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Instability of the solitary wave solutions

for the generalized derivative nonlinear

Schrodinger equation in the
critical frequency case

Z1HUA Guo, Cul NING, AND YIFEI WU

We study the stability theory of solitary wave solutions for the
generalized derivative nonlinear Schrodinger equation

i0pu + 0%u + i|u|*7 Opu = 0.

The equation has a two-parameter family of solitary wave solutions
of the form

c i T o
ucl) = vusep i ot [ ).

Here ¢, is some real-valued function. It was proved in [29] that
the solitary wave solutions are stable if —2v/w < ¢ < 2zp4/w, and
unstable if 2z4/w < ¢ < 24/w for some z € (0, 1). We prove the in-
stability at the borderline case ¢ = 22p/w for 1 < o < 2, improving
the previous results in [7] where 7/6 < o < 2.
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1. Introduction

In this paper, we study the stability theory of the solitary wave solutions
for the generalized derivative nonlinear Schrodinger equation:

(1.1) O+ O2u +ilu/*0,u=0, teR, z€R

for o > 0. It describes an Alfvén wave and appears in plasma physics, nonlin-
ear optics, and so on (see [34], [35]). In the case of o = 1, by a suitable gauge
transformation, is transformed to the standard derivative nonlinear
Schrédinger equation:

(1.2) i0pu + Ou + 0 (Ju|*u) = 0.

This equation was widely studied. The local well-posedness was
proved by Hayashi and Ozawa [I8, [19] in the energy space H'(R) and by
Guo and Tan [I0] in the smooth space. In the paper of [18], the authors
proved the global well-posedness in the energy space when the initial data
ug satisfies the mass condition ||ug||z: < v/27. This condition seems natural
for global well-posedness in view of the mass critical nonlinear Schrodinger
equation and generalized KdV equation, as it ensures a priori estimate of
H'-norm from mass and energy conservations. However, recently, the third
author extended the condition to ||ug||z2 < 2/ in [44] [45], in which the key
ingredient in the proof is the use of the momentum conservation. A simplified
proof was later given by the first and third authors in their paper [15], where
the global well-posedness in H %(]R) was also proved under the same mass
constraint. The problems for large mass are still unclear at the moment.
In [6], Fukaya, Hayashi and Inui constructed a class of large global solution
with high oscillation. In the papers of Cher, Simpson and Sulem [3], Jenkins,
Liu, Perry, Sulem [22] 26H28], Pelinovsky and Shimabukuro [39] [40], the
authors constructed a class of global solution by using the inverse scattering
method. On the long-time behavior and modified scattering theory, see [13]
and references therein. On the low regularity theory, see [I, 4, B, &8, O, 14,
211, 3], 36, 37, [42], 43] and the references therein.

In the case of o # 1, the Cauchy problems of have been inves-
tigated by many researchers. In the case of o > 1, local well-posedness in
energy spaces H!(R) was studied by Hayashi and Ozawa [20] for any o > 1,
by Hao [16] in Hz(R) for any o > 2, and by Santos [41] in H:(R) for
any o > 1 and small data. In the case of % < o < 1, local well-posedness
in H?(R) was studied by Hayashi and Ozawa [20], see also Santos [41] in
the weight Sobolev spaces. In the case of 0 < o < %, local well-posedness
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in some weighted spaces was studied by Linares, Ponce and Santos [25].
Note that in this case, the nonlinear term is not regular enough, appro-
priate construction of the working space is needed to handle nonlinearity.
Global well-posedness was studied in [6, 20) 33]. In particular, in the case
of 0 < o <1, the global existence (without uniqueness) of the solution in
H'(R) was shown by Hayashi and Ozawa [20]; while in the case of o > 1,
the global well-posedness of the solution in H'(R) was shown by Fukaya,
Hayashi, Inui [6] with some suitable size restriction on the initial datum.

Also, the stability theory was widely studied. The equation has a
two-parameter family of solitary waves (see [29]),

Uy c(t) = emczﬁwﬁ(m —ct),

where ¢, . is the solution of the form

(1'3) ?bw,c(m) = (Pw,c(l') eXp {;’Ll‘ - 202_ 9 /_ sz,fc(y)dy}»

with

B (0 + 1) (4w — c2) =
Pucl®) = {2\@cosh(0\/4w —c?x) — c} .

Actually ¢, . is the solution of the following equation
(1.4) —02¢) + wo + cidpd — iG> Dpp = 0.

Note that the equation can be solved in H*(R) when 4w > ¢?,c € R or
dw=2c2¢c>0.

When o = 1, Colin and Ohta [2] proved the stability of the soliton waves
when ¢? < 4w, and see also [11] for previous result in the case of ¢ > 0. The
endpoint case c? = 4w, ¢ > 0 was studied in [23]. Further more, Le Coz and
Wu [24], Miao, Tang and Xu [32] proved the stability of the multi-solitary
wave solutions. A consequence of these results is the existence of a class of
global solutions with arbitrary large mass.

In the case of 0 < o < 1, Liu, Simpson and Sulem [29] proved that the
solitary wave solution u, . is stable for any —2,/w < ¢ < 2y/w, and Guo [12]
further proved the stability of the solitary wave solutions in the endpoint
case 0 < ¢ = 2y/w. In the case of o > 2, the solitary wave solution wu,, . is
unstable for any —2y/w < ¢ < 2y/w (see [29)]).

The case 1 < o < 2 is more complicated. It was proved by Liu, Simpson
and Sulem [29] that there exists zo(o) € (0, 1), which solves the equation
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F,(z) =0 with

Fy(z) = (o — 1)? Uooo(coshy - z)idy] i
- [/Ooo(coshy — 2) = Y(zcoshy — 1)dy]2,

such that when —2v/w < ¢ < 2zy/w the solitary wave solution w,, . is stable,
and when 2zpy/w < ¢ < 2y/w the solitary wave solution wu, . is unstable.
Fukaya [7] proved that the solitary waves solution is unstable when % <o <
2, ¢ =2zpy/w. The case 1 < 0 < %, ¢ = 2zpy/w is still unknown. However, as
pointed out by the referee, in view of the form of the linearized action S, .
defined later, the energy seems in fact C3-functional at least when 1 < o < 2,
so the proof in [7] may be applicable for all case of 1 < 0 < 2 and ¢ = 2zp/w.
In this paper, we aim to solve this case by a different approach which does
not require more regularity of the energy than C?2.

Before stating our theorem, we adopt some notations. For £ > 0, we
define

Ue(pw,c) = {u € HI(R) :inf lu— ewgbw,c(- — Y|l < 5} )
(0,y)eR?

Definition 1. We say that the solitary wave solution wu,, . of is stable
if for any ¢ > 0 there exists 0 > 0 such that if ug € Us(¢ ), then the solution
u(t) of with u(0) = ug exists for all ¢ > 0, and u(t) € Uc(¢, ) for all
t > 0. Otherwise, u,, . is said to be unstable.

The main result in the present paper is

Theorem 1. Let 1 <o <2 and zg = 20(0) € (—1,1) satisfy Fy(z9) = 0.
Then the solitary wave solutions e“'¢,, .(x — ct) of (L.1)) is unstable if c =

220y/w.

In this paper, we use the same ideas as in [46]. It relies on the modulation
theory and construction of the virial identities. Compared to [7], the idea is
to utilize virial identities to replace the Lyapunov functional, to obtain the
lower bound on modulations. This can be used to avoid the requirement of
the high-order regularities of the energy. However, the construction in the
present paper is much more delicate, due to the complicated structure of
the equation. In addition, the construction of virial quantities in this paper
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possibly gives a hint to analyze global behaviors of the solutions to
such as blowup.

This paper is organized as follows. In Section 2, we give the definitions of
some important functionals and some useful lemmas. In Section 3, we obtain
the modulation result and show the coercivity for the second variation. In
Section 4, we prove the main theorem.

Remark 1. We note that the same result in Theorem [I was obtained
independently by Miao-Tang-Xu in [30] (appear on arXiv on March 20,
2018) by different method. They used the third derivative of the energy
around the solitary wave.

2. Preliminaries

2.1. Notations and conservation laws

We use A < B or A = O(B) to denote an estimate of the form A < CB for
some constant C' > 0. Similarly, we use A ~ B to mean A < B and B < A.
We denote f = 8, f.

For u,v € L?(R) = L*(R, C), we define

(u,v) = Re/Ru(m)v(m) dx

and regard L?(R) as a real Hilbert space.

1

For a function f(z), we define its L%-norm || f||z« = </ \f(ac)\‘%ix) ‘ and
) R
its H'-norm || fllmr = (If11Z2 + 192 f1I72)>-
The strong solution u(t) of (|1.1)) satisfies three conservation laws,
E(u(t)) = E(uo), P(u(t)) = P(uo), M(u(t)) = M(uo)
for all t € [0, Tinax), where Trpax denotes the maximal existence time of wu(t),
and

1

2(c+1)
L. 1 S
P(u) = i(zaxu, u)pe = 2Im/Ru&Uu dz,

1 _
E(u) = §Haxu”%2 Im/R|u|2“uaxud1:,

1
M(w) = 5 a3,
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2.2. Some functionals

From the definitions of £, P and M, we have

Let
Sw.e(u) = E(u) +wM(u) + cP(u),
then we have

(2.5) S, o(u) = E'(u) + wM'(u) + cP'(u)

= —0%u — i|u|*? Opu + wu + icd,u.

Hence, (1.4) is equivalent to S, .(¢) = 0. Hence for the solution ¢y, . to (1.4)),

we have

(2'6) Sc/u,c(¢w,c) = 0.

Moreover, by (2.5)), we obtain

(2~7) SZ,C(%,C)J" = _agf +wf +ico.f — i0’¢w,6’20_2¢7,6 Ordwc f
- ig’¢w,c’20_2¢w,cax¢w,c? — i\(ﬁw,c\g"&rf.

2.3. Useful lemmas

In this subsection, we give some lemmas which are useful in the following
sections. First, we have following formulas.

Lemma 1. Let 1< 0 <2 and (w,c) € R? satisfy ¢? < 4w, then

(2'8) SZ,C(¢w,c)¢w,c = - 2Ui|¢w,c|2aax¢w,c>
Sx,c(ﬁbw,C)(i&r(ﬁw,c) = 20w|¢w,c|20¢w,c-



Solitary wave solutions for DNLS 345

Proof. First, using ([2.6) and (2.7)), we get

S (Gwe) e = — e + W + icDsbue — 0|6 el |Gl Orbe
— 10| PO bsre — 1] Poc|* Do
= —Pbue — (20 4+ 1)i|pu o] 0rtu e + Wue + iCDrbroe
= —20i| s ¢[2 Dy e

Similarly, using (2.6)) and ([2.7)), we obtain

Sx,c(gi)w,c) (iax¢w,c) = Zax[ - aﬁ@%,c + w¢w,c + icaﬂc(bw,c - 7;0-|¢w,c 20 a:c¢w,c]
- 20’¢w,c’20_2 ¢w,c|aw¢w,c|2
= _20w‘¢w,0‘20¢w,c'
This concludes the proof of Lemma 4

Let
J(u) = Im/ |u|* v Oy udz.
R

Then we have
(2.9) J'(u) = 2(co + 1)i|u|* d,u.
Moreover, we have the following lemma.

Lemma 2. Let 1 <o <2 and (w,c) € R? satisfy ¢® < 4w, then

(2.10) 102 6 cllf2 =l dun,el| -
Moreover,

(2.11) J(Gue) = AwM () + 2¢P (),
(2.12) T (0) = 2P () + 4B (bu0)
and

(2.13) T (Gu) =~ T80 (G e
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Proof. From the equation S, .(¢w,c) = 0, by multiplying on both sides with
20z 0 c and ¢, . respectively, and integrating over x, we obtain

||8m¢w,cu%2 = W”QZSUJ,CH%%

and
102wl 2 + wl|duwell72 + cIm / Pusse Op P cdr — J (¢ c) = 0.
R

Therefore, we have

J(¢w,c) = 4wM(¢w,C) + 20P(¢w,c)-

Combining the definition of E and (2.10)), we have

1
E(fue) = 10nbuellis — 5

1
2(c+1)

1 / S
— s 1m ¢w,c J¢w,c 8x¢w,c dx
CE e

= WM(¢w,C) - J((bwv‘:)'

Then, we get

WM(¢W,C) = E(¢w,c) + 9 !

mﬂ%;:)-

Hence, we obtain

J(¢w,c) =4 E(¢w,c> + 9 ! J(¢w7c) + 20P(¢w,c)

(0 +1)
= 20P(0ue) + 4B () + — ().

That is,

oc—1
oc+1

Moreover, from ([2.8]) and (2.9), we have

J/(¢w,6) =2(0 + 1)i’¢w,c’2aax¢w,c

o+1
= - o SZ,C(¢W7C)¢W7C'

J(wa,c) = QCP(d)w,c) + 4E(¢w,c)-

This completes the proof. [l
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Lemma 3. Let 1 <o <2 and (w,c) € R? satisfy ¢® < 4w, then

(2.14) [Gw,c

I = 4o+ 1) [SM () + Pldu)]

and

acM(gbw,c) = 8wp(¢w,c>a 8CP(¢w,c) = WawM(¢w,c)-
Proof. The details are given in Appendix. O
For any (w, c) € R? satisfying ¢? < 4w, we define a function d(w, c) by

d(w, €) = Su,c(Puc)-
Thus, we have
d'(w,¢) = (Bud(w, ¢), ed(w, ¢)) = (M(uc), P(du.e)),
and the Hessian matrix d”(w, ¢) of d(w, ¢) is given by

_ awM(¢w,C) 80.)P(¢w,c)

” | Owwd(w,c)  Oued(w, )
¢w,c) ]‘[@M(%,c) 0uP(de) |

| Owd(w,c)  Oeed(w, )

For general exponents 1 < o < 2, Liu, Simpson and Sulem [29] proved
that ¢ = 2zp9y/w is the unique solution of det[d”(w,c)] = 0. Let (u,v) to be
the eigenvector associated to zero eigenvalue of the Hessian matrix d”(w, c).
Since zero is a simple eigenvalue, (i, ) is unique up to a constant. That is,

(2.15) {MawM(qSW,C) + VBWP(¢w,c) = O,

MacM(¢w,c) + VacP(¢w,c) =0.

Together with 0. M (¢w.c) = OuwP(¢u ), (2.15) is equivalent to

(2.16)

% 8wM(¢w,c) +v 8CM(¢OJ,C) = 07
/iawp(d)w,c) + Vacp(¢w,c) =0.

Now we have the following lemma.
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Lemma 4. Let 1 <o <2 and (w,c) € R? satisfy ¢ = 2209+/w, then
P(¢w,c) = aOM(qbw,c)a % = \/(;,
where ag = (0 — 1)y/w > 0. Moreover, there exists ko > 0, such that

(217) H2awwM(¢w,c) + 2,Ufl/awa(¢w,c) + V2ach(¢w,c) = K0<0,
(218> NQawa(¢w,c) + 2,UJV8wcP(¢w,c) + V28CCP(¢LU,C> = _/430\/(;-

Proof. The proof of Lemma [4]is postponed to Appendix.

For convenience, we denote the quality @, to be:
Quu(f) = pM(f) +vP(f).

Moreover, we let 1) = Ox@wtapc+iva=0= 1OuPw,c + VOchu c-
Lemma 5. Let 1 <o < 2. If ¢ = 2z9y/w, then
(2.19) (M ($us,e), ¥) = (P'(Buo,e), 1) =0,
and
(2.20) Sire(Pue) = =Quu(Bue),  (Sic(Gue)h ) = 0.
Proof. By , we get

<M/(¢w,c)7 Nawgbw,c + Vac¢w,c> = O,
<P/(¢w70)7 an(z)w,c + Vacéw,c)) =0,

that is,
(M ($,); ) = (P'(Bu,e), ¥) = 0.
From , we have

<:U'MI(¢w,c) + VP/(¢W,C)7 8w¢w7c> = 07
(UM (¢ue) + VP (Pu,c); Octue) = 0.

Therefore, we have

<Q;L,V(¢w,c>7 1/}> =0.
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On the other hand, differentiating SL’U_M“ e (Puotrperar) = 0 with respect
to A, we have

et (Put et ar) Orbutapetav | g
== [NM/(¢w+>\u,c+/\V) + VP/(¢w+>\;L,c+>\u)] ’)\:0-

That is
Sx,c@w,cw = _Q,/u,u(d)wﬁ)'
Thus, we have

<Sx,c(¢w,c)¢y 7l)> = _<Q;7y(¢w,c), U}> = 0.

This proves the lemma. O
Lemma 6. Let1 <o < 2. If c = 2z9y/w, then

(' (b)) = 4uM (du,c) + 20 P(du,e) # 0.
Proof. Note that ¢ = 8,\gbw+,\u7c+>\y|)\:0, using , we can write

(J'(Pwe), ) = OnT (Duorp,c4rv) [ a=0
= O\ [4("" + A) M (P rp,c+a0) + 2(c + )\V)P(¢w+>\u,c+>\u)] |/\:0
= 4pM (Pu.c) + 20P (P ) + 4w (M (B ), ONPurt As,et v r=0)
+ 2¢{P'(Pu,c) s OrPuotAp,ct2w | r=0)-

When ¢ = 2z\/w, together with (2.19]), we obtain

<J,(¢w,c)a ¢> = 4,LLM(¢w,c) + 2VP(¢w,c) + 4W<M/(¢w,c)v ¢> + 26<Pl(¢w,c)7 7!)>
= 4MM(¢w,c) + 2VP(¢w,c)-

Using Lemma [4] we find
ApM (pu.c) + 2P (Puc) = l/(4\/(; + 2a0)M(¢)w,c) #0.

Hence, (J'(¢w.c), 1) # 0. This finishes the proof. O
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3. Modulation and the coercivity property

Proposition 1. There exists 69 > 0, such that for any 6 € (0,0), the fol-
lowing properties is verified. There exist C'-functions

(evya )‘) : U5(¢w,c) — R xR x R+7
such that for any u € Us(¢w.c), if € is defined by

(321) g=e¢e 0 ( +y) ¢w+)\,u,c+>\1/a

then e satisfies the following orthogonality conditions,

<€7 igbw—&-)\u,c—i-)\l/) = <57 ax¢w+/\u,c+)\u> = <57 J/(¢w+)\u,c+)\u)> =0.

Moreover,

(3.22) <S”+)\,u,c+)\1/ ¢w+)\u,c+/\u)5 5> ~ H‘sHHl(]R)

Proof. The proof of the proposition can be splitted into the following three
steps.

Step 1: modulation for fixed time. Let ?(9, Y, Ay u) =
(Fl, FQ, Fg) with

F1(97 Y, A ’U,) = <57 i¢w+)\;¢,c+)\u>a
FQ(Q, Yy, >‘7 U) = <5a aﬂc¢w+>\u,o+)\u>a
F3(9, Y, /\; ’U,) - <57 J/(¢w+/\,u,c+/\u)>-

Note that
895|(0,0,0;¢w,0):_"¢w703 ays}(o,o,o;m,c): 2 Pu,c; 8*5‘(o,o,o;¢w,c):_¢'

Then, the Jacobian matrix of the derivative of the function (6, y, A; u) — ?
with respect to (0,y,\) is as follows.

P 0,F1 O\Fy
] = | oF 0,7 O\F»
(0.0,0:¢.c) OpF3  OyF3 OxF3) 1(0,00:¢..)
_H(st,cH%z _2P(¢w,c) _<w7i¢w,c>

= 2P(¢w,c) ”ax(z)w,c||%2 _<1/}78w¢w,c>
O 0 _<Jl(¢w,c)7 1/}>
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Thus, we can get

det (DF)|, = 40(2 ~ 0)wlM (G ) (7' (dusc). 0).

0,0,0;¢.,,c)

From Lemma [6] we have

det (D?)‘(OO oy 0

Therefore, the implicit function theorem implies that there exists dg > 0,
such that for any ¢ € (0,0p), u € Us(¢u,c), the following properties is verified.
There exist continuity functions

(0,9, A) : Us(dwe) = R x R x RT,

such that F;(0,y, \;u) =0, j =1,2,3.

Step 2: the regularity of the parameters in time. It follows from the
regularization arguments that the parameters (0, y, \) € C?.

Step 3: the coercivity property of SZ,C(Q%,C). In this step, we shall prove
that for any (w, ¢) satisfying ¢? < 4w, and any € € H'(R) satisfying

(57i¢w,c> = <Eva$¢w,c> = <57 J/(wa,c)) = 07

the following estimate holds,

<S<Zc ¢wc &, 5> = ||5||H1

From [29] Theorem 3.1, we obtain that S (¢, ) has exactly one nega-
tive eigenvalue. Hence there exists only one A_; < 0, such that,

Soe(Pwe)g—1=A19-1, lg-allrz = 1.
Moreover, we have the following decomposition,
E=a-19-1+ ali(bw,c + a28x¢w,c + ha,

with
<h179—1> = <h17i¢w,c> = <h176x¢w,c> = O,

and
<Sx,c(¢w,c)h1; h1> Z thuill(R)
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Since (g,i¢y ) = (€,02¢u,c) = 0, we have a1 = ag = 0. Then, we can write
eE=a—19-1+ h1.

Next, using , we have

Jl(¢w,c) = S(Z,c(d)w,c) <_O-;_L1¢w,c> .

For convenience, we put

h__a—l—l

g

Gw,c-
Note that (h,i¢y ) = (h, Op¢u.c) = 0, we can also write that
h=b_19-1+ he

with
<h2ag—1> = <h27i¢w,c> = <h278$¢w,c> = 0:
and

<S<Z,c(¢w76)h2v ha) Z |[he ||%{1(R) :

For simplicity, we denote

2(0 +1)?
3= (S (G ) = (T (G, h) = 2T g )
Then, from (2.11)) and Lemma |4} we know ~ > 0.
Moreover, we have
(3'23) <SZ,C(¢W70)6’ 5> = A*1a2—1 + <S:Z,c(¢w,c)hl’ h1>,
(3-24) <Sx,c(¢w,0)ha h> = >\—1b2—1 + (Sg,c(¢w,0)h2v h2> =—7<0.

According to the orthogonality condition (¢, J'(¢w.c)) = 0 and some direct
computations, we have

(3.25) A_1a_1b_1 + <SZ7C(¢W7C)h1, h2> =0.
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Together with (3.23)), (3.24)), (3.25)) and the Cauchy-Schwartz inequality, we
obtain that

A21a20% (SU (Puwe)h, ha)?
A, A,
(S (Puw,c)h1, ha)?
+ <S<Z,c(¢w,c)h27 h2>
(S0 (Pue)h1, ha)(Slh o(Bue) ha, o)
+ <Sg,c(¢w,c)h27 h2>

(3.26) —A_ia%, =

Thus, from (3.23) we get

<SZ,C(¢w,c)hla h1> <Sx,c(¢w,c)h27 h2>

+ <Sx,c(¢w,c)h2, h2>
v "
B S/ (bw.e)hi, h
v <Sx,c(¢w,c)h2, h2>< WaC(qb ) ) 1 1>

Z gy

(S c(Pucle e) > — + (S (Pue) 1, )

By (3.26) and Holder’s inequality, we have
21 S Il Zr gy
Hence, by e =a_19-1 + h1, we have
lellZe S a2y + 1l gy S I1hall7n ey

Since,
(S5 c(bwelese) Z Ml 2 llellia):

From the definition of S/} .(¢w.c) in (2.7), we have
lel% S (Sie(Buclese) + llelTa)-
Therefore, we get that
(85.c(Pwe)ese) 2 llelFn my
This finishes the proof of the proposition. O

Remark 2. The choosing of the orthogonal condition (&, J'(¢u4rp,ctrv)) =
0 is based on the following two reasons. The first, it guarantees the reversibil-
ity of the corresponding Jacobian matrix. The second, it brings convenience
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to obtain the desired estimate of the dynamic of the parameter y as pre-
sented in the following lemma.

Lemma 7. Let § € (0,80) (8o given in Proposition[1)), and assume that u
is the solution of (1.1) with u(t) € Us(¢y,) for all t € R. Then there exists
Cu.c € R, such that

. N a0¢wc + zaxd)wc
(3.27) y—c—Av=0CyeA+ <S" (0w, C) E>
2(ag — w)M(pu.e)’
+ Olell mry + el @)
and
(3.28) 0—w—Au=0(lellmw) A=O0(lelm )

Here the parameters 0, y, \ are given by Proposition [1]

Proof. From (3.21)), we have
u(t) = eiO(t) (¢w+)\(t),u,c+)\(t)1/ + E(t)) (IE - y(t))
Using (|1.1)), we obtain
(3'29) i€ — (9 —Ww= )‘M)(Qf)w-‘r}\u,c—k)\u + 5)
- (y —C— /\V> (iaat¢w+)\u,c+)\u + 18x6)
+A- iakgbw—i—)\u,c—i—/\u = Sx7c(¢w,c)5 + O()\g + 52)7
where O(+) is a functional with the order equal or more than one.
First, multiplying the equation (3.29)) on both sides with —ag@w4au,c4+rv
+ 910Gt Ap,c+av and integrating over x, we get
— (0 — w = Au) [ = 200 M (Guapetaw) + 2P (Puirperaw) + Olelmrm))]
—(y—c— ) [ - 2a0P(¢w+>\u,c+>\V) + ”8w¢w+>\u,c+>\uH%2 =+ O(”g”Hl(R))]
+A [<ia>\¢w+)\u,c+/\ua _a0¢w+)\u,c+)\y + ia{f¢w+)\u,c+/\y>
- <€ iaOaA¢w+Au,c+Ay + 8)\aac¢w+)\,u,c+)\u>]

<S” wa c a0¢w+/\u,c+)\u + iax¢w+>\u,c+)\u)7 5>
+ O(Allel ) + HEH%P(]R))'

By a direct expansion, we have

(330) ¢w+)\,u,c+)\l/ = ¢w,c + MP + O(A2)7
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and

6A¢w+)\u,c+/\u =9+ O()‘)

Moreover, together with (2.19), we have

M (buwirpetrn) = M(Gue) + MM (Gu,e), $) + ON) = M(ue) + O(N?),
P<¢w+)\,u,c+/\1/) = P((ﬁw,c) + A<Pl(¢w,c)a ¢> + O()‘2) = P(¢w,c) + O()\Q)

From (2.10), we get

“a$¢w+>\u,c+/\1/”%2 =(w+ )‘N)H¢w+)\u,c+>\uu%2 = QWM(wa,c) +O(A).

We collect the above computations and obtain

— (0 = w = M) [ = 200M (b ) + 2P(puse) + OO + |[el| 2 y)]
— (== W) [ = 200P(duc) + 20M (duc) + O+ lle i)
+ A[(ith, —a06u.c +10s6uc) + O+ el i )]
= (S0 o(Gue) (—00uc + 10z, + O(N)), €) + ONell ey + Nl m))-

By Lemma [4, we know that

— agM(¢uw,c) + P(Pu,c) =
- aUP(¢w,C) + WM(¢w c) (w - aO) (¢w c) 7é .

7

Then, we get

= (0 —w =) [OO? + llel )]
— (5 — = W) [2(w — a§) M (du,c) + OO+ [le]l 1 m))]
+ A[(i), —a00uc + i0sbue) + O+ el (w))]
(3:31) = (S.c(Bwe) (00w + 10rduc) ) + ONell ) + el Frigy)-

Next, multiplying ¢u4au,c+r on both sides of the equation (3.29) and
treating as above, we get

— (0 —w— M)[2M (due) + ON + [lell i (my)]
— (= ¢ = AW)[2P(¢u.c) + ON + [le]l i w))]
+ A[(ih, Gue) + ON+ llell mr(w))]

(3.32) = O(llell 2 (x))-



356 7. Guo, C. Ning, and Y. Wu

Finally, multiplying i.J'(¢u4au,c+a0) o0 both sides of the equation (3.29)
and treating as above, we obtain

- (9 —w =) O [lell i) — (4 —c = Av) - O+ el i my)
+ AT (Buwe), ) + O llell )]
(333) = O(llellm w))-

Using (3.31)), (3.32)), (3.33) and Lemma [6] we obtain

y—c—Av= Cw,c).\ + <SU (¢w c) —a0Pu,c 10w >

, €
203 — @) M ()’
+ O el + el )

and
0—w—Au=0(lellmE), A=O0elme)-
Here
e (i, a0 + Oae)
w,e = 1, —A0Pu,c T 10z Pw,c)-
2(a3 — w)M (¢uc) "
This completes the proof. O

4. Instability of the solitary wave solutions
4.1. Virial estimates

To prove the main theorem, first, we need the localized virial identities.

Lemma 8. Let ¢ € C°(R), bounded and u be a strong solution to (1.1,
then

7 ]u\ dr = 2Im/ ©'u O u ud:c—i— / '|u|** 2 d,

d 1 —
7 go]m(u@ u) = /go |0pul?dx + / " |uldx + Im/ ©'|u*udpu.
t R 2 Jr R
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Proof. Combining the equation ([1.1)) and integration by parts, we have

d
— [ olu’dz = 2Re/ 0o

= 2Re/ ©(i02u — |u|* O,u)T
R

1
Re/ o |u|?*2da
1 R

o+
S 1
= —2Im/ ©'u Oyudz + /¢’|u\2”+2dﬂc.
R o+ 1 R

= —2Re/ i¢' Opunudr +
R

By the same way, we obtain

d - _ _
— [ eIm(u0yu) = Im/ O Oyudr + Im/ ou Ogpudx
R R

dt Ju
= 2Im/ goatuamudx+1m/ ' Ouudz
R R
= 2Im/ (102U — |u]2"8xu)8xudx+1m/ ¢ (10%u — |u|*? Opu)udx
R R
_ / 2 1 ny, 12 o120, 9
==2 [ ¢0ul"de+ = [ ¢"|ulde +Im [ ¢'|u[*udu.
R 2 Jr R

This proves the lemma. O

Now we define o € C*°(R) satisfying

€Tr) =
oR 9R, || > 2R,

and 0 < |¢’z| < 1 for any « € R. Moreover, we denote

1) = [ ol =yl
B(t) = [ enle = y(t)In(ud)ds
To prove the main theorem, we define the key functional I(¢) as
I(t) = =V (t) + L(t) 4+ Cu. o),

where G,y o = 2C, o(M(u.c) + P(du.c))-
Hence, by Lemmal[8|we can obtain the following localized virial estimates.
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Lemma 9. Assume that

(434) U = ei@(t) (qbw-&-)\(t)mc—i-/\(t)l/ + E(t)) (ZL‘ - y(t))a

with the parameters obeying the estimates in Lemma[7]. Then the following
estimates hold:

I{ (t) = _2Cw-c).‘M(¢w,c) - QC[M(U()) - M(¢w,c)] - 4[P(u0) - P(gbw,c)}

o—1 1" .
B m<5’w,c(¢w,c)(\/&¢w,c - Za$¢w,c>7 <€>
1 2 d? 2042

_|_

m W Hgbw-i-)\u,c—&-)\y ||L20‘+2

1
+0 (Mellmgey + el + 5 ) + 0%

and
Ié(t) = ) (¢w c) - [P( ) P(¢w,c)] - 4[E(u0) - E(gbw,c)]
( \/>< ¢w c f¢w c i8$¢w,c)7 5>
o—1 o d*

+

o1y me Gebmernl|

1
+0 (Mellmm) + el + 3 ) +00%)

Proof. By Lemma |8 and some direct computation, we have the following
formulas.

1(t) = —i / ol — y(t))]ul® — 2Im / Sl — y(t) uFyude

1
1 [ el = s,
/ o(z — y(t))Im(u Opu)dx
/ N[2]0zu|* — Im(|u|* u Opu)]dx

/sozézm— )luf?d.
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First, with the definitions of M and P yields

(4.35) Ij(t) = — 2M(u) — QQ/R [Pr(e —y(t)) — 1][ul*dz — 4P(u)

- QIm/R [oR(z — y(t) — 1ududa

1 20+2 1 / 2042

- 2042 - T - - 1
bl + e [ e - ul0) - e
(4.36) =—2(g—c— )M (u) — 2(c+ A\v)M (u)

1 (o}
— 4P(u) + m“unizjfz
+0( [ et~ y(®) = 1 (Gluf® + ln(uBw) + o) ).
R
In fact, supp¢p(z —y(t)) —1] C {z: |z —y(t)| > R}, 0 < |¢| < 1. From

Lemma we know that || < 1. Then, after using (4.34)) and the exponential
decaying of ¢, au,c+rv, We have

/R [Pz — y(t)) — 1] (3fuf?* + Tm(uym) + uf**+?)da

< /| N e e
z|>R

1

Mergering (3.27) and (4.37) into (4.35)), we obtain

/ o — a0+ 10 P
Il (t) - — 2[Cw,c)\ + <Sw,c(¢w,c) Z(Z%é_vw;_j\;(é(b 7) 7€>

+ O(Mlell g ry + HEHJZLII(R))]M(U)

1 " 1
—2(c+ A\)M(u) — 4P(u) + U—Huunigﬁz +0 <||5||§{1(R) - R) .

Now, using (219), (330) and (T33), we get
(4'38) M(u) :M<¢w,c) + <M/(¢w,c)7€> + O()‘H‘C:HHl(R) + HEH%U(R)%
and

(4.39) P(u) =P(uc) + (P (uc) ) + Ol mmy + el gy)-
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Moreover,
(4.40) [ul 7552 = llfuw.ell 7342 +2(0 + 1A )

+2(0 + 1)<|¢w,0|20¢w,07 €)

+ iAZW ”¢w+)\u,c+)\zx HLZ;’_+22 A0

+ O(Mlellmy + ||5”H1(R)) +0(A?),
and

! 2 d2
(441) J(U) = J(¢w C) + )\<‘] (¢w C)a ¢> + )\ d>\2 (¢w+)\,u,c+>\u)‘/\:0
o —
+ I (G + O(Aueumm el ) +00).

Combining (|4.38]) and ((4.40} - yields

Ii (t) = 2Cw,cj\M(¢w,c) - QCM(U) - 2)‘VM(¢w,c)
1 o
- 4P(u) + 07_1_1||¢w,c||i2j+22

—a + 10
+ <—SZ,C<¢W,C> o+ » e 2\¢w,c\2“¢w,c,a>

agp

1 d?
2)\ w,C 2 w,C 7)\27 w C v 2U2+22
+ <|d) s | ¢ s a¢>+ 2(U+1) d)\2”¢ -‘r)\lh +A HL o+

A=0

1
+0 (Ml + lelBgey + ) + 02
From the conservation laws and ([2.14)), we get

I(t) = = 2C0 AM (¢y.c) — 2¢M (ug) — 4P (uq)
- 2AVM(¢w,c) + 26M(¢w,c) + 4P(¢w,c)

—a + 10
(8Ll O O gy oG, e

0
2\ 20 1 )\2 d2 2042
+ <|¢w,c| ¢w,ca ¢> + m )2 ”@bw—&-)\u c+Av HL2a+2

A=0

1
0 (Ml + Ille + 5 ) +00%)
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Observe that

<‘¢wc‘ (bwca >:

1 2 2
ma/\ (H ¢w+/\p,,c+)\u HLC;j;z)

A=0"

Moreover, using the equality (2.14) again yields

(|¢w,e ¥)

1 A
= m@A (4(0' + 1) <C +2 VM(¢w+)\u,c+)\u) + P(¢w+>\u,c+)\y)>) ‘

A=0
Using Lemma 5| again, we obtain that
<‘¢w c‘ (bw o > = VM(¢w,c)-

By Lemma [1], we have

- w,C 8m w,C
_ S‘Z7C(¢w’c) a/0¢ ,2 +1 ¢ €y 2’¢w,c
T (b0) (Vi — r)
0_(2 — a)w w,c\Pw,c w,c xPw,c)-

Finally, we collect the above equalities and obtain

Ii (t) = - 2Cw,c/‘\M(¢w,C) - QC[M(UO) - M((ﬁw,c)] - 4[P(u0) - P(¢w,c)]

—1 " .
- 0_(;-_70_)(10<Sw,c(¢w,c) (\/‘;d)w,c - Zax¢w,c)75>
1 2 d2 2042

_l’_

m W Hgbw+)\,u,c+)\z/ HL%*? A20

1
0 (Mlellngn + lelfre) + ) + o0

Similarly, from the definitions of P, E and J, we have
oc—1
oc+1

— 3 [ ¢l = y(6) = ltm(u ) — 20,0 + mn(fuf7u ) ds
=— Q(QR— c— A)P(u) —2(c+ A\v)P(u) — 4E(u)

oc—1

1
+ /W +0 (Hsuip(R) + R> :

I(t) = — 29P(u) — 4B(u) + J(u)
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Using (3.27)), we get

Ié(t) =—2 |:Cw70)'\ 4 <S// (¢w C) (Cl0¢w ,C ')i‘ la(zfjwc§ E>

OO ell ey + Hsﬁpm))] P(u)

c—1 9 1

Combining (4.39)) and -, we obtain

Ih(t) = — 2C, AP (¢u.e) — 2¢P(u) — 200 P (¢ c) — 4E(u) +

P((rbwﬁ) 1" _a0¢w,c + iax(z)w,c g —
i <¢wc><5 e =g ’E>+ +1<( )

, -1 o d?
MI (Gue) ) + 50N T G o

T (6ue)

g —

Jr—l—l

+ Ol ey + el gy + 5) +0o(A?).

=)

Using (2.11)), (2.12)), (2.13)), Lemma {4] and the conservation laws, we have

I5(t) = — 2Cu.cAP(¢uc) — 2¢[P(ug) — P¢ue)] — A[E(u0) — E(¢uc)]
o—1

o W<Sw,c(¢w,c)(\/‘;¢w,c - iamébw,c), £)

o—1 o d*

+ ot D) an J (et rppe+0)

A=0

1
+0 (Mellny + leligey + ) +00%)
This completes the proof of the lemma. O
According to Lemma [0, we have following result.

Lemma 10. Under the assumptions of Lemmal9, we have

1
1'0) = Aluo) + BOV+ 0 (Mlelngo + llisy + ) +002)
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with A(ug), B(X\) verifying

A(uo) = (2cv/w + 4w) [M (uo) — M (¢ue)] + (4v/w + 2¢)[P(uo) — P(du.c)]
—4 [Sw,c(uo) - Sw,c((ﬁw,c)] ,

and
B(\) = b1 \?,
for some by > 0.

Remark 3. The form of I(t) removes the linear term of ¢ in I’(¢). The key
observation is that the linear terms of ¢ from I7(t) and I}(¢) are almost the
same.

Proof of Lemma[10 From the definition of I(t), we have
I'(t) = —VwI{(t) + Ij(t) + Co e
By Lemma 9 we obtain

I'(t) = Vw[2e(M (ug) — M(dw,c)) + 4(P(uo) — P(¢u,c))]
—2c [P(UO) - P(d’w,c)] - 4[E(u0) - E(¢w,c>]

)\2 d2 20+2
+ 2(0_ + 1) W |: - \/5”¢W+)\M,C+)\Z/HL2U+2 + (0’ - 1)J((Z)w+)\“,c+>\,/)} ‘

1
+0 (Mellmm) + el + 3 ) +00%)

A=0

We denote

Auo) = \/‘;[20(M(u0) — M(¢u,e)) +4(P(uo) — P(¢w,6)>]
-2 [P(UO) - P(¢w,c>] - 4[E(u0) - E(¢w,c>]a

and

A g2

B = 20 + 1) dA2

[_ Vol puoirperawl5E + (0= 1) (du+ A“’c“”)} ‘A=0'

Then, we have

1
I/6) = Alw) + BO) + 0 (Mellmsy + lelBrgey + ) + 002
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By the definition of S, ., we have

Alug) = (2ev/w + 4w) [M (ug) — M (¢uc)] + (4v/w + 2¢) [P(uo) — P(¢u,c)]
St~ o)

Now we consider B(\). Observe, from (2.11]) and (2.14]), that

- \/>||¢w+)\p,c+/\u||%gj_+22 (U - 1)J(¢w+/\u,c+/\1/)
A
— VoA 1) |

+ (o = D[4(w + M) M (Suirpetaw) +2(¢ + A) P(uiap,ctaw)]
= [dw(o — 1) = 2ev/w(o + )] M (duirpetrv)

+ [2¢(0 = 1) — 4vV/w(o + 1)|P(uwtrpc+rv)

+ [4p(o = 1) = 2vv/w(o + DIAM (uirpctav)

+2(0 = DAVP(Puirpetrv)-

(¢w+)\,u,c+)\z/) + P((z)w—i-)\,u,c—l—/\z/)

Next, using (2.17)) and (2.18]), we calculate the terms above separately:

d2
WM(¢W+>\/L,C+)\V) A0 = M2awwM(¢w,c) + Qlll/awa(wa,c) + VQach(¢w,c)
= K0<0,
d2 2 2
WP(¢w+)\,u,c+)\y) =0 =M awa(¢w,c) + 2/“/awcp(¢w,c) +v 8ccP(¢w,c)
= —HO\/LU.
Finally, together with (2.19)), and the three estimates above, we get
1 d? 2
go 2 -1 w c v
s e | VeIt B + (0 = DT Gunnenn)]|
1 d?
e 2 — 1 1 w C 174
—[2(0 — 1) = Vielo + D)2 M Guomern)|
1 d?
—1)—2 1 W v
—lelo 1) = 2050+ D) PGuamesn)|

= 1 [2w(o — 1) — Vwe(o +1)] - ko2

oc+1
+ —lelo — 1) = 2o + ] - —hovs

= 2row(1l — 23).
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Let b1 = 2kow(1 — 23), then by > 0. Hence, we obtain that
B(\) = b1 )2
This concludes the proof of Lemma O

4.2. Proof of Theorem [

Now we give the proof of Theorem [1} Suppose that e™“!@,, .(x — ct) of (L.1)
is stable. Choose

Uy = (ﬁw,c + 51(—a0¢w,c + iax(bw,c), 01 > 0.
Here ¢; is small enough such that uy € Us(¢,, ) which is given by Proposi-
tion [

Let u be the corresponding solution of (1.1)) with the initial data wug.
Then, we can write

u= e (Pwrpernw +€)(x —y),

with (6,y,\) obtained in Proposition [I} and |A| < 1.
Lemma 11. There exists by > 0, such that
A(ug) > bady.

Proof. Recalling that ¢ = 2z9\/w, ap = (0 — 1)y/w and the choose of ug, we
have

(4~42) M(UO) - M(wa,c) = (51 <M/(¢w,c)a _a0¢w,c + ia:c¢w,c> + 0(51)
= 01[—2a0M (¢pw.c) + 2P (¢u,c)] + 0(61)
= 0(01),

and

(4.43) P(UO) - P(d)w,c) = 61 <Pl(¢w,c)7 _ao(bw,c + i8x¢w,c> + 0(51)
= Q(w — (L(Q))M(¢w,c)51 + 0(51)
=2wo (2 — )M (¢uw,c)01 + 0(d1).
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Moreover, using S/, .(du.c) = 0, we get

(444) Sw,c(UO) - Sw,c(¢w,c) = 51 <S:J,c(¢w,c)7 _aO(z)w,c + iax¢w,c> + 0(51)
= 0(51).

Now, we collect the above computations and obtain

A(ug) = (2cv/w + 4w) - 0(61) + (dv/w — 2¢) - 2wa (2 — ) M (¢ )01
+0(61) —4-0(01)
= 8wvw(l+ 20) 0(2 — o) M (dw)01 + 0(61)
> bay,

where by = 4w\/w(1 + 20) 0(2 — 0) M (¢w,c) > 0. This proves the lemma. [J
We further give the estimate on HEH%I(R).
Lemma 12. Let ¢ be defined in (3.21)), there exists bs > 0, then
el gy < bsAd1 + o(81).

Proof. Without loss of generality, we may assume that v > 0. From the
conservation laws, we have
Sw+)\u,c+)\l/(u0) = Ser)\;L,ch)\u(u)

1
= w+>\u,c+>\u(¢w+>\u,c+>\1/) + §< Z+Au,c+)\u(¢w+>\u,c+)\u)57 €> + O(H‘C:H%II(R))‘

Combining ([2.6)) and Lemma [5| yields

Sw—&—)\,u,c—i-)\y (¢w+>\u,c+)\z/)
= w+/\u,c+)\u(¢w,c) + )‘< 4:.)+)\,u,,c+)\z/(¢w70)7 ¢>

1 "
+ 5)‘2<Sw+>\u,c+)\y(¢w,c)w’ 1/}> + 0()‘2)
= w+)\u,c+)\zx(¢w,c) + )\<SLCJ,C(¢UJ7C)7 ¢> + )\M<M/(¢w,c)a 1/’>
AP (Bu0), ) + A (L D)t ) + (V)

= w+)\u,c+)\zx(¢w,c) + 0()‘2)'
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Then, we have

1
Ser)\y,ch/\Z/(uO) - Sw+)\,u,,c+)\u(¢w,c) + §< x—i-)\y,c—l-)\u((war)\u,ch)\zz)Ev 5>

+ (A + [lell7p sy)-
Together with (4.42)), (4.43) and (4.44)), we have

(4.45) Setametzw (10) = Swtapetrv (Puw,e)
= Sw,e(w0) = Sw,e(Pw,e) + A(M(ug) — M(¢w,c))
+ Av(P(uo) — P(¢w,c))
= 2vwo (2 — o) M (¢u,c) A1 + 0(d1).

Therefore, by (3.22)) and (4.45)), there exists C' > 0, such that

||5||12LIl(R) < C< Z+)\u,c+>\y(¢w+)\ﬂ’c+)\ll)57€>

= C[Sw+>\u,c+)\u(’lt0) - Sw-i—)\lt,c-i-)\u(qswﬁ)] + 0()\2 + HgH%{l(R))
= 20000 (2 — 0) M (c) A1 + 0(81) + 0N + [l 2 sy
< 2b3 o1 + 0(51 + ||5”§{1(]R))’

where b3 = 2Cvwo (2 — o) M (¢, c) > 0. Then we obtain
||5||%{1(1R) < bgAd1 + 0(61).

This completes the proof. O

Proof of Theorem[1. On one hand, we note that from the definition of I(t),
we have the time uniform boundedness of I(t). That is, if |A\| < 1, then

(4.46) sup I(t) < R([|¢w.ell Fri gy +1)-
teR
On the other hand, using (3.28]) and Lemmas we get

1
(1) = Aluo) + B +0 (Mellnge) + el + ) +000%)

1
> bydy + A2+ O (Hé‘\l?{l(m) + R) +o(X)
1 1 2 2
> 5[)2(51 + ibl)\ + O(HEHHl(R))’

by choosing R > 10(bad1) .
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Moreover, combining Lemma [12| yields
! 1 1 2
I (t) > 16251 + 5[)1/\ > 0,

when |\ < 1.

This implies that I(¢) — +o0o when ¢ — +o0, which contradicts to (4.46]).
Hence we prove the instability of the solitary wave solutions !¢, .(z — ct)
of . This completes the proof of Theorem O

Appendix: Proof of Lemma (3| and Lemma

Throughout this appendix, let 1 <o <2 and zy = z0(0) € (—1,1) satisfy
FU(ZO) = 0.

Now we adopt some notations from [29]. More precisely, for any (w,c) €
R? satisfying c? < 4w, we denote

= Viw-2>0, F=2-"20""1+0)rrs 2w 23,
(o4 1)k?
f(w7c) - 2\/& 9
o0 1
On —/ h==""dx, ncZ*.
0

h(z;0;w,c) = cosh(okz) — 2\%,
Proof of Lemma[3. For any (w,c) € R? satisfying ¢? < 4w, by (.3)), we have

c 7

C. i * 20
Zix — dy .
X exp{sz 2U+2/OO oY) y}

P(¢w,c) = ;Im/ wa,caxqsw,cdx

1 o
= 21111/ |: 5 2% + 290w,c:| @E),cdl‘

2042

Therefore, we have

—ZH@w,cHLz + io+1)

Finally, we obtain

6w el352 = (o +1) [SM () + Plouo)]



Solitary wave solutions for DNLS 369

According to [29] Appendix Lemma A.3, we have that

8CM(¢w,c) = awp(¢w,c)7 8CP(¢w,c) = WawM(¢w,c)-

This completes the proof. O
Now, we focus on the critical case ¢ = 2zpy/w.

Proof of Lemmal[fl From [29] Lemma 4.2, det[d”(w, )] = 0 is equivalent to

(0 = DVoM (¢ue)]” = Plgue)?.

When ¢ = 2zpy/w, we have P(¢,.) > 0. Indeed, if P(¢, ) <0, since

Pldo.c) — 400, when ¢— —2+/w. Then there exist two solutions c; =c¢;(\/w),
M(¢u,c)

¢y = c2(y/w), such that

P@ud) | _ 1
‘M(%,c) = (=D

This contradicts to the fact that ¢ = 2zp\/w is the unique solution of
det[d”(w, ¢)] = 0. Hence,

P(d)w,c) > 07 P(‘bu,c) = (U - 1)\/5M<¢w,c)

From [29] Appendix (A.2) Lemmas A.1 and A.2, we know that M (¢, ) =

fiag and P(¢y,.c) = #fi —2&)%00[() + K20a). Since P(¢y,.) > 0, then we
h e ’
ave

/12041 > 2w%cao.
Together with [29] Appendix Lemma A.3, we obtain

2

DM (¢ c) = Fw ' [-8(0 — 1)w%oz0 + c(2w%cao — Kk“01)] <0,

OwP(¢ue) = 2i[2cwrag(o — 1) — 2cwrag + k2] > 0.

On one hand, by 0.P(¢w.c) = Wiy M (Pw,c) and Oy P(duw.c) = OcM (¢ ), we
have
b M) | PG

14 N _awM((bw,c) B _awM((bw,c)
On the other hand,

> 0.

H_ 80P(¢w,c) _ _WawM(¢w7c)
v QUP(QSW,C) awP(¢w,c) '
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Hence, combining with the two equations above, we get

(u>27 OuP(fue)  wOM(bue) _

v) T 0uM(dne)  OuP(duwe)

Then we obtain
=w.

el
v
P(¢,c) with respect to w and ¢, we have

Differentiating M (¢, .) and
the following relations:

1
awwM((bw,c) :;(&ucp(@u,c) - 8wM(¢w,c))7 8wa(¢w,c) - auwp((bw,c):

ach(¢w,c) :6wcp(¢w,c)> accp((bw,c) = Wawwp((bw,c)-

Since 0, P(Pu.c) = Vwd,M(dy.c), we obtain (22 —1)a; = (1 — 20 — o).
From [7] Appendix Lemma 10, we have

O M ($ro.c) = 8y/wirag(22 — o + 1) + 8y/wion 20(22 — 1)
= 8y/wkag(1 — o) (1 + z),
1
2\/;awwp(¢w,c) + Qawcp(¢w,c) - §awM(¢w7c)
= —4v/wkag(o — 1)(1 — z),
and
120 P(Gus.e) + 20D P c) + V20 P(Gc) = —81 w0 — 1)

Moreover, we have

M28wwM(¢w,c) + 2HV8wa(¢w,c) + Vzach((bw,c)
=12 (WM (Pus,c) + 28/ w0eM (Puo.c) + OccM (Poe)]
= V2 [ = 0uM ($ue) + 20ueP(due) + 2Vw0w Puc)]

1 1
= V2 2\/(;8wwp(¢w,c) + 28wcp(¢w,c) - §8wM(¢w,c) - iawM(qbw,c)

= v [—4v/wRap(o — 1)(1 — 2p) + dvwkag(o — 1) (2o + 1)]
= 82 Vwkap(o — 1) 2.

Take ro = 8v%\/wkag(o — 1), then kg > 0. This completes the proof. O
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