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Surfaces in the 4-disk with the same

boundary and fundamental group

Takahiro Oba

We construct a family of pairs of non-isotopic symplectic sur-
faces in the standard symplectic 4-disk (D4, ωst) such that they
are bounded by the same transverse knot in the standard contact
3-sphere and the fundamental groups of their complements are iso-
morphic.

1. Introduction

This paper is concerned with symplectic surfaces in the standard symplectic
4-disk (D4, ωst) bounded by the same transverse link in the standard contact
3-sphere (S3, ξst). Such surfaces have been studied in some papers [3, 5, 6,
8, 9]. Up to the present, the provided families of distinct symplectic surfaces
bounded by the same transverse knot (or link) can be distinguished by the
fundamental groups of their complements. Hence it is natural to ask whether
there is a pair of non-isotopic symplectic surfaces in D4 bounded by the
same transverse knot such that complements of two surfaces have isomorphic
fundamental groups.

The main result of this paper is the following:

Theorem 1.1. There is a family {(S1(n), S2(n))}n∈Z≥0
of pairs of symplec-

tic surfaces in the standard symplectic 4-disk (D4, ωst) with contact boundary
such that:

1) For a fixed n ∈ Z≥0,
a) their boundaries ∂Sj(n) (j = 1, 2) are the same transverse knot up

to isotopy in the boundary (S3, ξst),
b) two fundamental groups π1(D

4 \ Sj(n)) are isomorphic, and
c) double branched covers Xj(n) of D4 branched along Sj(n) are not

homeomorphic, and therefore, two surfaces Sj(n) are not isotopic;
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2) The boundaries ∂Sj(n) and ∂Sj(n
′) are not smoothly isotopic in ∂D4

if n 6= n′.

Rudolph exhibited two braid factorizations of a fixed 3-braid in [14].
Based on this example, we construct inequivalent braid factorizations, which
provide symplectic surfaces in the above family.

We would like to point out that in his paper [1], Akbulut constructed
a knot with two non-isotopic ribbon disks whose complements are diffeo-
morphic. Although a knot in S3 can be deformed into a transverse knot in
(S3, ξst), it is not known whether these ribbon disks are symplectic or not.

A Stein filling of a contact manifold is a sublevel set of a proper, bounded
below strictly plurisubharmonic function on a complex manifold whose con-
vex boundary is contactomorphic to the given one (see [12] for more details).
We obtain the following corollary from the above theorem combined with
an argument about contact and Stein structures.

Corollary 1.2. There is a family of contact 3-manifolds {(M(n), ξ(n))}n∈Z≥0

such that each contact manifold admits two non-homeomorphic Stein fillings
X1(n), X2(n) which are simply-connected and have the same homology group
but non-isomorphic intersection forms.

2. Braided surfaces

2.1. Braid groups

We here briefly review braid groups (see [15, Section 2.2] for example). Let
D2 be a closed disk in R2 equipped with the standard orientation and K ⊂
IntD2 a finite set. Suppose that #K = m.

Definition 2.1. The braid group with respect to D2 and K, denoted by
Bm[D2,K], is the group of isotopy classes of orientation-preserving diffeo-
morphisms β of D2 such that β|∂D2 = id∂D2 and β(K) = K. The elements
of this group are called braids.

Let σ be a smooth simple path in IntD2 with distinct end points a, b ∈ K
and σ ∩K = {a, b}. Choose a small tubular neighborhood U ⊂ IntD2 of σ
such that U ∩K = {a, b}.

Definition 2.2. The half-twist H(σ) along σ is an element of the braid
group Bm[D2,K] which switches the end points a and b of σ by a counter-
clockwise 180◦ rotation and whose support is contained in U .
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2.2. Braided surfaces and their descriptions

Let D2
1 and D2

2 be two oriented closed disks.

Definition 2.3. A braided surface in the bidisk D2
1 ×D2

2 is a properly
embedded surface S in D2

1 ×D2
2 such that:

1) The restriction of the first projection pr1|S : S → D2
1 is a simple

branched covering;

2) For each branch point x ∈ S of pr1|S , there are complex coordinates
(z, w) and ζ around x and pr1(x), respectively, compatible with ori-
entations of D2

1 ×D2
2 and D2

1 such that pr1 can be written as ζ =
pr1(z, w) = z and locally the set {(z, w)|z = w2} coincides with S.

Suppose that S is a braided surface in D2
1 ×D2

2. Let ∆(S) ⊂ IntD2
1 de-

note the set of branch points of the covering pr1|S . For a point y of D2
1 \

∆(S), the number m = #(S ∩ pr−11 (y)) is called the degree of the braided
surface S.

One can read off the fundamental group of the complement of a braided
surface S ⊂ D2

1 ×D2
2 from its braid monodromy. Fix a base point y0 ∈ ∂D2

1

and set Dy0
= pr−11 (y0) and K(y0) = Dy0

∩ S = {x1, . . . , xm}. For a point
y of ∆(S), consider a smooth simple loop γ : [0, 1]→ D2

1 \∆(S) around y
based at y0 whose bounding region does not contain any other branch points.
This loop lifts to (γ([0, 1])×D2

2) ∩ S as a motion

pr2({x1(t), . . . , xm(t) ∈ S | t ∈ [0, 1]})

of m distinct points of D2
2, where pr2 : D2

1 ×D2
2 → D2

2 is the second pro-
jection. When t = 0, 1, it is nothing but K(y0). Hence this motion defines
a braid β(γ) ∈ Bm[Dy0

,K(y0)], called a braid monodromy (with respect to
y0) around the branch point y. It is known that this braid is the half-twist
H(σ) along a smooth simple path σ connecting two distinct points of K(y0).
One can associate an element of Bm[Dy0

,K(y0)] to any loop in D2
1 \∆(S)

based at y0, and define the homomorphism

ϕ : π1(D
2
1 \∆(S), y0)→ Bm[D(y0),K(y0)].

Set ∆(S) = {y1, . . . , yk}. Take smooth simple loops γi ∈ π1(D2
1 \∆(S), y0)

around yi, as we did before, so that the composition γ1 · · · γk is homotopic
to ∂D2

1. Obviously, {γ1, . . . , γk} serves as a free basis for π1(D
2
1 \∆(S), y0),
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Figure 1: (a) Path σj . (b) Loops Aj and Bj associated to σj .

and it is called a geometric basis for the group. Then, the braid ϕ(∂D2
1) =

ϕ(γ1 · · · γk) can be factorized into k half-twists as

β(γ1) · · ·β(γk),

which is a braid monodromy factorization of ϕ(∂D2
1). As a similar notion,

a braid factorization of a braid β is a factorization β = β1 · · ·βk into half-
twists βj . Given a braid factorization β1 · · ·βk of a braid, one can construct
a braided surface S with k branch points whose braid monodromy around
each branch point yi is βi for some geometric basis for π1(D

2
1 \∆(S), y0).

Now we explain how to compute the fundamental group of the comple-
ment of a braided surface as the special case of [15, Theorem 2.5]. Let S
be a braided surface in D2

1 ×D2
2. Suppose that {γ1, . . . , γk} is a geometric

basis for the fundamental group π1(D
2
1 \∆(S), y0) and the ordered k-tuple

(H(σ1), . . . ,H(σk)) consists of braid monodromies ϕ(γ1), . . . , ϕ(γk) of S,
where each σj (j = 1, . . . , k) is a smooth simple path connecting two dis-
tinct points of K(y0). Fix a point x0 of ∂Dy0

. Label the points of K(y0) as
x1, . . . , xm and let {γ′1, . . . , γ′m} be a geometric basis for π1(Dy0

\K(y0), x0)
constructed in the same way we did for π1(D

2
1 \∆(S), y0). For each j =

1, . . . , k, set Aj = γ′i, where xi is either of end points of σj , and Bj =
H(σj)(Aj) (see Figure 1). It is clear that Bj can be expressed in terms
of γ′1, . . . , γ

′
m because they form a geometric basis for π1(Dy0

\K(y0), x0).
By using Zariski-Van Kampen’s theorem, we have the following formula:

π1(D
2
1 ×D2

2 \ S, x0) ∼= π1(Dy0
\K(y0), x0)/〈Aj = Bj (j = 1, . . . , k) 〉(2.1)

∼= 〈 γ′1, . . . , γ′m |Aj = Bj (j = 1, . . . , k) 〉.

Here the point x0 ∈ Dy0
is considered as one of D2

1 ×D2
2 by the inclusion

Dy0
↪→ D2

1 ×D2
2.



i
i

“13-Oba” — 2020/4/7 — 21:16 — page 269 — #5 i
i

i
i

i
i

Surfaces in the 4-disk with the same boundary and π1 269

2.3. Double branched covers and Lefschetz fibrations

Let S be a braided surface of degree m in a bidisk D2
1 ×D2

2 whose braid
monodromy factorization with respect to some base point y0 and geometric
basis for π1(D

2
1 \∆(S), y0) is

H(σ1) · · ·H(σk).

Consider the double branched covering p : X → D2
1 ×D2

2 whose branch set
is S. The covering p restricts to the double branched covering p|Fy0

: Fy0
=

p−1(Dy0
)→ Dy0

. Each path σj lifts, with respect to p|Fy0
, to a unique simple

closed curve cj on the surface Fy0
up to isotopy. Then, according to [11,

Proposition 1], the composition pr1 ◦ p : X → D2
1 is a Lefschetz fibration (see

[10, Chapter 8] for the precise definition) whose fibers are diffeomorphic to
the surface Fy0

and monodromy factorization is

τ(ck) ◦ · · · ◦ τ(c1).

Here τ(c) denotes the isotopy class of a right-handed Dehn twist along c.
Throughout this paper, we use the functional notation for the products in
the mapping class group of Fy0

, i.e. f ◦ g means that we apply g first and
then f .

3. Proof of results

3.1. Proof of Theorem 1.1

Fix an integer n ∈ Z≥0. Let D2 be the closed unit disk in C and Kn+3 the
set of n+ 3 points of IntD2 on the real axis. Let a, b, cn, d1, . . . , dn+2 be
smooth simple paths in D2 as shown in Figure 2. For n ≥ 1, define two
braids β1(n), β2(n) ∈ Bn+3[D2,Kn+3] with factorizations given by

β1(n) = H(a) ·H(b) ·H(d1) ·H(cn) ·H(dn+2) · · · · ·H(d3),(3.1)

β2(n) = H(H(d2)(a)) ·H(H(d2)(b))(3.2)

·H(d1) ·H(cn) ·H(dn+2) · · · · ·H(d3).

When n = 0, we set

β1(0) = H(a) ·H(b) ·H(d1) ·H(c0),

β2(0) = H(H(d2)(a)) ·H(H(d2)(b)) ·H(d1) ·H(c0).
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x0

x1 x2 x3 x4 xn+2

xn+3

a

b

cn

x0

x1 x2 x3 x4 xn+3

d1 d2 d3 dn+2

Figure 2: Arcs a, b, cn, d1, . . . , dn on the disk D2 with Kn+3.

We obtain two braided surfaces S1(n) and S2(n) whose braid monodromy
factorizations are the given braid factorizations (3.1) and (3.2), respectively.
By a result of Rudolph [13], these braided surfaces can be considered as
symplectic surfaces in the round 4-disk (D4, ωst) with transverse link bound-
aries. In particular, the boundaries ∂S1(n) and ∂S2(n) are knots. This can be
seen as follows. The transverse links ∂S1(n) and ∂S2(n) in (S3, ξst) are repre-
sented by the closure of braids β1(n) and β2(n), respectively. Here the braids
are thought as geometric ones although we defined them as in Definition 2.1
(see [7, Chapter 2 ]). Consider the canonical projection Bn+3 → Sn+3, where
Sn+3 denotes the symmetric group of degree n. The image of β1(n) and β2(n)
under this projection is equal to

(
1 2 3 4 . . . n+ 2 n+ 3
3 1 4 5 . . . n+ 3 2

)
∈ Sn+3.

The order of this element is n+ 3, and hence the closure of the two braids
are knots.

Let us see that ∂S1(n) and S2(n) are transverse isotopic. It can be eas-
ily checked that H(d2) commutes with the product H(a) ·H(b). Indeed,
since H(a) = H−1(d2) ·H(d1) ·H(d2) and H(b) = H(d2) ·H(d1) ·H−1(d2),
underling each triple of half-twists where we apply a braid relation, we have
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H(d2) ·H(a) ·H(b)

= H(d2) · (H−1(d2) ·H(d1) ·H(d2)) · (H(d2) ·H(d1) ·H−1(d2))
= H−1(d2) ·H(d2) ·H(d1) ·H(d2) · (H(d2) ·H(d1) ·H−1(d2))
= H−1(d2) ·H(d1) ·H(d2) ·H(d1) ·H(d2) ·H(d1) ·H−1(d2)
= H−1(d2) ·H(d1) ·H(d2) ·H(d2) ·H(d1) ·H(d2) ·H−1(d2)
= (H−1(d2) ·H(d1) ·H(d2)) · (H(d2) ·H(d1) ·H−1(d2)) ·H(d2)

= H(a) ·H(b) ·H(d2).

The commutativity proves β1(n) = β2(n). Hence two boundaries are trans-
versely isotopic. Hereafter, for the sake of simplicity, set β(n) = β1(n) =
β2(n).

Next, we show that the fundamental groups of complements D4 \ S1(n)
and D4 \ S2(n) are isomorphic. Fixing a base point x0 in a fiber of the
projection pr1 of the bidisk, by the formula (2.1), π1(D

4 \ S1(n), x0) is iso-
morphic to the group generated by γ1, . . . , γn+3, as shown in Figure 3, with
relations

γ1 = γ2γ3γ
−1
2 , γ1 = γ3, γ1 = γ2,

(γ1γ2 · · · γn+2)γn+3(γ1γ2 · · · γn+2)
−1 = γ2, γj = γj+1 (j = 3, . . . , n+ 2).

Hence

π1(D
4 \ S1(n), x0) ∼= 〈γ1|−〉 ∼= Z.

On the other hand, π1(D
4 \ S2(n), x0) is isomorphic to the group generated

by γ1, . . . , γn+3 (see Figure 3) with relations

γ2 = γ−13 γ−12 γ1γ2γ3, γ1 = γ2, γ1 = γ2,

(γ1γ2 · · · γn+2)γn+3(γ1γ2 · · · γn+2)
−1 = γ2, γj = γj+1 (j = 3, . . . , n+ 2).

Thus,

π1(D
4 \ S2(n), x0) ∼= 〈γ1|−〉 ∼= Z

that is isomorphic to π1(D
4 \ S1(n), x0).

For each j = 1, 2 let pj(n) : Xj(n)→ D2
1 ×D2

2 be the double branched
covering whose branch set is Sj(n). As we discussed in Section 2.3, Xj(n) is
considered as the total space of the Lefschetz fibration fj(n) = pr1 ◦ pj(n).
Let A,B,Cn, Di be lifts of arcs a, b, cn, di, respectively, with respect to the
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γ1 γ2 γn+2γn+3

Figure 3: Generators γ1, . . . , γn+3.

covering pj(n)|Fy0
, where Fy0

is the preimage of y0 ∈ D2
1 under fj(n) (see

Figure 4). Fibers of the Lefschetz fibration fj(n) are diffeomorphic to Fy0

and its monodromy factorization is

τ(D3) ◦ · · · ◦ τ(Dn+2) ◦ τ(Cn) ◦ τ(D1) ◦ τ(B) ◦ τ(A) if j = 1,(3.3)

τ(D3) ◦ · · · ◦ τ(Dn+2) ◦ τ(Cn)(3.4)

◦ τ(D1) ◦ τ(τ(D2)(B)) ◦ τ(τ(D2)(A)) if j = 2.

Note that the curve τ(D2)(B) is isotopic to D1 because the arc H(d2)(b) is
isotopic to d1. From these data, one can draw handle diagrams (or Kirby
diagrams) of X1(n) and X2(n) as in Figure 5. Here we use the standard
Seifert surface for the (2, n+ 3)-torus link as the fiber surface to see the
monodromy curves more easily. We should note that the surface framing of
each curve does not always coincide with its blackboard framing (see [10,
Section 6.3], which explains the way to draw handle diagrams of Milnor fibers
in the same manner as ours). The surface framing of each curve is given as
the linking number with its push-off in the positive normal direction of Fy0

in R3 (see Figure 6). After sliding 2-handles and cancelling 1-/2-handle pairs
as indicated in Figures 7 and 8, we obtain handle diagrams of X1(n) and
X2(n) each of which consists of only one 0-handle and two 2-handles.

From the bottom left diagram of Figure 8 one can see that X2(n) con-
tains a smooth surface with self-intersection number −2. In contrast, we
will show below that the double cover X1(n) contains no such surfaces: Let
{e1, e2} be the basis for the homology group H2(X1(n);Z), where each ej
is the homology class represented by the 2-handle depicted in the bottom
left digram of Figure 7. The arrows in the figure indicate the orientation of
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}

Fy0

A B

Cn D1 D2 D3 Dn+2

n+ 3

τ(D2)(A)

Figure 4: Surface Fy0
as the double branched cover and lifts A, B, Cn, Di

(i = 1, . . . , n+ 2) and τ(D2)(A): Each rounded arrow indicates the orienta-
tion of Fy0

.

these generators. Note that the following consequence is independent of the
choice of orientation.

Suppose for the sake of contradiction that there are integers α1, α2 ∈ Z
such that (α1e1 + α2e2)

2 = −2. The matrix Q(n) of the intersection form
QX1(n) with respect to the basis {e1, e2} can be read off from the handle
diagram of X1(n), and

Q(n) =

[
−2n− 4 1

1 −8

]
.
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−4

−4

X1(n) X2(n)

Cn

A
B

D1

D3

Dn+1
Dn+2

6

−4
−4

Cn
τ(D2)(A)

τ(D2)(B)D1

D3

Dn+1 Dn+2

6
�
�
��

Figure 5: Handle diagrams of X1(n) and X2(n): All 2-handle framings which
are not written here are −2.

Fy0

A

A+

B

B+

Cn

C+
n

τ(D2)(A)

τ(D2)(A)+

Figure 6: Simple closed curves A, B, Cn, τ(D2)(A) and their positive
push-off A+, B+, C+

n , τ(D2)(A)+: The linking numbers are lk(A,A+) =
−1, lk(B,B+) = lk(Cn, C

+
n ) = lk(τ(D2)(A), τ(D2)(A)+) = −3. Also, simi-

larly to the case of A, lk(Di, D
+
i ) = −1.
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・・・

・・・・・・

・・・

slide     &    cancel

slide     &    cancel

slide     &    cancel

-2-2

−2

−4

−2

−2

−2
−2

−4

−2

−4

−2n− 4

−2

−2n− 4

−8

−2

−2n− 4

−8

e1

e2

Figure 7: Handle calculus for X1(n): Each dashed arrow in the diagram
indicates how we slide a 2-handle over another one.

Then, by using this matrix, we have (−2n− 4)α2
1 + 2α1α2 − 8α2

2 = −2. The
left-hand side also can be written as the form

−(2n+ 4)

(
α1 −

1

2n+ 4
α2

)2

−
(

8− 1

2n+ 4

)
α2
2.

Since −(2n+ 4)(α1 − α2/(2n+ 4))2 and −(8− 1/(2n+ 4))α2
2 are non-

positive, we conclude that the latter should be greater than or equal to
−2, that is,

(8− 1/(2n+ 4))α2
2 ≤ 2.

The coefficient 8− 1/(2n+ 4) is greater than 2, and hence α2
2 < 1, namely

α2 = 0. Thus

(3.5) − (2n+ 4)α2
1 = −2 and α1 ∈ Z \ {0}.
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・・・・・・
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slide     &    cancel

-2-2 slide     &    cancel

slide     &    cancel

-2n-1

−2−2

−2

−2
−4

−2

−4

−2−2

−4

−2n− 4

−2n− 4

−8

−2

−8n− 20

−2

Figure 8: Handle calculus for X2(n): Each dashed arrow in the diagram
indicates how we slide a 2-handle over another one.

However, −(2n+ 4)α2
1 ≤ −(2n+ 4) ≤ −4 for α1 ∈ Z \ {0}, which contra-

dicts the equation (3.5). Thus, we conclude that X1(n) and X2(n) are not
homeomorphic.

To distinguish the closure β̂(n) from β̂(n′) for n 6= n′, we use the deter-
minant of a knot, defined by | det(V + V T )|, where V is a Seifert matrix for
the knot. It is known that it equals the order of the first homology group of
the double branched cover of S3 branched along the knot. Moreover, let X
be a compact 4-manifold admitting a handle decomposition with only one 0-
handle and 2-handles. Then, the determinant of a matrix for the intersection
form QX coincides with |H1(∂X;Z)| up to sign (see [10, Corollary 5.3.12]).

Thus the determinant of the closure β̂(n) is

detQ(n) = det

[
−2n− 4 1

1 −8

]
= 16n+ 31,
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which proves that all β̂(n) (n ∈ Z≥0) are mutually non-isotopic. This finishes
the proof.

Remark 3.1. Braid factorizations

H(a) ·H(b) and H(H(d2)(a)) ·H(H(d2)(b))

we used above are essentially found by Rudolph in [14, Example 1.13], where
he showed that the two factorizations represent the same braid. This pair
was also used in [3, Proposition 3.1] (see also Example 4.2 in the same
paper).

Remark 3.2. Two mapping class factorizations (3.3) and (3.4) are related
by a partial conjugation, twisting the last two factors by τ(D2). This implies
that two corresponding double covers are related by a Luttinger surgery
along a torus built by parallel transport of the curve D2 along a loop in D2

1

(see [4]).

3.2. Proof of Corollary 1.2

Let each Sj(n) (j = 1, 2) be the braided surface constructed above and
pj(n) : Xj(n)→ D4 (j = 1, 2) the double branched covering whose branch
set is Sj(n). As we mentioned before, the covering pj(n) induces the Lef-
schetz fibration fj(n) on Xj(n). In particular, this Lefschetz fibration is
allowable, that is, its all vanishing cycles are homologically non-trivial in a
reference fiber. According to [2, 11], Xj(n) admits a Stein structure, and
the contact structure ξj(n) on the boundary Mj(n) = ∂Xj(n) induced from
the Stein structure is compatible with the open book determined by the
Lefschetz fibration. We see that the monodromy φj(n) of this open book is
isotopic to the composition

φj(n) =


τ(D3) ◦ · · · ◦ τ(Dn+2) ◦ τ(Cn) ◦ τ(D1) ◦ τ(B) ◦ τ(A) (j = 1),

τ(D3) ◦ · · · ◦ τ(Dn+2) ◦ τ(Cn)

◦τ(D1) ◦ τ(τ(D2)(B)) ◦ τ(τ(D2)(A)) (j = 2).

Since τ(D2) commutes with τ(B) ◦ τ(A), we have

τ(B) ◦ τ(A) = τ(τ(D2)(B)) ◦ τ(τ(D2)(A)).

Hence φ1(n) = φ2(n), which proves that the contact manifolds (M1(n), ξ1(n))
and (M2(n), ξ2(n)) are mutually contactomorphic. Therefore, X1(n) and
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X2(n) serve as Stein fillings of the contact manifold (M(n), ξ(n)) :=
(M1(n), ξ1(n)) whose intersection forms are non-isomorphic by Theorem 1.1.
Moreover, it follows from handle diagrams depicted in Figures 7 and 8 that
X1(n) and X2(n) are simply-connected and have the same homology group.
This completes the proof.
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