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From automorphisms of Riemann surfaces

to smooth 4-manifolds

Ahmet Beyaz, Patrick Naylor, Sinem Onaran, and B. Doug Park

Starting from a suitable set of self-diffeomorphisms of a closed
Riemann surface, we present a general branched covering method
to construct surface bundles over surfaces with positive signature.
Armed with this method, we study the classification problem for
both surface bundles with nonzero signature and closed simply
connected smooth spin 4-manifolds.

1. Introduction

Let Σg denote a closed Riemann surface, i.e., a compact smooth oriented
real 2-dimensional manifold without boundary, having genus g. By a surface
bundle (over a surface), we mean a smooth fiber bundle whose fiber and
base are diffeomorphic to Σf and Σg for some nonegative integers f and g.
It is well known (cf. [16] and [21]) that the signature of a surface bundle is
divisible by 4 and that it vanishes when f ≤ 2 or g ≤ 1. The first example
of a surface bundle with nonzero signature was constructed by Kodaira in
[18]. His example, other early examples in [2], [15], and more recent exam-
ples in [4], [5], [6] were all constructed using branched covering methods.
Inspired by these works, we will present a more general topological recipe
for constructing surface bundles via branched covering method, where the
initial input is a finite set of self-diffeomorphisms of a fixed surface Σh whose
graphs are mutually disjoint. For an alternative approach using relations in
mapping class groups, we refer to [8], [20], and [22].

Our first application is in the classification of surface bundles with
nonzero signature. The following definition was introduced by Endo in [8].

Definition 1. The minimal base genus function is

b(f, n) = min{g | there is a Σf -bundle X → Σg with σ(X) = 4n}.

629
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Lower bounds for b(f, n) were given in [8], [19], and [13]. In particular,
[13] claims a lower bound

(1) b(f, n) ≥
3|n|

f − 1
+ 1

for all f ≥ 3 and n ̸= 0. In [9], it was shown that b(f, n) ≤ 8|n|+ 1 for all
f ≥ 3 and n ̸= 0. It is natural to consider the asymptotic quantity (cf. Prob-
lem 2.18(B) in Kirby’s list [17] that was posed by Mess)

Gf := lim
n→∞

b(f, n)

n
.

From (1), we would immediately obtain Gf ≥ 3/(f − 1). Various upper
bounds for Gf were computed in [4], [5], [20], and [22]. At the time of this
writing, the smallest known upper bounds seem to be Gf ≤ 6/(f − 2) for
all even f ≥ 4 in [4], and Gf ≤ 6/(f − 1) for all odd f ≥ 3 in [22]. Below
we will prove the following upper bound formula that covers all but finitely
many cases:

(2) Gf ≤
5.6

f − 25
for all f ≥ 44.

This provides a new smaller upper bound for Gf for all f large enough (more
specifically, for all odd f ≥ 363 and all even f ≥ 348). In fact, (2) follows
from an even better set of upper bounds that depend on the congruence
class of f modulo 7 (see Theorem 11 in Section 4).

Another application is in the classification of closed simply connected
smooth spin 4-manifolds (the spin geography problem) with nonnegative
signature. We recall the following definition from [1].

Definition 2. We say that a symmetric bilinear form has ∞2-property if it
is the intersection form of infinitely many pairwise nondiffeomorphic simply
connected irreducible symplectic 4-manifolds and infinitely many pairwise
nondiffeomorphic simply connected irreducible nonsymplectic 4-manifolds.
Given any even integer p ≥ 0, let Λp denote the smallest positive odd integer
such that the symmetric bilinear form pE8 ⊕ qH has ∞2-property for every
odd integer q ≥ Λp.

Note that the simply connected 4-manifolds with the same intersection
form in the above definition are all homeomorphic by Freedman’s work in



✐

✐

“1-Park” — 2020/8/20 — 18:13 — page 631 — #3
✐

✐

✐

✐

✐

✐

From automorphisms of Riemann surfaces to 4-manifolds 631

[10]. Here,

E8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2




and H =

[
0 1
1 0

]
.

Henceforth we will assume that p and q are nonnegative integers so that
the rank and the signature of pE8 ⊕ qH are 8p+ 2q and 8p, respectively.
Recall from [12] that a closed simply connected smooth 4-manifold with
nonnegative signature is spin if and only if its intersection form is pE8 ⊕ qH
for some nonnegative integers p and q with p even. Also recall that if a closed
simply connected smooth spin 4-manifold with intersection form pE8 ⊕ qH is
symplectic, then q ≡ b+2 ≡ 1 (mod 2). (Here, b+2 = 8p+ q is the dimension
of the maximal positive definite subspace of the second homology group
under the intersection form.) Finally we note that Λp is well defined as it
was shown in [26] that pE8 ⊕ qH has ∞2-property when the odd integer q
is larger than some constant that depends on p.

In [11], Furuta has shown that if pE8 ⊕ qH is the intersection form of a
closed smooth spin 4-manifold with q ≥ 1, then q ≥ p+ 1. Thus we obtain
a necessary lower bound Λp ≥ p+ 1. The famous 11/8 Conjecture (Problem
4.92 in [17]), which remains unresolved, would imply a stronger lower bound
Λp ≥

3
2p when p ≥ 4. Below we will prove a new upper bound on Λp which

is an improvement of the upper bound in [1] for many small values of p.
Our paper is organized as follows. In Sections 2 and 3, we will give the

details of the construction of surface bundles. In Section 4, we will prove
the upper bound (2) in Corollary 12. In Section 5, we present a new upper
bound for Λp in Corollary 16. Unless otherwise stated, our homology and
cohomology groups will have integer coefficients.

2. Technical lemmas

For convenience, we list the key ingredients of our construction here.

1. Let Σ be a closed oriented surface of genus g > 0. Let k : H1(Σ;Z/n) →
G be a surjective group homomorphism to some finite abelian group
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G. Note that G must be of the form G = (Z/n1)× · · · × (Z/nr) for
some positive integers n1, . . . , nr dividing n and 1 ≤ r ≤ 2g.

2. Consider the surjective homomorphism

π1(Σ)
φ
−→ H1(Σ;Z/n)

k
−→ G,

where φ is the abelianization followed by the change of coefficients
from Z to Z/n. Let p : Σ̃ → Σ be the degree |G| cover corresponding
to k, in the sense that im p# = ker(k ◦ φ), where p# : π1(Σ̃) → π1(Σ)

is the induced map on the fundamental groups. Then the genus of Σ̃
is given by

g(Σ̃) = |G|(g − 1) + 1.

Note that we also have im p∗ ⊆ ker k, where p∗ : H1(Σ̃;Z/n) →
H1(Σ;Z/n) is the induced map on the homology groups.

Next suppose that α0, α1, . . . , αd are self-diffeomorphisms of Σ, where
α0 is the identity map. We define Γ0 = Γp ⊆ Σ̃× Σ to be the graph of p,
and Γj the image of Γ0 under id× αj (j = 0, . . . , d), i.e.,

Γj = {(x, αj(p(x)) | x ∈ Σ̃}.

Consider a divisor D =
∑d

j=0 cjΓj , where each cj ∈ Z.

Our surface bundle will be an n-fold cyclic branched cover of Σ̃× Σ with
branch locus D. To apply the cyclic branched covering construction, we need
to check that the homology class of D is divisible by n. Under sufficiently
nice compatibility of αj ’s and k, this will be true.

Lemma 3. Let Σ, k, α0, . . . , αd and D be as above. Suppose that the induced

maps (αj)∗ : H1(Σ;Z/n) → H1(Σ;Z/n) satisfy

(3) ker k ⊆ ker




d∑

j=0

cj(αj)∗




and that
∑d

j=0 cj is divisible by n. Then the homology class of D is divisible

by n.
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Proof. We recall that for any map f : Z → Y , the homology class of its
graph Γf ⊂ Z × Y is given by

[Γf ] =
∑

i

f∗(βi)× βi,

where {βi} is a basis forH∗(Y ) and {βi} is the dual basis so that βi · β
j = δji .

As in [5], we shall write f∗(x) for the homology class PD(f∗(PD(x))), where
PD denotes the Poincaré duality map. If A : H∗(Y ) → H∗(Y ) is a linear
map, then we note that

(4)
∑

i

p∗(βi)×Aβi =
∑

i

p∗(ATβi)× βi.

We choose the standard basis {a1, b1, . . . , ag, bg} for H1(Σ), oriented so
that the intersection form is given by

J =

[
0 1

−1 0

]⊕g

The dual basis for H1(Σ) is {b1,−a1, . . . , bg,−ag}, and we have ai = JTai
and bi = JT bi.

We can now compute the homology class of D. We have

[Γ0] = p∗({pt})× Σ+ p∗(Σ)× {pt}+

g∑

i=1

p∗(ai)× ai +

g∑

i=1

p∗(bi)× bi.

Write ∆ = p∗({pt})× Σ+ p∗(Σ)× {pt}. Since (id× αj)∗ = id× (αj)∗, we
get

[Γj ] = ∆ +

g∑

i=1

p∗(ai)× (αj)∗a
i +

g∑

i=1

p∗(bi)× (αj)∗b
i.

For convenience, we will denote
∑d

j=0 cj(αj)∗ by F . Thus using the fact that

ai = JTai and bi = JT bi we get

[D] =

d∑

j=0

cj [Γj ] =




d∑

j=0

cj


∆+

g∑

i=1

[
p∗(ai)× (FJTai) + p∗(bi)× (FJT bi)

]
.



✐

✐

“1-Park” — 2020/8/20 — 18:13 — page 634 — #6
✐

✐

✐

✐

✐

✐

634 A. Beyaz, P. Naylor, S. Onaran, and B. D. Park

Since the first part is divisible by n from our hypothesis, we only need to
show the divisibility of the second part. By (4), the second part is equal to

g∑

i=1

[
p∗([JF T ]ai)× ai + p∗([JF T ]bi)× bi

]
.

To check that this is divisible by n, it suffices to check that for each basis
element e ∈ H1(Σ), p

∗(PD([JF T ]e)) is divisible by n. For any x ∈ H1(Σ),
we have

⟨p∗(PD([JF T ]e)), x⟩ = ⟨PD([JF T ]e), p∗(x)⟩,

and since im p∗ ⊆ ker k from the definition of p, it suffices to check that for
all z ∈ ker k and basis elements e, we have

⟨PD([JF T ]e), z⟩ ≡ 0 mod n.

Moreover, note that the intersection product on H1(Σ) is given exactly by

a · b = ⟨PD(a) ∪ PD(b), [Σ]⟩ = ⟨PD(a), PD(b) ∩ [Σ]⟩ = ⟨PD(a), b⟩.

Since we can also express a · b as aTJb in the standard basis, we can conclude
that

⟨PD([JF T ]e), z⟩ ≡ 0 ⇐⇒ eTF (JTJ)z ≡ 0 ⇐⇒ eTFz ≡ 0.

This last statement holds for all basis elements e if and only if Fz ≡ 0.
In other words, each term of the form p∗(PD([JF T ]e)) is divisible by n if
ker k ⊆ kerF when we consider these as subgroups of H1(Σ;Z/n). This was
our hypothesis (3), so we conclude that [D] is indeed divisible by n. □

Most times, we will be working in the following special situation.

Corollary 4. Suppose that α : Σ → Σ is a self-diffeomorphism with induced

map α∗ : H1(Σ;Z/n) → H1(Σ;Z/n). If we perform the above construction

with αj = αj (j = 0, . . . , d), k =
∑d

j=0 cjα
j
∗, and G = im k, where cj ∈ Z are

chosen so that
∑d

j=0 cj ≡ 0 mod n, then [D] is divisible by n.

Remark 5. A particular instance of this corollary is the example in Section
3 of [5], in which we have α = τ , k = id− τ∗, c0 = 1, c1 = −1 and d = 1. One



✐

✐

“1-Park” — 2020/8/20 — 18:13 — page 635 — #7
✐

✐

✐

✐

✐

✐

From automorphisms of Riemann surfaces to 4-manifolds 635

can also check that in this case, the expression

g∑

i=1

[
p∗([JF T ]ai)× ai + p∗([JF T ]bi)× bi

]

does in fact give the correct formula for the homology class [D].

We now compute the self-intersection number of [D].

Lemma 6. Let α : Σ → Σ be an orientation preserving self-diffeomorphism,

and set αj = αj (j = 0, . . . , d). Further assume that α, α2, . . . , αd are all fixed

point free. If c =
∑d

j=0 cj and τ =
∑d

j=0 c
2
j , then the self-intersection number

of D in Σ̃× Σ is given by:

[D]2 = −(c2 + 2τ(g − 1))|G|.

Proof. As before, we write F =
∑d

j=0 cjα
j
∗. Since p is a degree |G| cover, we

readily compute that

(5) [D]2 = c2|G|+

[
g∑

i=1

[
p∗([JF T ]ai)× ai + p∗([JF T ]bi)× bi

]
]2

.

Let Θ = [D]2 − c2|G| denote the last square term of (5). Since (ξ1 × η1) ·
(ξ2 × η2) = (−1)deg(ξ2) deg(η1)(ξ1 · ξ2)× (η1 · η2), and self-intersections are all
zero, Θ is equal to

g∑

i=1

[
− p∗(JF Tai) · p

∗(JF T bi)× (ai · bi)

− p∗(JF T bi) · p
∗(JF Tai)× (bi · ai)

]

=

g∑

i=1

[
−p∗

(
aTi FJTJJF T bi

)
× (ai · bi)− p∗

(
bTi FJTJJF Tai

)
× (bi · ai)

]
.

Since ai · bi = −bi · ai = 1, we can write

Θ = p∗

[
g∑

i=1

bTi FJF Tai − aTi FJF T bi

]
× {pt}.
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Since α∗ ∈ Sp(2g,Z), we have the relation α∗Jα
T
∗ = J . Thus we have

FJF T =
∑

0≤j,l≤d

cjclα
j
∗J(α

T
∗ )

l

=

d∑

j=0

c2jα
j
∗J(α

T
∗ )

j +
∑

0≤j<l≤d

cjclα
j
∗J(α

T
∗ )

l +
∑

0≤l<j≤d

cjclα
j
∗J(α

T
∗ )

l

= τJ +
∑

0≤j<l≤d

cjcl(α
j−l
∗ + αl−j

∗ )J

= τJ +
∑

0≤j<l≤d

cjclΦjlJ,

where we introduce the notation Φjl = αj−l
∗ + αl−j

∗ . Hence Θ is equal to

p∗




g∑

i=1



bTi


τJ +

∑

j<l

cjclΦjlJ


 ai − aTi


τJ +

∑

j<l

cjclΦjlJ


 bi






×{pt}

= p∗




g∑

i=1



2τbTi Jai −

∑

j<l

cjcla
T
i ΦjlJbi +

∑

j<l

cjclb
T
i ΦjlJai






×{pt}.

Note that by convention, ai = e2i−1 and bi = e2i, where ei denotes the i-th
element in the basis {a1, b1, . . . , ag, bg}. Since eTi Aej is the ij-th entry Ai,j

of the matrix A, we get

Θ = p∗




−2gτ −

∑

j<l

cjcl

g∑

i=1

{[ΦjlJ ]2i−1,2i − [ΦjlJ ]2i,2i−1}


 {pt}


× {pt}

= p∗




−2gτ −

∑

j<l

cjcl

g∑

i=1

{[Φjl]2i−1,2i−1 + [Φjl]2i,2i}


 {pt}


× {pt}

= p∗




−2gτ −

∑

j<l

cjcl tr(Φjl)


 {pt}


× {pt}.

If A ∈ Sp(2g,Z), then tr(A) = tr(A−1), and thus tr(Φjl) = 2tr(αl−j
∗ ). Since

each αl−j is fixed point free by our hypothesis, the Lefschetz fixed-point
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theorem implies that tr(αl−j
∗ ) = 2 for all 0 ≤ j < l ≤ d. Thus we have

Θ =

[
−2gτ −

(
c2 − τ

2

)
· 2 · 2

]
p∗({pt})× {pt}

= −2(c2 + τ(g − 1))|G|.

Here, we have used the fact that

c2 =
∑

j,l

cjcl =
∑

j

c2j + 2
∑

j<l

cjcl = τ + 2
∑

j<l

cjcl,

which implies that
∑

j<l cjcl = (c2 − τ)/2. □

One can check that the formula in the last lemma agrees with the special
case given in [5].

Remark 7. It was shown in [7] and [23] that if α is an orientation preserving
self-homeomorphism of a surface with genus g ≥ 2, then at least one of the
powers α, α2, . . . , α2g−2 has a fixed point. Thus we must have d ≤ 2g − 3 in
the hypothesis of Lemma 6.

3. Construction of surface bundles

We will now finish the general construction. Let α : Σ → Σ satisfy the hy-
potheses of Lemma 6. Suppose that we have an epimorphism

k : H1(Σ;Z/n) → G

satisfying condition (3) in Lemma 3 with respect to αj = αj (j = 0, . . . , d),

and that c =
∑d

j=0 cj is divisible by n so that the homology class [D] is also
divisible by n. Further suppose that

(6) cj = ±1 for every j = 0, 1, . . . , d.

Let ϕn : Xn → Σ̃× Σ be the cyclic Z/n branched cover that is ramified on
D. Since Γj ’s are mutually disjoint in Σ̃× Σ and each Γj occurs with mul-
tiplicity ±1 in D by (6), the branched cover Xn will be a smooth surface
bundle and hence a symplectic 4-manifold (cf. p. 1022 of [14]). If α is holo-
morphic, then the resulting branched cover Xn will be a complex surface (a
double Kodaira fibration in the terminology of [6]) as explained on p. 261 of
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[15]. By Hirzebruch’s signature formula [15], since σ(Σ̃× Σ) = 0, we have

(7) σ(Xn) = −
n2 − 1

3n
[D]2 =

n2 − 1

3n
(c2 + 2(d+ 1)(g − 1))|G|,

where τ =
∑d

j=0 c
2
j = d+ 1. We can compute the genera of the fibers of the

surface bundles Xn → Σ and Xn → Σ̃ as follows.

Lemma 8. The genera of the surface bundles are given by:

bundle base genus fiber genus

pr2 ◦ ϕn : Xn → Σ g |G|(n(g − 1) + (d+1)(n−1)
2 ) + 1

pr1 ◦ ϕn : Xn → Σ̃ |G|(g − 1) + 1 n(g + d−1
2 )−

(
d−1
2

)

Proof. Since the divisor D|pt×Σ is c0p(pt) + c1α(p(pt)) + · · ·+ cdα
d(p(pt)),

the fibers of Xn → Σ̃ are Z/n cyclic covers of Σ ramified over d+ 1 points.
The Riemann-Hurwitz formula then gives

2g(fiber)− 2 = n(2g − 2) + (d+ 1)(n− 1)

so the the fiber genus is n(g + d−1
2 )−

(
d−1
2

)
. Similarly,D|Σ̃×pt

= c0p
−1(pt) +

c1p
−1(α−1(pt)) + · · ·+ cdp

−1(α−d(pt)) so the fibers of Xn → Σ are Z/n cov-
ers of Σ̃ ramified over (d+ 1)|G| points. The Riemann-Hurwitz formula gives

2g(fiber)− 2 = n(2g(Σ̃)− 2) + (d+ 1)(n− 1)|G|,

and so in this case the fiber genus is |G|(n(g − 1) + (d+1)(n−1)
2 ) + 1. □

Note that in the special case considered in [5], we had g = 3, d = 1,
c0 = 1, c1 = −1, |G| = n2, and the formulas for the fiber genera agree (3n
and 3n3 − n2 + 1, respectively).

Lemma 9. If n is a positive odd integer, then Xn is spin.

Proof. By a formula of Brand [3], the second Stiefel-Whitney class of Xn is

w2(Xn) =
n− 1

n
(ϕ∗

n(PD[D])),

and consequently, Xn is spin when n is odd. □
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4. Application to the minimal base genus problem

We start with the following lemma due to Nielsen.

Lemma 10. There exists an orientation preserving self-diffeomorphism α
of a surface Σ for each genus g ≥ 2 such that α, α2, . . . , α2g−3 are all fixed

point free.

Proof. An example of such α was given in [23]. One views Σ as the union of
a cylinder and a genus g − 1 surface Σ′ with two small disks removed. Next
one thinks of Σ′ as a regular 4(g − 1)-gon with small holes at the center and
the outer vertex. One can then define α on the Σ′ part to be the rotation by
angle 2π

4(g−1) about the center, and extend it smoothly onto the remaining

cylinder part. We refer to p. 222–223 of the English translation [24] for more
details. □

Theorem 11. Let f ≥ 44 and 2 ≤ i ≤ 8 be integers. If f ≡ 4i (mod 7),
then

(8) Gf ≤
5.6

f − 4i+ 7
.

Proof. To prove this, we will construct an infinite family of surface bundles
and then employ the usual trick of pulling back to unramified covers. We
start with the triple of positive integers (g, n, d), where g ≥ 2, n ≥ 2, and
d is an odd integer such that 1 ≤ d ≤ 2g − 3. Following the construction in
the previous section, construct surface bundles Xn associated to the sum

k = id− α∗ + α2
∗ − · · · − αd

∗,

where α is as in Lemma 10 and G = im k. For convenience, we introduce the
variable u = (d− 1)/2, so that 0 ≤ u ≤ g − 2. From (7) and Lemma 8, these
bundles have the following data:

base genus fiber genus signature

|G|(g − 1) + 1 n(g + u)− u 4
3 · n2−1

n
(u+ 1)(g − 1)|G|

Given a genus h surface, there is anm-fold unramified cover π : Σm(h−1)+1 →
Σh by a genus m(h− 1) + 1 surface. By pulling back the bundle Xn via π,
we get a new family of surface bundles Xn,m with the following data (for
any g ≥ 2, n ≥ 2, 0 ≤ u ≤ g − 2, and m ≥ 1):
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base genus fiber genus signature

m|G|(g − 1) + 1 n(g + u)− u 4
3 · n2−1

n
m(u+ 1)(g − 1)|G|

Let f = n(g + u)− u. Then we obtain

(9) Gf ≤ lim
m→∞

m|G|(g − 1) + 1
1
4 · 4

3 · n2−1
n

m(u+ 1)(g − 1)|G|
=

3n

n2 − 1
·

1

u+ 1
.

This gives a wide family of possible upper bounds for Gf , depending on our
choice of the parameters g, n and u.

We consider the special case when n = 4, g ≥ 8, and u ∈ {g − 8, g −
7, . . . , g − 2}. When u = g − i for 2 ≤ i ≤ 8, we have f = 7g − 3i = 7u+ 4i.
Thus u = (f − 4i)/7 and so (9) becomes

Gf ≤
3 · 4

42 − 1
·

1
f−4i
7 + 1

=
5.6

f − 4i+ 7
.

Note that as g ≥ 8 and i ranges between {2, 3, . . . , 8}, 7g − 3i covers all
residue classes modulo 7 bigger than 43, and so this bound for Gf does
indeed hold for any f ≥ 44. □

Corollary 12. Let f ≥ 44 be an integer. Then Gf ≤ 5.6/(f − 25).

Proof. The worst possible upper bound given by (8) occurs when i = 8. □

Remark 13. Different choices of parameters (g, n, u) yield similar upper
bounds when f < 44 as well, but these do not seem to improve upon the
known bounds.

5. Application to spin geography problem

We will need the following theorem that was proved in [1].

Theorem 14. Let X be a spin 4-manifold that is the total space of a genus

f surface bundle over a genus b surface. Assume that σ(X) = 16s, and X
has a section whose image is a genus b surface of self-intersection −2t for
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some integer t. Let r be a positive integer satisfying

1− t ≤ r ≤ min{s, f + b+ 1− t}.

If p and q are nonnegative integers satisfying

p ≡ 0 (mod 2), 0 ≤ p ≤ 2(s− r),

q ≡ 1 (mod 2), q ≥ 2fb+ 12s− 1− 10p,

then the symmetric bilinear form pE8 ⊕ qH has ∞2-property (cf. Defini-

tion 2) and

Λp ≤ 2fb+ 12s− 1− 10p.

We will now apply Theorem 14 to the following example.

Example 15. Let g=2, and let α be the fixed point free self-diffeomorphism
of a genus 2 surface in Lemma 10 that was constructed by Nielsen. One can
verify (cf. p. 231 of [24]) that the induced map on the first homology is
representable by the matrix

α∗ =




0 1 0 0
−1 0 0 −1
0 1 1 0
0 0 0 1


 .

By setting k = id− α∗ and G = im k, we get c = 0, d = 1, and |G| = n3.
According to (7) and Lemma 8, the corresponding surface bundle pr1 ◦
ϕn : Xn → Σ̃ has base genus b = n3 + 1, fiber genus f = 2n, and signature
σ = 16s = 4

3(n
4 − n2) > 0. There are two sections, each image with self-

intersection equal to −2t = [D]2

(d+1)n = −2n2. By Lemma 9, Xn is spin if n
is odd.

Setting r = 1 in Theorem 14 (note that f + b+ 1− t = n3 − n2 + 2n+
2 > 0), the surface bundles in Example 15 lead to the following upper bound
on Λp.

Corollary 16. Let p ≥ 0 be an even integer. If n ≥ 3 is any odd integer

satisfying p ≤ 1
6(n

4 − n2)− 2, then we have

(10) Λp ≤ 5n4 − n2 + 4n− 1− 10p.
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We can now compare the upper bound in (10) with that in Theorem 5
of [1] for some low values of p, where n = 3, 5 or 7:

bound in [1] bound in (10)

Λp ≤ 275− 10p when 0 ≤ p ≤ 6 Λp ≤ 407− 10p when 0 ≤ p ≤ 10

Λp ≤ 1259− 10p when 8 ≤ p ≤ 38 Λp ≤ 3119− 10p when 12 ≤ p ≤ 98

Λp ≤ 3443− 10p when 40 ≤ p ≤ 110 Λp ≤ 11983− 10p when 100 ≤ p ≤ 390

We note that (10) is an improvement over the bound in [1] when p = 8,
10, and when 40 ≤ p ≤ 98. For example, when p = 8, (10) implies that for
every odd integer q ≥ 327, the topological 4-manifold

(11) 4(K3)#(q − 12)(S2 × S2),

the connected sum of four copies of K3 and q − 12 copies of S2 × S2, has
infinitely many pairwise nondiffeomorphic irreducible symplectic smooth
structures. Here, S2 × S2 is the cartesian product of two 2-spheres, and K3
denotes the complex K3 surface equipped with the noncomplex orientation
and thus with the intersection form 2E8 ⊕ 3H. Note that the existence of
infinitely many pairwise nondiffeomorphic irreducible nonsymplectic smooth
structures on (11) is immediately obtained by just reversing the orientation
of the simply connected irreducible nonsymplectic spin 4-manifolds with
signature −64 that were constructed in [25].

At the moment it is not clear to the authors how to optimize these
bounds across many possible choices of surface bundles Xn. We hope to
clarify this issue in a future work.
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[13] U. Hamenstädt, Signatures of surface bundles and Milnor Wood in-

equalities, arXiv:1206.0263.

[14] M. J. D. Hamilton, Representing homology classes by symplectic sur-

faces, Math. Res. Lett. 19 (2012), 1021–1024.



✐

✐

“1-Park” — 2020/8/20 — 18:13 — page 644 — #16
✐

✐

✐

✐

✐

✐

644 A. Beyaz, P. Naylor, S. Onaran, and B. D. Park

[15] F. Hirzebruch, The signature of ramified coverings, Global Analysis
(Papers in Honor of K. Kodaira), 253–265, Univ. Tokyo Press, Tokyo,
(1969).

[16] A. Kas, On deformations of a certain type of irregular algebraic surface,
Amer. J. Math. 90 (1968), 789–804.

[17] R. Kirby, Problems in low-dimensional topology, https://math.

berkeley.edu/~kirby/problems.ps.gz.

[18] K. Kodaira, A certain type of irregular algebraic surfaces, J. Analyse
Math. 19 (1967), 207–215.

[19] D. Kotschick, Signatures, monopoles and mapping class groups, Math.
Res. Lett. 5 (1998), 227–234.

[20] J. Lee, Surface bundles over surfaces with a fixed signature, J. Korean
Math. Soc. 54 (2017), 545–561.
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