε
(

R̃1212 + R̃1234

)

+ (n− 1− ε)

p
∑

α=1

(Tα)2 +
(n− 2)ε− 2

2

p
∑

α=1

Tα
2
∑

i=1

h̊αii

− ε

2

p
∑

α=1

(

2
∑

i=1

h̊αii

)2

− ε

2

p
∑

α=1

n
∑

j=3

2
∑

i=1

(

h̊αij

)2
− 1− ε

n− 2

p
∑

α=1

n
∑

j=1

n
∑

i=3

(

h̊αij

)2

− ε

p
∑

α=1

(

h̊α13h̊
α
24 − h̊α14h̊

α
23

)



✐

✐

“10-Sun” — 2020/12/10 — 23:30 — page 1209 — #15
✐

✐

✐

✐

✐

✐

Sphere theorems for submanifolds in Kähler manifold 1209

≤ ε
(

R̃1212 + R̃1234

)

+ (n− 1− ε)

p
∑

α=1

(Tα)2 +
(n− 2)ε− 2

2

p
∑

α=1

Tα
2
∑

i=1

h̊αii

−
[

ε

2
+

1− ε

(n− 2)2

] p
∑

α=1

(

2
∑

i=1

h̊αii

)2

≤ ε
(

R̃1212 + R̃1234

)

+
((n− 4)ε+ 2)2 n2

8 (2 + (n2 − 4n+ 2) ε)

p
∑

α=1

(Tα)2 .

□

Lemma 3.6. Let B and R̃ be as in Lemma 3.4. Assume that for every
orthonormal four-frames {e1, e2, e3, e4},

4
∑

i=1

n
∑

j=1

R̃ijij ≥ 4D,

then for all orthonormal four-frames {e1, e2, e3, e4},

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥ 4D − 1

2

p
∑

α=1

(Hα)2 .

Proof. As notations in the proof of Lemma 3.5, we get

1

4

4
∑

i=1

R̃ii = (n− 1)

p
∑

α=1

(Tα)2 +
1

4

p
∑

α=1



(n− 2)Tα
4
∑

i=1

h̊αii −
n
∑

j=1

4
∑

i=1

(

h̊αij

)2





= (n− 1)

p
∑

α=1

(Tα)2 +
n− 2

4

p
∑

α=1

Tα
4
∑

i=1

h̊αii −
1

4

p
∑

α=1

2
∑

i,j=1

(

h̊αij

)2

− 1

4

p
∑

α=1

4
∑

i,j=3

(

h̊αij

)2
− 1

2

p
∑

α=1

2
∑

i=1

4
∑

j=3

(

h̊αij

)2
− 1

4

p
∑

α=1

n
∑

j=5

4
∑

i=1

(

h̊αij

)2

≤ (n− 1)

p
∑

α=1

(Tα)2 +
n− 2

4

p
∑

α=1

Tα
4
∑

i=1

h̊αii −
1

8

p
∑

α=1

(

2
∑

i=1

h̊αii

)2

− 1

8

p
∑

α=1

(

4
∑

i=3

h̊αii

)2

− 1

4

p
∑

α=1

(

h̊α13 + h̊α24

)2
− 1

4

p
∑

α=1

(

h̊α14 − h̊α23

)2
.
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Notice that

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 = 4

p
∑

α=1

(Tα)2 + 2

p
∑

α=1

Tα
4
∑

i=1

h̊αii

+

p
∑

α=1

(

2
∑

i=1

h̊αii

)





4
∑

j=3

h̊αjj





−
p
∑

α=1

(

h̊α13 + h̊α24

)2
−

p
∑

α=1

(

h̊α14 − h̊α23

)2
.

We obtain

D ≤ 1

4





2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234



+ (n− 1)

p
∑

α=1

(Tα)2 +
n− 2

4

p
∑

α=1

Tα
4
∑

i=1

h̊αii

− 1

8

p
∑

α=1

(

4
∑

i=1

h̊αii

)2

−
p
∑

α=1

(Tα)2 − 1

2

p
∑

α=1

Tα
4
∑

i=1

h̊αii

=
1

4





2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234



+ (n− 2)

p
∑

α=1

(Tα)2

+
n− 4

4

p
∑

α=1

Tα
4
∑

i=1

h̊αii −
1

8

p
∑

α=1

(

4
∑

i=1

h̊αii

)2

≤ 1

4





2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234



+
n2

8

p
∑

α=1

(Tα)2 .

□

4. Proof of Theorem A

In this section, we will prove the differentiable sphere theorems for subman-
ifolds in Kähler manifold.

Proof of Theorem A. By (1.1), we have for any vector field X on N that

(4.1) K̃min|X|4 ≤ K(X) ≤ K̃max|X|4.
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By (2.2) and (4.1), we have for orthonormal pair (X,Y ) on N

32K(X,Y ) ≤ 3K̃max

(

|X + JY |4 + |X − JY |4
)

− K̃min

(

|X + Y |4 + |X − Y |4 + 4|X|4 + 4|Y |4)
)

= 24(1 + ⟨X, JY ⟩2)K̃max − 16K̃min.

Similarly we have

32K(X,Y ) ≥ 24(1 + ⟨X, JY ⟩2)K̃min − 16K̃max.

Therefore, we have

3

4
(1 + ⟨X, JY ⟩2)K̃min −

1

2
K̃max(4.2)

≤ K(X,Y ) ≤ 3

4
(1 + ⟨X, JY ⟩2)K̃max −

1

2
K̃min.

By (2.3) and (4.1), we have for any orthonormal four-frames {X,Y, Z,W}
on N

256K(X,Y, Z,W )(4.3)

≤ K̃max

(

|X + Z + JY + JW |4 + |X + Z − JY − JW |4

+|X − Z + JY − JW |4 + |X − Z − JY + JW |4

+|X +W + JY − JZ|4 + |X +W − JY + JZ|4

+|X −W + JY + JZ|4 + |X −W − JY − JZ|4
)

− K̃min

(

|X + Z + JY − JW |4 + |X + Z − JY + JW |4

+|X − Z + JY + JW |4 + |X − Z − JY − JW |4

+|X +W + JY + JZ|4 + |X +W − JY − JZ|4

+|X −W + JY − JZ|4 + |X −W − JY + JZ|4
)

= K̃max

[

128 + 8(⟨X + Z, JY + JW ⟩2 + ⟨X − Z, JY − JW ⟩2

+⟨X +W,JY − JZ⟩2 + ⟨X −W,JY + JZ⟩2)
]

− K̃min

[

128 + 8(⟨X + Z, JY − JW ⟩2 + ⟨X − Z, JY + JW ⟩2

+⟨X +W,JY + JZ⟩2 + ⟨X −W,JY − JZ⟩2)
]

.
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Similarly, we have

256K(X,Y, Z,W )(4.4)

≥ K̃min

[

128 + 8(⟨X + Z, JY + JW ⟩2 + ⟨X − Z, JY − JW ⟩2

+⟨X +W,JY − JZ⟩2 + ⟨X −W,JY + JZ⟩2)
]

− K̃max

[

128 + 8(⟨X + Z, JY − JW ⟩2 + ⟨X − Z, JY + JW ⟩2

+⟨X +W,JY + JZ⟩2 + ⟨X −W,JY − JZ⟩2)
]

.

Next we will show that under our assumption, M × R2 has nonneg-
ative isotropic curvature, i.e., (2.6) holds for all orthonormal four-frames
{e1, e2, e3, e4} and all λ, µ ∈ [−1, 1]. For that purpose, we first extend the
four-frame {e1, e2, e3, e4} to be an orthonormal frame {e1, . . . , e2m} of N
such that {e1, . . . , en} are tangent to M and {en+1, . . . , e2m} are normal to
M . The Gauss equation (2.4) implies that

(4.5) R̃(X,Y, Z,W ) := R(X,Y, Z,W )−K(X,Y, Z,W )

is an algebraic curvature. Lemma 3.4 implies that

R̃1212 + R̃1234 ≥
1

2





∑p
α=1 (H

α)2

n− 1
−

n
∑

i,j=1

p
∑

α=1

(

hαij
)2



 =
1

2

( |H|2
n− 1

− |B|2
)

.

Lemma 3.2 implies that for every orthonormal four-frames {e1, e2, e3, e4}
and every λ, µ ∈ [−1, 1]

R̃1313 + λ2R̃1414 + µ2R̃2323 + λ2µ2R̃2424 − 2λµR̃1234

≥ (1 + λ2)(1 + µ2)

2

( |H|2
n− 1

− |B|2
)

,

i.e.,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234(4.6)

≥ K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234

+
1 + λ2 + µ2 + λ2µ2

2

( |H|2
n− 1

− |B|2
)

.

By (2.5), we have

(4.7) |B|2 − 1

n− 1
|H|2 =

n
∑

i,j=1

Kijij +
n− 2

n− 1
|H|2 −RM .
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Putting (4.7) into (4.6) yields

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234(4.8)

≥ K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234

+
1 + λ2 + µ2 + λ2µ2

2



RM − n− 2

n− 1
|H|2 −

n
∑

i,j=1

Kijij



 .

Therefore, it suffices to estimate the terms involving the curvature tensor K
on N . By (4.2), for every i ̸= j, we have

(4.9) Kijij ≥
3

4
(1 + ⟨ei, Jej⟩2)K̃min −

1

2
K̃max,

and

(4.10) Kijij ≤
3

4
(1 + ⟨ei, Jej⟩2)K̃max −

1

2
K̃min.

Therefore,

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424

(4.11)

− 1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

3

4
K̃min −

1

2
K̃max

)

+
3

4

(

⟨e1, Je3⟩2 + λ2⟨e1, Je4⟩2 + µ2⟨e2, Je3⟩2 + λ2µ2⟨e2, Je4⟩2
)

K̃min

− 1 + λ2 + µ2 + λ2µ2

2

×



n(n− 1)

(

3

4
K̃max −

1

2
K̃min

)

+
3

4

n
∑

i,j=1

⟨ei, Jej⟩2K̃max





= (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

+
3

4

(

⟨e1, Je3⟩2 + λ2⟨e1, Je4⟩2 + µ2⟨e2, Je3⟩2 + λ2µ2⟨e2, Je4⟩2
)

K̃min

− 3(1 + λ2 + µ2 + λ2µ2)

8

n
∑

i,j=1

⟨ei, Jej⟩2K̃max.
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We will consider three cases:
Case 1: K̃min ≥ 0. In this case, we have from (4.11) that

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 −
1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

− 3n(1 + λ2 + µ2 + λ2µ2)

8
K̃max

= (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 + 4

8
K̃max

)

.

By (4.3) and (4.4), we have

(4.12)
1

2
K̃min − K̃max ≤ K1234 ≤ K̃max −

1

2
K̃min.

Therefore, we have

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(4.13)

− 1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 + 4

8
K̃max

)

− 1 + λ2 + µ2 + λ2µ2

2

(

K̃max −
1

2
K̃min

)

=
1 + λ2 + µ2 + λ2µ2

2

(

n2 − n+ 4

2
K̃min −

3n2 + 8

4
K̃max

)

.

Putting (4.13) into (4.8) yields

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234(4.14)

≥ 1 + λ2 + µ2 + λ2µ2

2

×
(

RM − 3n2 + 8

4
K̃max +

n2 − n+ 4

2
K̃min −

n− 2

n− 1
|H|2

)

.



✐

✐

“10-Sun” — 2020/12/10 — 23:30 — page 1215 — #21
✐

✐

✐

✐

✐

✐

Sphere theorems for submanifolds in Kähler manifold 1215

Case 2: K̃min ≤ 0 ≤ K̃max. In this case, we have from (4.11) that

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424

− 1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

+
3(1 + λ2 + µ2 + λ2µ2)

4
K̃min −

3n(1 + λ2 + µ2 + λ2µ2)

8
K̃max

= (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 6

4
K̃min −

3n2 + 4

8
K̃max

)

.

By (4.3) and (4.4), we have

(4.15) K̃min − K̃max ≤ K1234 ≤ K̃max − K̃min.

Therefore, we have

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(4.16)

− 1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 6

4
K̃min −

3n2 + 4

8
K̃max

)

− 1 + λ2 + µ2 + λ2µ2

2

(

K̃max − K̃min

)

=
1 + λ2 + µ2 + λ2µ2

2

(

n2 − n+ 8

2
K̃min −

3n2 + 8

4
K̃max

)

.

Putting (4.16) into (4.8) yields

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234(4.17)

≥ 1 + λ2 + µ2 + λ2µ2

2

×
(

RM − 3n2 + 8

4
K̃max +

n2 − n+ 8

2
K̃min −

n− 2

n− 1
|H|2

)

.
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Case 3: K̃max ≤ 0. In this case, we have from (4.11) that

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424

− 1 + λ2 + µ2 + λ2µ2

2

n
∑

i,j=1

Kijij

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 3

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

+
3(1 + λ2 + µ2 + λ2µ2)

4
K̃min

= (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 6

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

.

By (4.3) and (4.4), we have

(4.18) K̃min −
1

2
K̃max ≤ K1234 ≤

1

2
K̃max − K̃min.

Therefore, we have

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(4.19)

≥ (1 + λ2 + µ2 + λ2µ2)

(

n2 − n+ 6

4
K̃min −

3n2 − 3n+ 4

8
K̃max

)

− 1 + λ2 + µ2 + λ2µ2

2

(

1

2
K̃max − K̃min

)

=
1 + λ2 + µ2 + λ2µ2

2

(

n2 − n+ 8

2
K̃min −

3n2 − 3n+ 6

4
K̃max

)

.

Putting (4.19) into (4.8) yields

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234(4.20)

≥ 1 + λ2 + µ2 + λ2µ2

2

×
(

RM − 3(n2 − n+ 2)

4
K̃max +

n2 − n+ 8

2
K̃min −

n− 2

n− 1
|H|2

)

.

From (4.14), (4.17) and (4.20), we see that in any case, under our as-
sumption (1.2), M × R2 always has nonnegative isotropic curvature, i.e.,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ ∈ [−1, 1].
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Next, we will estimate the Ricci curvature on M . We will assume that
n ≥ 3. By the Gauss equation (2.4), (3.3), (3.4), (4.7), (4.9) and (4.10), we
have for i ̸= j

Rijij = Kijij +

2m
∑

α=n+1

[hαiih
α
jj − (hαij)

2]

(4.21)

≥ 1

2





3

2
(1 + ⟨ei, Jej⟩2)K̃min − K̃max +RM −

n
∑

i,j=1

Kijij −
n− 2

n− 1
|H|2





≥ 1

2

(

RM − 3n2 − 3n+ 4

4
K̃max +

n2 − n+ 3

2
K̃min −

n− 2

n− 1
|H|2

)

+
1

2





3

2
⟨ei, Jej⟩2K̃min −

3

4

n
∑

i,j=1

⟨ei, Jej⟩2K̃max



 ,

with the first equality holds only if

(4.22) hαkl = 0, for all k ̸= l, {k, l} ≠ {i, j} and any α

and

(4.23) hαkk = hαii + hαjj , for all k ̸= i, j, and any α.

We will also consider three cases:
Case 1: K̃min ≥ 0. In this case, we have from (4.21) and the assumption

(1.2) that

Rijij ≥
1

2

(

RM − 3n2 + 4

4
K̃max +

n2 − n+ 3

2
K̃min −

n− 2

n− 1
|H|2

)

with equality holds only if (4.22) and (4.23) hold. In particular, we see that
for any 1 ≤ i ≤ n,

Ricii ≥
n− 1

2

(

RM − 3n2 + 4

4
K̃max +

n2 − n+ 3

2
K̃min −

n− 2

n− 1
|H|2

)

,

with equality holds only if

hαii = 0, hαkl = 0, for all k ̸= l, and any α
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and

hαkk = hαll, for all k, l ̸= i, and any α,

which implies

(4.24) |B|2 = |H|2
n− 1

.

By assumption (1.2), we have

Ricii ≥
n− 1

2

(

K̃max −
1

2
K̃min

)

.

Case 2: K̃min ≤ 0 ≤ K̃max. In this case, similar arguments as above
shows that

Ricii ≥
n− 1

2

(

K̃max − K̃min

)

,

with equality holds only if (4.24) holds.
Case 3: K̃max ≤ 0. In this case, we have from (4.21) and the assumption

(1.2) that

Ricii ≥
n− 1

2

(

1

2
K̃max − K̃min

)

,

with equality holds only if (4.24) holds.
If K̃max and K̃min are not both zero, then we can easily see from above

that RicM is positive everywhere on M .
If K̃max = K̃min = 0, then by assumption, M has nonnegative Ricci cur-

vature everywhere and has positive Ricci curvature at least at some point.
By Aubin’s theorem (Lemma 2.4), M admits a metric with positive Ricci
curvature. Now we can finish the proof of the theorem:

If n = 2, then by our assumption (1.2), we see that M has nonnegative
Gauss curvature and has positive Gauss curvature at least at some point.
Hence M is diffeomorphic to S2 or RP 2. In particular, since M is simply
connected, M is diffeomorphic to S2.

If n = 3, then from the above argument, M admits a metric with pos-
itive Ricci curvature. Therefore, M admits a metric with constant positive
sectional curvature by Hamilton’s theorem ([8]). Hence, M is diffeomorphic
to a spherical space form. Since M is simply connected, M is diffeomorphic
to S3.
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If n ≥ 4, then M × R2 has nonnegative isotropic curvature. On the other
hand, putting λ = µ = 1 in (4.6) and from the above arguments (by consid-
ering three cases), we see that under our assumption (1.2), we have

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 0

for all orthonormal four-frames {e1, e2, e3, e4}.
Claim. M has nonnegative isotropic curvature and has positive isotropic
curvature at some point x0 on M .

Proof of the claim. We will also consider three cases according to the sign
of the holomorphic sectional curvature as above.

If K̃min ≥ 0, then we have from (4.14), (3.3) and (3.4) that

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ 2

(

RM − 3n2 + 8

4
K̃max +

n2 − n+ 4

2
K̃min −

n− 2

n− 1
|H|2

)

≥ 0,

with the first equality holds only if hαij = 0 for all 1 ≤ i, j ≤ n. We will show

that if K̃max ̸= K̃min at some point p ∈ M , then the first equality cannot
achieve at p. Actually, if the first equality holds at p, then we have at p
that RM =

∑n
i,j=1Kijij by (2.5), since p is a totally geodesic point. Now

our assumption reduces to

n
∑

i,j=1

Kijij ≥
3n2 + 8

4
K̃max −

n2 − n+ 4

2
K̃min.

Using (4.10), we compute

3n2 + 8

4
K̃max −

n2 − n+ 4

2
K̃min ≤

n
∑

i,j=1

Kijij ≤
3n2

4
K̃max −

n2 − n

2
K̃min,

which implies that K̃max = K̃min, contradicting to our assumption. There-
fore, if K̃max ̸= K̃min at p, them M has positive isotropic curvature at p.
If K̃max = K̃min at p, then M has also positive isotropic curvature at p by
assumption.

The proof of the other two cases are similar and we omit the details here.
This completes the proof of the claim. □
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By Lemma 2.7 and the above claim, M admits a metric with positive
isotropic curvature, and hence M is homeomorphic to a sphere by Micallef-
Moore’s theorem (Lemma 2.5). In particular, M is locally irreducible. Now
Brendle-Schoen’s theorem (Theorem 2.8) applying to M gives us that M is
either diffeomorphic to a round sphere Sn, or is a Kähler manifold biholo-
morphic to complex projective space, or is isometric to a compact symmetric
space. Since, M admits a metric with positive isotropic curvature, Lemma
2.6 shows that b2(M) = 0 if M has even dimension, and hence M cannot
be a Kähler manifold. Furthermore, Seshadri ([16]) proved that any locally
symmetric metric on M must be of constant sectional curvature. Thus, we
have shown that M must be diffeomorphic to a round sphere Sn. This fin-
ishes the proof of the theorem. □

From the proof of Theorem A, we can easily see that the assumption of
Theorem A can be weaken if the submanifold is totally real, which is given
by Corollary 1.1.

Proof of Corollary 1.1. We choose any orthonormal four-frame {e1, e2, e3, e4}
on M . Since M is totally real in N , we see that Jei is normal to TM for
any 1 ≤ i ≤ 4. Therefore, we have by (4.9) and (4.10) that for 1 ≤ i, j ≤ 4

(4.25) Kijij ≥
3

4
K̃min −

1

2
K̃max,

and

Kijij ≤
3

4
K̃max −

1

2
K̃min,

Also by (4.3) and (4.4) we have that

(4.26)
1

2
(K̃min − K̃max) ≤ K1234 ≤

1

2
(K̃max − K̃min).

From (4.8), (4.25) and (4.26), we see that

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ 1 + λ2 + µ2 + λ2µ2

2

×
(

RM − 3(n2 − n+ 2)

4
K̃max +

n2 − n+ 4

2
K̃min −

n− 2

n− 1
|H|2

)

.

The remaining part of the proof is similar to that of the proof of Theorem A
and we omit the details. We only need to notice that in order to show that
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the isotropic curvature is nonnegative everywhere and positive at some point
on M , we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ 2

(

RM − 3(n2 − n+ 2)

4
K̃max +

n2 − n+ 4

2
K̃min −

n− 2

n− 1
|H|2

)

≥ 0,

with the first equality holds at p ∈ M only if p is a totally geodesic point.
Then at p, we have RM =

∑n
i,j=1Kijij , and our assumption reduces to

3(n2 − n+ 2)

4
K̃max −

n2 − n+ 4

2
K̃min

≤
n
∑

i,j=1

Kijij ≤ n(n− 1)

(

3

4
K̃max −

1

2
K̃min

)

,

which implies that K̃max ≤ 4
3K̃min. But at p we also have

R1313 +R1414 +R2323 +R2424 − 2R1234

= K1313 +K1414 +K2323 +K2424 − 2K1234

≥ 4K̃min − 3K̃max,

which implies that 4
3K̃min ≤ K̃max if R1313 +R1414 +R2323 +R2424 − 2R1234

= 0. Therefore, K̃max = K̃min at p. This finished the proof of the corollary.
□

Proof of Corollary 1.2. As in the proof of Corollary 1.1, we have

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

≥ 1 + λ2 + µ2 + λ2µ2

2

(

RM − n2 − n− 2

4
c− n− 2

n− 1
|H|2

)

.

It suffices to estimate the isotropic curvature of M . By taking λ = µ = 1,
we obtain

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ 2

(

RM − n2 − n− 2

4
c− n− 2

n− 1
|H|2

)

≥ 0,

with the first equality holds at p ∈ M only if p is a totally geodesic point.
Then at p, we have RM =

∑n
i,j=1Kijij =

n(n−1)c
4 . We conclude that c ≥ 0.
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However, at p,

R1313 +R1414 +R2323 +R2424 − 2R1234

= K1313 +K1414 +K2323 +K2424 − 2K1234 ≥ c.

Therefore, if c ̸= 0, then the isotropic curvature of M is positive everywhere.
If c = 0, then by assumption M has nonnegative isotropic curvature and has
positive isotropic curvature at some point x0 on M . The remaining part of
the proof is similar to that of Theorem A. □

5. Proof of Theorem B

In this section, we will consider differentiable sphere theorem for compact
submanifolds in Kähler manifold under the Ricci curvature pinching condi-
tion.

Proof of Theorem B. We will show that under our assumption, M × R2 has
nonnegative isotropic curvature, i.e., (2.6) holds for all orthonormal four-
frames {e1, e2, e3, e4} and all λ, µ ∈ [−1, 1]. As in the proof of Theorem A,
we first extend the four-frame {e1, e2, e3, e4} to be an orthonormal frame
{e1, . . . , e2m} of N such that {e1, . . . , en} are tangent to M and {en+1, . . . ,
e2m} are normal to M . Define the operator R̃ by (4.5), which is an algebraic
curvature. Then for any 1 ≤ i < j ≤ n, we have from (4.10) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk = Ricii +Ricjj −
n
∑

k=1

Kikik −
n
∑

k=1

Kjkjk(5.1)

≥ Ric
[2]
min − (n− 1)

(

3

2
K̃max − K̃min

)

− 3

4

n
∑

k=1

(

⟨ei, Jek⟩2 + ⟨ej , Jek⟩2
)

K̃max.

Now we will consider three cases:
Case 1: K̃min ≥ 0. In this case, we have from (5.1) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ Ric
[2]
min −

3n

2
K̃max + (n− 1)K̃min.
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By taking 2D = Ric
[2]
min − 3n

2 K̃max + (n− 1)K̃min in Lemma 3.5, we obtain
for every 0 < ε ≤ 1 and all orthonormal four-frames {e1, e2, e3, e4}

R̃1212 + R̃1234 ≥
1

2ε

[

Ric
[2]
min −

3n

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

,

where δ(ε, n) = ((n−4)ε+2)2

4(2+(n2−4n+2)ε) . Lemma 3.2 implies that for every λ, µ ∈
[−1, 1] and every orthonormal four-frames {e1, e2, e3, e4}

R̃1313 + λ2R̃1414 + µ2R̃2323 + λ2µ2R̃2424 − 2λµR̃1234

≥ (1 + λ2)(1 + µ2)

2ε

[

Ric
[2]
min −

3n

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

,

i.e.,

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)

(5.2)

≥ 2ε(K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234)

+ (1 + λ2)(1 + µ2)

[

Ric
[2]
min −

3n

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

.

Since K̃min ≥ 0, we have from (4.9) and (4.12) that

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(5.3)

≥ (1 + λ2)(1 + µ2)

(

3

4
K̃min −

1

2
K̃max

)

− (1 + λ2)(1 + µ2)

2

(

K̃max −
1

2
K̃min

)

= (1 + λ2)(1 + µ2)
(

K̃min − K̃max

)

.

Inserting (5.3) into (5.2), we have

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)

≥ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3n+ 4ε

2
K̃max + (n− 1 + 2ε)K̃min − δ(ε, n)|H|2

]

≥ 0,
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the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.3). The same argument as in the proof of
Theorem A implies that M is diffeomorphic to Sn.

Case 2: K̃min ≤ 0 ≤ K̃max. In this case, following the same argument as
Case 1, we also have (5.2). By (4.9) and (4.15), we have

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(5.4)

≥ (1 + λ2)(1 + µ2)

(

3

2
K̃min −

1

2
K̃max

)

− (1 + λ2)(1 + µ2)

2

(

K̃max − K̃min

)

= (1 + λ2)(1 + µ2)
(

2K̃min − K̃max

)

.

Inserting (5.4) into (5.2), we have

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)

≥ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3n+ 4ε

2
K̃max + (n− 1 + 4ε)K̃min − δ(ε, n)|H|2

]

≥ 0,

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.3). The same argument as in the proof of
Theorem A implies that M is diffeomorphic to Sn.

Case 3: K̃max ≤ 0. In this case, we have from (5.1) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min.

By taking 2D = Ric
[2]
min −

3(n−1)
2 K̃max + (n− 1)K̃min in Lemma 3.5, we ob-

tain for every 0 < ε ≤ 1 and all orthonormal four-frames {e1, e2, e3, e4}

R̃1212 + R̃1234 ≥
1

2ε

[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

.
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Lemma 3.2 implies that for every orthonormal four-frames {e1, e2, e3, e4}
and every λ, µ ∈ [−1, 1]

R̃1313 + λ2R̃1414 + µ2R̃2323 + λ2µ2R̃2424 − 2λµR̃1234

≥ (1 + λ2)(1 + µ2)

2ε

×
[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

,

i.e.,

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)(5.5)

≥ 2ε(K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234)

+ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

.

Since K̃max ≤ 0, we have from (4.9) and (4.18) that

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(5.6)

≥ (1 + λ2)(1 + µ2)

(

3

2
K̃min −

1

2
K̃max

)

− (1 + λ2)(1 + µ2)

2

(

1

2
K̃max − K̃min

)

= (1 + λ2)(1 + µ2)

(

2K̃min −
3

4
K̃max

)

.

Inserting (5.6) into (5.5), we have

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)

≥ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3(n− 1 + ε)

2
K̃max + (n− 1 + 4ε)K̃min − δ(ε, n)|H|2

]

≥ 0,

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.3). The same argument as in the proof of
Theorem A implies that M is diffeomorphic to Sn. This finishes the proof
of the theorem. □
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Proof of Corollary 1.3. Let Mn be a totally real submanifold of a Kähler
manifold N2m. Using the notations as in the proof of Theorem B, we have
from (5.1) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ Ric
[2]
min − (n− 1)

(

3

2
K̃max − K̃min

)

.

By taking 2D = Ric
[2]
min −

3(n−1)
2 K̃max + (n− 1)K̃min in Lemma 3.5, we ob-

tain for every 0 < ε ≤ 1 and all orthonormal four-frames {e1, e2, e3, e4}

R̃1212 + R̃1234 ≥
1

2ε

[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

.

Lemma 3.2 implies that for every orthonormal four-frames {e1, e2, e3, e4}
and every λ, µ ∈ [−1, 1]

R̃1313 + λ2R̃1414 + µ2R̃2323 + λ2µ2R̃2424 − 2λµR̃1234

≥ (1 + λ2)(1 + µ2)

2ε

[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

,

i.e.,

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)(5.7)

≥ 2ε(K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234)

+ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3(n− 1)

2
K̃max + (n− 1)K̃min − δ(ε, n)|H|2

]

.

By (4.25) and (4.26), we have

K1313 + λ2K1414 + µ2K2323 + λ2µ2K2424 − 2λµK1234(5.8)

≥ (1 + λ2)(1 + µ2)

(

3

4
K̃min −

1

2
K̃max

)

− (1 + λ2)(1 + µ2)

2

(

1

2
K̃max −

1

2
K̃min

)

= (1 + λ2)(1 + µ2)

(

K̃min −
3

4
K̃max

)

.
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Inserting (5.8) into (5.7), we have

2ε(R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234)

≥ (1 + λ2)(1 + µ2)

×
[

Ric
[2]
min −

3(n− 1 + ε)

2
K̃max + (n− 1 + 2ε)K̃min − δ(ε, n)|H|2

]

≥ 0,

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.3). The same argument as in the proof of
Theorem A implies that M is diffeomorphic to Sn. This finishes the proof
of the corollary. □

6. Proof of Theorem C and Theorem D

In this section, we will prove the topological sphere theorem for submanifolds
in Kähler manifold.

Proof of Theorem C. As before, we will show that under our assumption,
M × R2 has nonnegative isotropic curvature. For any orthonormal four-
frame {e1, e2, e3, e4}, we first extend it to be an orthonormal frame {e1, . . . ,
e2m} of N such that {e1, . . . , en} are tangent to M and {en+1, . . . , e2m}
are normal to M . The tensor R̃ defined by (4.5) is an algebraic curvature.
Then (3.2) and (3.5), (3.6) implie that

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥
∑p

α=1 (H
α)2

n− 2
−

n
∑

i,j=1

p
∑

α=1

(

hαij
)2

=
|H|2
n− 2

− |B|2.

i.e.,

R1313 +R1414 +R2323 +R2424 − 2R1234(6.1)

≥ K1313 +K1414 +K2323 +K2424 − 2K1234 +
|H|2
n− 2

− |B|2.

Putting (4.7) into (6.1) yields

R1313 +R1414 +R2323 +R2424 − 2R1234(6.2)

≥ K1313 +K1414 +K2323 +K2424 − 2K1234

+RM − n− 3

n− 2
|H|2 −

n
∑

i,j=1

Kijij .
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Therefore, it suffices to estimate the terms involving the curvature tensor K
on N . As in the proof of Theorem A, we will consider three cases:

Case 1: K̃min ≥ 0. In this case, we have from (4.9), (4.10) and (4.12)
that

K1313 +K1414 +K2323 +K2424 − 2K1234 −
n
∑

i,j=1

Kijij(6.3)

≥ 4

(

3

4
K̃min −

1

2
K̃max

)

− 2

(

K̃max −
1

2
K̃min

)

− n(n− 1)

(

3

4
K̃max −

1

2
K̃min

)

− 3

4

n
∑

i,j=1

⟨ei, Jej⟩2K̃max

≥ n2 − n+ 8

2
K̃min −

3n2 + 16

4
K̃max.

Putting (6.3) into (6.2) yields

R1313 +R1414 +R2323 +R2424 − 2R1234(6.4)

≥ RM − 3n2 + 16

4
K̃max +

n2 − n+ 8

2
K̃min −

n− 3

n− 2
|H|2.

Case 2: K̃min ≤ 0 ≤ K̃max. In this case, we have from (4.9), (4.10) and
(4.15) that

K1313 +K1414 +K2323 +K2424 − 2K1234 −
n
∑

i,j=1

Kijij(6.5)

≥ 4

(

3

2
K̃min −

1

2
K̃max

)

− 2
(

K̃max − K̃min

)

− n(n− 1)

(

3

2
K̃max −

1

2
K̃min

)

− 3

4

n
∑

i,j=1

⟨ei, Jej⟩2K̃max

=
n2 − n+ 16

2
K̃min −

3n2 + 16

4
K̃max.

Putting (6.5) into (6.2) yields

R1313 +R1414 +R2323 +R2424 − 2R1234(6.6)

≥ RM − 3n2 + 16

4
K̃max +

n2 − n+ 16

2
K̃min −

n− 3

n− 2
|H|2.
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Case 3: K̃max ≤ 0. In this case, we have from (4.9), (4.10) and (4.18)
that

K1313 +K1414 +K2323 +K2424 − 2K1234 −
n
∑

i,j=1

Kijij(6.7)

≥ 4

(

3

2
K̃min −

1

2
K̃max

)

− 2

(

1

2
K̃max − K̃min

)

− n(n− 1)

(

3

4
K̃max −

1

2
K̃min

)

=
n2 − n+ 16

2
K̃min −

3(n2 − n+ 4)

4
K̃max.

Putting (6.7) into (6.2) yields

R1313 +R1414 +R2323 +R2424 − 2R1234(6.8)

≥ RM − 3(n2 − n+ 4)

4
K̃max +

n2 − n+ 16

2
K̃min −

n− 3

n− 2
|H|2.

From (6.4), (6.6) and (6.8), we see that in any case, under our assump-
tion (1.4), M always has nonnegative isotropic curvature and has positive
isotropic curvature at some point. By Lemma 2.7, M admits a metric with
positive isotropic curvature. Since M is simply connected, M is homeomor-
phic to Sn by Lemma 2.5. □

Proof of Corollary 1.6. Let Mn be a totally real submanifold of a Kähler
manifold N2m. In this case, (6.2) is still true. By (4.25) and (4.26), we have

K1313 +K1414 +K2323 +K2424 − 2K1234 −
n
∑

i,j=1

Kijij(6.9)

≥ 4

(

3

4
K̃min −

1

2
K̃max

)

− 2

(

1

2
K̃max −

1

2
K̃min

)

− n(n− 1)

(

3

4
K̃max −

1

2
K̃min

)

=
n2 − n+ 8

2
K̃min −

3(n2 − n+ 4)

4
K̃max.
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Inserting (6.9) into (6.2), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ RM − 3(n2 − n+ 4)

4
K̃max +

n2 − n+ 8

2
K̃min −

n− 3

n− 2
|H|2

≥ 0,

and the strict inequality holds for some point x0 ∈ M , where the last inequal-
ity follows from our assumption. Then the corollary follows from Lemma 2.7
and Lemma 2.5. □

Proof of Theorem D. Using the same notations as in the proof of Theo-
rem B, we have from (4.10)

4
∑

i=1

n
∑

j=1

R̃ijij =

4
∑

i=1

Ricii −
4
∑

i=1

n
∑

j=1

Kijij(6.10)

≥ Ric
[4]
min − (n− 1)

(

3K̃max − 2K̃min

)

− 3

4

4
∑

i=1

n
∑

j=1

⟨ei, Jej⟩2K̃max.

Now we will consider three cases:
Case 1: K̃min ≥ 0. In this case, we have from (6.10) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ Ric
[4]
min − 3nK̃max + 2(n− 1)K̃min.

By taking 4D = Ric
[4]
min − 3nK̃max + 2(n− 1)K̃min in Lemma 3.6, we obtain

for all orthonormal four-frames {e1, e2, e3, e4},

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥ Ric
[4]
min − 3nK̃max + 2(n− 1)K̃min −

1

2
|H|2.

In other word,

R1313 +R1414 +R2323 +R2424 − 2R1234(6.11)

≥ K1313 +K1414 +K2323 +K2424 − 2K1234

+Ric
[4]
min − 3nK̃max + 2(n− 1)K̃min −

1

2
|H|2.
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Since K̃min ≥ 0, we have from (4.9) and (4.12) that

K1313 +K1414 +K2323 +K2424 − 2K1234(6.12)

≥ 4

(

3

4
K̃min −

1

2
K̃max

)

− 2

(

K̃max −
1

2
K̃min

)

= 4
(

K̃min − K̃max

)

.

Inserting (6.12) into (6.11), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ Ric
[4]
min − (3n+ 4)K̃max + 2(n+ 1)K̃min −

1

2
|H|2

≥ 0

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.5). By Lemma 2.7, M admits a metric with
positive isotropic curvature. Since M is simply connected, M is homeomor-
phic to Sn by Lemma 2.5.

Case 2: K̃min ≤ 0 ≤ K̃max. In this case, following the same argument as
Case 1, we also have (6.11). By (4.9) and (4.15), we have

K1313 +K1414 +K2323 +K2424 − 2K1234(6.13)

≥ 4

(

3

2
K̃min −

1

2
K̃max

)

− 2
(

K̃max − K̃min

)

= 4
(

2K̃min − K̃max

)

.

Inserting (6.13) into (6.11), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ Ric
[4]
min − (3n+ 4)K̃max + 2(n+ 3)K̃min −

1

2
|H|2

≥ 0

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.5). Then the theorem follows from Lemma
2.7 and Lemma 2.5.
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Case 3: K̃max ≤ 0. In this case, we have from (6.10) that

n
∑

k=1

R̃ikik +

n
∑

k=1

R̃jkjk ≥ Ric
[4]
min − 3(n− 1)K̃max + 2(n− 1)K̃min.

By taking 4D = Ric
[4]
min − 3(n− 1)K̃max + 2(n− 1)K̃min in Lemma 3.6, we

obtain for all orthonormal four-frames {e1, e2, e3, e4},

2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥ Ric
[4]
min − 3(n− 1)K̃max + 2(n− 1)K̃min −

1

2
|H|2.

In other word,

R1313 +R1414 +R2323 +R2424 − 2R1234(6.14)

≥ K1313 +K1414 +K2323 +K2424 − 2K1234

+Ric
[4]
min − 3(n− 1)K̃max + 2(n− 1)K̃min −

1

2
|H|2.

Since K̃max ≤ 0, we have from (4.9) and (4.18) that

K1313 +K1414 +K2323 +K2424 − 2K1234(6.15)

≥ 4

(

3

2
K̃min −

1

2
K̃max

)

− 2

(

1

2
K̃max − K̃min

)

= 8K̃min − 3K̃max.

Inserting (6.15) into (6.14), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ Ric
[4]
min − 3nK̃max + 2(n+ 3)K̃min −

1

2
|H|2

≥ 0

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption (1.5). Then the theorem follows from Lemma
2.7 and Lemma 2.5. This finishes the proof of the theorem. □

Proof of Corollary 1.8. Let Mn be a totally real submanifold of a Kähler
manifold N2m. Using the notations as in the proof of Theorem D, we have
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from (6.10) that

4
∑

i=1

n
∑

j=1

R̃ijij ≥ Ric
[4]
min − (n− 1)

(

3K̃max − 2K̃min

)

.

By taking 4D = Ric
[4]
min − (n− 1)

(

3K̃max − 2K̃min

)

in Lemma 3.6, we ob-

tain for every orthonormal four-frames {e1, e2, e3, e4}
2
∑

i=1

4
∑

j=3

R̃ijij − 2R̃1234 ≥ Ric
[4]
min − 3(n− 1)K̃max + 2(n− 1)K̃min −

1

2
|H|2.

In other word, (6.14) is true. By (4.25) and (4.26), we have

K1313 +K1414 +K2323 +K2424 − 2K1234(6.16)

≥ 4

(

3

4
K̃min −

1

2
K̃max

)

− 2

(

1

2
K̃max −

1

2
K̃min

)

= 4K̃min − 3K̃max.

Inserting (6.16) into (6.14), we have

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ Ric
[4]
min − 3nK̃max + 2(n+ 1)K̃min −

1

2
|H|2

≥ 0

the strict inequality holds for some point x0 ∈ M , where the last inequality
follows from our assumption. Then the corollary follows from Lemma 2.7
and Lemma 2.5. □
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