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On a question of Dolgachev

Marco Pacini and Damiano Testa

For each even, positive integer n, we define a rational self-map on
the space of plane curves of degree n, using classical contravariants.
In the case of plane quartics, we show that the degree of this map
is 15. This answers a question of Dolgachev on the moduli space
of curves of genus 3.

Introduction

An inspiring question of Dolgachev motivates the present paper. First, we
describe a classical construction that associates to a general plane quartic
curve C another plane quartic curve H4(C).

Let k be a field of characteristic relatively prime to 6 and fix a smooth
plane quartic C ⊂ P2

k over k. A line ` ⊂ P2
k, transverse to C, intersects C

in a configuration of 4 distinct points. The double cover C` of ` branched
above these 4 points is a smooth curve of genus one. We let H4(C) ⊂ P2

k
∨

denote the closure of the locus of lines ` ⊂ P2
k such that the j-invariant of

the curve C` vanishes. The closed subset H4(C) ⊂ P2
k
∨

is a plane curve of
degree 4. We thus obtain a rational self-map H4 : P14

k 99K P14
k of the space of

plane quartics, assigning to the quartic C ⊂ P2
k the quartic H4(C) ⊂ P2

k
∨

.

Question 1 (Dolgachev). Is the rational map H4 generically finite? If
so, what is its degree?

We answer this question in Theorem 2.4: the map H4 is generically finite
of degree 15. The second author found the answer to Question 1, involving
the use of a computer in an essential way. We propose here a proof that
we check entirely by hand. Nevertheless, determining the degree is still the
outcome of a lengthy computation: we do not have an interpretation for the
fibers of the map H4.

In an attempt to obtain a more conceptual understanding of the fibers
of the map H4, we computed the monodromy group of H4. Theorem 2.7
shows that this group is the full symmetric group S15. Unfortunately we
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have not been able to use this information: we still lack an understanding
of how the 15 quartics in a general fiber of H4 arise.

To put Question 1 into perspective, observe that the map H4 is equiv-
ariant with respect to the group PGL3 of projective changes of coordinates.
Moreover, the quotient of the space of plane quartic curves by the group
PGL3 is birational to the moduli space M3 of curves of genus 3. After
checking that the map H4 is generically finite, we deduce that it descends to
a generically finite rational map H4 : M3 99KM3. We show that the degree
of H4 is also 15.

More generally, Dolgachev considers rational self-maps of moduli spaces
of curves of low genus (such as H4) and of hypersurfaces (such as H4)
in [Dol16]. He provides several examples and constructions of dominant ra-
tional self-maps of such spaces to themselves of degree strictly larger than 1.

In line with Dolgachev’s general strategy, for each even degree n, we
introduce a rational self-map

Hn : P(n+2

2 )−1 99K P(n+2

2 )−1

on the projective space of plane curves of degree n (for odd n, the map is
not defined). As in the case n = 4, the map Hn is equivariant with respect to
the group PGL3. When Hn is generically finite, it descends to a generically
finite rational self-map Hn on the moduli space of plane curves of degree n.
We can extend Question 1 to any even positive integer n.

Question 2. Is the rational map Hn generically finite? If so, what are the
degrees of Hn and Hn?

For n = 2, the map H2 assigns to a general conic its dual conic and
is therefore birational. For n = 4, the map H4 is the one defined above, of
degree 15. For n ∈ {2, 4}, the degrees of Hn and Hn coincide: we do not
know if they are always equal.

In Section 1, we briefly set up the notation and basic facts about invari-
ants, contravariants and Lie algebras for ternary forms. Here, we define the
rational maps Hn on the space of plane curves of degree n to itself. We rec-
ommend [Dol12, Chapter 1] as a general introduction to the topic; the whole
book contains a wealth of information and details about this beautiful sub-
ject and beyond. In Equation (3), we introduce the trilinear form tn(−,−,−):
it provides a fundamental link between an invariant of ternary forms and
the maps Hn via the Lie algebra sl3. The heart of the Section is devoted
to the proof of Theorem 1.1, providing a crucial symmetry of the trilinear
form tn. In Section 2, we determine explicitly the scheme-theoretic fiber
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of H4 over the Fermat quartic (see Theorem 2.1). Theorem 2.4 exploits the
structure of this fiber: the degree of H4 is 15 and the monodromy group
of H4 contains the alternating group A15 (see also Theorem 2.7). Knowing
that the monodromy group is 2-transitive, allows us to prove that the de-
gree of the induced quotient map H4 is also 15. In Section 3, we define an
invariant ρn vanishing on the locus where the differential of the map Hn is
not an isomorphism. In the case n = 4, the polynomial ρ4 is an invariant
of degree 15 of ternary quartic forms: Theorem 3.1 gives the expression of
ρ4 in terms of the Dixmier-Ohno invariants. The proof uses in an essential
way the Magma [BCP97] package g3twists described in [LRS]. We include
in the source of the file [PT], the code that computes and checks our as-
sertions. In the Appendix, we determine the degree of a scheme that plays
an important role in our argument. The calculation could alternatively be
carried out using a computer.

1. Preliminary identities

In this section, we prove the main identities used in the paper working
over the ring Z of integers. In the later sections, we specialize to fields of
characteristic coprime to 6.

Let x, y, z be homogeneous coordinates on the projective plane P2
Z and

let u, v, w be the dual coordinates on the dual projective plane. Let n be a
non-negative integer and denote by Z[x, y, z]n and Z[u, v, w]n the Z-modules
of ternary forms of degree n in respective variables x, y, z and u, v, w. Set
N =

(
n+2
2

)
− 1; thus the rank of the free Z-module Z[x, y, z]n is N + 1. We

identify P(Z[x, y, z]n) and P(Z[u, v, w]n) with PNZ equivariantly with respect
to the action of the group-scheme GL3,Z. The projective space PNZ is the
space of plane curves of degree n.

We define the polar pairing 〈−,−〉 : Z[u, v, w]n × Z[x, y, z]n → Z by

〈q1, q2〉 = q1(∂x, ∂y, ∂z) q2(x, y, z).

Equivalently, the polar pairing 〈−,−〉 is the unique bilinear form taking the
values

(1) (ua1vb1wc1 , xa2yb2zc2) 7−→

{
a1! b1! c1! if (a1, b1, c1) = (a2, b2, c2),

0 otherwise,

on monomials. The polar pairing allows us to associate to each ternary form
q ∈ Z[u, v, w]n a linear form 〈q,−〉 : Z[x, y, z]n −→ Z.
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We define a bilinear map

Jn : Z[x, y, z]n × Z[x, y, z]n −→ Z[u, v, w]n

as follows:

Jn(q1(x, y, z), q2(x, y, z))(2)

= q1

(∣∣∣∣∂y ∂z
v w

∣∣∣∣ ,− ∣∣∣∣∂x ∂z
u w

∣∣∣∣ , ∣∣∣∣∂x ∂y
u v

∣∣∣∣) q2(x, y, z).
For a ternary form q(x, y, z)∈Z[x, y, z]n of degree n, we let Hn(q)(u, v, w)

be the ternary form

Hn(q)(u, v, w) = Jn(q(x, y, z), q(x, y, z))

of degree n; we call Hn(q)(u, v, w) the harmonic form associated to q. If the
integer n is odd, then Hn(q) is always zero. The function Hn : Z[x, y, z]n →
Z[u, v, w]n is a contravariant of ternary forms with respect to the group-
scheme SL3,Z (see [Dol12, Section 3.4.2 and Example 3.4.2]).

Combining the polar pairing with the bilinear map Jn, we define a tri-
linear form tn : (Z[x, y, z]n)×3 → Z:

(3) tn(q1, q2, q3) = 〈Jn(q1, q2), q3〉 .

Theorem 1.1. For every permutation σ ∈ S3, the trilinear form tn satis-
fies

tn(qσ(1), qσ(2), qσ(3)) = (signσ)ntn(q1, q2, q3),

where signσ denotes the sign of the permutation σ.

We now give a proof of Theorem 1.1. The argument is entirely combina-
torial and relies on a few identities that we prove first. We use an alternative
definition of the bilinear map Jn.

Let m1,m2 ∈ Z[x, y, z]n be monomials and set

m3 =
(xyz)n

m1m2
∈ Z[x±1, y±1, z±1].

For i ∈ {1, 2, 3}, write mi = xaiybizci ; by construction, the integers a1, b1,
c1, a2, b2, c2 are non-negative, while a3, b3 and c3 need not be. Define an
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integer [m1 |m2] by

(4) [m1 |m2] = (−1)a2+b3+c1 a1! b1! c1!
∑

(−1)α
(
a2
α

)(
b2

c1 − α

)(
c2

b3 − α

)
,

and observe that the summands vanish if α is outside of the range 0 ≤ α ≤
min{a2, c1}.

Proposition 1.2 (Properties of [− |−]). Let m1 = xa1yb1zc1 ,m2 =

xa2yb2zc2 ∈ Z[x, y, z]n be monomials. Set m3 = (xyz)n

m1m2
= xa3yb3zc3, with a3,

b3, c3 integers.

i) [1 | 1] = 1.

ii) If x divides m1, then [m1 |m2] = b2

[
m1

x |
m2

y

]
− c2

[
m1

x |
m2

z

]
.

If y divides m1, then [m1 |m2] = c2

[
m1

y |
m2

z

]
− a2

[
m1

y |
m2

x

]
.

If z divides m1, then [m1 |m2] = a2
[
m1

z |
m2

x

]
− b2

[
m1

z |
m2

y

]
.

iii) [m2 |m1] = (−1)n [m1 |m2].

iv) If at least one of a3, b3, c3 is strictly negative, then, for every α, the
product

(
a2

α

)(
b2

c1−α
)(

c2
b3−α

)
vanishes. In particular, the identity [m1 |m2]

= 0 holds.

v) If the integers a3, b3, c3 are non-negative, then the identity

a3!b3!c3! [m1 |m2] = (−1)na1!b1!c1! [m3 |m2]

holds.

Proof. (i) Follows directly from the definition.
(ii) We only argue the case in which x divides m1; the remaining cases

are analogous. The identities

b2

(
b2 − 1

c1 − α

)
= (b2 − c1 + α)

(
b2

c1 − α

)
c2

(
c2 − 1

b3 − 1− α

)
= (b3 − α)

(
c2

b3 − α

)
and

b2 − c1 + α+ b3 − α = a1
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hold. Combining these identities with Equation (4) we find

b2

[
m1

x
| m2

y

]
− c2

[m1

x
| m2

z

]
= (−1)a2+b3+c1 (a1 − 1)! b1! c1!

∑
(−1)α

(
a2
α

)
b2

(
b2 − 1

c1 − α

)(
c2

b3 − α

)
− (−1)a2+b3−1+c1 (a1 − 1)! b1! c1!

∑
(−1)α

(
a2
α

)(
b2

c1 − α

)
c2

(
c2 − 1

b3 − 1− α

)
= (−1)a2+b3+c1 a1! b1! c1!

∑
(−1)α

(
a2
α

)(
b2

c1 − α

)(
c2

b3 − α

)
= [m1 |m2]

as needed.
(iii) Let α be any integer and set α′ = b3 − α. Expanding the binomials

in the product a1! b1! c1!
(
a2

α

)(
b2

c1−α
)(

c2
b3−α

)
we find

a1! b1! c1! a2! b2! c2!

α!(a2 − α)!(c1 − α)!(b2 − c1 + α)!(b3 − α)!(c2 − b3 + α)!
.

We use the equalities

a2 − b3 + α′ = b1 − c2 + α′ b2 − c1 + b3 − α′ = a1 − α′

to find

a1! b1! c1!

(
a2
α

)(
b2

c1 − α

)(
c2

b3 − α

)
(5)

= a2! b2! c2!

(
a1
α′

)(
b1

c2 − α′

)(
c1

b3 − α′

)
.

Finally, from the identity

a2 + b3 + c1 = n− a1 + 2b3 − c2

we deduce

(6) (−1)a2+b3+c1+α = (−1)n(−1)a1+b3+c2−α′
.

Combining Equations (5) and (6) and summing over all α, we obtain the
required identity

[m1 |m2] = (−1)n [m2 |m1] .
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(iv) If α is not in the interval [0,min{a2, c1}], then the product
(
a2

α

)(
b2

c1−α
)

vanishes. Suppose therefore that α satisfies the inequalities 0 ≤ α ≤
min{a2, c1}.

• If a3 < 0, then, using c2 − b3 = a3 − c1, we obtain that
(
c2

b3−α
)

=(
c2

c2−b3+α
)

=
(

c2
a3−c1+α

)
vanishes.

• If b3 < 0, then
(
c2

b3−α
)

vanishes.

• If c3 < 0, then, using b2 − c1 = c3 − a2, we obtain that
(
b2

c1−α
)

=(
b2

b2−c1+α
)

=
(

b2
c3+α−a2

)
vanishes.

The vanishing of [m1 |m2] follows, since we just proved that every summand
in Equation (4) is zero.

(v) Using the identities c2 − b3 = b1 − a2 and b2 − c1 = c3 − a2, we find,
for any integer α, the equalities(

c2
b3 − α

)
=

(
c2

c2 − b3 + α

)
=

(
c2

b1 − (a2 − α)

)
and (

b2
c1 − α

)
=

(
b2

b2 − c1 + α

)
=

(
b2

c3 − (a2 − α)

)
.

Moreover, also the equality b3 + c1 − (b1 + c3) = n+ a2 − 2(b1 + c3) holds.
Set α′ = a2 − α; we deduce the equality

(−1)a2+b3+c1+α

(
a2
α

)(
b2

c1 − α

)(
c2

b3 − α

)
= (−1)n(−1)a2+b1+c3+α′

(
a2
α′

)(
b2

c3 − α′

)(
c2

b1 − α′

)
and we conclude summing over all α. �

Let m1,m2 be monomials in Z[x, y, z]n. The ratio (xyz)n

m1m2
is a Laurent

monomial in Z[x±1, y±1, z±1] and we let a3, b3, c3 ∈ Z be its exponents:
(xyz)n

m1m2
= xa3yb3zc3 .

We define a bilinear map J ′n : Z[x, y, z]n × Z[x, y, z]n → Z[u, v, w]n by
setting

J ′n(m1,m2) = [m1 |m2]u
a3vb3wc3

on monomials and extending by bilinearity.

Corollary 1.3. For all non-negative integers n, the bilinear maps Jn and
J ′n coincide.
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Proof. We proceed by induction on n. The case n = 0 follows from the defi-
nitions. Suppose that n > 0 is an integer and that the maps Jn−1 and J ′n−1
coincide. Let m1,m2 be monomials in Z[x, y, z]n. To prove the result, it
suffices to show that the identity Jn(m1,m2) = J ′n(m1,m2) holds. Let m3

denote the Laurent monomial (xyz)n

m1m2
. For i ∈ {1, 2, 3}, write mi = xaiybizci .

If x divides m1, that is, if a1 is strictly positive, then Equation (2) implies
the identity

Jn(m1,m2) = b2Jn−1

(
m1

x
,
m2

y

)
w − c2Jn−1

(m1

x
,
m2

z

)
v,

with the convention that if b2 or c2 vanish, then the corresponding term
vanishes as well. Using the inductive hypothesis, we obtain

Jn(m1,m2) = b2

[
m1

x
| m2

y

]
ua3vb3wc3−1w − c2

[m1

x
| m2

z

]
ua3vb3−1wc3v

and this last expression equals J ′n(m1

x ,
m2

z ) by Proposition 1.2 (ii). Arguing
similarly if y or z divides m1, we conclude the proof of the induction step.
The result follows by induction. �

Proof of Theorem 1.1. Let q1, q2, q3 ∈ Z[x, y, z]n be three forms. By Corol-
lary 1.3 and Proposition 1.2 (iii), the identity

Jn(q2, q1) = (−1)nJn(q1, q2)

holds. In particular, to prove the result, it suffices to show the identity

tn(q1, q2, q3) = tn(q2, q3, q1).

Using the linearity of tn in its three arguments, it suffices to prove the re-
sult in the case in which q1, q2, q3 are monomials. For i ∈ {1, 2, 3}, write
qi = xaiybizci . Using the definition of the polar pairing, we deduce that
tn(q1, q2, q3) vanishes if the monomial q1q2q3 is not equal to (xyz)n. Thus,
suppose that q1q2q3 equals (xyz)n. Corollary 1.3 allows us to deduce the
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equality Jn(q1, q2) = [q1 | q2]ua3vb3wc3 . We compute

Equation (3) tn(q1, q2, q3) = [q1 | q2]
〈
ua3vb3wc3 , xa3yb3zc3

〉
Equation (1) = a3!b3!c3! [q1 | q2]
Proposition 1.2 (v) = (−1)na1!b1!c1! [q3 | q2]
Corollary 1.3 = 〈(−1)nJn(q3, q2), q1〉
Proposition 1.2 (iii) = 〈Jn(q2, q3), q1〉
Equation (3) = tn(q2, q3, q1)

and we are done. �

We make use of the relationship between the contravariant Hn and an
invariant An under the action of SL3,Z. The expression

An(q) = tn(q, q, q) = 〈Hn(q), q〉 ∈ Z

is an invariant of ternary forms q under SL3,Z; the degree of An in the
coefficients of the form q is 3. If n is odd, then the harmonic form Hn

vanishes identically; therefore, the same is true of the invariant An. Denote
by gl3 and by sl3 the Lie algebras of GL3,Z and SL3,Z respectively.

Theorem 1.4. For every derivation g in sl3, the identity

(7) 〈Hn(q), gq〉 = 0,

holds.

Proof. If g is a derivation in gl3 and q1, q2, q3 are forms in Z[x, y, z]n, then
the equality

gtn(q1, q2, q3) = 〈Jn(gq1, q2), q3〉+ 〈Jn(q1, gq2), q3〉+ 〈Jn(q1, q2), gq3〉

holds. Using Theorem 1.1, we obtain the identity gAn(q) = 3 〈Jn(q, q), gq〉.
Suppose now that g is in sl3. Since An is invariant under SL3,Z, we deduce
that gAn(q) = 0. Combining these formulas, we obtain the required identity.

�

2. The computation of the degree

We now restrict our attention to the case n = 4. To perform the main com-
putations, we work over a general field k of characteristic zero. An easy
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argument appearing in Remark 3.2 shows that this restriction on the char-
acteristic can be weakened.

The invariant A4(q) has degree 3 in the coefficients of q: it is, up to scal-
ing, the unique non-constant invariant of smallest degree of plane quartics.
Salmon denotes the contravariant H4 by σ [Sal73, p. 264, §292] and the in-
variant A4(q) by A [Sal73, p. 264, §293]; Dolgachev denotes the contravariant
H4 by Ω2,4 and the invariant A4(q) by I3.

Let Fer ⊂ P2
k denote the Fermat quartic with equation Fer : x4 + y4 +

z4 = 0; similarly, let Fer′ ⊂ P2
k
∨

denote the Fermat quartic with equation
Fer′ : u4 + v4 + w4 = 0. We also define the four quartics C0, C1, C2, C3 ⊂ P2

k

with equations

C0 : (x4 + y4 + z4)− 6(x2y2 + x2z2 + y2z2) = 0

C1 : (x4 + y4 + z4)− 6(x2y2 − x2z2 − y2z2) = 0

C2 : (x4 + y4 + z4)− 6(−x2y2 + x2z2 − y2z2) = 0

C3 : (x4 + y4 + z4)− 6(−x2y2 − x2z2 + y2z2) = 0.

The curves C0, C1, C2, C3 are all isomorphic: permutations of the coordinates
induce projective equivalences among C1, C2, C3; rescaling z by a square root
of −1 transforms C0 into C1. An easy check shows that they are smooth.

Let P̃14
k ⊂ P14

k × P14
k
∨

be the closure of the graph of the rational map H4.

The second projection P14
k × P14

k
∨ → P14

k
∨

restricts to a morphism

H : P̃14
k −→ P14

k
∨
.

A plane quartic C in the indeterminacy locus of H4 must be singular:
see [PT19, Proposition 2.5] for a more precise statement. Let (C,D) be
a pair in P̃14

k . If the rational map H4 is defined at C, then the projection

P14
k × P14

k
∨ → P14

k restricts to an isomorphism on an open subset of P̃14
k con-

taining (C,D). When this happens, to simplify the notation, we identify the
pair (C,D) ∈ P̃14

k with C, since D can be obtained as H4(C).

Theorem 2.1. The fiber of the morphism H above the Fermat quartic
Fer′ ⊂ P2

k
∨

consists of the five quartics Fer, C0, C1, C2, C3 ⊂ P2
k, where

the Fermat quartic Fer appears with multiplicity 11 and each one of the
remaining four quartics appears with multiplicity 1.



i
i

“14-Testa” — 2020/4/1 — 16:25 — page 291 — #11 i
i

i
i

i
i

On a question of Dolgachev 291

Proof. Let C be a plane quartic and let q(x, y, z) =
∑
aijkx

iyjzk ∈ k[x, y, z]

be an equation for C. If the pair (C,Fer′) is contained in P̃14
k , then Theo-

rem 1.4 implies that, for every element g of sl3, the identity〈
u4 + v4 + z4, gq

〉
= 0

holds. Specializing this identity with g in the list

1. x∂x − y∂y 3. y∂x 5. x∂y 7. x∂z

2. y∂y − z∂z 4. z∂x 6. z∂y 8. y∂z,

we obtain the identities

1. 48(a400 − a040) = 0 3. 12a130 = 0 5. 12a013 = 0 7. 12a301 = 0

2. 48(a040 − a004) = 0 4. 12a103 = 0 6. 12a310 = 0 8. 12a031 = 0.

We deduce that q is of the form

q(x, y, z) = ρ(x4 + y4 + z4) + σ3x
2y2 + σ2x

2z2 + σ1y
2z2

+ xyz(τ1x+ τ2y + τ3z),

where ρ = a400 = a040 = a004, σ1 = a022, σ2 = a202, σ3 = a220 and τ1 = a211,
τ2 = a121, τ3 = a112. The pair (C,Fer′) is contained in P̃14

k if H4(q) is an
equation for Fer′. Using the expression that we obtained for q we find

H4(q) = (12ρ2 + σ21)u4 + (12ρ2 + σ22)v4 + (12ρ2 + σ23)w4

− 2(σ3τ1vw
3 + σ3τ2uw

3 + σ2τ3uv
3 + σ2τ1v

3w + σ1τ2u
3w + σ1τ3u

3v)

+ (12ρσ1 + 2σ2σ3 + τ21 )v2w2 + (12ρσ2 + 2σ1σ3 + τ22 )u2w2

+ (12ρσ3 + 2σ1σ2 + τ23 )u2v2

+ (4σ1τ1 − τ2τ3)u2vw + (4σ2τ2 − τ1τ3)uv2w + (4σ3τ3 − τ1τ2)uvw2.

The condition that u4 + v4 + w4 and H4(q) be proportional determines a
subscheme F0 of P14. The scheme F0 is isomorphic to the scheme F defined
in (A.2) and the result follows from Lemma A.1. �

Remark 2.2. The Fermat curve Fer is not isomorphic to any one of the
curves C0, C1, C2, C3. This is an immediate consequence of Theorem 2.1: the
map H4 is contravariant and hence projectively equivalent curves appear
with the same multiplicity in fibers of H4.
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We want to compute the monodromy of the morphism H. For this, we
use the following result, due to Jordan (see [Isa08, Theorem 8.23]). For a
positive integer n, denote by Sn the symmetric group on n elements and
by An the alternating group.

Theorem 2.3 (Jordan). Let n be a positive integer and let G be a prim-
itive subgroup of Sn. If p is a prime satisfying p < n− 2 and G contains a
p-cycle, then G contains An.

Theorem 2.4. The morphism H : P̃14
k → P14

k
∨

is generically finite of de-
gree 15. The monodromy group of H contains the alternating group A15.

Proof. Let F be the fiber of H over the Fermat quartic curve Fer′ ⊂ P2
k
∨

.
By Theorem 2.1, the scheme F is finite of degree 15. Thus, the morphism H
is quasi-finite in a neighbourhood of Fer′ and therefore finite, since it is
projective. To conclude that the degree of H is 15, it suffices to argue that H
is flat at Fer′. By the Miracle Flatness Theorem [Mat89, Theorem 23.1], it
is enough to check that P̃14

k is smooth at F . This is true, since the rational
map H4 is defined at the points of F and its domain, P14

k , is smooth (recall
that the graph morphism is an immersion, see [GW10, Proposition 9.5]).

By what we just proved, the monodromy group of H is isomorphic to
a subgroup G of the symmetric group S15. Since P̃14

k is irreducible, the
group G is transitive. Since the fiber F contains four reduced points and
one point of multiplicity 11, we deduce that G contains a subgroup with an
orbit consisting of 11 elements. Hence, G also contains a cycle of length 11
and is therefore primitive (see [Isa08, Lemma 8.20]). Theorem 2.3 shows that
G contains the alternating group A15 and we are done. �

Remark 2.5. Denote by PNk //PGL3 the GIT-quotient of PNk by PGL3. We
check that, for even n, the contravariant Hn induces a rational map

Hn : PNk 99K PNk ,

descending to a rational map on the quotient

Hn : PNk //PGL3 99K PNk //PGL3.

Indeed, it suffices to find a ternary form q of even degree n defining a plane
curve, such that Hn(q) a GIT-stable curve of degree n. For this, we compute

Hn(xn + yn + zn) = (1 + (−1)n) · n!(un + vn + wn) = 2 · n!(un + vn + wn),
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and we are done, since smooth curves are GIT-stable.

In the case n = 4, the quotient P14
k //PGL3 is birational to the moduli

space M3 of smooth curves of genus 3 and we obtain

H4 : M3 99KM3.

Corollary 2.6. The rational map H4 is generically finite of degree 15.

Proof. Denote by P(2) the locally closed subset of P̃14
k × P̃14

k consisting of
pairs (C,D), with C,D distinct smooth plane quartics with H(C) = H(D).
By Theorem 2.4, the monodromy group of the morphism H is 2-transitive
on fibers and the scheme P(2) is irreducible. The pair (Fer, C0) is in P(2)

and consists of two smooth non-projectively equivalent plane quartics. By
the irreducibility of P(2), we deduce that the fiber of H over a general point
of P14

k
∨

consists of 15 pairwise non-projectively equivalent smooth plane
quartics. In particular, the rational map H4 is generically finite of the same
degree 15 as H, as stated. �

So far, we proved all the results without using a computer. The next
results, though, involve more lengthier calculations that we find too tedious
to check by hand.

Theorem 2.7. The monodromy group of H is the symmetric group S15.

Proof. By Theorem 2.4, it suffices to show that the monodromy group of H
contains a transposition. For this, we exhibit a plane quartic D ⊂ P2

k
∨

such

that H−1(D) is contained in the smooth locus of P̃14
k and consists of 13

reduced points and a single non-reduced of multiplicity 2 (see [Har79, Lemma
on p. 698]). Thus, it is sufficient to find a plane quartic D for which the fiber
H−1(D) consists of 14 distinct pairs (C,D) with C ⊂ P2

k a smooth plane
quartic. Using the computer algebra program Magma [BCP97], we check
that the curve D with equation

(8) D : u3(v + w) + v3(u+ w) + w3(u+ v) = 0

has the required properties and we are done. �

Remark 2.8. In the proof of Theorem 2.7, we saw that above the curve D
of (8) the morphism H has a unique simple ramification point. This point
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corresponds to the smooth plane quartic Q ⊂ P2
k with equation

Q :

{
(x4 + y4 + z4)− 4(x3(y + z) + y3(x+ z) + z3(x+ y))

+6(x2y2 + x2z2 + y2z2)− 12xyz(x+ y + z) = 0.

3. A geometric invariant for plane curves

Let n be an even, positive integer; recall that we set N + 1 =
(
n+2
2

)
. We de-

fine an invariant ρn of degree N + 1 associated to plane curves of degree n.
In the case of plane quartics, we obtain an expression for ρ4 in terms of
the Dixmier-Ohno invariants. For background on invariants of plane quar-
tics, we refer to [Dix87, Ohn]. We used the package developed in [LRS] for
computations with Dixmier-Ohno invariants.

Let R = Z[aijk] denote the polynomial ring over the integers with N +
1 indeterminates, corresponding to the coefficients of the monomials of
degree n in x, y, z. Let q ∈ R[x, y, z]n be the universal ternary form q =∑
aijkx

iyjzk of degree n. We define an (N + 1)× (N + 1) symmetric ma-
trix Rn with rows and columns indexed by the N + 1 monomials of degree n
in x, y, z. The entry of Rn corresponding to the pair of monomials (m1,m2)
is

(Rn)m1,m2
= tn(q,m1,m2).

We give two different interpretations for the matrix Rn. First, the ma-
trixRn determines a Z-module homomorphism Z[x, y, z]n → Z[x, y, z]∨n given
by q1 7→ tn(q, q1,−). Alternatively, the differential of the map Hn at the
form q is the linear transformation Z[x, y, z]n → Z[u, v, w]n given by q1 7→
Jn(q, q1). Identifying Z[u, v, w]n with Z[x, y, z]∨n via the polar pairing, we
obtain that the linear transformation Rn is the differential of the map Hn

at q:

(9) dqHn = Rn.

The determinant of the matrix Rn is a polynomial of degree N + 1 in
the N + 1 variables of R. From either of the two descriptions above, it is
clear that detRn is an invariant for the action of SL3. We let

κn =
∏

i,j,k≥0
i+j+k=n

i!j!k!



i
i

“14-Testa” — 2020/4/1 — 16:25 — page 295 — #15 i
i

i
i

i
i

On a question of Dolgachev 295

be the product of the factorials of all the exponents of all the monomials of
degree n in x, y, z; the first few values of κn for even n are

κ2 = 23, κ4 = 224 · 39, κ6 = 284 · 333 · 59, κ8 = 2201 · 381 · 530 · 79.

We define

(10) ρn =
1

κn
detRn.

We deduce that the differential of map Hn is not an isomorphism at the
vanishing set of ρn and therefore ρn is an SL3-invariant.

In the case n = 4 of ternary quartic forms, the ring of invariants un-
der SL3 is completely explicit. It is generated by 13 invariants, called the
Dixmier-Ohno invariants:

• (Dixmier) I3d, for d ∈ {1, . . . , 7},

• (Ohno) J3d, for d ∈ {3, . . . , 7}, and

• the discriminant I27.

The indices represent the degree of each invariant as a polynomial in the
coefficients of the quartic form. We follow the notation of [LRS].

Theorem 3.1. The invariant ρ4 of degree 15 satisfies the identity

2 · 54 · 7
2415

ρ4 =


2 · 33 · 5 · 72 J15 − 2 · 33 · 5 · 7 I15
−32 · 5 · 109 I3J12 + 23 · 35 · 5 I3I12
+2 · 32 · 137 I23J9 + 3 · 271 I23I9

+23 · 33 · 5 · 72 I6J9 − 24 · 33 · 5 · 72 I6I9
−23 · 5 · 7 · 149 I33I6 + 27 · 33 · 5 · 7 · 13 I3I

2
6 .

Proof. The argument is a direct computer calculation. There are 11 mono-
mials of degree 15 in the Dixmier-Ohno invariants and the invariant ρ4 is a
linear combination of these 11 monomials. By choosing 11 sufficiently gen-
eral ternary quartic forms, we check that the identity in the statement of
the theorem is the unique solution. Note that the monomial I53 is the unique
monomial of degree 15 in the Dixmier-Ohno invariants not appearing the
expression of ρ4. �

Remark 3.2. So far, the characteristic of the ground field k was zero.
Nevertheless, the map H4 is defined over SpecZ and hence over a field of
arbitrary characteristic. We now assume that the characteristic of the ground
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field is coprime with 6 and we check that the map H4 is generically finite of
degree 15. First, we evaluate the invariant ρ4 on the quartic form q = x3y +
y3z + z3x, vanishing on the Klein plane quartic. We obtain ρ4(q) = 234 · 324,
which does not vanish in k. Therefore, the map H4 is generically smooth
over k and hence generically finite. We conclude, by generic flatness, that
the degree of H4 is also 15.

Appendix A. The scheme F and its degree

The proof of Lemma A.1 appearing in this Appendix is entirely independent
of the results of the rest of the paper. We compute without using the com-
puter the degree of a zero-dimensional scheme F , isomorphic to a scheme
that appears in the proof of Theorem 2.1. The proof could just as well be
carried out over the field of rational numbers by a computer algebra system,
such as Magma.

Let P6
k be the projective space over the field k with homogeneous coor-

dinates ρ, σ1, σ2, σ3, τ1, τ2, τ3. Let G0 be the set of 14 forms

(A.1) G0 =



A1 = σ23 − σ22 A2 = σ23 − σ21
σ1τ2 σ2τ1 σ3τ1

σ1τ3 σ2τ3 σ3τ2

S1 = 12ρσ1 + 2σ2σ3 + τ21 T1 = 4σ1τ1 − τ2τ3
S2 = 12ρσ2 + 2σ1σ3 + τ22 T2 = 4σ2τ2 − τ1τ3
S3 = 12ρσ3 + 2σ1σ2 + τ23 T3 = 4σ3τ3 − τ1τ2


.

We introduce the subscheme F of P6
k

(A.2) F : V (G0) ⊂ P6
k

defined by the vanishing set of G0 in P6
k.

Lemma A.1. The scheme F has dimension 0 and degree 15. The sup-
port of F consists of 5 points: the point [1, 0, 0, 0, 0, 0, 0] of multiplicity 11
and the 4 points [1,−6,−6,−6, 0, 0, 0], [1,−6, 6, 6, 0, 0, 0], [1, 6,−6, 6, 0, 0, 0],
[1, 6, 6,−6, 0, 0, 0] of multiplicity 1.
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Proof. Let I = 〈G0〉 be the ideal generated by G0. As a first step, we deter-
mine a Gröbner basis for the ideal I. Let G1 be the set of 4 forms

(A.3) G1 =


1
2(σ2S1 + 2σ3A2 − τ1 · σ2τ1)

1
2(σ3S1 − τ1 · σ3τ1)
1
2(σ3S2 − τ2 · σ3τ2)
1
4(σ3T3 + τ2 · σ3τ1)

 =


6ρσ2σ1 + σ33

6ρσ3σ1 + σ23σ2

6ρσ3σ2 + σ23σ1

σ23τ3

 .

By construction, the forms in G1 are contained in the ideal I. Let G be the
set of 18 forms G = G0 ∪ G1 ⊂ I.

Assign the following weights to the variables:

Variable: ρ σ3 σ2 σ1 τ1 τ2 τ3

Weight: 1 3 4 4 5 5 5

and resolve ties among monomials using the lexicographic ordering with

ρ < σ3 < σ2 < σ1 < τ1 < τ2 < τ3.

Using Buchberger’s Criterion, it is straightforward to check that G is a
Gröbner basis of I with respect to the monomial order just defined. We
omit this routine computation.

Let I0 be the initial ideal of I. Since G is a Gröbner basis of I, the
monomial ideal I0 is the ideal generated by the 18 initial monomials of the
elements of G :

I0 =

〈 σ33 σ23τ2 σ23τ1 σ23τ3 σ22 σ21

σ3τ1 σ2τ3 σ1τ2 σ3τ2 σ2τ1 σ1τ3

τ21 τ22 τ23 τ1τ2 τ1τ3 τ2τ3

〉
.

The 15 monomials

1 σ1 σ2 σ3 τ1 τ2 τ3

σ23 σ2σ3 σ1σ3 σ1σ2 σ3τ3 σ2τ2 σ1τ1 σ1σ2σ3

are all the monomials not divisible by ρ and not contained in the ideal I0.
Thus, the Hilbert polynomial of I0 is the constant polynomial 15, hence the
same is true for the ideal I. We conclude that the scheme F has dimension 0
and degree 15, as stated.
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A direct calculation of the Jacobian of the given equations shows that
the points satisfying the inequality σ1σ2σ3 6= 0 are reduced points of the
scheme F .

Let Fred be the reduced subscheme associated to F . Note that τ1, τ2, τ3
vanish on Fred. We obtain that Fred consists of the 5 points [1,−6, 6, 6, 0, 0, 0],
[1, 6,−6, 6, 0, 0, 0], [1, 6, 6,−6, 0, 0, 0], [1,−6,−6,−6, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0].
Since the points different from [1, 0, 0, 0, 0, 0, 0] are reduced and the total
degree is 15, the result follows. �
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