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Motivic concentration theorem
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In this short article, given a smooth diagonalizable group scheme G
of finite type acting on a smooth quasi-compact separated scheme
X, we prove that (after inverting some elements of representation
ring of G) all the information concerning the additive invariants
of the quotient stack [X/G] is “concentrated” in the subscheme
of G-fixed points XG. Moreover, in the particular case where G
is connected and the action has finite stabilizers, we compute the
additive invariants of [X/G] using solely the subgroups of roots of
unity of G. As an application, we establish a Lefschtez-Riemann-
Roch formula for the computation of the additive invariants of
proper push-forwards.

1. Introduction and statement of results

A dg category A, over a base field k (of characteristic p ≥ 0), is a category
enriched over complexes of k-vector spaces; see §2.1. Every (dg) k-algebra
A gives naturally rise to a dg category with a single object. Another source
of examples is provided by schemes (or, more generally, by algebraic stacks)
since the category of perfect complexes perf(X) of every quasi-compact
quasi-separated k-scheme X (or algebraic stack) admits a canonical dg en-
hancement perfdg(X); see §2.3. Let us denote by dgcat(k) the category of
(essentially small) dg categories.

An additive invariant is a functor E : dgcat(k) → D, with values in an ad-
ditive category, which inverts Morita equivalences and sends semi-orthogonal
decompositions in the sense of Bondal-Orlov [4] to direct sums; see §2.2. Ex-
amples of additive invariants include algebraic K-theory and its variants,
cyclic homology and its variants, topological Hochschild homology and its

G. Tabuada was partially supported by a NSF CAREER Award #1350472
and by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) through the project UID/MAT/00297/2019 (Centro de
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variants, etc. Given a k-scheme X (or algebraic stack) as above, we will often
write E(X) instead of E(perfdg(X)).

Let G be a smooth diagonalizable group k-scheme of finite type and X a
smooth quasi-compact separated k-scheme X equipped with a G-action. In
what follows, we will write [X/G] for the associated (global) quotient stack,
G∨ for the group of characters ofG, andR(G) ≃ Z[G∨] for the representation
ring of G.

As explained below in §2.4, given an additive invariant E : dgcat(k) →
D, the Grothendieck ring K0([X/G]), i.e. the G-equivariant Grothendieck
ring of X, acts naturally on the object E([X/G]) ∈ D. By pre-composing
this action with the ring homomorphism R(G) → K0([X/G]) (induced by
pull-back along the projection map X → • := Spec(k)), we hence obtain an
action of R(G) on E([X/G]). Given a multiplicative set S ⊂ R(G), consider
the following presheaf of abelian groups:

(1.1) S−1E([X/G]) := HomD(−, E([X/G]))⊗R(G) S
−1R(G) .

Note that since S−1R(G) can be written as a filtered colimit of free finite
R(G)-modules, the presheaf (1.1) belongs to the category Ind(D) of ind-
objects1 in D.

Let H be a closed diagonalizable subgroup of G. In what follows, we
will write XH for the smooth closed subscheme of H-fixed points (consult
[8, Exposé XII §9]) and SH for the multiplicative set generated by the ele-
ments (1− χ) ∈ R(G) ≃ Z[G∨], where χ ∈ G∨ is any character of G whose
restriction to H is non-trivial.

Under the above notations and assumptions, our first main result is the
following:

Theorem 1.2 (Motivic concentration). We have an isomorphism of
ind-objects

E(ι∗) : S−1
H E([X/G])

≃
−→ S−1

H E([XH/G])

induced by pull-back along the closed immersion ι : XH →֒ X.
Moreover, its inverse is given by the following composition

S−1
H E([XH/G])

(λ−1(N )·−)−1

−→ S−1
H E([XH/G])

E(ι∗)
−→ S−1

H E([X/G]) ,

where N stands for the conormal bundle of the closed immersion ι : XH →֒
X, λ−1(N ) for the Grothendieck class

∑

j(−1)j [
∧j(N )] ∈ K0([X

H/G]), and

1For the general theory of ind-objects, we invite the reader to consult [2, 3].
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− · − for the induced action of the ring K0([X
H/G]) on the ind-object

S−1
H E([XH/G]).

Intuitively speaking, Theorem 1.2 shows that (after inverting the multi-
plicative set SH) all the information concerning the additive invariants of the
quotient stack [X/G] is “concentrated” in the quotient stack [XH/G]. Since
Theorem 1.2 holds for every additive invariant, we named it the “motivic
concentration theorem”.

Remark 1.3 (Generalization). Let H be a flat quasi-coherent sheaf of
algebras over [X/G], i.e. a G-equivariant flat quasi-coherent sheaf of al-
gebras over X. Given an additive invariant E : dgcat(k) → D, let us write
E([X/G];H) for the object E(perfdg([X/G];H))∈D, where perfdg([X/G];H)
stands for the canonical dg enhancement of the category of G-equivariant
perfect H-modules perf([X/G];H). As explained in Remark 4.10, Theo-
rem 1.2 holds more generally with S−1

H E([X/G]) and S−1
H E([XH/G]) re-

placed by S−1
H E([X/G];H) and S−1

H E([XH/G]; ι∗(H)).

Remark 1.4 (Localization at prime ideals). Let ρ be a prime ideal
of the representation ring R(G) ≃ Z[G∨]. Recall that G ≃ D(G∨), where
D(−) stands for the classical diagonalizable group scheme construction. On
the one hand, similarly to (1.1), we can consider the following presheaf of
abelian groups:

E([X/G])(ρ) := HomD(−, E([X/G]))⊗R(G) R(G)(ρ) .

On the other hand, following Segal [18, Prop. 3.7], we can consider the
closed diagonalizable subgroup Hρ := D(G∨/Kρ) of G (called the support of
ρ), where Kρ := {χ ∈ G∨ | 1− χ ∈ ρ ⊂ Z[G∨]}. Note that SHρ

∩ ρ = ∅ and
that Hρ is maximal with respect to this property. Therefore, by further
inverting the elements R(G)\(SHρ

∪ ρ), we conclude that Theorem 1.2 holds
similarly with S−1

H E([X/G]) and S−1
H E([XH/G]) replaced by E([X/G])(ρ)

and E([XHρ/G])(ρ), respectively.

Given an additive category D, let us write −⊗Z − for the canonical
action of the category of finite free Z-modules free(Z) on D. This action
extends naturally to an action of Ind(free(Z)) on Ind(D). Our second main
result is the following:

Theorem 1.5. Assume that the base field k (of characteristic p ≥ 0) con-
tains the lth roots of unity for every prime l ̸= p such that (G∨)l-torsion ̸= 0.
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Under this assumption, we have an isomorphism of ind-objects:

S−1
G E([X/G]) ≃ E(XG)⊗Z S−1

G R(G) .

Note that when G is moreover connected, i.e. a k-split torus T , the
assumption of Theorem 1.5 is vacuous. In this case, we have an isomorphism
of ind-objects

S−1
T E([X/T ]) ≃ E(XT )⊗Z Z[t±1 , . . . , t

±
r ][{(1− tji )

−1}i,j ]) ,

where r stands for the rank of T , 1 ≤ i ≤ r, and j ̸= 0 ∈ Z.
Similarly to Theorem 1.2, Theorem 1.5 shows that (after inverting the

multiplicative set SG) all the information concerning the additive invariants
of the quotient stack [X/G] is “concentrated” in the subscheme of G-fixed
points XG.

We now illustrate Theorems 1.2 and 1.5 in several examples:

Example 1.6 (Algebraic K-theory). Algebraic K-theory gives rise to
an additive invariant K : dgcat(k) → Ho(Spt) with values in the category
of spectra; see [19, §2.2.1]. Hence, Theorem 1.2 applied to E = K yields an
isomorphism of ind-objects:

(1.7) K(ι∗) : S−1
H K([X/G])

≃
−→ S−1

H K([XH/G]) .

Consequently, we obtain, in particular, isomorphisms of abelian groups:

(1.8) K∗(ι
∗) : S−1

H K∗([X/G])
≃

−→ S−1
H K∗([X

H/G]) .

Several variants of algebraicK-theory such as Karoubi-VillamayorK-theory,
homotopy K-theory, and étale K-theory, are also additive invariants; see
[19, §2.2.2-§2.2.6]. Hence, isomorphisms similar to (1.7)-(1.8) also hold for
all these variants.

The above isomorphisms (1.8) and their explicit inverses, with
S−1
H K∗([X/G]) and S−1

H K∗([X
H/G]) replaced by K∗([X/G])(ρ) and

K∗([X
Hρ/G])(ρ) (see Remark 1.4), were originally established by Thomason

in [23, Thm. 2.1 and Prop. 3.1] under the weaker assumption that X is a reg-
ular algebraic space. Previously, in the particular case of the Grothendieck
group, the isomorphism (1.8) and its explicit inverse were established by
Nielsen in [16, Thm. 3.2] under the stronger assumptions that X is a smooth
projective k-scheme and that k is algebraically closed.
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Example 1.9 (Mixed complex). Recall from Kassel [12, §1] that a mixed
complex is a (right) dg module over the algebra of dual numbers Λ := k[ϵ]/ϵ2,
where deg(ϵ) = −1 and d(ϵ) = 0. The mixed complex construction gives rise
to an additive invariant C: dgcat(k) → D(Λ) with values in the derived cat-
egory of Λ; see [19, §2.2.7]. Hence, Theorem 1.2 applied to E = C yields an
isomorphism of ind-objects:

(1.10) C(ι∗) : S−1
H C([X/G])

≃
−→ S−1

H C([XH/G]) .

Cyclic homology and all its variants such as Hochschild homology, negative
cyclic homology, and periodic cyclic homology, factor through C. Conse-
quently, an isomorphism similar to (1.10) also holds for all these invariants.
To the best of the authors’ knowledge, all these isomorphisms are new in
the literature.

Example 1.11 (Periodic cyclic homology). Assume that char(k) = 0.
Periodic cyclic homology gives rise to an additive invariantHP± : dgcat(k) →
VectZ/2(k) with values in the category of Z/2-graded k-vector spaces; see
[19, §2.2.11]. Moreover, thanks to the Hochschild-Kostant-Rosenberg theo-
rem, we have an isomorphism HP±(Y ) ≃ (

⊕

i evenH
i
dR(Y ),

⊕

i oddH
i
dR(Y ))

for every smooth k-scheme Y , where H∗
dR(−) stands for de Rham cohomol-

ogy. Therefore, Theorem 1.5 applied to E = HP± yields, in particular, an
isomorphism of Z/2-graded k-vector spaces:

S−1
G HP±([X/G]) ≃

(

⊕

i even

H i
dR(X

G),
⊕

i odd

H i
dR(X

G)

)

⊗Z S−1
G R(G) .

This description of the periodic cyclic homology of the quotient stack [X/G]
in terms of the de Rham cohomology of the subscheme of G-fixed points XG

is, to the best of the authors’ knowledge, new in the literature.

Example 1.12 (Topological Hochschild homology). Topological
Hochschild homology gives rise to an additive invariant THH : dgcat(k) →
Ho(Spt); see [19, §2.2.12]. Hence, Theorem 1.2 applied to E = THH yields
an isomorphism of ind-objects:

(1.13) THH(ι∗) : S−1
H THH([X/G])

≃
−→ S−1

H THH([XH/G]) .

Topological Hochschild homology and all its variants such as topological
cyclic homology, topological negative cyclic homology, and topological peri-
odic cyclic homology, are also additive invariants; consult [11, 15][19, §2.2.13].
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Consequently, an isomorphism similar to (1.13) also holds for all these vari-
ants. To the best of the authors’ knowledge, all these isomorphisms are new
in the literature.

Example 1.14 (Topological periodic cyclic homology). Assume that
k is a perfect field of characteristic p > 0. Let W (k) be the ring of p-typical
Witt vectors of k and K := W (k)1/p the fraction field of W (k). Periodic
cyclic homology gives rise to an additive invariant TP±(−)1/p : dgcat(k) →
VectZ/2(K) with values in the category of Z/2-graded K-vector spaces; see
[20, Thm. 2.3]. Moreover, following Scholze (see [21, Thm. 5.2]), we have
TP±(Y )1/p ≃ (

⊕

i evenH
i
crys(Y ),

⊕

i oddH
i
crys(Y )) for every smooth proper k-

scheme Y , whereH∗
crys(−) stands for crystalline cohomology. Therefore, The-

orem 1.5 applied to E = TP±(−)1/p yields, in particular, an isomorphism of
Z/2-graded K-vector spaces:

S−1
G TP±([X/G])1/p ≃

(

⊕

i even

H i
crys(X

G),
⊕

i odd

H i
crys(X

G)

)

⊗Z S−1
G R(G) .

Similarly to the above Example 1.11, this description of the topological peri-
odic cyclic homology of the quotient stack [X/G] in terms of the crystalline
cohomology of the subscheme of G-fixed points XG is new in the literature.

Proper push-forwards

The following result is an immediate application of the above Theorems 1.2
and 1.5:

Theorem 1.15 (Motivic Lefschetz-Riemann-Roch formula). Given
a G-equivariant proper map f : X → Y , between smooth quasi-compact sepa-
rated k-schemes, we have the following commutative diagram of ind-objects:

(1.16) S−1
H E([X/G])

E(f∗)

��

E(ι∗)
// S−1

H E([XH/G])

(λ−1(N )·−)−1

��

S−1
H E([XH/G])

E((f◦ι)∗)
��

S−1
H E([Y/G]) S−1

H E([Y/G]) .



✐

✐

“10-Tabuada” — 2020/5/31 — 16:58 — page 571 — #7
✐

✐

✐

✐

✐

✐

Motivic concentration theorem 571

Moreover, in the particular case where XG consists of a finite set of k-
rational points and Y = •, the commutative diagram (1.16) (with H = G)
reduces to the following commutative diagram of ind-objects2

(1.17) S−1
G E([X/G])

E(f∗)

��

E(ι∗)
//
⊕

x∈XG S−1
G E([•/G])

⊕
x∈XG (λ−1(T∨

x )·−)−1

��
⊕

x∈XG S−1
G E([•/G])

∇
��

S−1
G E([•/G]) S−1

G E([•/G]) ,

where ∇ stands for the co-diagonal map and T∨
x for the dual of the tan-

gent bundle of X at the point x. Furthermore, whenever k contains the lth

roots of unity for every prime l ̸= p such that (G∨)l-torsion ̸= 0, the ind-object
⊕

x∈XG S−1
G E([•/G]) in (1.17) can be replaced by the ind-object E(k)⊗Z

⊕

x∈XG S−1
G R(G).

Intuitively speaking, the commutative diagram (1.16), resp. (1.17), shows
that after inverting the multiplicative set SH , resp. SG, all the information
concerning the additive invariants of the push-forward along f , resp. along
X → •, is “concentrated” in the quotient stack [XH/G], resp. in the set of
k-rational points XG.

To the best of the authors’ knowledge, Theorem 1.15 is new in the lit-
erature. In the particular case where E = K0(−), the diagram (1.17) was
originally established by Nielsen in [16, Prop. 4.5] (under the stronger as-
sumptions thatX is a smooth projective k-scheme and that k is algebraically
closed) and later by Thomason in [23, Thm. 3.5] (with S−1

G K0(−) replaced
by K0(−)({0}) (see Remark 1.4) under the weaker assumption that X is a
regular algebraic space). Note that in this particular case, the diagram (1.17)
reduces to the classical Lefschetz-Riemann-Roch formula

(1.18)
∑

i

(−1)i[H i(X;F)] =
∑

x∈XG

[Fx]
∑

j(−1)j [
∧j(T∨

x )]
in S−1

G R(G) ,

2In the particular case where XH consists of a finite set of k-rational points and
G is moreover connected, the G-action onXH is necessarily trivial. Consequently, in
this case, the above diagram (1.17) holds similarly with S−1

G
E(−) and XG replaced

by S−1

H
E(−) and XH , respectively.
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which computes theG-equivariant Euler characteristic of everyG-equivariant
perfect complex of OX -modules F in terms of the finite set of k-rational
points XG. It is well-known that the formula (1.18) implies many other
classical formulas such as the Woods Hole fixed-point formula (see [1]), the
Weyl’s character formula (see [7, 25]), the Brion’s counting formula (see [6]),
etc.

Torus actions with finite stabilizers

In this subsection we assume that G is moreover connected, i.e. a k-split
torus T , and that the T -action on X has finite (geometric) stabilizers. Let
us denote by C(T ) the set of all those subgroups µn ⊂ T such that Xµn ̸= ∅.
Note that since the T -action on X has finite stabilizers, the set {n ∈ N |µn ∈
C(T )} is finite; in what follows, we will write r for the least common multiple
of the elements of this latter set.

Given a subgroup µn ∈ C(T ), let Sµn
⊂ R(T )1/r be the multiplicative

set defined as the pre-image of 1 under the following Z[1/r]-algebra homo-
morphism

R(T )1/r
(a)
−→ R(µn)1/r

(b)
≃

Z[1/r][t]

⟨tn − 1⟩
≃
∏

d|n

Z[1/r][t]

⟨Φd(t)⟩

(c)
−→

Z[1/r][t]

⟨Φn(t)⟩
,

where (a) is the restriction homomorphism, (b) is induced by the choice of
a(ny) generator t of the character group µ∨

n , Φd(t) stands for the dth cy-
clotomic polynomial, and (c) is the projection homomorphism. Under these
notations and assumptions, our third main result is the following:

Theorem 1.19. For every additive invariant E : dgcat(k) → D, with values
in a Z[1/r]-linear category, we have an isomorphism of ind-objects

(1.20) E([X/T ])
≃

−→
⊕

µn∈C(T )

S−1
µn

E([Xµn/T ])

induced by pull-back along the closed immersions Xµn →֒ X. Moreover, the
direct sum on the right-hand side is finite.

Intuitively speaking, Theorem 1.19 shows that all the information con-
cerning the additive invariants of the quotient stack [X/T ] (no invertion is
needed!) is “concentrated” in the quotient stacks [Xµn/T ].

Thanks to Theorem 1.19, the above isomorphism (1.20) holds for alge-
braic K-theory and all its variants, for cyclic homology and all its variants,
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for topological Hochschild homology and all its variants, etc. In the partic-
ular case of algebraic K-theory such an isomorphism was originally estab-
lished by Vezzosi-Vistoli in [24, §3] under the weaker assumption that X is
a regular algebraic space. The remaining isomorphisms are, to the best of
the authors’ knowledge, new in the literature.

Proofs

Our proof of Theorem 1.2, resp. Theorem 1.19, is different from the proof
of Thomason, resp. of Vezzosi-Vistoli, in algebraic K-theory. Nevertheless,
we do borrow some ingredients from their proofs. In fact, using a certain
category of subschemes of the quotient stack [X/G] (see §3), we are able to
ultimately reduce the proof of Theorem 1.2, resp. Theorem 1.19, to the proof
of the K0-case of Thomason’s result, resp. of Vezzosi-Vistoli’s result; consult
§4 for details. Note, however, that we cannot mimic Thomason’s arguments,
resp. Vezzosi-Vistoli’s arguments, because they depend in an essential way
on the dévissage property of G-theory (=K-theory for smooth schemes),
which does not hold for many additive invariants. For example, as explained
by Keller in [14, Example 1.11], Hochschild homology, and consequently the
mixed complex, do not satisfy dévissage.

2. Preliminaries

Throughout the article, k will be a base field of characteristic p ≥ 0.

2.1. Dg categories

Let (C(k),⊗, k) be the category of (cochain) complexes of k-vector spaces. A
dg category A is a category enriched over C(k) and a dg functor F : A → B
is a functor enriched over C(k); consult Keller’s survey [13]. Recall from §1
that dgcat(k) stands for the category of (essentially small) dg categories.

Let A be a dg category. The opposite dg category Aop has the same
objects and Aop(x, y) := A(y, x). The category H0(A) has the same objects
as A and morphisms H0(A)(x, y) := H0A(x, y), where H0(−) stands for
the 0th-cohomology functor. A right dg A-module is a dg functor M : Aop →
Cdg(k) with values in the dg category Cdg(k) of complexes of k-vector spaces.
Let us write C(A) for the category of right dg A-modules. Following [13,
§3.2], the derived category D(A) of A is defined as the localization of C(A)
with respect to the objectwise quasi-isomorphisms.
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A dg functor F : A → B is called a Morita equivalence if the restriction
functor D(B) → D(A) is an equivalence of derived categories; see [13, §4.6].
As explained in [19, §1.6], the category dgcat(k) admits a Quillen model
structure whose weak equivalences are the Morita equivalences. Let us de-
note by Hmo(k) the associated homotopy category.

The tensor product A⊗ B of dg categories is defined as follows: the set
of objects is the cartesian product of the sets of objects of A and B and
(A⊗ B)((x,w), (y, z)) := A(x, y)⊗ B(w, z). As explained in [13, §2.3], this
construction gives rise to a symmetric monoidal structure on dgcat(k), which
descends to Hmo(k).

A dg A-B-bimodule is a dg functor B: A⊗ Bop → Cdg(k) or, equivalently,
a right dg (Aop ⊗ B)-module. A standard example is the dg A-B-bimodule

FB : A⊗ Bop −→ Cdg(k) (x, z) 7→ B(z, F (x))(2.1)

associated to a dg functor F : A → B.

2.2. Additive invariants

A functor E : dgcat(k) → D, with values in an additive category, is called
an additive invariant if it satisfies the following two conditions:

(i) It sends the Morita equivalences (see §2.1) to isomorphisms.

(ii) Let A ⊆ B and C ⊆ B be dg categories inducing a semi-orthogonal de-
composition H0(B) = ⟨H0(A),H0(C)⟩ in the sense of Bondal-Orlov [4].
In this case, the inclusions A ⊆ B and C ⊆ B induce an isomorphism
E(A)⊕ E(C)

≃
→ E(B).

Given small dg categories A and B, let us write rep(A,B) for the full triangu-
lated subcategory of D(Aop ⊗ B) consisting of those dg A-B-modules B such
that for every object x ∈ A the associated right dg B-module B(x,−) ∈ D(B)
belongs to the full triangulated subcategory of compact objectsDc(B). As ex-
plained in [19, §1.6.3], there is a natural bijection between HomHmo(k)(A,B)
and the set of isomorphism classes of the category rep(A,B). Moreover,
under this bijection, the composition law of Hmo(k) corresponds to the (de-
rived) tensor product of bimodules.

The additivizationHmo0(k) of Hmo(k) is defined as the category with the
same objects as Hmo(k) and morphisms HomHmo0(k)(A,B) := K0rep(A,B).
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Since the dg A-B-bimodules (2.1) belong to rep(A,B), we have the symmet-
ric monoidal functor:

U: dgcat(k) −→ Hmo0(k) A 7→ A (A
F
→ B) 7→ [FB] .(2.2)

As explained in [19, §2.3], this functor is the universal additive invariant,
i.e. given any additive category D, pre-composition with U gives rise to an
equivalence

Funadditive(Hmo0(k),D)
≃

−→ Funadd(dgcat(k),D) ,(2.3)

where the left-hand side stands for the category of additive functors and the
right-hand side for the category of additive invariants.

2.3. Derived categories of quotient stacks

Let G be an affine group k-scheme of finite type and X a quasi-compact
quasi-separated k-scheme equipped with a G-action. Let us denote by
Mod([X/G]) the Grothendieck category of G-equivariant OX -modules and
by Qcoh([X/G]), resp. coh([X/G]), the full subcategory of G-equivariant
quasi-coherent, resp. coherent, OX -modules. We will write D([X/G]) :=
D(Mod([X/G])) for the derived category of the quotient stack [X/G],
DQcoh([X/G]) ⊂ D([X/G]) for the full subcategory of those complexes of G-
equivariant OX -modules whose cohomology belongs to Qcoh([X/G]),
Db(coh([X/G])) ⊂ DQcoh([X/G]) for the full subcategory of bounded com-
plexes of G-equivariant coherent OX -modules, and perf([X/G]) ⊂
Db(coh([X/G])) for the full subcategory of perfect complexes ofG-equivariant
OX -modules.

Let Ex be an exact category. As explained in [13, §4.4], the derived dg
category Ddg(Ex) of Ex is defined as the Drinfeld’s dg quotient Cdg(Ex)/
Acdg(Ex) of the dg category of complexes over Ex by its full dg subcategory
of acyclic complexes.

Following the above, we will write Ddg([X/G]) for the dg category
Ddg(Ex), with Ex := Mod([X/G]), and DQcoh,dg([X/G]), Db

dg(coh([X/G])),
and perfdg([X/G]), for the corresponding full dg subcategories.

Proposition 2.4 (Trivial action). Assume that the category DQcoh([•/G])
is compactly generated. Under this assumption, whenever the G-action on
X is trivial, we have the following Morita equivalence:

(2.5) perfdg(X)⊗ perfdg([•/G]) −→ perfdg([X/G])(F , V ) 7→ F ⊠ V .
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Remark 2.6. As proved in [10, Thm. A] and [9, Lem. 4.1], the category
DQcoh([•/G]) is compactly generated if and only if k is of characteristic zero
or if k is of positive characteristic and G := G⊗k k does not contains a copy
of the additive group Ga.

Proof. Given any F ∈ DQcoh(X), any V ∈ DQcoh([•/G]), and any G ∈
DQcoh([X/G]), we have the following classical tensor-Hom relation:

(2.7) RHom[X/G](F ⊠ V,G) ≃ RHom[•/G](V,RHomX(F ,G)) .

The relation (2.7) implies that if F and V are compact objects, then F ⊠ V ∈
DQcoh([X/G]) is also a compact object. Moreover, ifRHom[X/G](F ⊠ V,G) =
0 for every F and V , then G is necessarily equal to zero. Furthermore, if F
and V are perfect complexes, then F ⊠ V is also a perfect complex. Since the
categories DQcoh(X) and DQcoh([•/G]) are compactly generated by perfect
complexes (consult [5, Thm. 3.1.1] and [10, Thm. A (b)], respectively) the
above three facts imply that the category DQcoh([X/G]) is also compactly
generated by perfect complexes. Finally, given any two perfect complexes
F1,F2 ∈ perf(X) and any two G-representations V1, V2 ∈ perf([•/G]), note
that (2.7) also implies that

RHom[X/G](F1 ⊠ V1,F2 ⊠ V2) ≃ RHom[•/G](V1, V2)⊗RHomX(F1,F2) .

This allows us to conclude that the dg functor (2.5) is a Morita equivalence.
□

2.4. Action of the Grothendieck ring

Let G be an affine group k-scheme of finite type and X a quasi-compact
quasi-separated k-scheme equipped with a G-action. Since the tensor prod-
uct−⊗X−makes the dg category perfdg([X/G]) into a commutative monoid
and the universal additive invariant (2.2) is symmetric monoidal, we obtain
a commutative monoid U([X/G]) in the category Hmo0(k). Making use of
the following natural ring isomorphism

HomHmo0(k)(U(k),U([X/G])) := K0rep(k, perfdg([X/G]))

≃ K0(perf([X/G])) ,

we hence conclude that the Grothendieck ringK0([X/G]) ≃ K0(perf([X/G]))
acts on the object U([X/G]) (and also that the monoid structure of U([X/G])
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is K0([X/G])-linear). Concretely, this action can be explicitly described as
follows:

K0(perf([X/G])) −→ K0(rep(perfdg([X/G]), perfdg([X/G])))

[F ] 7→ [(F⊗X−)B] .

Given any additive invariant E : dgcat(k) → D, the equivalence of cate-
gories (2.3) implies, by functoriality, that K0([X/G]) acts on the object
E([X/G]) ∈ D.

3. Category of subschemes of a quotient stack

Let G be a smooth affine group k-scheme of finite type and X a smooth
quasi-compact separated k-scheme equipped with a G-action. In this sec-
tion, we construct a certain category3 SubG0 (X) of G-stable smooth closed
subschemes of X. This category, which is of independent interest, will play
a key role in the proof of Theorems 1.2 and 1.19; consult §4 below.

Definition of the category SubG

0
(X)

Let SubG(X) be the category whose objects are the G-stable closed immer-

sions Y
τ
→֒ X, with Y a smooth quasi-compact separated k-scheme. In what

follows, in order to simplify the exposition, we will often write Y . Given two
objects Y1 and Y2, HomSubG(X)(Y1, Y2) is defined as the set of isomorphism
classes of the full subcategory

Db
Y1×XY2

(coh([(Y1 × Y2)/G])) ⊂ Db(coh([(Y1 × Y2)/G]))

≃ perf([(Y1 × Y2)/G])

of those bounded complexes of G-equivariant coherent OY1×Y2
-modules

whose cohomology is (topologically) supported on the closed subscheme
Y1 ×X Y2; note that since the quotient stack [(Y1 × Y2)/G] is smooth, ev-
ery bounded complex of G-equivariant coherent OY1×Y2

-modules is perfect.

3In the case of a constant finite group k-scheme G, a related category of G-
equivariant smooth “covers” of X was constructed in [22, §5].
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Given three objects Y1, Y2, and Y3, the composition law

HomSubG(X)(Y2, Y3)×HomSubG(X)(Y1, Y2) −→ HomSubG(X)(Y1, Y3)

is induced by the classical (derived) “pull-back/push-forward” formula

(3.1) (E23, E12) 7→ (q13)∗((q23)
∗(E23)⊗

L (q12)
∗(E12)) ,

where qij stands for the projection from the triple fiber product onto its
ij-factor. Finally, the identity of an object Y is the (isomorphism class of
the) G-equivariant structure sheaf O∆ of the diagonal ∆ in Y × Y .

The additivization SubG0 (X) of SubG(X) is defined by formally adding
all finite direct sums to the category which has the same objects as SubG(X)
and morphisms

HomSubG
0 (X)(Y1, Y2) := K0(D

b
Y1×XY2

(coh([(Y1 × Y2)/G]))) .

Note that, since the above formula (3.1) is exact in each one of the vari-
ables, the composition law of SubG(X) extends naturally to SubG0 (X). Let
us denote by

U : SubG(X) −→ SubG0 (X)

the canonical functor. Note also that thanks to Quillen’s dévissage theorem
[17, §5] and to the definition of G-theory, we have isomorphisms:

HomSubG
0 (X)(Y1, Y2) ≃ G0([(Y1 ×X Y2)/G]) .

In particular, we have ring isomorphisms:

EndSubG
0 (X)(Y ) ≃ G0([Y/G]) ≃ K0([Y/G]) .

Relation(s) between the categories SubG

0
(X) and Hmo0(k)

Given two objects Y1 and Y2 of the category SubG(X), consider the exact
functor

Db
Y1×XY2

(coh([(Y1 × Y2)/G])) −→ rep(perfdg([Y1/G]), perfdg([Y2/G])

that sends a bounded complex of G-equivariant coherent OY1×Y2
-modules

E12 (whose cohomology is (topologically) supported on the closed subscheme
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Y1 ×X Y2) to the following Fourier-Mukai dg-functor:

ΦE12
: perfdg([Y1/G]) −→ perfdg([Y2/G]) F 7→ (q2)∗((q1)

∗(F)⊗L E12) .

By definition of the categories SubG(X) and Hmo(k), the above construc-
tions lead to a well-defined functor

SubG(X) −→ Hmo(k) Y 7→ perfdg([Y/G]) E12 7→ ΦE12
B ,

which naturally extends to the additive categories:

Ψ: SubG0 (X) −→ Hmo0(k) U(Y ) 7→ U([Y/G]) .

Remark 3.2 (Sheaves of algebras). Let H be a flat quasi-coherent sheaf
of algebras over [X/G], i.e. a G-equivariant flat quasi-coherent sheaf of alge-

bras over X. Given two objects Y1
τ1
→֒ X and Y2

τ2
→֒ X of SubG(X), consider

the exact functor

Db
Y1×XY2

(coh([(Y1 × Y2)/G]))

→ rep(perfdg([Y1/G]; τ∗1 (H)), perfdg([Y2/G]; τ∗2 (H)))

defined, as above, by the assignment E12 7→ ΦE12
B. This leads to a functor

SubG(X) −→ Hmo(k) (Y
τ
→֒ X) 7→ perfdg([Y/G]; τ∗(H)) E12 7→ ΦE12

B ,

which naturally extends to the additive categories:

ΨH : SubG0 (X) −→ Hmo0(k) U(Y
τ
→֒ X) 7→ U([Y/G]; τ∗(H)) .

Some properties of the category SubG

0
(X) and of the functor Ψ

In what follows, we describe three important properties that will be used in
the sequel.

3.0.1. Pull-back and push-forward. Let Y1
τ1→ X and Y2

τ2→ X be two
objects of the category SubG(X). Given aG-stable closed immersion ι : Y1 →֒
Y2 such that τ2 ◦ ι = τ1, its pull-back U(ι∗) : U(Y2) → U(Y1), resp. push-
forward U(ι∗) : U(Y1) → U(Y2), is defined as the Grothendieck class [(ι×X

id)∗(OY1
)], resp. [(id×Xι)∗(OY1

)], of the group G0([(Y2 ×X Y1)/G]), resp.
G0([(Y1 ×X Y2)/G]). Note that Ψ(U(ι∗)) = U(ι∗) and Ψ(U(ι∗)) = U(ι∗).
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3.0.2. K0-action. Let Y be an object of SubG(X). The push-forward
along the diagonal map i∆ : Y →֒ Y × Y leads to an exact functor

(3.3) (i∆)∗ : perf([Y/G]) −→ Db
∆(coh([(Y × Y )/G]))

that sends the tensor product −⊗Y − on the left-hand side to the “pull-
back/push-forward” formula (3.1) on the right-hand side. Therefore, by ap-
plying K0(−) to (3.3), we obtain an induced ring morphism K0([Y/G]) →
EndSubG

0 (X)(U(Y )). In other words, we obtain an action of K0([Y/G]) on the
object U(Y ).

Lemma 3.4. The functor Ψ interchanges with the K0([Y/G])-action on
U(Y ) (defined above) with the K0([Y/G])-action on U([Y/G]) (defined in
§2.4).

Proof. Consider the following commutative diagram:

(3.5) perf([Y/G])
(i∆)∗

// Db
∆(coh([(Y × Y )/G]))

E 7→ΦE
B

��

perf([Y/G])
F7→(F⊗Y −)B

// rep(perfdg([Y/G]), perfdg([Y/G])) .

By applying K0(−) to (3.5), we obtain the claimed compatibility. □

3.0.3. K0-linearity. Let Y
τ
→֒ X be an object of SubG(X). By compos-

ing the induced ring homomorphism τ∗ : K0([X/G]) → K0([Y/G]) with the
K0([Y/G])-action on U(Y ) described in §3.0.2, we obtain aK0([X/G])-action
on U(Y ). A simple verification shows that this K0([X/G])-action is compati-
ble with the morphisms of the category SubG0 (X). This implies that SubG0 (X)
is a K0([X/G])-linear category. Note that since the projection map X → •
induces a ring homomorphism R(G) → K0([X/G]), the category SubG0 (X)
is also R(G)-linear.

4. Proofs

In this section, making use of the category SubG0 (X) of G-stable smooth
closed subschemes of X (consult §3), we prove Theorems 1.2, 1.5 and 1.19.
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Proof of Theorem 1.2

Consider the following morphisms

U(X)
U(ι∗)
−→ U(XH) U(XH)

U(ι∗)
−→ U(X)(4.1)

in the category SubG0 (X). Since both these morphisms are R(G)-equivariant
(see §3.0.3), they give rise to well-defined morphisms of ind-objects

S−1
H U(X)

U(ι∗)
−→ S−1

H U(XH) S−1
H U(XH)

U(ι∗)
−→ S−1

H U(X)(4.2)

in the category Ind(SubG0 (X)). Under the ring isomorphisms

EndSubG
0 (X)(U(X

H)) ≃ G0([X
H/G]) ≃ K0([X

H/G]) ,

the composition U(ι∗) ◦ U(ι∗) of the morphisms (4.1) (which by definition is
given by [OXH ⊗L

X OXH ]) corresponds to the Grothendieck class

∑

j

(−1)j

[

j
∧

(I/I2)

]

∈ K0([X
H/G]),

where I stands for the sheaf of ideals associated to the closed immersion
ι : XH →֒ X. Consequently, since I/I2 = N , the composition U(ι∗) ◦ U(ι∗)
of the morphisms (4.2) corresponds to the following morphism of ind-objects

(4.3) S−1
H U(XH)

λ−1(N )·−
−→ S−1

H U(XH) ,

where − · − stands for the induced action of the Grothendieck group
K0([X

H/G]) on the ind-object S−1
H U(XH) (see §3.0.2).

Lemma 4.4. The above morphism of ind-objects (4.3) is invertible.

Proof. Thanks to the Yoneda lemma, it is enough to show that (4.3) becomes
an isomorphism after application of the functor

HomInd(SubG
0 (X))(S

−1
H U(XH),−).

Recall that S−1
H R(G) can be written as a filtered colimit of free finite R(G)-

modules. Therefore, it suffices to show that (4.3) becomes an isomorphism
after application of the functor HomInd(SubG

0 (X))(U(X
H),−). By definition of



✐

✐

“10-Tabuada” — 2020/5/31 — 16:58 — page 582 — #18
✐

✐

✐

✐

✐

✐

582 G. Tabuada and M. Van den Bergh

the category Ind(SubG0 (X)), this latter claim is equivalent to the invertibility
of the following homomorphism of abelian groups:

(4.5) S−1
H K0([X

H/G]) −→ S−1
H K0([X

H/G])α 7→ λ−1(N ) · α .

As proved by Thomason in [23, Lem. 3.2], (4.5) is indeed invertible. □

Thanks to Lemma 4.4, we can now consider the following composition:

(4.6) S−1
H U(XH)

(λ−1(N )·−)−1

−→ S−1
H U(XH)

U(ι∗)
−→ S−1

H U(X) .

Proposition 4.7. The morphism of ind-objects U(ι∗) : S−1
H U(X) →

S−1
H U(XH) is invertible. Moreover, its inverse is given by the above com-

position (4.6).

Proof. Thanks to Lemma 4.4, S−1
H U(XH) is a direct summand of S−1

H U(X).
Therefore, using the Yoneda lemma, it is enough to show that U(ι∗) becomes
an isomorphism after application of the functor

HomInd(SubG
0 (X))(S

−1
H U(X),−).

Moreover, similarly to the proof of Lemma 4.4, it suffices to show that U(ι∗)
becomes an isomorphism after application of the functor

HomInd(SubG
0 (X))(U(X),−).

By definition of the category Ind(SubG0 (X)), this latter claim is equivalent
to the invertibility of the following homomorphism of abelian groups:

(4.8) K0(ι
∗) : S−1

H K0([X/G]) −→ S−1
H K0([X

H/G]) .

As proved by Thomason in [23, Thm. 2.1 and Lem. 3.3], (4.8) is indeed
invertible.

Finally, note that the composition (4.6) is the right-inverse of U(ι∗).
Since U(ι∗) is invertible, (4.6) is also the left-inverse of U(ι∗). □

We now have the ingredients necessary to conclude the proof of Theorem 1.2.
As explained in §3.0.1, resp. §3.0.2, resp. §3.0.3, the functor Ψ: SubG0 (X) →
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Hmo0(k) is compatible with pull-backs and push-forwards, resp. with K0-
actions, resp. with R(G)-actions. Moreover, it extends naturally to the cat-
egories of ind-objects:

(4.9) Ind(Ψ): Ind(SubG0 (X)) −→ Ind(Hmo0(k)) .

Therefore, by combining the preceding functor (4.9) with Proposition 4.7,
we conclude that the morphism of ind-objects

U(ι∗) : S−1
H U([X/G]) → S−1

H U([XH/G])

is invertible and that its inverse is given by the following composition:

S−1
H U([XH/G])

(λ−1(N )·−)−1

−→ S−1
H U([XH/G])

U(ι∗)
−→ S−1

H U([X/G]) .

This proves Theorem 1.2 in the case of the universal additive invariant. The
general case follows now from the equivalence of categories (2.3) and from
the fact that every additive functor Hmo0(k) → D extends naturally to the
categories of ind-objects.

Remark 4.10 (Generalization). Let H be a flat quasi-coherent sheaf of
algebras over [X/G], i.e. a G-equivariant flat quasi-coherent sheaf of algebras
over X. A proof similar to the above one, with Ψ replaced by the functor ΨH

(see Remark 3.2), allows us to conclude that Theorem 1.2 holds more gen-
erally with S−1

H E([X/G]) and S−1
H E([XH/G]) replaced by S−1

H E([X/G];H)
and S−1

H E([XH/G]; ι∗(H)).

Proof of Theorem 1.5

Note first that since R(G) ≃ Z[G∨] and G∨ is a finitely generated abelian
group, the abelian group R(G) belongs to Ind(free(Z)).

Since G := G⊗k k does not contains a copy of the additive group Ga

(in any caracteristic) and the G-action on XG is trivial, Proposition 2.4
and Remark 2.6 yield a Morita equivalence perfdg(X

G)⊗ perfdg([•/G]) →
perfdg([X

G/G]). Therefore, using the fact that the universal additive invari-
ant (2.2) is symmetric monoidal, we obtain an induced isomorphism

(4.11) U(XG)⊗U([•/G])
≃

−→ U([XG/G]) .
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Recall from §2.2-§2.4 that the object U([•/G]) ∈ Hmo0(k) carries a canonical
commutative monoid structure and that we have natural ring isomorphisms:

(4.12) HomHmo0(k)(U(k),U([•/G])) ≃ K0([•/G]) ≃ R(G) ≃ Z[G∨] .

Using the characters of G, we hence obtain an induced morphism of ind-
objects:

(4.13) U(k)⊗Z R(G) −→ U([•/G]) .

Proposition 4.14. The above morphism of ind-objects (4.13) is invertible.

Proof. Note that, thanks to the ring isomorphisms (4.12), by applying the
functor HomInd(Hmo0(k))(U(k),−) to (4.13) we obtain an isomorphism. Hence,
in order to prove that (4.13) is invertible, it is enough to show that U([•/G])
is isomorphic to a (possibly infinite) direct sum of copies of U(k).

Recall that we have an isomorphismG ≃ G×r
m × µl

ν1
1

× · · · × µlνss for some
prime numbers l1, . . . , ls and non-integers r, ν1, . . . , νs. The multiplicative
group k-scheme Gm is semi-simple. Moreover, the simple Gm-representations
V are parametrized by the group of characters G∨

m and we have EndGm
(V ) ≃

k. Since, by assumption, k contains the lth roots of unity, with l = l1, . . . , ls,
the group k-schemes µl

ν1
1
, . . . , µlνsv are isomorphic to the constant finite group

k-schemes Cl
ν1
1
, . . . , Clνss , respectively. In particular, they are semi-simple.

Moreover, the simple µlν -representations V are parametrized by the group
of characters µ∨

lν and we have Endµlν
(V ) ≃ k. These considerations imply

that the group k-scheme G is also semi-simple and that the dg category
perfdg([•/G]) is Morita equivalent to the disjoint union

∐

χ∈G∨ k. Conse-
quently, since rep(

∐

χ∈G∨ k,B) ≃
∏

χ∈G∨ rep(k,B) for every dg category B
and the functor K0(−) preserves arbitrary products, we obtain canonical
isomorphisms:

HomHmo0(k)(U([•/G]),B) ≃
∏

χ∈G∨

HomHmo0(k)(U(k),B) .

This shows not only that the (possibly infinite) direct sum
⊕

χ∈G∨ U(k)
exists in the category Hmo0(k), but moreover that U([•/G]) ≃

⊕

χ∈G∨ U(k).
□

The above isomorphisms (4.11) with (4.13) yield an isomorphism of ind-

objects U(XG)⊗Z R(G)
≃
→ U([XG/G]). Under this latter isomorphism, the

natural action of R(G) on the right-hand side corresponds to the canonical
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R(G)-action on R(G). Consequently, we obtain an induced isomorphism of
ind-objects:

(4.15) U(XG)⊗Z S−1
G R(G)

≃
−→ S−1

G U([XG/G]) .

Finally, by combining (4.15) with the (inverse of the) isomorphism of ind-

objects S−1
G U([X/G])

≃
→ S−1

G U([XG/G]) provided by Theorem 1.2, we ob-
tain an isomorphism of ind-objects S−1

G U([X/G]) ≃ U(XG)⊗Z S−1
G R(G).

This proves Theorem 1.5 in the case of the universal additive invariant. The
general case follows now from the equivalence of categories (2.3) and from
the fact that the natural extension of every additive functor Hmo0(k) → D
to the categories of ind-objects is compatible with the induced action −⊗Z −
of the category Ind(free(Z)).

Proof of Theorem 1.19

Let us denote by Hmo0(k)1/r, resp. by SubG0 (X)1/r, the Z[1/r]-linear cat-
egory obtained by tensoring the abelian groups of morphisms of Hmo0(k),
resp. of SubG0 (X), with Z[1/r]. In the same vein, let us denote by Ψ1/r :

SubG0 (X)1/r → Hmo0(k)1/r the induced Z[1/r]-linear functor.

Lemma 4.16. The set of ind-objects {S−1
µn

U(X)1/r |µn ∈ C(T )} is finite.

Proof. Note first that the ind-object S−1
µn

U(X)1/r is trivial if and only if

we have EndInd(SubG
0 (X)1/r)(S

−1
µn

U(X)1/r) = 0. Recall that S−1
µn

R(T )1/r can
be written as a filtered colimit of free finite R(T )1/r-modules. Hence, by

definition of the category Ind(SubG0 (X)1/r), the ind-object S−1
µn

U(X)1/r is
trivial if and only if we have:

HomInd(SubG
0 (X)1/r)(U(X)1/r, S

−1
µn

U(X)1/r) ≃ S−1
µn

K0([X/T ])1/r = 0 .

The proof follows now from the fact that the following set of Z[1/r]-modules

{S−1
µn

K0([X/T ])1/r |µn ∈ C(T )}

is finite; consult Vezzosi-Vistoli [24, Prop. 3.4(ii)]. □

Consider the following canonical morphism of ind-objects:

(4.17) U(X)1/r −→
⊕

µn∈C(T )

S−1
µn

U(X)1/r .
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Note that, thanks to Lemma 4.16, the direct sum on the right-hand side is
finite.

Proposition 4.18. The above morphism of ind-objects (4.17) is invertible.

Proof. Thanks to the Yoneda lemma, since S−1
µn

R(T )1/r can be written as a
filtered colimit of free finite R(T )1/r-modules, it suffices to show that (4.17)
becomes an isomorphism after application of the functor

HomInd(SubG
0 (X))(U(X)1/r,−).

By definition of the category Ind(SubG0 (X)1/r), this latter claim is equivalent
to the invertibility of the following homomorphism of Z[1/r]-modules:

(4.19) K0([X/T ])1/r −→
⊕

µn∈C(T )

S−1
µn

K0([X/T ])1/r .

As proved by Vezzosi-Vistoli in [24, Prop. 3.4(ii)], (4.19) is indeed invertible.
□

Recall from §3.0.2 and §3.0.3 that the functor Ψ is compatible with K0-
actions and R(T )-actions, respectively. The same holds for its Z[1/r]-
linearization Ψ1/r and for the induced functor Ind(Ψ1/r) between the cate-
gories of ind-objects. Therefore, by applying this latter functor to (4.17), we
obtain an isomorphism of ind-objects:

(4.20) U([X/T ])1/r
≃

−→
⊕

µn∈C(T )

S−1
µn

U([X/T ])1/r .

Lemma 4.21. For every µn ∈ C(T ), we have an isomorphism of ind-objects

(4.22) S−1
µn

U([X/T ])1/r
≃

−→ S−1
µn

U([Xµn/T ])1/r

induced by pull-back along the closed immersion Xµn →֒ X.

Proof. In order to simplify the exposition, let us still denote by Sµn
the image

of the multiplicative set Sµn
⊂ R(T ) (see §1) in the Z[1/r]-linearized repre-

sentation ring R(T )1/r. Thanks to Theorem 1.2, we have an isomorphism of
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ind-objects

(4.23) S−1
µn

U([X/T ])1/r
≃

−→ S−1
µn

U([Xµn/T ])1/r

induced by pull-back along the closed immersion Xµn →֒ X. Let χ ∈ T∨ be a
character of T whose restriction to µn is non-trivial. As explained by Thoma-
son in the proof of [24, Lem. 3.6], the image of 1− χ under the Z[1/r]-algebra
homomorphism R(T )1/r → S−1

µn
R(T )1/r is invertible. Consequently, we ob-

tain an induced R(T )1/r-linear homomorphism S−1
µn

R(T )1/r → S−1
µn

R(T )1/r.

Therefore, by applying the functor −⊗S−1
µnR(T )1/r

S−1
µn

R(T )1/r to (4.23), we
obtain the searched isomorphism of ind-objects (4.22). □

Finally, by combining (4.20) with (4.22), we obtain an isomorphism of ind-
objects

U([X/T ])1/r
≃

−→
⊕

µn∈C(T )

S−1
µn

U([Xµn/T ])1/r

induced by pull-back along the closed immersions Xµn →֒ X. This proves
Theorem 1.19 in the case of the universal additive invariant. The general
case follows now from the equivalence of categories (2.3) and from the fact
that every additive functor Hmo0(k) → D, with values in a Z[1/r]-linear
category, extends naturally to a Z[1/r]-linear functor Hmo0(k)1/r → D and,
consequently, to a Z[1/r]-linear functor Ind(Hmo0(k)1/r) → Ind(D).
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Études Sci. Publ. Math. no. 34 (1968), 113–128.

[19] G. Tabuada, Noncommutative Motives, with a preface by Yuri I. Manin.
University Lecture Series 63. American Mathematical Society, Provi-
dence, RI, (2015).

[20] G. Tabuada, Noncommutative motives in positive characteristic and
their applications, Advances in Mathematics 349 (2019), 648–681.

[21] G. Tabuada, On Grothendieck’s standard conjectures of type C and D
in positive characteristic, Proceedings of the American Mathematical
Society 147 (2019), no. 12, 5039–5054.

[22] G. Tabuada and M. Van den Bergh, Additive invariants of orbifolds,
Geometry and Topology, 22 (2018), 3003–3048.

[23] R. Thomason, Une formule de Lefschetz en K-théorie équivariante
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