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Separating invariants for Hopf algebras of

small dimensions

Preena Samuel

In this paper we obtain a finite set S of separating invariants for
the variety of Hopf algebras of a fixed dimension. In dimension p2

where p is a prime or when dimension is < 18, except 8, 12, 16,
these invariants determine isomorphism classes of Hopf algebras,
i.e., two Hopf algebras of a given dimension are isomorphic if and
only if each of the invariants in S take the same values on both the
Hopf algebras.

1. Introduction

The aim of this article is to study the general isomorphism problem for finite
dimensional Hopf algebras. The isomorphism problem for Hopf algebras is
to be able to obtain an explicit decision procedure for determining if two
given Hopf algebras are isomorphic or not. This problem has been settled
for finite dimensional semisimple Hopf algebra in [3]. The idea there was
to consider the different possible semi-simple Hopf algebra structures that
can be given to an n-dimensional vector space over C. By making a choice
of basis for the underlying vector space, these Hopf algebra structures can
be represented by their associated structure constants. The set of points
so obtained form a closed subvariety of an affine space. The action of the
general linear group GLn(C) on the n-dimensional vector space by change
of basis then induces an action also on the associated closed subvariety. The
orbits for this action correspond to isomorphism classes of Hopf algebras.
They show in [3] that the generators of the ring of invariants corresponding
to this action on the closed subvariety give a collection of polynomials which
separate isomorphism classes of semi-simple Hopf algebras of dimension n
(See [3, Theorem 11]). Here, we extend this result to finite dimensional Hopf
algebras of certain dimensions.

We first obtain a set of separating invariants for the variety of Hopf
algebras of a fixed dimension (See Theorem 4.1). This is done uniformly for
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all dimensions. In the case of semi-simple Hopf algebras, this can further be
simplified to a subcollection of complete invariants, listed in [3, Theorem 4.1].
This is possible because the separating invariants separate closed orbits.
This is ensured in the semi-simple case by a result of Ştefan [1]. This is
not true uniformly for arbitrary dimensions, when working with all Hopf
algebras of a given dimension. So in the general case, we need the condition
of rigidity, instead. It is known by [7] that the orbit of a Hopf algebra is open
if and only if it is rigid, in the sense of Gerstenharber. Makhlouf proved in
[9] that in dimension p2 where p is a prime and in dimensions < 14, the
Hopf algebras are rigid except in dimensions 8, 12. This result can be easily
extended to dimension n < 18, except n = 16. This along with the finiteness
of the number of orbits implies that the orbits in these dimensions are closed.
This sets the stage for the methods of [3] to be applied to get a set of complete
invariants in these cases. In the non-semisimple case, the antipode satisfies
a weaker set of relations so the invariants in this case differ from that of [3].

In Section 2, we recall various definitions and background on Hopf al-
gebras. We then give a description in Section 3 of picture invariants for the
ring of invariants for mixed tensors. With the aid of this, we list a separating
set of invariants for the variety of Hopf algebras in Section 4. As a corollary,
we also obtain a complete set of invariants for the Hopf algebras of certain
small dimensions.

2. Preliminaries

2.1. Hopf algebra

A bialgebra over a field K is an algebra with unit (H,µ, η) which is also a
co-algebra with co-unit (H,∆, ϵ) such that the co-multiplication ∆ and co-
unit ϵ are algebra maps. This means that the following diagrams commute:
(associativity and co-associativity)

H ⊗H ⊗H H ⊗H

H ⊗H H

µ⊗id

id⊗µ µ

µ

H H ⊗H

H ⊗H H ⊗H ⊗H

∆

∆ id⊗∆

∆⊗id
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(unit and co-unit)

K ⊗H H ⊗H

H H

H ⊗K H ⊗H

η⊗id

µ≃

id

≃

id⊗η

µ

H ⊗H K ⊗H

H H

H ⊗H H ⊗K

ϵ⊗id

≃∆

id

∆

id⊗ϵ

µ

(co-multiplication is an algebra homomorphism)

H ⊗H H H ⊗H

H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H H ⊗H

µ

∆⊗∆

∆

id

σ µ⊗µ

where σ : H ⊗H ⊗H ⊗H → H ⊗H ⊗H ⊗H is given by h1 ⊗ h2 ⊗ h3 ⊗
h4 7→ h1 ⊗ h3 ⊗ h2 ⊗ h4. (co-unit is an algebra homomorphism; equivalently,
unit is a co-algebra homomorphism)

K K ⊗K

H H ⊗H

≃

η η⊗η

∆

H ⊗H H

K ⊗K K

µ

ϵ⊗ϵ ϵ

≃

K H

K

η

id ϵ

The vector space HomK(H,H) becomes an algebra with respect to the con-
volution product given by

(f ⋆ g)(x) := µ ◦ (f⊗g) ◦∆(x).

The map ηϵ is the identity with respect to ⋆. A bialgebra is called a Hopf
algebra if the idenity map has a two-sided inverse in HomK(H,H) with
respect to the convolution product. This inverse is called the antipode of H.
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This corresponds to the commutativity of the following diagram:

H ⊗H H ⊗H

H H

H ⊗H H ⊗H

ι⊗id

µ∆

ηϵ

∆

id⊗ι

µ

The classification of Hopf algebras over an algebraically closed field K of
characteristic 0 in low dimensions and various isolated cases is known. The
following is a summary of classification data in small dimensions:

Dimension Classification

p, prime K[Zp] [16]
p2, p prime K[Zp2 ]; K[Zp × Zp]; Taft algebras Tp2(q)

for q a primitive p-the root of unity. [12]
pq, p, q distinct primes such
that either

a.) p < q < 4p+ 11, or

b.) p, q are twin primes, or

c.) p = 2

H is semisimple, hence isomorphic to
K[Zpq] or its dual. [13]

8 K[G], |G| = 8; K[G]∗, G is non-abelian of
order 8, A8, AC2

, A′
C4
, A′′

C4
, A′′′

C4,q
, (A′′

C4
)∗,

AC2×C2
[2]

12 K[G], |G| = 12;K[D6]
∗, Al4, Al

∗
4, A+, A−;

A0, A1, B0, B1, A
∗
1 [11]

16 [5, Theorem 1.3]

From the above classification data it is clear that the number of isomor-
phism classes of Hopf algebras of dimension n, when n is one of the numbers
listed above, is finite. From now on we assume that the underlying field K
is algebraically closed of characteristic 0.

2.2. Variety of n-dimensional Hopf algebras

Let V be a finite dimensional vector space over K of dimension n. Let T :=
Hom(V ⊗ V, V )×Hom(V, V ⊗ V )× V × V ∗ ×Hom(V, V ). With respect to
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a choice of a basis of V , T can be identified with the affine space of dimension
d = 2n3 + n2 + 2n. Under this identification an element (µ,∆, η, ϵ, ι) ∈ T
corresponds to the structure constants

(µ111, µ
1
12, . . . , µ

n
nn,∆

11
1 ,∆

12
1 , . . . ,∆

nn
n , η1, . . . , ηn, ϵ1, . . . , ϵn, ι

1
1, ι

1
2, . . . , ι

n
n)∈A

d.

Such a d-tuple corresponds to an n-dimensional Hopf algebra if and only if
the multiplication, co-multiplication, unit, counit, antipode maps, µ,∆, η, ϵ, ι
(respectively) given by these constants satisfy the commutative diagrams
described above. In other words, a d-tuple gives a Hopf algebra structure on
V , if the structure constants satisfy the following equations:

µtjkµ
i
tl = µtklµ

i
jt

∆jt
i ∆

kl
t = ∆tl

i ∆
jk
t

ηtµjit = δji = ηtµjti

∆tj
i ϵt = δji = ∆jt

i ϵt

µtij∆
kl
t = ∆pq

i ∆rs
j µ

k
prµ

l
qs

ηt∆ij
t = ηiηj

µtijϵt = ϵiϵj

ηtϵt = 1

∆jk
i ι

t
jµ

r
tk = ϵrηi = ∆jk

i ι
t
kµ

r
jt

Here we have used the notation that a repeated upper and lower index
indicates a sum over 1 to n of that index. Let H(V ) denote the set of
all elements in Ad satisfying the above equations. Then H(V ) is an affine
subvariety of T ≃ Ad where d = 2n3 + 2n+ n2. We follow the convention
that the d-tuple associated to a Hopf algebra structure H on V is also
denoted by H.

The group G := GL(V ) acts naturally on T via change of basis. This
induces an action on Ad described as follows:

g.µtjk = gtp(g
−1)qj(g

−1)rkµ
p
qr

g.∆jk
i = (g−1)pi g

j
qg

k
r∆

qr
p

g.ηi = gipη
p

g.ϵi = (g−1)pi ϵp

g.ιji = (g−1)pi g
j
qι

q
p
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This action preserves the subvariety H(V ); further, two points of H(V ) lie in
the same G-orbit if and only if they correspond to isomorphic Hopf algebra
structures on V . Thus the orbits for this action are in one-one correspon-
dence with the isomorphism classes of Hopf algebras of dimension n. By the
G-orbit of a Hopf algebra H we shall interchangeably mean the G-orbit of
H in H(V ) or the isomorphism class of H.

2.3. Deformations, rigidity of Hopf algebras and open orbits

Orbit of a Hopf algebra under the GL(V ) action described above, need
not be closed. In order to separate orbits by regular maps we need to ensure
that the orbits are closed. Since orbits are disjoint and there are only finitely
many in the above mentioned dimensions, if we can show that the orbits are
open then it will imply that they are also closed. This is not true for all the
dimensions mentioned above. Whether an orbit is open or not is captured
by a certain rigidity condition which we recall shortly.

A deformation of a Hopf algebra (H,µ,∆, η, ϵ, ι) overK is a Hopf algebra
structure on H ⊗K K[[t]] given by the data Ht := (H[[t]], µt,∆t, ηt, ϵt, ιt)
such that µt is expressible in the form µ0 + µ1t+ µ2t

2 + · · · where µ0 = µ
and each µi, i > 0 are extended K[[t]]-bilinearly from K-bilinear maps µi :
H ⊗H → H; similarly, ∆t = ∆0 +∆1t+∆2t

2 + · · · where ∆0 = ∆ and ∆i,
i > 0 are extended K[[t]]-linearly from K-bilinear maps ∆i : H → H ⊗H.
The maps ηt and ϵt are extended K[[t]]-linearly from η and ϵ respectively.
A null deformation of H is one in which the µi and ∆i are 0 for all i > 0.

Remark 2.1. The deformation of a Hopf algebra is determined completely
by the deformation of its underlying bialgebra ([8]).

Two deformations Ht and H
′
t are equivalent if there exists a K[[t]]-linear

map ϕt : Ht → H ′
t of the form ϕt = id+ ϕ1t+ ϕ2t

2 + · · · , which is a Hopf
algebra isomorphism and ϕi : H → H are k-linear maps extended K[[t]]-
linearly. A Hopf algebra H is said to be rigid over K if it has no non-trivial
deformations. By the Remark 2.1, it follows that the Hopf algebra H is
rigid if and only if the underlying bialgebra is so. The notion of rigidity as
introduced above, is stronger than the notion of geometric rigidity. A Hopf
algebra H is said to be geometrically rigid if the orbit of H is open. In
characteristic 0, these two notions coincide. ([7, §9]; See also [6]).

By [9, Theorem 5.1, Theorem 5.3,] the Hopf algebras listed in the above
table except AC′

4
in dimension 8 and A0 and B1 in dimension 12 are rigid; in

dimension 14 and 15, all the Hopf algebras are semisimple ([13]), hence rigid
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by [1, Corollary 1.5]; in dimension 16 the rigidity is not known yet. All Hopf
algebras of dimension p2, where p is a prime, are rigid. Hence, in dimension
p2, where p is a prime or in dimensions ≤ 17, excluding 8, 12, 16, the orbits
are open. Being finitely many and disjoint, in all these cases, they are also
closed. Hence in the above mentioned dimensions the separating invariants
separate the orbits.

3. Invariants of mixed tensors and pictures

For non-negative integers t and b, set V t
b := V ∗⊗b ⊗ V ⊗t. For s ∈ N and given

non-negative integers ti, bi, for i = 1, . . . , s, we wish to describe a generating
set for the ring of polynomial GL(V )-invariant functions on the space W =
V t1
b1

× · · · × V ts
bs

of several tensors.
Note that the coordinate ring of W , K[W ], can be identified with the

symmetric algebra of the dual W ∗

SymK(W ∗) = ⊕j≥0Sym
j
K(W ∗)

= ⊕j≥0 ⊕{(m1,··· ,ms):
∑

mi=j} ⊗
s
i=1Sym

mi

K ((V ti
bi
)∗).

The natural surjection from ((V ti
bi
)∗)⊗mi → Symmi

K ((V ti
bi
)∗) leads to a GL(V )

- equivariant map ⊗s
i=1((V

ti
bi
)∗)⊗mi → ⊗s

i=1Sym
mi

K ((V ti
bi
)∗). This induces a

surjection from the space of GL(V)-invariants of (V N
M )∗ to

(⊗s
i=1Sym

mi

K ((V ti
bi
)∗))GL(V),

where N =
∑

miti, M =
∑

mibi. This followed by the observation that
non-zero GL(V)-invariants for (V N

M )∗ exist only if N =M , and in that case,
(V N

N )∗ ≃ End(V ⊗N ), enables us to use [14, Theorem 1]. The space of GL(V )-
invariants of (V N

N )∗ is spanned by the elements Tσ : v1 ⊗ · · · ⊗ vN ⊗ α1 ⊗
· · · ⊗ αN 7→ ⟨v1, α

σ(1)⟩. . . . .⟨vN , α
σ(N)⟩ as σ varies over SN such that σ has

no decreasing sub-sequence of length exceeding n and hence, we also obtain
a spanning set for (⊗s

i=1Sym
mi

K ((V ti
bi
)∗))GL(V) (by the surjection above).

In [3, §3], the notion of a ‘picture invariant’ is introduced, to describe
the invariants obtained above. Picture invariants span the space of invariant
polynomial functions ([3, Proposition 7]) on W .

We recall from [3] the definition of picture invariants. Choose a basis
v1, . . . , vn for V and let v1, . . . , vn be the dual basis of V ∗. Let T u1···ub

l1···lt
be the

co-ordinate function on V t
b that is 1 on the basis element vu1

⊗ · · · ⊗ vut
⊗

vl1 ⊗ · · · ⊗ vlb ∈ V t
b and 0 on the other basis elements. The ring of polyno-

mial functions on the space V t
b can be identified with the polynomial ring
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K[T u1···ut

l1···lb
| ll, . . . , lb, u1, . . . , ut ∈ {1, . . . , n}] in nt+b variables. More gener-

ally, forW (as defined above) the co-ordinate ring can be identified with the
polynomial ring K[T (i)

u1···uti

l1···lbi
] where the indices l1, . . . , lbi , u1, . . . , uti , varies

over {1, . . . , n}, for each i = 1, . . . , s. This is a polynomial ring in
∑s

i=1 n
ti+bi

variables. For non-negative integers m1, . . . ,ms such that

s
∑

i=1

miti =

s
∑

i=1

mibi = N

and given a σ ∈ SN , by the picture invariant P (σ) on W associated to the
element Tσ, we mean the following element of ⊗s

i=1Sym
mi(V ti

bi
)∗:

s
∏

i=1





mi
∏

j=1

T (i)
rσ(

∑
p<i mpbp+(j−1)bi+1),...,rσ(

∑
p<i mpbp+jbi)

r(
∑

p<i mpbp+(j−1)bi+1),...,r(
∑

p<i mpbp+jbi)





where r1, . . . , rN are just place-holder indices.

Example 3.1. Let W = V 1
2 ⊕ V 2

1 ⊕ V 1
0 and m1 = 2, m2 = 1, m3 = 1. Let

σ = (12)(45). The invariant Tσ takes value 1 on the basis elements vr1 ⊗
vr2 ⊗ vr2 ⊗ vr3 ⊗ vr4 ⊗ vr1 ⊗ vr5 ⊗ vr3 ⊗ vr5 ⊗ vr4 as r1, . . . , r5 vary over in-
dices {1, . . . , n} and 0 on all the other basis elements. The picture invariant
corresponding to this permutation is T (1)r2r1r2T (1)

r1
r3r4

T (2)r3r5r5
T (3)r4 .

By passing through the various identifications described above, we ob-
serve that

Proposition 3.2. ([15, Theorem 4.4.1]; Compare [3, Proposition 7]) The
picture invariants P (σ) with underlying permutation σ ∈ SN having no de-
creasing subsequences of length exceeding n, as N varies, span the ring of
GLK(V )-invariant polynomial functions on the space V t1

b1
× · · · × V ts

bs
of sev-

eral tensors. ✷

4. Separating invariants for Hopf algebras

Let X be a G-variety. Two elements w,w′ ∈ X is said be separated by poly-
nomial invariants if there exists f ∈ K[X]G such that f(w) ̸= f(w′). A sub-
set S of K[X]G is said to be a separating set of invariants if whenever
w,w′ ∈ X can be separated by invariants there is an element f ∈ S such
that f(w) ̸= f(w′).
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Given a N ∈ N, let λ ⊢ N . Denote the set of standard tableaux of shape
λ by Std(λ). Then we associate a picture invariant P(a, b, c, p, q) to a pair
p, q ∈ Std(λ) and every triple of non-negative integers (a, b, c) such that
a+ b+ c ≤ N . This is the picture invariant P (RSK(p, q)) ∈ Syma(V 1

2 )
∗ ⊗

Symb(V 2
1 )

∗ ⊗ Syma′

(V 1
0 )

∗ ⊗ Symb′(V 1
0 )

∗ ⊗ Symc(V 1
1 )

∗ where a′ = N − (a+
b+ c)− a, b′ = N − (a+ b+ c)− b, as described in Proposition 3.2. Here
RSK(p, q) is the permutation obtained by applying the RSK-algorithm ([14,
§2.4]) to the pair of standard tableaux p, q.

Theorem 4.1. With notations as in § 2.2, the set S = {P(a, b, c, p, q) | a, b,
c ≥ 0, a+ b+ c ≤ N, p, q ∈ Std(λ), λ ⊢ N,N < C(n)} forms a separating set
of invariants for H(V ). Here C(n) = 9n5(2n+ 1)2n

2

.

Proof. First of all, the surjection from K[T ]G → K[H(V )]G maps separat-
ing invariants to separating invariants. Hence, it suffices to show that S
is a separating set for K[T ]. By Proposition 3.2, we know that the set of
picture invariants P (σ) as σ varies over permutations with no decreasing
subsequence of length bigger than n generate the ring of invariants K[T ].
Such permutations σ are given under the RSK-algorithm by pairs of stan-
dard tableaux of shape λ ⊢ N , where λ has at most n parts. Now by [4,
Theorem 4.7.4] we observe that the invariants of degree < C(n) generate
the ring of invariants. This, one observes by noting that the dimension of
K[T ]G is bounded by 2n3 + 2n+ n2 and an upper bound for γ(K[T ]G) may
be calculated to be (n+ 1)(2n+ 1)n

2

. Now, for each N < C(n), and for
each triple of non-negative integers a, b, c such that a+ b+ c ≤ N we ob-
tain invariants lying in the multi-homogeneous component Syma(V 1

2 )
∗ ⊗

Symb(V 2
1 )

∗ ⊗ Syma′

(V 1
0 )

∗ ⊗ Symb′(V 1
0 )

∗ ⊗ Symc(V 1
1 )

∗ of K[T ] where a′ =
N − (a+ b+ c)− a and b′ = N − (a+ b+ c)− b. As the triple (a, b, c) varies
over all possible permissible choices, we get all the invariants inK[T ]G. Thus,
for each N < C(n) and each triple (a, b, c) as above, associated to each pair
of standard tableaux p, q ∈ Std(λ) we get picture invariants P(a, b, c, p, q)
which generate the ring of invariants K[T ]G. Hence, S is a separating set of
invariants. □

4.1. Complete invariants of Hopf algebras in small dimensions

As seen in Section 2, every Hopf algebra H of dimension n is associated with
a d-tuple in Ad which, by abuse of notation, we also denote by H. With this
convention, it makes sense to “evaluate” an invariant from K[H(V )]GL(V )

at a Hopf algebra H.
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Corollary 1. Let n < 18 or n ∈ {p2, p is a prime} and n ̸= 8, 12, 16. Then
two Hopf algebras H1 and H2 of dimension n are isomorphic if and only if
P(a, b, c, p, q)(H1)=P(a, b, c, p, q)(H2) for all a, b, c≥0, a+ b+ c≤N, p, q∈
Std(λ), λ ⊢ N,N < C(n)}, where C(n) = 9n5(2n+ 1)2n

2

.

Proof. This follows from Theorem 4.1, by noting that in the dimensions
mentioned above the orbits of the Hopf algebras are closed, as indicated in
Section 2.3 □

4.2. Additional remarks

The above discussion of invariants aims at obtaining a separating set of
invariants for general finite dimensional Hopf algebras, not necessarily semi-
simple. These invariants give a complete set of invariants in small dimen-
sions, in particular in dimension p2 (p is a prime), where not all the Hopf
algebras are semi-simple. However, in dimensions where all the Hopf alge-
bras are semi-simple, for example when dimension is pq where p, q are twin
primes, these invariants can be reduced to the invariants I(r, s, σ), defined
in [3, §4]. We briefly explain this now.

When H is a semi-simple Hopf algebra of dimension n (H∗ denote its
dual), the following pictorial relations (in the notation of Kuperberg, refer
[3, §2]) additionally hold:

nS =

µ ∆

ϕ h
h→ ϕ = n ̸= 0.

Here we follow the notations of §2.1. Further, h ∈ H (resp. ϕ ∈ H∗) denotes
the trace of the left regular representation in H∗ (resp. H). In terms of
the structure constants of µ and ∆, the elements h, ϕ can be expressed
as hi = ∆ij

j and ϕi = µjij . These elements are left integrals in H and H∗

respectively. In view of the above relations, the antipode map S can be
expressed in terms of µ, ∆; further all the additional relations given in [3]
hold. We are therefore in a position to apply [3, Proposition 10] to reduce
the picture invariants P(a, b, c, p, q) to an invariant of the form I(r, s, σ) for
a suitable r, s ⊢ N , σ ∈ SN .

The invariants I(r, s, σ) coincide with the (0, 0)-basic invariants of [10]
defined as the scalars obtained by taking elements of the form h⊗a ⊗ ϕ⊗b for
some a and b and then applying comultiplication, multiplication repeatedly
to the tensor factors to obtain an element of H⊗m ⊗ (H∗)⊗m for some m
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and then permuting the tensor factors and finally pairing them. As discussed
in [10, §10], some of these (0, 0)-basic invariants have other representation
theoretic interpretations. For example, the Frobenius-Schur indicator νn of
an irreducible character ψi of H can be expressed as ψi(µn∆n(h))/n, giving
rise to more complicated relations between some of the (0, 0)-basic invariants
and the higher Frobenius-Schur indicators. In particular, the basic invariant
ϕ(h1hm+1 . . . h(n−1)m+1h2hm+2 . . . h(n−1)m+2 . . . hmh2m . . . hnm), which is the

same as I(nm, nm, σ) for σ =
(

1 2 ... n n+1 n+2 ... nm
1 m+1 ... (n−1)m+1 2 m+2 ... nm

)

, can be

shown to be dim(H)
∑

i,j νn(ψi)νm(τj)ψi(S(τi)) where ψi and τj are the ir-
reducible characters of H and H∗ respectively and νn, νm are the Frobenius-
Schur indicators. Similarly, in [10] Meir also exhibits that the Reshetikhin-
Turaev invariants, which are given by the traces of the elements of the braid
group on n-strings on the representation D(H)⊗n where D(H) is the Drin-
feld double of H, are also basic invariants. So by the above discussion and
the fact that the picture invariants P(a, b, c, p, q) can be reduced to the form
I(r, s, σ) in the case when H is semisimple, it follows that the above rep-
resentation theoretic invariants of H are related to the picture invariants
P (a, b, c, p, q), following the same line of argument as in [10].

When H is non-semisimple, the analogues of the higher Frobenius-Schur
indicators and Reshetikhin-Turaev invariants are not yet well-understood.
It would, therefore, be interesting to directly relate the picture invariants
P(a, b, c, p, q) to these invariants without the reduction to the form I(r, s, σ),
but this seems to be difficult because of the lingering antipode map appear-
ing in P(a, b, c, p, q). Unless the antipode can be replaced by the above picto-
rial equation in terms of µ and ∆, a systematic description of P(a, b, c, p, q)
to obtain such a relation seems hard to achieve.
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