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1. Introduction

In [14], Khovanov defined a link invariant categorifying the Jones polyno-
mial. That is, he constructed a bigraded homology theory of links whose
graded Euler characteristic is the Jones polynomial. Recalling [26, 32] that
the Jones polynomial has an interpretation involving representations of the
quantum group Uq(sl(2)), it is perhaps not surprising that an annular ver-
sion of Khovanov homology defined in [1] and further studied in [27] (see
also [11]) carries an action of the Lie algebra sl(2) [10, 24]. Moreover, al-
though annular Khovanov homology is not a link invariant (it is well-defined
only up to isotopy in the complement of a standardly-imbedded unknot in
S3), the algebraic features of the Khovanov complex that have yielded the
most geometric/topological information (e.g. [22, 25]) have coincided with
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key sl(2)–representation-theoretic features of the annular Khovanov complex
(cf. [9, Prop. 1]).

In [17], Ozsváth-Szabó-Rasmussen defined an odd version of Khovanov
homology. When taken with Z2 coefficients, their construction agrees with
Khovanov’s original construction. Hence, odd Khovanov homology can be
viewed as an alternative integral lift of Khovanov homology.

Our aim in the present work is to define a natural annular version of
odd Khovanov homology (Subsection 3.1) and show that it carries a well-
defined action, not of the Lie algebra sl(2), but of the Lie superalgebra
gl(1|1) (Theorems 1 and 2). We will define this gl(1|1) action explicitly on
chain level, using two different descriptions of the odd annular Khovanov
complex (Subsections 3.2 and 3.3).

In a follow-up paper with Casey Necheles [16], the second author extends
results of Russell [28] to the odd setting by relating an annular version
of Putyra’s chronological cobordism category [23] to a dotted version of
the odd Temperley-Lieb category (defined as in [7]) at δ = 0. After setting
dots equal to zero, the latter category becomes equivalent to a (non-full)
subcategory of the category of gl(1|1) representations. As a consequence,
one obtains a natural interpretation of the gl(1|1) action on odd annular
Khovanov homology.

In a different direction, noting that:

• the bordered Heegaard-Floer tangle invariant defined by Petkova-
Vértesi [20] carries a categorical action of Uq(gl(1|1)) [8],

• on a decategorified level, the bordered theory for knot Floer homology
defined by Ozsváth-Szabó [19] carries an action of Uq(gl(1|1)) [15],

• conjecturally, there is an Ozsváth-Szabó spectral sequence relating odd
Khovanov homology of (the mirror of) a link to the Heegaard-Floer
homology of the manifold obtained as the connected sum of the double-
branched cover of L with S1 × S2 (cf. [4, 31]),

it is natural to ask the following:

Question 1. Let L ⊆ Y be a link in a 3–manifold satisfying either:

1) Y = S3 and L = L0 ∪ L′ where L0 is an unknot and L′ is non-empty,

or

2) Y is the double-branched cover of a knot K ⊆ S3, and L = p−1(U) is

the preimage of an unknot U in S3 −K.
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Does ĤFK(Y, L), the knot Floer homology of L in Y , carry an action of

gl(1|1)? In the latter case, how does this gl(1|1) action relate to the gl(1|1)
action on AKhodd(K ⊆ S3 −N(U))?

For a link L = L0 ∪ L′ which is realized as the closure, L′, of a tangle
T , linked by the tangle axis, L0, Petkova-Vértesi [21] showed that the knot
Floer homology of L can be identified with the Hochschild homology of the
tangle Floer homology of T . In the case where T is a tangle in R2 × I, the
existence of a gl(1|1) action on ĤFK(L) could therefore be established by
showing that the categorical gl(1|1) action described in [8] induces an action
on Hochschild homology.

In this context, it is worth noting that the even version of annular Kho-
vanov homology has been identified (see [2] for a special case and [5] for the
general case) with the Hochschild homology of the Chen-Khovanov tangle
invariant, which categorifies the Reshetikhin-Turaev tangle invariant asso-
ciated to the fundamental representation of Uq(sl(2)).

2. Preliminaries on gl(1|1) representations

In this section, we will review basic facts about the representation theory of
the Lie superalgebra gl(1|1). For more details and background material on
Lie superalgebras, we refer the reader to [29, 30, 33].

We will assume throughout this section that we are working over C. By
a vector superspace, we will mean a vector space V endowed with a Z2-
grading V = V0̄ ⊕ V1̄. We will refer to this grading as the supergrading on V ,
and we will use the notation |v| to denote the superdegree of a homogeneous
element v ∈ V .

For n ∈ Z, we will denote by ⟨n⟩ the shift functor which shifts the su-
perdegree on a vector superspace by the image n̄ of n under the quotient
map Z → Z2. Thus if V is a vector superspace, then V ⟨n⟩ is the vector
superspace with (V ⟨n⟩)̄i = Vī+n̄ for ī ∈ Z2.

2.1. Representations of Lie superalgebras

Recall that a Lie superalgebra is a vector superspace g = g0̄ ⊕ g1̄ endowed
with a bilinear Lie superbracket [−,−]s : g× g → g satisfying

1) |[x, y]s| = |x|+ |y|,

2) [x, y]s = −(−1)|x||y|[y, x]s,
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3) [x, [y, z]s]s = [[x, y]s, z]s + (−1)|x||y|[y, [x, z]s]s,

for all homogeneous x, y, z ∈ g.
If V is a vector superspace, then gl(V ) denotes the Lie superalgebra

whose underlying vector superspace is the space End(V ) of all linear en-
domorphisms of V , and whose Lie superbracket is given by the supercom-
mutator [x, y]s := x ◦ y − (−1)|x||y|y ◦ x for all homogeneous x, y ∈ End(V ).
Here, it is understood that an endomorphism of V has superdegree 0̄ if it
preserves the supergrading on V , and superdegree 1̄ if it reverses the super-
grading on V .

A homomorphism between two Lie superalgebras g and g′ is a linear map
from g to g′ which preserves both the supergrading and the Lie superbracket.
A representation of a Lie superalgebra g is a vector superspace V together
with a homomorphism ρV : g → gl(V ). As with ordinary Lie algebras, the
map ρV is sometimes called the action of g on V .

Let V and W be two representations of a Lie superalgebra g. Then V ⟨n⟩
is a representation of g with ρV ⟨n⟩ = ρV , and the dual space V ∗ = Hom(V,C)
is a representation of g with (V ∗)̄i = Hom(Vī,C) for ī ∈ Z2 and

ρV ∗(x)(φ) = −(−1)|x||φ|(ρV (x))
∗(φ)

for all homogeneous x ∈ g and φ ∈ V ∗. Moreover, the tensor product V ⊗W
is a representation of g with |v ⊗ w| = |v|+ |w| and

ρV⊗W (x)(v ⊗ w) = (−1)|w||x|(ρV (x)(v))⊗ w + v ⊗ (ρW (x)(w))

for all homogeneous x ∈ g, v ∈ V , and w ∈ W .

Remark 1. In the literature, the action of g on V ⊗W is more commonly
defined by

ρV⊗W (x)(v ⊗ w) = (ρV (x)(v))⊗ w + (−1)|x||v|v ⊗ (ρW (x)(w))

for all homogeneous x ∈ g, v ∈ V , and w ∈ W . It is easy to check that our
definition yields an isomorphic representation, where the isomorphism is
given by the endomorphism of V ⊗W which sends a homogeneous element
v ⊗ w to the element (−1)|v||w|v ⊗ w. In fact, one can use the standard defi-
nition of the tensor product to obtain an equivalent action of gl(1|1) on odd
annular Khovanov homology. This will be discussed in more detail in [16].

Remark 2. The representations V ⊗W and W ⊗ V are isomorphic where
the isomorphism is given by the linear map τ : V ⊗W → W ⊗ V which sends
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a homogeneous element v ⊗ w to the element (−1)|v||w|w ⊗ v. We will hence-
forth call this map the twist map.

Given two homogeneous linear maps f : V → V ′ and g : W → W ′ be-
tween vector superspaces, let f ⊗ g : V ⊗W → V ′ ⊗W ′ denote the homo-
geneous linear map defined by

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

for all homogeneous v ∈ V and w ∈ W . Using this definition, we have:

Lemma 1. If g is a Lie superalgebra and f : V → V ′ and g : W → W ′ are

homogeneous linear maps between g representations which intertwine the

actions of g, then the tensor product f ⊗ g : V ⊗W → V ′ ⊗W ′ defined as

above also intertwines the actions of g.

Proof. Let x ∈ g, v ∈ V , and w ∈ W be homogeneous. Then

ρV ′⊗W ′(x)
[
(f ⊗ g)(v ⊗ w)

]
= (−1)|g||v|ρV ′⊗W ′(x)

[
f(v)⊗ g(w)

]

= (−1)|g||v|
[
(−1)(|g|+|w|)|x|ρV ′(x)(f(v))⊗ g(w) + f(v)⊗ ρW ′(x)(g(w))

]

= (−1)|g||v|
[
(−1)(|g|+|w|)|x|f(ρV (x)(v))⊗ g(w) + f(v)⊗ g(ρW (x)(w))

]

= (−1)|g||v|+|g||x|+|w||x|f(ρV (x)(v))⊗ g(w) + (−1)|g||v|f(v)⊗ g(ρW (x)(w))

= (−1)|w||x|(−1)|g|(|x|+|v|)f(ρV (x)(v))⊗ g(w) + (−1)|g||v|f(v)⊗ g(ρW (x)(w))

= (−1)|w||x|(f ⊗ g)(ρV (x)(v)⊗ w) + (f ⊗ g)(v ⊗ ρW (x)(w))

= (f ⊗ g)
[
(−1)|w||x|ρV (x)(v)⊗ w + v ⊗ ρW (x)(w)

]

= (f ⊗ g)
[
ρV⊗W (x)(v ⊗ w)

]
.

Hence f ⊗ g intertwines the maps ρV⊗W (x) and ρV ′⊗W ′(x), which proves
the lemma. □

For a vector superspace V , let ΦV denote the linear involution ΦV : V →
V defined by ΦV (v) = (−1)|v|v for every homogeneous element v ∈ V . The
following lemma describes how the grading shift functor ⟨1⟩ interacts with
duals and tensor products of representations.
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Lemma 2. Let V and W be two representations of a Lie superalgebra g.

Then

(V ⟨1⟩)∗ ∼= V ∗⟨1⟩,

where the isomorphism is given by the map ΦV ∗ : V ∗ → V ∗, and

V ⟨1⟩ ⊗W ∼= (V ⊗W )⟨1⟩ ∼= V ⊗W ⟨1⟩,

where the first isomorphism is given by the identity map of V ⊗W and the

second isomorphism is given by the map ΦV ⊗ idW .

Proof. Let x ∈ g and φ ∈ V ∗ be homogeneous. Then the definition of ΦV ∗

implies

(ΦV ∗ ◦ ρV ∗(x))(φ) = (−1)|x|+|φ|(ρV ∗(x))(φ) = (−1)|x|(ρV ∗(x) ◦ ΦV ∗)(φ),

where the first equation follows because ρV ∗(x)(φ) has superdegree |x|+ |φ|.
Because ρV ∗ = ρV ∗⟨1⟩, the left-most term in the above sequence of equations
can be identified with (ΦV ∗ ◦ ρV ∗⟨1⟩(x))(φ), and because

(−1)|x|ρV ∗(x)(φ) = −(−1)|x|(−1)|x||φ|(ρV (x))
∗(φ)

= −(−1)|x|(|φ|+1)(ρV ⟨1⟩(x))
∗(φ)

= ρ(V ⟨1⟩)∗(x)(φ),

the right-most term can be identified with (ρ(V ⟨1⟩)∗(x) ◦ ΦV ∗)(φ). Thus we
have

ΦV ∗ ◦ ρV ∗⟨1⟩(x) = ρ(V ⟨1⟩)∗(x) ◦ ΦV ∗ ,

and hence ΦV ∗ is an isomorphism between V ∗⟨1⟩ and (V ⟨1⟩)∗.
The claim that the identity map of V ⊗W is an isomorphism between

V ⟨1⟩ ⊗W and (V ⊗W )⟨1⟩ follows because ρV ⟨1⟩⊗W = ρV⊗W = ρ(V⊗W )⟨1⟩,
by our definition of the tensor product of two representations.

Finally, by Remark 2, we have a sequence of isomorphisms

V ⊗W ⟨1⟩
τ

−→ W ⟨1⟩ ⊗ V
id
−→ (W ⊗ V )⟨1⟩

τ
−→ (V ⊗W )⟨1⟩.

This sequence takes a homogeneous element v ⊗ w ∈ V ⊗W to

(−1)|v|(|w|+1)(−1)|w||v|v ⊗ w = (−1)|v|v ⊗ w = (ΦV ⊗ idW )(v ⊗ w),

and hence ΦV ⊗ idW is an isomorphism between V ⊗W ⟨1⟩ and (V ⊗W )⟨1⟩.
□
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2.2. The Lie superalgebra gl(1|1) and some of its representations

Let C1|1 denote the vector superspace

C
1|1 := Cv0 ⊕ Cv1

spanned by two homogeneous elements v0 and v1 of superdegrees 0̄ and 1̄,
respectively. The Lie superalgebra gl(1|1) is defined as the space of linear
endomorphisms gl(1|1) = gl(C1|1) = End(C1|1) with Lie superbracket given
by the supercommutator, as described in the previous subsection. Explicitly,
gl(1|1) is spanned by the following elements

h1 =

(
1 0
0 0

)
, h2 =

(
0 0
0 1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

where h1 and h2 have superdegree 0̄ and e and f have superdegree 1̄. The
Lie superbracket on gl(1|1) is given by

[e, f ]s = h1 + h2, [e, e]s = [f, f ]s = [hi, hj ]s = 0,
[e, h1]s = −e, [f, h1]s = f,
[e, h2]s = e, [f, h2]s = −f,

where i, j ∈ {1, 2}.
Let h+ := h1 + h2 and h− := h1 − h2. Then h+ is central in gl(1|1), in

the sense that [h+, x]s = 0 for all x ∈ gl(1|1), and h− satisfies

[e, h−]s = −2e, [f, h−]s = 2f, [h−, h−]s = 0.

Note that the elements h+, h−, e, and f form a basis for gl(1|1) and that
the Lie superbracket on gl(1|1) is completely characterized by the afore-
mentioned properties of h+ and h− and by the relations [e, f ]s = h+ and
[e, e]s = [f, f ]s = 0.

We will now describe a family of irreducible gl(1|1) representations L(m,n)

parameterized by pairs of integers (m,n) ∈ Z2. It is not hard to see that ev-
ery finite-dimensional irreducible gl(1|1) representation on which h1 and h2
act with integer eigenvalues is isomorphic to one of the representations in
this family, up to a possible shift of the supergrading. See [6] and [29].

If (m,n) ∈ Z2 satisfies m+ n = 0, then L(m,n) is 1-dimensional and sup-
ported in superdegree 0̄. The elements (h1, h2) act by scalar multiplication
by (m,n) on this representation, and the elements e and f act by zero. Note
that L(0,0) is a trivial representation, where trivial means that all generators
of gl(1|1) act by zero.
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If (m,n) ∈ Z2 satisfies m+ n ̸= 0, then L(m,n) is 2-dimensional and
spanned by two homogeneous vectors v+ and v− of superdegrees n̄ and
n̄+ 1̄, respectively. In this case, the action of gl(1|1) relative to the basis
{v+, v−} is given by the following matrices:

ρL(m,n)
(h1) =

(
m 0
0 m− 1

)
, ρL(m,n)

(h2) =

(
n 0
0 n+ 1

)
,

ρL(m,n)
(e) =

(
0 m+ n
0 0

)
, ρL(m,n)

(f) =

(
0 0
1 0

)
.

Note that for m = 1 and n = 0, the above matrices coincide with the
matrices h1, h2, e, and f . Thus, the representation L(1,0) is equal to the

fundamental representation C1|1 of gl(1|1), on which gl(1|1) acts by ρC1|1 =
idgl(1|1). In the remainder of this section, we will denote the fundamental

representation L(1,0) = C1|1 by V . The dual representation, V ∗, can be seen
to be isomorphic to the representation L(0,−1), where an isomorphism is
given by the linear map which sends the basis {v∗+, v

∗
−} of V ∗ = L∗

(1,0) to the

basis {v−, v+} of L(0,−1).
In the next subsection, we will see that the representations V ∗ ⊗ V and

V ⊗ V ∗ each contain a trivial 1-dimensional subrepresentation and a trivial
1-dimensional quotient representation, but no trivial direct summand. In
particular, these representations are indecomposable but not irreducible.
We will actually study the isomorphic (up to a grading shift) representations
V ∗⟨1⟩ ⊗ V and V ⊗ (V ∗⟨1⟩) since these representations will be needed later
in this paper.

2.3. gl(1|1) action on the representations V
∗⟨1⟩ ⊗ V and

V ⊗ (V ∗⟨1⟩)

As before, let V denote the fundamental representation of gl(1|1). For rea-
sons that will become clear later, we will identify the vector superspaces
underlying the representations V ∗⟨1⟩ and V by using the identifications
v∗+ = −v− and v∗− = v+. It is not hard to see that, under these identifica-
tions, the action of gl(1|1) on V ∗⟨1⟩ ⊗ V is given as follows:

v− ⊗ v+ − v+ ⊗ v−

v+ ⊗ v+ v− ⊗ v−

v+ ⊗ v− + v− ⊗ v+

f=−1

(h1,h2)=(1,−1)

e=1

(h1,h2)=(−1,1)

e=2 f=2
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For example, e sends the vector v+ ⊗ v− + v− ⊗ v+ to 2v+ ⊗ v+ and
f sends this vector to 2v− ⊗ v−. Likewise, h1 and h2 annihilate the vec-
tors v+ ⊗ v− and v− ⊗ v+ and act on the vectors v+ ⊗ v+ and v− ⊗ v−
by scalar multiplication by (h1, h2) = (1,−1) and (h1, h2) = (−1, 1), respec-
tively. Since there are no arrows ending at the vector v+ ⊗ v− + v− ⊗ v+, this
vector spans a trivial 1-dimensional quotient representation, and since there
are no arrows emanating from v− ⊗ v+ − v+ ⊗ v−, this vector spans a trivial
1-dimensional subrepresentation. Let p : V ∗⟨1⟩ ⊗ V → C⟨1⟩ and i : C⟨1⟩ →
V ∗⟨1⟩ ⊗ V denote the associated projection and inclusion maps, where C de-
notes the trivial 1-dimensional representation C = L(0,0). Explicitly, p sends
v+ ⊗ v− and v− ⊗ v+ to 1 and v+ ⊗ v+ and v− ⊗ v− to zero, and i sends 1
to v− ⊗ v+ − v+ ⊗ v−. For later use, we also introduce the maps

p̃ : V ∗⟨1⟩ ⊗ V −→ C ⊕ (C⟨1⟩), ĩ : C ⊕ (C⟨1⟩) −→ V ∗⟨1⟩ ⊗ V,

defined as the compositions

V ∗⟨1⟩ ⊗ V
p

−→ C⟨1⟩
i2−→ C ⊕ (C⟨1⟩),

C ⊕ (C⟨1)⟩
p1
−→ C⟨1⟩

i
−→ V ∗⟨1⟩ ⊗ V,

respectively, where i2 : C⟨1⟩ → C ⊕ (C⟨1⟩) is the inclusion of C⟨1⟩ into the
second summand, and p1 : C ⊕ (C⟨1⟩) → C⟨1⟩ is the projection onto the first
summand, up to a shift of the supergrading. By construction, p̃ and ĩ inter-
twine the action of gl(1|1) and have superdegrees 0̄ and 1̄, respectively.

The action of gl(1|1) on V ⊗ (V ∗⟨1⟩) is given by almost the same diagram
as the one above, with the only difference being that the arrow labeled
f = −1 is replaced by an arrow labeled f = 1 and the arrow labeled f = 2 is
replaced by an arrow labeled f = −2. In particular, there are maps p̃ : V ⊗
(V ∗⟨1⟩) → C ⊕ (C⟨1⟩) and ĩ : C ⊕ (C⟨1⟩) → V ⊗ (V ∗⟨1⟩) which are defined
by the same formulas as before and which intertwine the action of gl(1|1).

2.4. gl(1|1) actions on the exterior algebra of a vector space

We end this section with a natural construction of gl(1|1) actions on the
exterior algebra of a vector space.

Let U be a vector space equipped with a symmetric bilinear inner prod-
uct ⟨−,−⟩ and let U ′ := Λ∗(U) be its exterior algebra. We may regard U ′ as
a vector superspace by collapsing the natural Z≥0-grading on the exterior
algebra to a Z2-grading. Choose two vectors a, b ∈ U and a constant N ∈ C,
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and define a linear map ρU ′ : gl(1|1) → gl(U ′) by

ρU ′(h+)(v) = ⟨a, b⟩v,

ρU ′(h−)(v) = (N − 2ℓ)v,

ρU ′(e)(v) = a ⌟ v,

ρU ′(f)(v) = b ∧ v,

where v ∈ U ′ is an element of the form v = u1 ∧ · · · ∧ uℓ for uj ∈ U and
ℓ ≥ 0, and ⌟ is defined by

u ⌟ v =

ℓ∑

j=1

(−1)j−1⟨u, uj⟩u1 ∧ · · · ∧ ûj ∧ · · · ∧ uℓ

for u ∈ U and v ∈ U ′ as before. Using this definition of ⌟, one can see that

a ⌟ (b ∧ v) + b ∧ (a ⌟ v) = ⟨a, b⟩v

for all v ∈ U ′. In particular, this implies that the map ρU ′ is compatible with
the gl(1|1) relation [e, f ]s = h+. Since ρU ′(h+) is given by multiplication
by the constant ⟨a, b⟩, it is further clear that ρU ′(h+) is central in gl(U ′).
Moreover, the map v 7→ a ⌟ v (resp., v 7→ b ∧ v) lowers (resp., raises) the
number of factors in a wedge product by one, and together with the definition
of ρU ′(h−), this implies that ρU ′ respects the gl(1|1) relations [e, h−]s = −2e
and [f, h−]s = 2f . It is easy to see that ρU ′ is also compatible with the
gl(1|1) relations [e, e]s = [f, f ]s = [h−, h−]s = 0, and hence ρU ′ endows U ′

with a well-defined action of gl(1|1).
One can slightly modify the above definition of ρU ′ by replacing b ∧ v by

v ∧ b and a ⌟ v by v ⌞ a, where v ⌞ a := (−1)ℓ−1a ⌟ v for v ∈ U ′ as before.
This modified definition also yields a well-defined action of gl(1|1) on U ′.

3. Odd annular Khovanov homology as a gl(1|1) module

3.1. Odd annular Khovanov homology

Let A be a closed, oriented annulus, I = [0, 1] the closed, oriented unit in-
terval. Via the identification

A× I = {(r, θ, z) r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ (S3 = R
3 ∪∞),
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Figure 1: Direction of the arrows in the “0” resolution and the “1” resolu-
tion.

any link, L ⊂ A× I, may naturally be viewed as a link in the complement
of a standardly imbedded unknot, (U = z–axis ∪ ∞) ⊂ S3. Such an annu-

lar link L ⊂ A× I admits a diagram, P(L) ⊂ A, obtained by projecting a
generic isotopy class representative of L onto A× {1/2}. From this diagram
one can construct a triply-graded chain complex called the annular Kho-
vanov complex associated to the annular link L, by using a version of Kho-
vanov’s original construction [14] due to Asaeda-Przytycki-Sikora [1] and L.
Roberts [27] (see also [11]). We now proceed to describe an odd version of the
annular Khovanov complex, using the construction of Ozsváth-Rasmussen-
Szabó in [17].

Begin by decorating the diagram with an arrow (called an orientation

in [17]) at each crossing, as follows. Position the crossing so its overstrand
connects the upper left (NW) to the lower right (SE) corner and draw an
arrow on the crossing pointing either up or down. This choice will specify
arrows for the two resolutions of the crossing, as follows. The arrow for the
“0” resolution will agree with the arrow at the crossing, and the arrow for
the “1” resolution will be rotated 90◦ clockwise. See Figure 1.

Now view the decorated diagram P(L) ⊂ A instead as a diagram on
S2 − {X,O}, where X (resp., O) are basepoints on S2 corresponding to the
inner (resp., outer) boundary circles of A. If we temporarily forget the data of
X, we may view P(L) as a diagram on R2 = S2 − {O} and form the ordinary
bigraded odd Khovanov complex

CKhodd(P(L)) =
⊕

(i,j)∈Z2

CKhiodd(P(L); j)

as described in [17] and briefly recalled below.
Let X denote the set of crossings of P(L). For each map I : X → {0, 1}

one obtains an associated decorated imbedded 1–manifold, PI(L) ⊆ S2 −
{O} obtained by resolving and decorating each crossing as specified by I.
Choosing an ordering of the c crossings identifies these decorated complete
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resolutions with the vertices of a c–dimensional hypercube whose edges cor-
respond to saddle cobordisms between decorated complete resolutions.

Remembering the data of X, we now associate to each vertex of this
hypercube of decorated resolutions a chain complex whose underlying Z3–
graded vector space is defined as follows. For each I : X → {0, 1} let

V (I) := SpanC{a1, . . . , an}

be the formal span of the components, a1, . . . , an, of PI(L). Then the C

vector space we assign to the vertex I is

F (I) := Λ∗(V (I)).

It will be convenient to note that F (I) has a distinguished basis indexed
by subsets S ⊆ {1, . . . , n}. Given such a subset S = {i1, . . . , iℓ} ⊆ {1, . . . , n}
whose elements have been arranged in order (i1 < · · · < iℓ), we will denote
the associated basis element of F (I) by

aS := ai1 ∧ · · · ∧ aiℓ .

Now each vector space F (I) is endowed with a homological (i) and quan-
tum (j) grading exactly as in [14, 17], and these gradings do not depend on
the data of X. The odd Khovanov differential,

∂ : CKhodd(P(L)) → CKhodd(P(L)),

which also does not depend on the data of X, is defined exactly as in [14, 17]
as a signed sum (specified by an edge assignment as in [17, Defn. 1.1]) of
elementary merge maps, FM : F (I) → F (I ′) and split maps F∆ : F (I) →
F (I ′) associated to edges of the hypercube.

For completeness, the definitions of FM and F∆ are also briefly recalled
below.

Let I0, I1 : X → {0, 1} be two vertices for which there is an oriented edge
from I0 to I1, as in [17, p.3].1 If two components, a1 and a2, of P

I0(L) merge
to a single component, a, of PI1(L), there is a natural identification V (I1) ∼=
V (I0)/(a1 − a2) coming from identifying a with [a1] = [a2]. The merge map

FM : Λ∗V (I0) → Λ∗V (I1)

is the map on the exterior algebra induced by the projection followed by
this natural identification: V (I0) → V (I0)/(a1 − a2) ∼= V (I1).

1I1 is sometimes called an immediate successor of I0.
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Figure 2: Annular link diagram P(L) and an oriented Kauffman state of
P(L) of k-degree −2. For simplicity, the arrows at the crossings are not
shown in the picture.

If a single component, a, of PI0(L) splits into two components, a1 and
a2, of P

I1(L) and the local arrow decorating the split region points from a1
to a2, then the split map is defined by

F∆ : Λ∗(V (I0)) −→ Λ∗

(
V (I1)

(a1 − a2)

)
−→ (a1 − a2) ∧ Λ∗V (I1) −→ Λ∗V (I1),

where the first map is the inverse of the natural identification described in
the definition of the merge map, the final map is the inclusion, and the mid-
dle map is an explicit identification of the exterior algebra of the quotient,
V (I1)/(a1 − a2), as

(a1 − a2) ∧ Λ∗V (I1) ⊂ Λ∗V (I1).

To obtain the annular (k) grading, begin by choosing an oriented arc
γ from X to O that misses all crossings of P(L). It will be clear from the
construction that the k-grading is independent of this choice.

Exactly as in the even case (cf. [12, Sec. 4.2]), we have a one-to-one corre-
spondence between distinguished basis elements aS of F (I) ⊆ CKhodd(P(L))
and orientations of the Kauffman state PI(L), defined as follows. Choose the
clockwise (CW) orientation on a component ai of the Kauffman state if i ∈ S
and the counterclockwise (CCW) orientation on ai if i ̸∈ S. The k-grading of
a distinguished basis element is now defined to be the algebraic intersection
number of the corresponding oriented Kauffman state with a fixed oriented
arc γ from X to O that misses all crossings of P(L). See Figure 2.
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Lemma 3. The odd Khovanov differential

∂ : CKhodd(P(L)) → CKhodd(P(L))

is non-increasing in the k-grading. Indeed, it can be decomposed as ∂ = ∂0 +
∂−, where ∂0 has k-degree 0, and ∂− has k-degree −2.

Proof. Roberts proves ([27, Lem. 1]) that the even Khovanov differential is
non-increasing in this extra grading and decomposes according to k-degree
as described in the statement of the lemma. As noted in [18] and [17], the
odd merge and split maps FM and F∆ agree modulo 2 with the merge and
split maps in even Khovanov homology, so the odd Khovanov differential,
∂, has precisely the same decomposition according to k-degree. □

Decomposing ∂2 = 0 into its k-homogeneous pieces, we see that ∂0 and
∂− are two anticommuting differentials on CKhodd(P(L)). We can therefore
define an odd version of annular Khovanov homology by taking the homology
with respect to ∂0:

Definition 1. The odd annular Khovanov homology of L, denoted
AKhodd(L), is the homology of the chain complex (CKhodd(P(L)), ∂0).

Note that AKhodd(L) is triply-graded since it carries well-defined
i-, j-, and k-gradings. We will refer to the underlying chain complex,
(CKhodd(P(L)), ∂0), as the odd annular Khovanov complex.

Remark 3. Since ∂ is non-increasing with respect to the k-grading, the
odd Khovanov complex can be viewed as a filtered chain complex, and the
odd annular Khovanov complex can be identified with the associated graded
complex. In particular, there is a spectral sequence converging from the
odd annular Khovanov homology of L to the odd Khovanov homology of
L, viewed as a link in S3. Over Z2, this spectral sequence agrees with the
corresponding spectral sequence between the even theories, and it was shown
in [13, Prop. 18] that, over Z2, the latter spectral sequence does not always
converge at the E3 page. Indeed, the closed 4–braid counterexample

A(0, 0) = σ3σ
−2
2 σ2

3σ2σ
−1
3 σ−1

1 σ2σ
2
1

the authors provide there would be a natural candidate for an annular link
whose odd annular Khovanov homology does not converge at the E3 page.
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Remark 4. Note that, in general, a spectral sequence associated to a bi-
complex over Z coefficients can converge earlier than the spectral sequence
associated to the corresponding bicomplex over Z2 coefficients. For example,
consider the bicomplex

Z Z

Z Z

1

2

2

where the horizontal arrows represent ∂0 and the vertical arrow represents
∂−. Then the first page of the associated spectral sequence is

0 Z2

0 Z2

and all higher differentials in the spectral sequence vanish for grading rea-
sons. Thus, the spectral sequence over Z coefficients collapses immediately.
On the other hand, the spectral sequence associated to the same bicomplex
over Z2 coefficients collapses one page later.

In the next subsection, we will define a gl(1|1) action on AKhodd(L) and
show that this action is invariant under annular Reidemeister moves, hence
yields an invariant of the isotopy class of L ⊆ A× I. We will also discuss
the interaction of the gl(1|1) action with the i-, j-, and k-gradings on the
complex and conclude that, when regarded simply as a triply-graded vector
space without a Lie superalgebra action, AKhodd(L) is an invariant of the
isotopy class of L ⊆ A× I.

3.2. Definition and invariance of the gl(1|1) action on AKhodd(L)

As before, we will denote by V (I) the formal span of the components
a1, . . . , an of PI(L), and by F (I) = Λ∗(V (I)) the exterior algebra of V (I).

We will further use the following notations: |L| will denote the number
of link components, n+ (resp., n−) will denote the number of positive (resp.,
negative) crossings in the link projection, and |I| will denote the number of
crossings c ∈ X such that I(c) = 1. Moreover, nt (resp., ne) will denote the
number of trivial (resp., essential) components of PI(L), where a component
ai is called trivial (resp., essential) if it is zero (resp., nonzero) in the first
homology of S2 − {X,O}.
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Using these notations, we can define the tri-degree of an element ai1 ∧
· · · ∧ aiℓ ∈ F (I) by i = |I| − n−, j = n− 2ℓ+ |I|+ n+ − 2n−, and k = ne −
2ℓe, where n = nt + ne denotes the number of components of PI(L) and ℓe
denotes the number of indices r ∈ {1, . . . , ℓ} for which the component air is
essential.

We will now regard F (I) as a vector superspace with the supergrading
given by the modulo 2 reduction of (j − |L|)/2, where j denotes the quantum
degree just defined. It is known that j always has the same parity as |L|,
and hence the modulo 2 reduction of (j − |L|)/2 is well-defined.

In what follows, we will assume that the components a1, . . . , an are or-
dered so that a1, . . . , ant

are trivial and ant+1, . . . , an are essential, and that
the essential components are ordered according to their proximity to the
basepoint X, so that ant+1 is the essential component which is closest to X.

We can then write F (I) as a tensor product of two vector superspaces

F (I) = Λ∗(SpanC{a1, . . . , ant
})⊗ Λ∗(SpanC{ant+1, . . . , an}),

where we define the supergrading on the two tensor factors as follows. If ℓ
denotes the natural Z≥0 degree on the exterior algebra, then the superdegree
on the first tensor factor is given by the modulo 2 reduction of ℓ+ (n+ |I|+
n+ − 2n− − |L|)/2, and the superdegree on the second tensor factor as the
modulo 2 reduction of ℓ.

Now equip SpanC{ant+1, . . . , an} with the unique symmetric bilinear
form ⟨−,−⟩ for which the vectors ant+1, . . . , an are orthonormal, and let
aI and bI denote the vectors in SpanC{ant+1, . . . , an} defined by

aI := ant+1 + ant+2 + · · ·+ an

and bI := ant+1 − ant+2 + · · ·+ (−1)ne−1an.

Observe that ⟨aI , bI⟩ = m, where

m =

{
0 if ne is even,

1 if ne is odd.

Since ne has the same parity as the winding number of L around X, m
only depends on the parity of this winding number and not on the par-
ticular choice of I. Define a linear map ρU ′ : gl(1|1) → gl(U ′) for U ′ :=
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Λ∗(SpanC{ant+1, . . . , an}) by

ρU ′(h+)(ai1 ∧ · · · ∧ aiℓ) = mai1 ∧ · · · ∧ aiℓ ,

ρU ′(h−)(ai1 ∧ · · · ∧ aiℓ) = (ne − 2ℓ)ai1 ∧ · · · ∧ aiℓ ,

ρU ′(e)(ai1 ∧ · · · ∧ aiℓ) = (ai1 ∧ · · · ∧ aiℓ) ⌞ aI ,

ρU ′(f)(ai1 ∧ · · · ∧ aiℓ) = ai1 ∧ · · · ∧ aiℓ ∧ bI

for all nt + 1 ≤ i1 < · · · < iℓ ≤ n.
Comparing with Subsection 2.4, we see that ρU ′ endows the vector su-

perspace U ′ with a well-defined action of gl(1|1). We can extend this action
to an action on F (I) by regarding Λ∗(SpanC{a1, . . . , nt}) as a trivial gl(1|1)
representation. In other words, we can define a gl(1|1) action on F (I) by
setting

ρF (I)(x) := id⊗ρU ′(x)

for all x∈gl(1|1), where id denotes the identity map of Λ∗(SpanC{a1, . . . , nt}),
and ⊗ denotes the ordinary (ungraded) tensor product of linear maps.

Remark 5. The reader should note that h− acts on a vector ai1 ∧ · · · ∧
aiℓ ∈ F (I) by scalar multiplication by k = ne − 2ℓe, where ℓe denotes the
number of essential components in the wedge product ai1 ∧ · · · ∧ aiℓ . There-
fore, the k-grading on F (I) can be viewed as the “weight space grading” with
respect to the action of h−. It is further clear that the gl(1|1) action preserves
the i-grading because the i-grading is constant on F (I). Moreover, the gl(1|1)
action preserves the (j − k)-grading because the gl(1|1) action preserves the
number ℓt of trivial components in a wedge product ai1 ∧ · · · ∧ aiℓ ∈ F (I),
and j−k = n− 2ℓ+|I|+n+−2n−−(ne−2ℓe) = nt−2ℓt+|I|+n+−2n−.

Lemma 4. Let I0, I1 : X → {0, 1} be two vertices of the resolution hyper-

cube for which there is an oriented edge from I0 to I1 and let FW : F (I) →
F (I ′) for W = M or W = ∆ be the associated merge or split map. Then the

k-degree preserving part of FW intertwines the actions of gl(1|1) on F (I)
and F (I ′).

Although it is possible to prove Lemma 4 directly, we will defer the proof
to the next subsection, where we will give an alternative description of the
gl(1|1) action on F (I).

Lemma 4 tells us that the boundary maps in the odd annular Khovanov
complex intertwine the gl(1|1) action, and this in turn implies that there
is an induced gl(1|1) action on the odd annular Khovanov homology of an
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Figure 3: Reidemeister I. The diagram D′ and the resolutions D0 and D1.

annular link diagram. By the remark preceding the lemma, it is further
clear that this action preserves two gradings, namely the i-grading and the
(j − k)-grading. In this sense, odd annular Khovanov homology becomes a
bigraded gl(1|1) representation.

Theorem 1. If two annular link diagrams P(L) and P(L′) differ by an

annular Reidemeister move, then AKhodd(L) and AKhodd(L
′) are isomorphic

as bigraded gl(1|1) representations.

Proof. Our proof of this theorem will closely follow the original proof of
invariance of odd Khovanov homology given in [17]. In each step of the
proof, we will verify that the relevant complexes and chain maps defined in
[17] are compatible with the gl(1|1) actions on the F (I) when reinterpreted
in the annular setting.

Invariance under annular Reidemeister moves of type I. Consider an
annular link diagram D′ which is obtained from an annular link diagram D
by performing a left-twist Reidemeister I move, so that D′ contains a single
positive crossing which is not already present in D. Let D0 and D1 denote
the two diagrams obtained from D′ by resolving this crossing in the two
possible ways. See Figure 3. Then D1 is isotopic to D, and D0 is isotopic to
a union of D with a small unknotted circle.

Arguing as in the proof of [17, Prop.3.1], we can identify the odd annular
Khovanov complex of D′ with a mapping cone of a chain map

D : ACKhodd(D0) −→ ACKhodd(D1),

where ACKhodd(Di) denotes the odd annular Khovanov complex of Di. The
map D is surjective, and hence its mapping cone is quasi-isomorphic to
ker(D). Moreover, since D is given by boundary maps, it intertwines the
action of gl(1|1), and hence ker(D) is itself a gl(1|1) representation.

Now let v0 denote the small circular component of D0, and let v1 de-
note the component that connects to v0. Note that while v0 is trivial in
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all resolutions of D0, the component v1 can be trivial in some resolutions
of D0 and essential in others. Let ACKhodd(D0, t) denote the subrepresen-
tation of ACKhodd(D0) corresponding to resolutions in which v1 is triv-
ial, and ACKhodd(D0, e) the subrepresentation corresponding to resolutions
in which v1 is essntial. The kernel of D is then equal to the direct sum
of (v0 − v1) ∧ACKhodd(D0, t) and v0 ∧ACKhodd(D0, e), where in the first
summand gl(1|1) acts trivially on v0 and v1, and in the second summand
gl(1|1) acts trivially on v0. It is now easy to see that the kernel of D
is isomorphic as a complex of gl(1|1) representations to ACKhodd(D). In-
deed, for each vertex I of the resolution cube of D0, define a sign ϵ(I) by
ϵ(I) = (−1)

1

2
(n(I)−n(I0)+|I|) where n(I) denotes the number of components

in the resolution of D0 corresponding to I, and n(I0) denotes the number
of components in the all-zero resolution of D0. Then contraction from the
left with ϵ(I)v0 defines a chain map ACKhodd(D0) → ACKhodd(D) which in-
tertwines the gl(1|1) actions, and which restricts to an isomorphism on the
kernel of D. In summary, we thus see that ACKhodd(D

′) and ACKhodd(D)
are quasi-isomorphic as complexes of gl(1|1) representations, and this proves
invariance under annular left-twist Reidemeister I moves.

Now suppose D′ is obtained from D by an annular right-twist Reide-
meister I move. We can then identify ACKhodd(D

′) with the mapping cone
of an injective chain map

D : ACKhodd(D1) −→ ACKhodd(D0)

which is defined in terms of boundary maps and which thus intertwines the
gl(1|1) actions. The complex ACKhodd(D

′) is therefore quasi-isomorphic to
the cokernel of D, and as a gl(1|1) representation, the cokernel of D can
be described explicitly as the direct sum of ACKhodd(D0, t)/(v0 − v1) and
ACKhodd(D0, e)/(v0). It is now easy to see that the inclusion ACKhodd(D) →
ACKhodd(D0) induces an isomorphism between ACKhodd(D) and the coker-
nel of D, and this proves invariance under annular right-twist Reidemeister I
moves.

Invariance under annular Reidemeister moves of type II. Next, assume
D′ is obtained from D by performing an annular Reidemeister move of type
II. For i, j ∈ {0, 1}, let Dij denote the diagram obtained from D′ by choosing
the i- and the j-resolution at the two crossings of D′ which are not present
in D. Assume the numbering of the crossings is such that D01 is isotopic to
D, and D10 is obatined from D00 by adding a small unknotted circle. See
Figure 4. Following the proof of [17, Prop. 3.2], we can write the complex
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Figure 4: Reidemeister II. The diagram D′ and the resolutions Dij .

ACKhodd(D
′) in the following form:

ACKhodd(D01) ACKhodd(D11)

ACKhodd(D00) ACKhodd(D10)

In this diagram, all arrows represent maps of gl(1|1) representations. Let
v2 denote the small circular component in D10 and let X ⊂ ACKhodd(D10)
be the subcomplex spanned by all elements of the form ai1 ∧ · · · ∧ aiℓ which
don’t contain v2 as a factor. Since v2 is a trivial component, gl(1|1) acts
trivially on v2, and hence the gl(1|1) action preserves the subcomplex X.
Moreover, the restriction X → ACKhodd(D11) of the right vertical arrow to
X is an isomorphism, and thus the above complex is quasi-isomorphic to a
complex of the form

ACKhodd(D01)

ACKhodd(D00) ACKhodd(D10)/X.

In this complex, the horizontal arrow is an isomorphism, and so the above
complex is quasi-isomorphic to ACKhodd(D01), which is in turn isomorphic
to ACKhodd(D).

Invariance under annular Reidemeister moves of type III. Suppose D′

is obtained from D by performing an annular Reidemeister III move. By
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repeating the arguments used in the proof of [17, Prop. 3.3], one can show
that ACKhodd(D) is quasi-isomorphic to a complex L, which fits into a short
exact sequence

0 −→ R
Ψ

−→ L
Φ

−→ P −→ 0.

In [17], the complexes L and R are depicted on the left and on the right of
Figure 11, and the complex P is depicted in Figure 10. Using similar argu-
ments as above, one can see that the complexes R, L, and P are complexes
of gl(1|1) representations, and that L is quasi-isomorphic to ACKhodd(D)
in the category of gl(1|1) representations. Moreover, the maps Ψ and Φ are
given by scalar multiplication on the spaces associated to the vertices of
(partial) resolution cubes, and since gl(1|1) acts on these spaces by linear
endomorphisms, it is clear that Ψ and Φ intertwine the gl(1|1) actions. As
in the proof of [17, Prop. 3.3], the complex R is acyclic, and so L and hence
ACKhodd(D) is quasi-isomorphic in the category of gl(1|1) representations
to P .

By repeating the above arguments, one can show that ACKhodd(D
′) is

quasi-isomorphic to an analogous complex P ′, and arguing as in the proof
of [17, Prop. 3.3], one can see that this complex agrees with the complex P
up to possible signs. Following [17], one can then show that P is isomorphic
to P ′, via an isomorphism which is given by scalar multiplication on the
spaces associated to vertices of (partial) resolution cubes. Since gl(1|1) acts
linearly on these spaces, it follows that this isomorphism intertwines the
gl(1|1) actions, and so the complexes ACKhodd(D) and ACKhodd(D

′) are
quasi-isomorphic in the category of gl(1|1) representations. □

Remark 6. The choice of the supergrading on odd annular Khovanov hom-
lology is not unique. In fact, by the definitions and by Remark 5, the bound-
ary maps and the gl(1|1) action preserve the (j − k)-grading. Therefore, any
shift of the supergrading by a function of j − k yields a new supergrading,
which is also compatible with the gl(1|1) action. For example, shifting the
superdgree by the modulo 2 reduction of (j − k + |L|+m)/2, where m is
as in the definition of the gl(1|1) action, yields a new superdegree, which is
given explicitly by the modulo 2 reduction of (k −m)/2.

3.3. An alternative description of the gl(1|1) action

In this subsection, we will identify the vector superspace F (I) with an iso-
morphic vector superspace F̃ (I). Using this identification, we will give a new
description of the gl(1|1) action on F (I) and of the boundary maps in the
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odd annular Khovanov complex. We will then use this description to prove
a stronger version of Theorem 1.

As before, we will denote by a1, . . . , an the components of the resolution
PI(L). Moreover, we will denote by V a 2-dimensional vector superspace
spanned by two homogeneous elements v+ and v− of superdegrees 0̄ and 1̄,
respectively. Let F̃ (I) denote the vector superspace

F̃ (I) := (V ⊗ · · · ⊗ V )⟨(n+ |I|+ n+ − 2n− − |L|)/2⟩,

where there are n tensor factors on the right-hand side, and where it is
understood that the ith tensor factor corresponds to the component ai. We
can define an isomorphism of vector superspaces

αI : F (I) −→ F̃ (I)

by sending the element ai1 ∧ · · · ∧ aiℓ ∈ F (I) for i1 < · · · < iℓ to the element
vϵ1 ⊗ · · · ⊗ vϵn ∈ F̃ (I) where

ϵi =

{
+ if i /∈ {i1, . . . , iℓ},

− if i ∈ {i1, . . . , iℓ}.

Remark 7. Under this isomorphism, the (i, j, k)-trigrading on F (I) corre-
sponds to an (i, j, k)-trigrading on F̃ (I). Explicitly, the i-grading is constant
on F̃ (I) and given by i = |I| − n−. The j-grading on F̃ (I) is given by

j(vϵ1 ⊗ · · · ⊗ vϵn) = j(vϵ1) + · · ·+ j(vϵn) + |I|+ n+ − 2n−,

where the j-grading on the ith tensor factor is defined by j(v±) := ±1. The
k-grading on F̃ (I) is given by

k(vϵ1 ⊗ · · · ⊗ vϵn) = k(vϵ1) + · · ·+ k(vϵn),

where the k-grading on the ith tensor factor is defined by k(v±) := 0 if ai is
trivial, and k(v±) := ±1 if ai is essential.

Remark 8. It should be noted that the map αI depends nontrivially on
the ordering of the components a1, . . . , an of the resolution PI(L). However,
different orderings lead to coherent maps αI , in the following sense. If two
orderings differ by exchanging the ai and ai+1, then the maps αI and α′

I
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associated to these two orderings fit into a commutative diagram

F̃ (I)

F (I)

F̃ (I)

id⊗(i−1) ⊗τ⊗id⊗(n−i−1)

αI

α′
I

where τ : V ⊗ V → V ⊗ V denotes the twist map given by τ(v ⊗ w) =
(−1)|v||w|w ⊗ v for all homogeneous elements v, w ∈ V .

Remark 9. Let α̃I denote the map αI without the overall shifts of the
supergrading on the domain and the codomain. That is, α̃I is a map

α̃I : Λ
∗(SpanC{a1, . . . , an}) −→ V ⊗n,

where the supergrading on the exterior algebra is defined by collapsing the
natural Z≥0-grading on the exterior algebra to a Z2-grading. We can now
identify the ith tensor factor of V ⊗n with Λ∗(SpanC{ai}) by using the linear
map given by v+ 7→ 1 and v− 7→ ai. Under this identification, the map α̃I

becomes the “obvious” algebra isomorphism

α̃I : Λ
∗(SpanC{a1, . . . , an}) −→ Λ∗(SpanC{a1})⊗ · · · ⊗ Λ∗(SpanC{an})

given by sending the generator ai to the element 1⊗ · · · ⊗ 1⊗ ai ⊗ 1⊗ · · · 1.
Here, ⊗ denotes the supergraded tensor product of supergraded algebras: it
is the ordinary tensor product on the level of vector superspaces, but the
algebra multiplication is given by (a⊗ b) · (c⊗ d) := (−1)|b||c|(a · c)⊗ (b · d)
for all homogeneous algebra elements a, b, c, d.

We will now define a gl(1|1) action on the vector superspace F̃ (I). To
define this action, we will first define a gl(1|1) action on each tensor factor
of

F̃ (I) = V ⊗n⟨(n+ |I|+ n+ − 2n− − |L|)/2⟩,

and then regard F̃ (I) as the tensor product representation (with shifted
supergrading).

As in the previous subsection, we will assume that the components of
PI(L) are ordered so that the trivial ones precede the essential ones, and that
the essential components of PI(L) are ordered according to their proximity
to the basepoint X.
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If V is a tensor factor of F̃ (I) which corresponds to a trivial component
of PI(L), then we now define the gl(1|1) action on V to be trivial. If V is a
tensor factor of F̃ (I) which corresponds to an essential component ai with
i− nt − 1 even, then we identify V with the fundamental representation
V = L(1,0) = C1|1 of gl(1|1). Explicitly, the gl(1|1) action on such a factor is
given by:

v+ v−(h1,h2)=(1,0)

f=1

e=1

(h1,h2)=(0,1)

Finally, if V is a tensor factor of F̃ (I) which corresponds to an essential
component ai with i− nt − 1 odd, then we identify V with the representa-
tion V ∗⟨1⟩ = L∗

(1,0)⟨1⟩ via the map which takes v+ to v∗− and v− to −v∗+.

Explicitly, the gl(1|1) action on such a factor is given by:

v+ v−(h1,h2)=(0,−1)

f=−1

e=1

(h1,h2)=(−1,0)

In summary, we obtain a gl(1|1) action on F̃ (I), and we now claim that
this action corresponds to the gl(1|1) action on F (I) defined in the previous
subsection.

Lemma 5. For each I : X → {0, 1}, the isomorphism αI : F (I) → F̃ (I) in-
tertwines the gl(1|1) actions on F (I) and F̃ (I).

Proof. On both F (I) and F̃ (I), the generator h+ = h1 + h2 acts by multi-
plication by m, where m is equal to 0 if ne is even and equal to 1 if ne is
odd. Likewise, the generator h− = h1 − h2 acts on both F (I) and F̃ (I) by
multiplication by k, where k denotes the annular grading. Thus it is clear
that αI intertwines the actions of h+ and h− and, therefore, also the actions
of h1 and h2.

To see that αI also intertwines the actions of e and f , we first note that
e and f act trivially on Λ∗SpanC{a1, . . . , ant

} and also on the first nt tensor
factors of F̃ (I), as these correspond to the trivial components a1, . . . , ant

.
Now suppose ai is an essential component, and suppose that the essential

components are ordered according to their proximity to the basepoint X, as
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before. If i− nt − 1 is even, then the definitions of aI and bI imply that e and
f act on Λ∗SpanC{ai} by the maps v 7→ v ⌞ ai and v 7→ v ∧ ai, respectively.
Explicitly,

1 ai

f=1

e=1

and this diagram is consistent with the diagram for the gl(1|1) action on the
ith tensor factor of F̃ (I).

Likewise, if i− nt − 1 is odd, then e and f act on Λ∗SpanC{ai} by the
maps v 7→ v ⌞ ai and v 7→ v ∧ (−ai), or more explicitly,

1 ai

f=−1

e=1

and again this diagram is consistent with the diagram for the gl(1|1) action
on the ith tensor factor of F̃ (I).

To complete the proof, we note that if the maps v 7→ v ⌞ ai and v 7→
v ∧ (±ai) act on a wedge product of the form

ai1 ∧ · · · ∧ air ∧ Λ∗SpanC{ai} ∧ ais ∧ · · · ∧ aiℓ

for i1 < · · · < ir < i < is < · · · < iℓ, then they pick up the sign (−1)ℓ−s+1,
where the sign comes from permuting ±ai across ais ∧ · · · ∧ aiℓ . Because of
our definition of the tensor product of gl(1|1) representations, the same sign
occurs when e and f act on the tensor product

vϵ1 ⊗ · · · ⊗ vϵi−1
⊗ V ⊗ vϵi+1

⊗ · · · ⊗ vϵn ,

where here ϵ1, . . . , ϵi−1, ϵi+1, . . . , ϵn are related to i1, . . . , ir, is, . . . , iℓ as in
the definition of the map αI . □

The next lemma will relate the merge and split maps FM and F∆ to the
maps m : V ⊗ V → V and ∆: V → V ⊗ V defined as follows:

m =

{
v+ ⊗ v+ 7−→ v+, v+ ⊗ v− 7−→ v−,

v− ⊗ v− 7−→ 0, v− ⊗ v+ 7−→ v−,

∆ =

{
v+ 7−→ v− ⊗ v+ − v+ ⊗ v−,

v− 7−→ v− ⊗ v−.



✐

✐

“6-Grigsby” — 2020/7/28 — 0:30 — page 736 — #26
✐

✐

✐

✐

✐

✐

736 J. E. Grigsby and S. M. Wehrli

Note that m is homogeneous of superdegree 0̄ and ∆ is homogeneous of
superdegree 1̄.

Lemma 6. Let I0, I1 : X → {0, 1} be two vertices of the resolution hyper-

cube for which there is an oriented edge from I0 to I1. Denote by a1, . . . , an
the components of PI0(L) and by a′1, . . . , a

′
n∓1 the components of PI1(L),

and let ⊗ denote the tensor product of homogeneous linear maps defined in

Subsection 2.1.

1) If the components ai and ai+1 merge into the component a′i, and if

aj = a′j for j < i and aj = a′j−1 for j > i+ 1, then

αI1 ◦ FM ◦ α−1
I0

= id⊗(i−1)⊗m⊗ id⊗(n−i−1) .

2) If the component ai splits into the components a′i and a′i+1, and if

aj = a′j for j < i and aj = a′j+1 for j > i, then

αI1 ◦ F∆ ◦ α−1
I0

= id⊗(i−1)⊗∆⊗ id⊗(n−i),

where it is assumed that the arrow decorating the split region points

from a′i to a′i+1.

Proof. Recalling the definitions of FM , F∆, and ⊗, it is easy to see that
we can reduce to case where one of PI0(L) and PI1(L) has exactly two
components and the other one has exactly one component.

Suppose first that PI0(L) has exactly two components a1 and a2, and
that PI1(L) has a single component a′1. Then the map FM : F (I0) → F (I1)
is given by sending each of the components a1 and a2 to a′1. Explicitly,

FM =

{
1 7−→ 1, a1 7−→ a′1,

a1 ∧ a2 7−→ 0, a2 7−→ a′1,

and comparing with the definition of m, we see that αI1 ◦ FM ◦ α−1
I0

= m.

Now suppose that PI0(L) has a single component a1, and that PI1(L)
has exactly two components a′1 and a′2. Then the map F∆ : F (I0) → F (I1) is
given by first sending a1 to either a′1 or a′2, and then wedge-multiplying the
result from the left by a′1 − a′2 (where we assume that the arrow decorating
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the split region points from a′1 to a′2). Explicitly,

F∆ =

{
1 7−→ a′1 − a′2,

a1 7−→ a′1 ∧ a′2,

and comparing with the definition of ∆, we see that αI1 ◦ F∆ ◦ α−1
I0

= ∆. □

We may now regard m and ∆ as maps associated to merge and split
operations between resolutions on an annulus. Since, up to a sign in the
definition of ∆(v+), m and ∆ coincide with Khovanov’s multiplication and
comultiplication maps, it follows that they exhibit the same behavior with
respect to the k-grading as the latter maps. In particular, it follows from
[27] that there are decompositions

m = m0 +m− and ∆ = ∆0 +∆−,

where m0 and ∆0 have k-degree 0 and m− and ∆− have k-degree −2. The
explicit form of these decompositions depends on whether the components
involved in the merge or split operation are trivial or essential.

If all involved components are trivial, then m0 = m and ∆0 = ∆.
If a trivial component and an essential component are merged into a

single essential component, then the map v 7→ m0(v+ ⊗ v) is the identity
map and the map v 7→ m0(v− ⊗ v) is the zero map, where here it is assumed
that the first factor in V ⊗ V corresponds to the trivial component. If the
second factor corresponds to the trivial component, then the same holds
true, but with m0 replaced by m0 ◦ τ .

If a single essential component is split into a trivial component and
an essential component, then the map ∆0 is given by v 7→ v− ⊗ v, where
here it is assumed that the first factor of V ⊗ V corresponds to the trivial
component. If the second factor corresponds to the trivial component, then
the same holds true, but with ∆0 replaced by −τ ◦∆0.

Finally, if two essential components are merged into a single trivial com-
ponent, or if a single trivial component is split into two essential components,
then the corresponding maps m0 and ∆0 are given as follows:

m0 =

{
v+ ⊗ v+ 7−→ 0, v+ ⊗ v− 7−→ v−,

v− ⊗ v− 7−→ 0, v− ⊗ v+ 7−→ v−,

∆0 =

{
v+ 7−→ v− ⊗ v+ − v+ ⊗ v−,

v− 7−→ 0.
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We can now prove Lemma 4 from the previous subsection.

Proof of Lemma 4. In view of Lemmas 5 and 6, it is enough to show that
the maps

id⊗(i−1)⊗m0 ⊗ id⊗(n−i−1) and id⊗(i−1)⊗∆0 ⊗ id⊗(n−i)

intertwine the gl(1|1) actions, where here the notation is to be understood
as in the two parts of Lemma 5. Since id intertwines the gl(1|1) actions and
because of Lemma 1, it further suffices to show that m0 and ∆0 intertwine
the gl(1|1) actions when viewed as factors of these maps.

If m0 and ∆0 correspond to merges and splits which only involve trivial
components, then this is obvious becasue in this case the gl(1|1) actions are
trivial on the domain and the codomain of m0 and ∆0.

If m0 corresponds to a merge of a trivial component with an essential
component, then m0 (or m0 ◦ τ) can be described in terms of the identity
map or the zero map, depending on whether the trivial component is labeled
by v+ or v−, and these maps, too, intertwine the gl(1|1) action. (Note that
if m0 ◦ τ intertwines the gl(1|1) actions, then so does m0, because τ is an
isomorphism of gl(1|1) representations).

If further ∆0 corresponds to splitting an essential component into a
trivial and an essential component, then ∆0 (or −τ ◦∆0) is given by v 7→
v− ⊗ v, and again this map intertwines the gl(1|1) action.

Finally, if m0 or ∆0 corresponds to merging to essential components into
a single trivial component, or to splitting a single trivial component into two
essential components, then m0 and ∆0 agree with the maps p̃ and ĩ defined
in Subsection 2.3, and we have already seen that these maps intertwine the
gl(1|1) action. □

Using the alternative description of the gl(1|1) action in terms of the
spaces F̃ (I), we can now prove the following stronger version of Theorem 1.

Theorem 2. If two annular link diagrams P(L) and P(L′) differ by an an-

nular Reidemeister move, then the odd annular Khovanov complexes

ACKhodd(P(L)) and ACKhodd(P(L′)) are homotopy equivalent as complexes

of gl(1|1) representations.

Proof. In [23], Putyra defines a category kChCob/ℓ(0), which generalizes
Bar-Natan’s category Cob3ℓ (∅) defined in [3]. To each decorated link diagram
P(L), Putyra assigns a chain complex Kh(P(L)), which lives in the additive
closure of kChCob/ℓ(0), and which can be viewed as a generalization of
Bar-Natan’s formal Khovanov bracket of P(L).
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Putyra shows that if two link diagrams P(L) and P(L′) differ by a Reide-
meister move, then there is a homotopy equivalence between the generalized
Khovanov brackets Kh(P(L)) and Kh(P(L′)). Moreover, Putyra constructs
a functor, called a chronological TQFT, which takes Kh(P(L)) to the odd
Khovanov complex of P(L).

Putyra’s construction can be carried out equally well in the annular set-
ting. In particular, if P(L) is an annular link diagram, then one can associate
an annular version of the generalized Khovanov bracket, which lives in the
additive closure of an annular version of the category kChCob/ℓ(0). More-
over, there is a chronological TQFT defined on this annular category, which
takes the generalized annular Khovanov bracket of P(L) to the odd annular
Khovanov complex ACKhodd(P(L)). We will henceforth denote this chrono-
logical TQFT by Fann

o . Explicitly, Fann
o is an additive functor given by

assigning the maps m0 : V ⊗ V → V and ∆0 : V → V ⊗ V to (suitably dec-
orated) annular saddle cobordisms, and the maps ι : C → V and ϵ : V → C

given by ι(1) = v+, ϵ(v+) = 0, and ϵ(v−) = 1 to (suitably decorated) annular
cup and cap cobordisms.

We have already seen in the proof of Lemma 4 that the maps m0 and
∆0 intertwine the gl(1|1) action. Since annular cup and cap cobordisms can
only create or annihilate trivial components, and since the gl(1|1) action is
trivial on tensor factors corresponding to such components, it is further clear
that the maps ι and ϵ also intertwine the gl(1|1) action. We can thus view
the functor Fann

o as a functor with values in the representation category of
gl(1|1). Since this functor is also additive, it takes the homotopy equivalences
that Putyra associates to Reidemeister moves to homotopy categories in the
representation category of gl(1|1), and this proves the theorem. □

Remark 10. The category kChCob/ℓ(0) defined in [23] comes equipped
with a Z × Z-grading on its morphism sets. The modulo 2 reduction of the
second Z-factor in this Z × Z-grading corresponds to the supergrading used
in our definition of the gl(1|1) action on odd annular Khovanov homology.
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