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An example of liftings with different

Hodge numbers

Shizhang Li

In this paper, we exhibit an example of a smooth proper variety in
positive characteristic possessing two liftings with different Hodge
numbers.

1. Introduction

Does a smooth proper variety in positive characteristic know the Hodge
number of its liftings? In this paper, we construct an example showing that
the answer is no in general. There are some constraints to make such an
example. Such an example must be of dimension at least 3 (see Proposi-
tion 3.8). The examples we constructed here are 3-folds in all characteristics
(including characteristic 2), see Section 2, Subsection 3.1 and Subsection 3.2.

2. Examples for p ≥ 5

In this section, let p ≥ 5 be a prime, let R = Zp[ζp] where ζp is a primitive
p-th root of unity. Let E/Spec(R) be an ordinary elliptic curve possessing
a p-torsion P ∈ E(R)[p] which does not specialize to the identity element.
There are such pairs over Zp. Indeed, the Honda–Tate theory tells us the
polynomial x2 − x+ p corresponds to an ordinary elliptic curve E0 over Fp

with p rational points (c.f. [5, THÉORÉME 1.(i)]). In particular, we see that
E0(Fp) ∼= Z/p. Now the Serre–Tate theory (c.f. [4, Chapter 2]) tells us E , the

canonical lift of E0 over Zp, satisfies E [p]
ét(Zp) ∼= Z/p. Hence we see that all

the rational points of E0 are liftable over Zp. Fix such an auxiliary elliptic
curve along with this p-torsion point. Denote the uniformizer ζp − 1 ∈ R by
π. Denote the fraction field of R by K, the residue field by κ.

We use curly letters to denote integral objects over Spec(R), use the
corresponding straight letter to denote its generic fibre and use subscript
(·)0 to denote its special fibre, i.e., reduction mod π. For example, we will
denote the generic fibre of E by E and the special fibre by E0. To simplify
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the notations, whenever no confusion seems to arise, we will not denote the
base over which we make the fibre product.

Let C be the proper smooth hyper-elliptic curve over Spec(R) defined by

v2 =

p−1
∑

i=0

(

p
i

)

(ζp − 1)i
up−i.

We leave it to the readers to verify that this indeed defines a smooth proper

curve with the other affine piece given by v2 =
∑p−1

i=0
(p
i
)

(ζp−1)i
ui+1.

One checks easily that this curve has genus p−1
2 and C0, its reduction

mod π, is the hyper-elliptic curve defined by

v2 = up − u.

After inverting π and making the substitution

x = (ζp − 1)u+ 1; and y = v,

we see that C, the generic fibre of C, is the hyper-elliptic curve defined by

(ζp − 1)py2 = xp − 1.

There is an R-linear Z/p = ⟨σ⟩-action on C given by

σ(u) = ζp · u+ 1; and σ(v) = v.

One checks that in the generic fibre, using xy-coordinate, this action
becomes σ(x) = ζp · x and σ(y) = y. In the special fibre, this action becomes
σ(u) = u+ 1 and σ(v) = v.

We have a canonical character χ : ⟨σ⟩ → K× by sending σ to ζp.

Proposition 2.1. Using notations as above, we have

1) in the special fibre, the action of σ and σ4 are conjugate by an auto-
morphism of C0;

2) in the generic fibre, we have a decomposition

H0(C,Ω1) =
⊕

1≤i≤ p−1

2

χi

as representations of ⟨σ⟩.
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Proof. (1) Consider the automorphism τ : C0 → C0 given by

τ(u) = 4u; and τ(v) = 2v.

One easily verifies that this preserves the equation v2 = up − u hence an
automorphism of C0, and that τ ◦ σ ◦ τ−1 = σ4. This completes the proof of
(1).

(2) Recall that
{

dx
y
, x dx

y
, . . . , x

g−1 dx
y

}

form a basis of H0(C,Ω1) when-

ever C is a genus g hyper-elliptic curve given by y2 = f(x) [3, page 255].
One checks immediately that under this basis, σ acts by the characters as
in the Proposition. □

Recall that we have fixed an auxiliary elliptic curve E over R and a p-
torsion point P on it which does not specialize to identity element. Hence
translating by P defines an order p automorphism of E over R which acts
trivially on the global 1-forms, let us denote this action by τP .

Construction 2.2. Let X := (C × C × E)/⟨(σ, σ, τP )⟩ and let Y := (C × C ×
E)/⟨(σ, σ4, τP )⟩. Here we mean the schematic quotient by the indicated di-
agonal action.

Then we have the following:

Proposition 2.3. Both X and Y are smooth projective over Spec(R), and
their special fibers are isomorphic as smooth proper k-varieties. Moreover
we have H0(X,Ω3

X) = 0 and H0(Y,Ω3
Y ) ̸= 0.

Proof. The third component ensures that the action is fixed point free.
Therefore the quotient is smooth and proper, and it satisfies the following
base change of taking quotient:

X0
∼= (C0 × C0 × E0)/⟨(σ, σ, τP )⟩, Y0

∼= (C0 × C0 × E0)/⟨(σ, σ
4, τP )⟩.

By 2.1 (1), σ and σ4 are conjugate to each other by τ (with notations
loc. cit.). We see that (id, τ, id) induces an isomorphism between X0 and Y0.

In the generic fibre, we have that the global 3-forms of the quotient are
identified as the invariant (regarding respective actions) global 3-forms of
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C × C × E. By Künneth formula and 2.1 (2), we have the following decom-
position

H3,0(C × C × E) =
⊕

1≤i≤ p−1

2

χi ⊗
⊕

1≤i≤ p−1

2

χi ⊗ ✶

as (σ, σ, τP )-representations. Therefore we see that H
3,0(X) = 0. To see that

H0(Y,Ω3
Y ) ̸= 0, we note that in the above decomposition x1 dx1

y1
∧ x

p−3

2
2 dx2

y2
∧

ω is invariant under (σ, σ4, τP ), where ω is some translation invariant nonzero
1-form on E. Here we have used p ≥ 5, so that x1 dx1

y1
is a holomorphic global

1-form on C. Hence we get that H0(Y,Ω3
Y ) ̸= 0. □

Remark 2.4. One may compute the hodge diamonds of X and Y , let us
record the result here. The Hodge diamond of X is

1

1 1

0 p+ 2 0

0 p+ 1 p+ 1 0

0 p+ 2 0

1 1

1

and the Hodge diamond of Y is

1

1 1

p− 1

4
+ ϵp

p+ 5

2
− 2ϵp

p− 1

4
+ ϵp

p− 1

4
+ ϵp

3p+ 5

4
− ϵp

3p+ 5

4
− ϵp

p− 1

4
+ ϵp

p− 1

4
+ ϵp

p+ 5

2
− 2ϵp

p− 1

4
+ ϵp

1 1

1
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where ϵp depends on the congruent class of p mod 8, and is given by

ϵp =























0 p ≡ 1 mod 8

−1
2 p ≡ 3 mod 8

1 p ≡ 5 mod 8
1
2 p ≡ 7 mod 8

.

Remark 2.5. Those readers who are familiar with Deligne–Lusztig va-
rieties perhaps have realized the curve C0 = {y2 = xp − x} is nothing but
the quotient of the Drinfel’d curve {yp+1 = xpz − xzp} (c.f. [2, Ch. 2]),
where the quotient is with respect to the subgroup µ p+1

2

⊂ µp+1 acts on

y by multiplication and fixes x and z. Hence the curve C0 bears the action
of SL2(Fp)× Z/2 where the second factor is the hyper-elliptic structure of
C0. Under this identification, the σ (resp. τ) we find above correspond to
(

1 1
0 1

)

(resp.

(

2 0
0 1

2

)

(possibly times the nontrivial involution depending

on whether 2
p+1

2 = 2 or − 2 in Fp)).

Following the same spirit, we construct similar example in the case p = 3
(see Subsection 3.1) and p = 2 (see Subsection 3.2).

3. Complements and remarks

3.1. Case p = 3

Let us consider the case p = 3 in this subsection. Let R = Z3[ω, i] where ω
is a 3-rd root of unity and i2 = −1. Denote the uniformizer ω − 1 ∈ R by π.
Let C be the proper smooth hyper-elliptic curve over Spec(R) defined by

v2 = (u3 + (ω2 − 1)u2 − ω2u)
3
+ (u3 + (ω2 − 1)u2 − ω2u).

One checks easily that this curve has genus 4 and C0, its reduction mod π,
is the hyper-elliptic curve defined by

v2 = u9 − u.

After inverting π and making the substitution

x = (ω − 1)u+ 1; and y = v,
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we see that C, the generic fibre of C, is the hyper-elliptic curve defined
by

y2 =
1

(ω − 1)9
· (x3 − 1)

3
+

1

(ω − 1)3
· (x3 − 1).

There is an R-linear Z/3-action on C given by

σ(u) = ω · u+ 1; and σ(v) = v.

Similar to the Section 2 and use analogous notation as there, we state
the following:

Proposition 3.1. Using notations as above, we have

1) in the special fibre, the action of σ and σ2 are conjugate by an auto-
morphism of C0;

2) in the generic fibre, we have a decomposition

H0(C,Ω1
C) = χ⊕2 ⊕ χ2 ⊕ ✶

as representations of ⟨σ⟩.

The proof is similar, notice that now the automorphism group of C0 is
SL2(F9)× Z/2 and 2 = −1 = i2 is a square in F9.

Possibly passing to an unramified extension of R, we may assume as
before that there is an elliptic curve E over R together with a nonzero 3-
torsion point P . Then we make the following:

Construction 3.2. Let X := (C × C × E)/⟨(σ, σ, τP )⟩ and let Y := (C × C ×
E)/⟨(σ, σ2, τP )⟩.

Proposition 3.3. Both of X and Y are smooth projective over Spec(R)
and we have h3,0(X) = 5 and h3,0(Y ) = 6.

3.2. Case p = 2

Let us consider the case p = 2 in this subsection. Let us just construct such
an example over some 2-adic base (without caring how ramified this base
is). Let O be the ring of integers inside a large enough local 2-adic field K
so that there are

1) an elliptic curve with ordinary reduction E over Spec(O) and a 4-
torsion point P ∈ E(O)[4] such that 2 · P0 ̸= 0, and;
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2) an elliptic curve C over Spec(O) with j-invariant 1728 such that there
is an automorphism of C of order 4 which will be denoted by i and
so that Aut(C0) = O∗

D. Here D denotes the quaternion algebra over Q
ramified over 2 and ∞, and O∗

D means the group of units inside the
maximal order of this quaternion algebra.

One can always enlarge the 2-adic field K so that these are achieved.
Note that by the last condition, the primitive fourth root of unity must lie
in K and let us still denote it by i. Finally there is a tautological character
χ : Z/4 → K∗ sending 1 to i. The following Proposition is what we need.

Proposition 3.4. Using notations as above, we have

1) in the special fibre, the action of i and −i are conjugate by an auto-
morphism of C0;

2) in the generic fibre, we have

H0(C,Ω1
C) = χ

as representations of Z/4 ∼= ⟨i⟩.

This is almost trivial: for (1) we have the identity −j · i · j = −i, and (2)
is a standard fact about elliptic curve with complex multiplication by i.

Lastly we make the following:

Construction 3.5. Let X := (C × C × E)/⟨(i, i, τP )⟩ and let Y := (C × C ×
E)/⟨(i,−i, τP )⟩.

Proposition 3.6. Both of X and Y are smooth projective over Spec(O)
and we have h3,0(X) = 0 and h3,0(Y ) = 1.

Remark 3.7. Note that in characteristic 3, the automorphism group of the
elliptic curve with j-invariant 0 = 1728 is the dicyclic group Dic3 of order
12. In particular, the automorphism ω is conjugate to ω2. Using this, we
may make similar examples in characteristic 3.

3.3. Final remarks

The following Proposition shows that our example is sharp in terms of its
dimension (the case of curve is trivial).
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Proposition 3.8. Let X and Y be smooth proper schemes over Spec(O) of
relative dimension 2. Suppose X0

∼= Y0, then hi,j(X) = hi,j(Y ) for all i,j.

Proof. Since for surfaces we have 1
2b1 = h0,1 = h1,0 = h0,3 = h3,0, by smooth

proper base change we know that these numbers only depend on the special
fibre. Therefore the Hodge numbers of X and Y agree except for the degree
2 part. Now the fact that the Euler characteristic of a flat coherent sheaf
stays constant in a family shows that the degree 2 Hodge numbers of X and
Y also agree. □

In order to make such an example, dimension is certainly not the only
constraint.

Proposition 3.9. Let X and Y be smooth proper schemes over Spec(O)
with X0

∼= Y0. Suppose the Hodge-to-de Rham spectral sequence for X0 de-
generates at E1-page and Hr

crys
(X0/W (k)) is torsion-free for all r. Then

hi,j(X) = hi,j(Y ) for all i,j.

Proof. The crystalline cohomology being torsion-free implies that hrdR(X) =
hrdR(X0). In the generic fibre, by Hodge theory, we have

∑

i+j=r h
i,j(X) =

hrdR(X). In the special fibre, by the degeneration of Hodge-to-de Rham spec-
tral sequence, we have

∑

i+j=r h
i,j(X0) = hrdR(X0). These three equalities

along with upper semi-continuity of hi,j imply hi,j(X0) = hi,j(X). Then same
argument implies hi,j(X0) = hi,j(Y ). Hence we see that the Hodge numbers
of X and Y are the same. □

Remark 3.10. Using the fact that H1(C;Z) as a Z/p-module is the aug-
mentation ideal in Z[Z/p], one can show that h1dR(X0) = 4 and h1dR(X) = 2,
which implies that dimFp

H2
crys(X0/W (k))[p] = 2.

A more detailed study shows that the length of torsions in the crystalline
cohomology groups of our examples stay bounded for all primes p, however
the discrepancy between h3,0(X) and h3,0(Y ) grows linearly in p.

Remark 3.11. Although our examples here are not simply connected, one
can bootstrap them to simply connected ones by embedding them into a
projective space, blow up, and take complete intersections of dimension at
least 3. The author would like to thank Jason Starr for pointing this out to
him.

We conclude this paper by observing that the examples we found are
over ramified base with absolute ramification index p− 1 and asking:
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Question 3.12. Is there a pair of smooth proper schemes X and Y over
Spec(W (k)), such that

1) X0
∼= Y0 and;

2) hi,j(X) ̸= hi,j(Y ) for some i, j?

Note that by [1, Corollaire 2.4] the Hodge-to-de Rham spectral sequence
for any smooth proper X0 degenerates at E1-page, provided that dim(X0) <
p and X0 lifts toW2(k). In particular, the example asked for in Question 3.12,
if it exists and is of small dimension (say, 3-fold), must have torsion in
H∗

crys(X0/W (k)) by Proposition 3.9.
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