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Restrictions on submanifolds via focal

radius bounds

Luis Guijarro∗ and Frederick Wilhelm†

We give an optimal estimate for the norm of any submanifold’s
second fundamental form in terms of its focal radius and the lower
sectional curvature bound of the ambient manifold.

This is a special case of a similar theorem for intermediate Ricci
curvature, and leads to a C1,α compactness result for submanifolds,
as well as a “soul-type” structure theorem for manifolds with non-
negative kth–intermediate Ricci curvature that have a closed sub-
manifold with dimension ≥ k and infinite focal radius.

To prove these results, we use a new comparison lemma for
Jacobi fields from [18] that exploits Wilking’s transverse Jacobi
equation. The new comparison lemma also yields new information
about group actions, Riemannian submersions, and submetries, in-
cluding generalizations to intermediate Ricci curvature of results
of Chen and Grove. None of these results can be obtained with just
classical Riccati comparison (see Subsection 3.1 for details.)

Submanifolds restrict the Riemannian geometry of the space in which they
lie, but only if they satisfy extra conditions. One constraint comes from the
tubular neighborhood theorem. It asserts that given any compact subman-
ifold S, there is a positive r0 such that the normal disc bundle Dr0(S) is
diffeomorphic to an open neighborhood of S; the diffeomorphism can be
realized via the normal exponential map of S. This motivates the notion
of focal radius, which is the maximum r0 such that the normal exponential
map is a local diffeomorphism of Dr0(S).

Our first result shows that we can bound the norm of the second funda-
mental form of any submanifold in terms of its focal radius and the ambient
manifold’s lower curvature bound.
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116 L. Guijarro and F. Wilhelm

Theorem A. For κ = −1, 0, or 1, let M be a complete Riemannian n–
manifold with sectional curvature ≥ κ, and let N be any submanifold of M
with dim (N) ≥ 1. Then the second fundamental form IIN of N satisfies

(1)

| IIN | ≤ cot (FocalRadius (N)) if κ = 1,

| IIN | ≤
1

FocalRadius (N)
if κ = 0, and

| IIN | ≤ coth (FocalRadius (N)) if κ = −1.

In particular, if κ = 0 and the focal radius of N is infinite, then N is
totally geodesic.

We emphasize that N does not need to be closed or even complete.
On the other hand, if M happens to be closed, the presence of a lower
curvature bound κ is automatic, and after rescaling, we can take κ to be
−1, 0, or 1. So for closed manifolds, Theorem A is universal in the sense
that it applies to any submanifold of any Riemannian manifold. The upper
bound is, moreover, optimal. Metric balls in space forms show that for every
κ and every possible focal radius, there is a hypersurface in a space with
constant curvature κ for which Inequality (1) is an equality.

As a consequence of this result, we show that submanifolds with focal
radius bounded from below and diameter bounded from above have only
finitely many diffeomorphism types, a result that is of independent interest.

Theorem B. Let M be a compact Riemannian manifold. Given D, r > 0
the class S of closed Riemannian manifolds that can be isometrically embed-
ded into M with focal radius ≥ r and intrinsic diameter ≤ D is precompact
in the C1,α–topology. In particular, S contains only finitely many diffeomor-
phism types.

Theorem B is optimal in the sense that neither the hypothesis on the
focal radius nor the hypothesis on the diameter can be removed. If either
hypothesis is removed, then, after rescaling, all Riemannian k–manifolds can
occur in a flat n–torus, provided n >> k (see example 4.3).

Since Inequality (1) applies to any submanifold of any Riemannian
manifold, the Gauss Equation implies that the class S in Theorem B, has
uniformly bounded sectional curvature. Theorem B follows from this and
Cheeger’s Finiteness Theorem ([5]), provided the class S also has a uni-
form lower bound for its volume. We achieve the lower volume bound as a
consequence of Heintze and Karcher’s tube formula ([20], see Lemma 4.1,
below).
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Since Theorem A gives a new way to estimate curvature, it has many
corollaries. For example, using again the Gauss Equation, Theorem A pro-
vides us with a simple proof of the following two statements, that are valid
for submanifolds of arbitrary codimension.

Corollary C.

• A submanifold of Sn is positively curved if its focal radius is > π
4 .

• A submanifold of any hyperbolic manifold is nonpositively curved if it
has infinite focal radius.

The Clifford torus in S3 has focal radius π
4 , so the first statement of the

corollary is optimal.
Theorem A is obtained as a consequence of a more general bound on the

second fundamental form of a submanifold, that is true in the more general
context of bounds on the intermediate Ricci curvature (see Theorem 3.1 be-
low). As a consequence, we recapture all of the rigidity of the Soul Theorem
([2], [16],[25], [31], [33]), provided a manifold with Rick ≥ 0 contains a closed
submanifold with infinite focal radius. (See [18] or [35] for the definition of
intermediate Ricci curvature.)

Theorem D. Let M be a complete Riemannian n–manifold with Rick ≥ 0,
and let N be any closed submanifold of M with dim (N) ≥ k and infinite
focal radius. Then:

1. N is totally geodesic.

2. The normal bundle ν (N) with the pull back metric
(
exp⊥N

)∗
(g) is a

complete manifold with Rick ≥ 0.

3. exp⊥N :
(
ν (N) ,

(
exp⊥N

)∗
g
)
−→ (M, g) is a Riemannian cover.

4. The zero section N0 is totally geodesic in
(
ν (N) ,

(
exp⊥N

)∗
(g)
)

.

5. The projection π :
(
ν (N) ,

(
exp⊥N

)∗
(g)
)
−→ N is a Riemannian sub-

mersion.

6. If c : I −→ N is a unit speed geodesic in N, and V is a parallel normal
field along c, then

Φ : I × R −→M, Φ (s, t) = exp⊥c(s) (tV (s))

is a totally geodesic immersion whose image has constant curvature 0.
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118 L. Guijarro and F. Wilhelm

7. All radial sectional curvatures from N are nonnegative. That is, for
γ (t) = exp⊥N (tv) with v ∈ ν (N) , the curvature of any plane containing
γ′ (t) is nonnegative.

8. If n ≥ 3 and k ≤ n− 2, then for all r > 0, the intrinsic metric on
exp⊥N (S (N0, r)) has Rick ≥ 0, where S (N0, r) is the metric r–sphere
around the zero section N0 in ν (N) .

The version of Part 8 of Theorem D for nonnegative sectional curvature
and small r is similar to Theorem 2.5 of [17]. In the latter result, N needs
to be a soul of M but can have any focal radius.

In the case of Ricci curvature, Theorem D is Theorem 3 of [9], but in the
sectional curvature case, it yields new information about open nonnegatively
curved manifolds.

Corollary E. Let N be a closed submanifold in a complete, noncompact,
simply connected nonnegatively curved manifold (M, g) . If N has infinite
focal radius, then N is a soul of M.

While examples show that souls need not have infinite focal radius, using
the main theorem of [15], we can always modify the metric of M so that its
soul has infinite focal radius.

Theorem D also imposes rigidity on compact nonnegatively curved man-
ifolds that contain closed submanifolds with no focal points (see Corol-
lary 3.2).

To prove Theorems A and D we use the new Jacobi field comparison
lemma from [18]. It also has consequences for Riemannian submersions, iso-
metric group actions, and Riemannian foliations of manifolds with positive
intermediate Ricci curvature. To state them succinctly, we recall the defini-
tion of “manifold submetry” from [6].

Definition. A submetry

π : M −→ X

of a Riemannian manifold is called a “manifold submetry” if and only if
π−1 (x) is a closed smooth submanifold for all x ∈ X and every geodesic of
M that is initially perpendicular to a fiber of π is everywhere perpendicular
to the fibers of π.

If the leaves of a singular Riemannian foliation are closed, then as pointed
out in [6], its quotient map is a manifold submetry. Thus the following result
applies to singular Riemannian foliations with closed leaves. In particular,
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it applies to quotient maps of isometric group actions and to Riemannian
submersions. In it, we use the term “geodesic” to mean a curve that locally
minimizes distances but need not be a globally shortest path.

Theorem F. Let π : M −→ X be a manifold submetry of a complete
Riemannian n–manifold with Rick ≥ k. Suppose that for some x ∈ X,
dimπ−1 (x) ≥ k.

1) For every geodesic γ emanating from x, either γ does not extend to
a geodesic on any interval that properly contains

[−π
2 ,

π
2

]
, or γ has a

conjugate point to x in
[−π

2 ,
π
2

]
. In particular, if X is smooth and π

is a Riemannian submersion, then the conjugate radius of X at x is
≤ π

2 .

2) If all geodesics emanating from x extend to geodesics on
[−π

2 ,
π
2

]
and

are free of conjugate points on
(−π

2 ,
π
2

)
, then π−1 (x) is totally geodesic

in M, and the universal cover of M is isometric to the sphere or a
projective space with the standard metrics.

3) If dimπ−1 (x) ≥ k for some x ∈ X for which max {distx} = diam (X) ,
then the diameter of X is ≤ π

2 .

The relevant definition of conjugate points in length spaces is given
in 5.5.

Projective spaces viewed as the bases of Hopf fibrations show that the
conjugate radius estimate in Part 1 is optimal. The conclusion about the
extendability of γ is also optimal.

Example. Let SO (n) act reducibly on the unit sphere, Sn, in the usual
way, by cohomogeneity one. Let x ∈ Sn/SO (n) be the orbit of the equator.
The geodesic passing through x at time 0 extends to

[
−π

2 ,
π
2

]
, where it is

free of conjugate points, but it does not extend to any larger interval.

This example also shows that for Part 3 of Theorem F , it is not enough
to know that dimπ−1 (x) ≥ k for some x ∈ X; we must also assume that x
realizes the diameter of X.

The remainder of the paper is organized as follows. In Section 1 we
establish notations and conventions. In Section 2, we review the comparison
lemma and focal radius theorems of [18]. Theorems A and D are proven in
Section 3. In Section 4, we prove Theorem B, provide examples that show
it is optimal, and state another finiteness theorem whose proof is essentially
the same as the proof of Theorem B. The paper concludes with Section 5
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where we prove Theorem F and state some of its corollaries for isometric
groups actions.

Remark. To keep the exposition simple, we have stated all of our results
with the global hypothesis Rick M ≥ k · κ; however, most of them also hold
with only the corresponding hypothesis about radial intermediate Ricci cur-
vatures. That is, for any geodesic γ that leaves our submanifold orthogonally
at time 0, we only need

k∑
i=1

sec (γ̇, Ei) ≥ k · κ

for any orthonormal set {γ̇, E1, . . . , Ek} . This remark applies to Theorems A,
D, and F , except for Part 2 of Theorem F for which our proof still requires
the global hypothesis.

1. Notations and conventions

Let γ : (−∞,∞) −→M be a unit speed geodesic in a complete Riemannian
n–manifold M. Call an (n− 1)–dimensional subspace Λ of normal Jacobi
fields along γ, Lagrangian, if the restriction of the Riccati operator to Λ is
self adjoint, that is, if 〈

J1 (t) , J ′2 (t)
〉

=
〈
J ′1 (t) , J2 (t)

〉
for all t and for all J1, J2 ∈ Λ.

For a subspace V ⊂ Λ we write

(2) V (t) ≡ {J (t) | J ∈ V } ⊕
{
J ′ (t)

∣∣ J ∈ V and J (t) = 0
}
.

Given a submanifold N of the Riemannian manifold M, we let ν (N) be
its normal bundle. We use π for the projection of ν (N) onto N , and N0

for the 0–section of ν (N) . If γ is a geodesic with γ′ (0) ⊥ N, we consider
variations of γ by geodesics that leave N orthogonally at time 0. We let
ΛN be the the corresponding variations fields; note that ΛN is Lagrangian.
Lemma 4.1 on page 227 of [7] says that ΛN is the set of normal Jacobi fields
J given by:

ΛN ≡
{
J |J (0) = 0, J ′ (0) ∈ νγ(0) (N)

}
(3)

⊕
{
J |J (0) ∈ Tγ(0)N and J ′ (0) = Sγ′(0)J (0)

}
,



i
i

“7-Guijarro” — 2020/4/3 — 0:12 — page 121 — #7 i
i

i
i

i
i

Submanifold restrictions 121

where Sγ′(0) is the shape operator of N in the direction of γ′ (0) , that is,

Sγ′(0) : Tγ(0)N −→ Tγ(0)N is

Sγ′(0) : w 7−→
(
∇wγ′ (0)

)TN
.

For every t∈R, we let Et : Λ−→Tγ(t)M , be the evaluation map Et (J) =
J (t). Unless otherwise indicated, we suppose that Et is injective on (t0, tmax) .
When this occurs, we say that Λ is nonsingular on (t0, tmax) .

Geodesics are parameterized by arc length, except if we say otherwise.
γv will be the unique geodesic tangent to v at time 0.

Finally, we use sec to denote sectional curvature.

2. The comparison lemmas and their consequences

To prove Theorems A and D we exploit the new Jacobi field comparison
lemmas from [18]. We review these here, and refer the reader to [18] for a
full exposition.

Lagrangian subspaces in 2–dimensional constant curvature spaces are
spanned by single Jacobi fields of the form f̃E, where E is a parallel field.
After rescaling the metric, f̃ is one of the following

(4) f̃ (t) =


(c1 sin t+ c2 cos t) if κ = 1,

(c1t+ c2) if κ = 0,

(c1 sinh t+ c2 cosh t) if κ = −1,

for a choice of c1, c2 ∈ R.
For a subspace W ⊂ Λ, write

W (t) = {J (t) | J ∈W} ⊕
{
J ′ (t)

∣∣ J ∈W and J (t) = 0
}
,

and

PW,t : Λ (t) −→W (t)

for orthogonal projection. If S is the Riccati operator associated to Λ, then
to abbreviate we write

TraceSt|W for Trace (PW,t ◦ St|W ) .

Finally, recall that a subspace V of Λ has full index on an interval I if it
contains any Jacobi field in Λ that vanishes at some point of I.

We can now state the comparison lemmas from [18] that we use here.
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Lemma 2.1 (Intermediate Ricci Comparison). For κ = −1, 0, or 1,
let γ : (−∞,∞) −→M be a unit speed geodesic in a complete Riemannian
n–manifold M with Rick ≥ k · κ. Let λ̃κ : [t0, tmax) −→ R be any solution of
the scalar Riccati equation

(5) λ̃′κ + λ̃2
κ + κ = 0.

Let Λ be a Lagrangian subspace of normal Jacobi fields along γ with Riccati
operator S, and let Wt0 ⊥ γ′(t0) be some k–dimensional subspace such that

(6) TraceSt0 |Wt0
≤ k · λ̃κ (t0) .

Denote by V the subspace of Λ formed by those Jacobi fields that are or-
thogonal to Wt0 at t0 and by H(t) the subspace of γ′(t)⊥ that is orthogonal
to V(t) at each t ∈ (t0, tmax). Assume that V is of full index in the interval
[t0, tmax).

Then for all t ∈ [t0, tmax),

(7) TraceSt|H(t) ≤ k · λ̃κ (t) .

Moreover, if limt→t−max
λ̃κ (t) = −∞ then the Jacobi equation splits or-

thogonally along γ in the interval [t0, tmax) as

Λ = V ⊕H

where every nonzero Jacobi field J ∈ H is equal to J = f̃ · E, where E is
a unit parallel field with E(t0) ∈Wt0, and f̃ is the function from (4) that
satisfies f̃ (t0) = |J (t0)| .

Lemma 2.2. Let γ : [t0,∞) −→M be a unit speed geodesic in a complete
Riemannian n–manifold M with Rick ≥ 0. Let Λ be a Lagrangian subspace
of normal Jacobi fields along γ with Riccati operator S. Suppose that for
some k–dimensional subspace Wt0 ⊥ γ′(t0) ,

(8) TraceSt0 |Wt0
≤ 0.

With V and H(t) as in Lemma 2.1, the Jacobi equation splits orthogonally
along γ in the interval [t0,∞) as

Λ = V ⊕H
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where every nonzero Jacobi field J ∈ H is equal to J = f̃ · E, where E is
a unit parallel field with E(t0) ∈Wt0, and f̃ is the function from (4) that
satisfies f̃ (t0) = |J (t0)| .

We also need the focal radius theorem from [18].

Theorem 2.3. For k ≥ 1, suppose that M is a complete Riemannian n–
manifold with Rick ≥ k and N is any submanifold of M with dim (N) ≥ k.

1. Counting multiplicities, every unit speed geodesic γ that leaves N or-
thogonally at time 0 has at least dim (N)− k + 1 focal points for N in[
−π

2 ,
π
2

]
. In particular, the focal radius of N is ≤ π

2 .

2. If N has focal radius π
2 , then it is totally geodesic.

3. If N is closed and has focal radius π
2 , then the universal cover of M is

isometric to the sphere or a projective space with the standard metrics,
and N is totally geodesic in M.

3. Second fundamental form, focal radius, and lower
curvature bounds

In this section, we prove Theorems A and D. The first is a special case of
the following result.

Theorem 3.1. For κ = −1, 0, or 1, let M be a complete Riemannian n–
manifold with Rick ≥ kκ, and let N be any submanifold of M with dim (N) ≥
k. Then for any unit normal vector v to N, the shape operator of N for v
satisfies

(9)

∣∣∣∣∣
k∑
i=1

〈Sv (ei) , ei〉

∣∣∣∣∣ ≤ k cot (FocalRadius (N, γv)) if κ = 1,∣∣∣∣∣
k∑
i=1

〈Sv (ei) , ei〉

∣∣∣∣∣ ≤ k

FocalRadius (N, γv)
if κ = 0,∣∣∣∣∣

k∑
i=1

〈Sv (ei) , ei〉

∣∣∣∣∣ ≤ k coth (FocalRadius (N, γv)) if κ = −1,

where {ei}ki=1 ⊂ Tγv(0)N is any orthonormal set and FocalRadius (N, γv) is
the focal radius of N along γv.
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Proof. We set

ctκ (t) =


cot (t) if κ = 1,

1/t if κ = 0,

coth (t) if κ = −1.

Then ctκ is an odd function that satisfies limt→0− ctκ = −∞.
Let ΛN be the Lagrangian family along γv from Equation (3). Let S be

the corresponding Riccati operator. Observe that at t = 0, the restriction of
S to the second summand in (3) coincides with the shape operator Sv of N .

If the conclusion is false, there are {J1, . . . , Jk} ⊂ ΛN with {Ji (0)}ki=1

orthonormal and tangent to N so that

J ′i (0)T = S (Ji (0)) and∣∣∣Σk
i=1 〈S (Ji (0)) , Ji (0)〉

∣∣∣ ≥ k · ctκ (FocalRadius (N)− α) ,

for some α ∈ (0,FocalRadius (N)) . After possibly replacing v with −v, we
may assume that

Σk
i=1 〈S (Ji) , Ji〉 |0(10)

≤ −k · ctκ (FocalRadius (N)− α)

= k · ctκ (α− FocalRadius (N)) , since ctκ is an odd function

< 0.

We apply Lemma 2.1 with Λ = ΛN and Wt0 = span {Ji (0)} . To see that
the hypotheses of Lemma 2.1 are satisfied, we note that:

• Inequality (10) gives us that Inequality (6) holds with

λ̃κ (t) = ctκ (α− FocalRadius (N) + t) and t0 = 0.

• Since ΛN is nonsingular on (0,FocalRadius (N)) , its subspace V has
full index on the interval (0,FocalRadius (N)) .

Thus it follows from Lemma 2.1 that for all t1 ∈ (0,FocalRadius (N))
there is a k–dimensional subspace H(t1) ⊂ γ′(t1) so that

TrS|H(t1) ≤ k · ctκ (α− FocalRadius (N) + t1) .

Since α− FocalRadius (N) < 0 and limt→0− ctκ = −∞, ΛN has a singularity
by time FocalRadius (N)− α. This is a contradiction because ΛN is nonsin-
gular on the interval (0,FocalRadius (N)). �
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Proof of Theorem D. Let M be a complete Riemannian n–manifold with
Rick ≥ 0, and let N be any closed submanifold of M with dim (N) ≥ k and
infinite focal radius. Let v be any unit normal vector toN. As in Equation (3)
we let

ΛN ≡
{
J |J (0) = 0, J ′ (0) ∈ νγv(0)N

}
⊕
{
J |J (0) ∈ Tγv(0)N and J ′ (0) = SvJ (0)

}
.

We set

V ≡
{
J |J (0) = 0, J ′ (0) ∈ νγv(0)N

}
, and

W ≡
{
J |J (0) ∈ Tγv(0)N and J ′ (0) = SvJ (0)

}
.

Since N has no focal points, ΛN has no singularities on R \ {0}. Thus
for all J ∈ ΛN \ {0} and all t ∈ R \ {0} , J (t) 6= 0. By replacing v with −v,
if necessary, we may assume that

(11) Tr (S|W (0)) ≤ 0.

By Lemma 2.2, it follows that t 7−→ Λ (t) splits orthogonally into the
parallel distributions

Λ (t) ≡W (t)⊕ V (t) ,

and every field in W is parallel. Since we started with an arbitrary normal
vector, N is totally geodesic, and Parts 1 and 4 are proven. Part 2 is a
consequence of the Hopf-Rinow Theorem (see Part (e) of Theorem 2.8 on
page 147 of [7]).

Part 3 follows by observing that exp⊥N :
(
ν (N) ,

(
exp⊥N

)∗
(g)
)
−→ (M, g)

is a local isometry, so as in the proof of Cartan-Hadamard, exp⊥N is a cover
(see Lemma 3.3 on page 150 of [7] or Lemma 5.6.4 of [26]). Part 5 follows
from the fact that every field in W is parallel.

To prove Part 6, let II be the second fundamental form of image (Φ) .
Since

γV (s) : t 7−→ Φ (t, s) = exp⊥c(s) (tV (s))

is a geodesic, II
(
∂Φ
∂t ,

∂Φ
∂t

)
= 0, and since ∂Φ

∂s is parallel along γV (s), II
(
∂Φ
∂t ,

∂Φ
∂s

)
= 0. To determine II

(
∂Φ
∂s ,

∂Φ
∂s

)
, observe that the lift,

(
exp⊥N

)∗ (∂Φ
∂s

)
, of ∂Φ

∂s
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via exp⊥N , is a basic horizontal, geodesic field for the Riemannian submersion

π : (ν (N) ,
(

exp⊥N

)∗
(g)) −→ N.

Thus II
(
∂Φ
∂s ,

∂Φ
∂s

)
= ∇ ∂Φ

∂s

∂Φ
∂s ≡ 0, and the image of Φ is totally geodesic. Since

∂Φ
∂s is a parallel Jacobi field along γV (s), the image of Φ is flat.

To prove Part 7, consider a V ∈ V along with orthonormal parallel fields
J1, . . . , Jk−1 in W. Since sec (γ′v, Ji) ≡ 0 and Rick ≥ 0, sec (γ′v, V ) ≥ 0. Since
Λ (t) ≡W (t)⊕ V (t) is a parallel, orthogonal splitting, all curvatures of the
form sec (γ′v, ·) are nonnegative.

Since RickM ≥ 0, it follows from the Gauss Equation that to prove
Part 8, it suffices to show that

〈S (J) , J〉 ≥ 0,

for all J ∈ ΛN and all t ≥ 0. Since ΛN (t) ≡W (t)⊕ V (t) is a parallel, or-
thogonal splitting and 〈S (J) , J〉 ≡ 0 for all J ∈W, it suffices to show that

〈S (J) , J〉 ≥ 0

for all J ∈ V and all t ≥ 0. If not, then for some t0 > 0 and some J ∈ V,
〈S (J) , J〉 < 0. Set

U ≡ {J, L1, . . . , Lk−1} ,

where L1, . . . , Lk−1 are (k − 1)–linearly independent fields of W. It follows
that for some c > t0,

T r (S|U ) (t0) <
1

t0 − c
< 0,

and hence from Lemma 2.2 that ΛN has a singularity, which is contrary to
our hypothesis that N has infinite focal radius. �

In the case that M is not simply connected, we have the following struc-
ture result.

Corollary 3.2. Let N be a closed submanifold in a compact nonnegatively
curved manifold M. If N has infinite focal radius, then the universal cover,
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M̃ splits isometrically as

M̃ = Ñ0 × Rm

where Ñ0 is compact and simply connected, and the universal cover Ñ of N
is isometrically embedded in M̃ as

Ñ = Ñ0 × Rl,

where Rl is an affine subspace of Rm.

Proof. Let π : M̃ −→M by the universal cover. By Theorem 9.1 in [2], M̃
splits isometrically as

M̃ = M0 × Rm

where M0 is compact and simply connected. By Part 3 of Theorem D,
π : M̃ −→M factors through exp⊥N : ν (N) −→M. That is we have a Rie-
mannian cover p : M̃ −→ ν (N) so that π = exp⊥N ◦p. Since every normal
vector to the zero section, N0, in ν (N) exponentiates to a ray, every normal
vector to π−1 (N) exponentiates to a ray. Since M̃ is the metric product,
M0 × Rm, every normal vector to π−1 (N) is tangent to an Rm–factor. Thus
every tangent space to π−1 (N) has the form TM0 × Rl, where Rl is an affine
subspace of Rm. Since π−1 (N) is totally geodesic and without boundary it
follows that π−1 (N) is M0 × Rl where Rl is an affine subspace of Rm. �

3.1. What can be done with just classical Riccati comparison?

Although weak versions of all of our results can be obtained using just clas-
sical Riccati comparison, to the best of our knowledge no theorem discussed
here can be proven with out the Transverse Jacobi Equation. As a concrete
example, we point out that classical comparison yields the following weak
form of Theorem A.

Weak Form of Theorem A: For κ = −1, 0, or 1, let M be a complete
Riemannian n–manifold with sectional curvature ≥ κ, and let N be any
hypersurface of M. Then at every point of N there is a single vector v so
that

IIN (v, v) ≥ − |v|2

cot (FocalRadius (N))
if κ = 1

IIN (v, v) ≥ − |v|2

FocalRadius (N)
if κ = 0

IIN (v, v) ≥ − |v|2

coth (FocalRadius (N))
if κ = −1.
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To clarify how classical comparison fails to yield Theorem A, we note
that the sectional curvature version of Lemma 2.1 implies that if Inequality
(7) fails for all 1–dimensional subspaces H (t) ⊂ Tγ(t)M

⊥ then Inequality

(6) fails for all 1–dimensional subspaces Wt0 ⊂ Tγ(t0)M
⊥. In contrast, the

classical theorem of [8] only gives that Inequality (6) fails for some Wt0 ⊂
Tγ(t0)M

⊥. Examples 2.37 and 2.38 in [18] show that there is no classical
analog to Lemma 2.1, (also see the commentary after Lemma E in [18].)

4. Submanifold restrictions

The main step in the proof of Theorem B is to show that the intrinsic metrics
on all of the submanifolds satisfy the hypothesis of Cheeger’s Finiteness
Theorem, [5].

Lemma 4.1. Let M be a compact Riemannian manifold. Given D, r > 0
let S be the class of closed Riemannian manifolds that can be isometrically
embedded into M with focal radius ≥ r and intrinsic diameter ≤ D. Then
there are positive numbers K, v > 0 so that for every S ∈ S,

|secS | ≤ K and vol (S) > v.

Proof. The compactness of M gives us ambient upper and lower curvature
bounds. Combined with Theorem A, we get the existence of K.

It remains to derive a uniform lower volume bound for the S ∈ S. To do
this we use the first display formula on Page 1 of [20]:

vol (M) ≤ vol (N) · fδ (diam (M) ,Λ) .

Here N is a compact, embedded submanifold of M, δ is a lower curvature
bound for M , Λ is an upper bound for the mean curvature of N, and the
function fδ is given explicitly on Page 453 of [20]. Theorem A gives us an
upper bound for Λ and hence a C > 0 so that

fδ (diam (M) ,Λ) ≤ C.

Setting v = vol(M)
C completes the proof. �

Recall that the Cheeger-Gromov compactness theorem states

Theorem 4.2 (see [4, Theorem 3.6], [26, Theorem 11.3.6]). Given
0 < β < α < 1, k,K ∈ R, v,D > 0, and n ∈ N, let {Mi}∞i=1 be a sequence of
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closed Riemannian manifolds with

k ≤ secMi ≤ K, vol (Mi) ≥ v, and Diam (Mi) ≤ D.

Then there is a C1,α–Riemannian manifold M∞ and a subsequence of
{Mi}∞i=1 that converges to M∞ in the C1,β topology.

Proof of Theorem B. It follows from the previous Lemma 4.1 that the class
S satisfies the hypotheses of Cheeger’s finiteness theorem. So any sequence
{Si} ⊂ S has a subsequence (also called {Si}) that converges in the
C1,β–topology to an abstract C1,α Riemannian manifold (S∞, g∞) . Let

ϕi : S∞ −→ Si be diffeomorphisms so that ϕ∗i (gi)
C1,β

−→ g∞. Let fi : Si −→M
be the sequence of inclusions of Si into M. Composing gives a sequence
fi ◦ ϕi : S∞ −→M, that is uniformly bounded in the C1,β–topology. From
Arzela-Ascoli it follows that {fi ◦ ϕi}i subconverges in the C1,β–topology to
an isometric embedding f∞ : S∞ −→M . �

Example 4.3 (Theorem B is optimal). The isometric embedding the-
orem of J. Nash says that for given k, there is some n = n(k) such that
any k-dimensional Riemannian manifold embeds isometrically in Rn. Con-
sider then any compact Riemannian manifold, and rescale its metric so that
its diameter is bounded above by 1. If needed, rescale the metric in Rn so
that the image of an isometric embedding f : M → Rn is contained in the
interior of some fundamental domain for the covering space π : Rn → Tn.
Taking the composition π ◦ f , we get an isometric embedding of M into Tn
with intrinsic diameter bounded above; thus Theorem B is optimal in the
sense that its conclusion is false if the hypothesis about the lower bound on
the focal radii is removed.

To see that the hypothesis about the intrinsic diameters can not be
removed, let λS1 be the circle of radius λ. For each k-manifold (M, g), choose
a rational number λ so that the image of the isometric embedding

j : λM ↪→ λTn

has focal radius greater or equal than 1.
Next use that, for the given λ, there is an isometric embedding

ι : λS1 ↪→ T2,

and let

I : λTn → T2n
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be the product embedding. The images of the composition I ◦ j : (M, g) ↪→
T2n all have focal radius ≥ 1. Thus Theorem B is false if the hypothesis
about the upper bound on the diameter is removed.

4.1. Other finiteness statements

Various other finiteness theorems for submanifolds follow by combining the
proof of Theorem B with existing results. For example, using the main the-
orem of [14] we have

Theorem 4.4. Given k ∈ R, v,D > 0, n ∈ N, and r > 0, let M (k, v, n) be
the class of closed Riemannian n-manifolds with sectional curvature ≥ k ,
volume ≥ v, and diameter ≤ D, and let S be the class of closed Riemannian
manifolds that can be isometrically embedded into an element of M (k, v, n)
so that the image has focal radius ≥ r and intrinsic diameter ≤ D. Then S
contains only finitely many homeomorphism types.

5. Submetries and conjugate points

In this section we prove Theorem F. We start, in subsection 5.1 with a
establishing some basic facts about holonomy for manifold submetries. We
then prove Theorem F in subsection 5.2.

5.1. Submetries and holonomy

Throughout this section, we assume M is an Alexandrov space with curva-
ture bounded from below, π : M −→ X is a submetry, and γ : [0, b] −→ X
is a geodesic.

The proof of Lemma 2.1 in [3] gives us the following.

Proposition 5.1. 1. Given any y ∈ π−1 (γ (0)) , there is a lift of γ starting
at y.
2. If for some ε > 0, γ extends as a geodesic to [−ε, b] , then the lift in Part
1 is unique.

Part 2 allows us to define holonomy maps between the fibers of π over
the interior of γ as follows.
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Definition 5.2. Given any s, t ∈ (0, b) , we define the holonomy maps

Hs,t : π−1 (γ (s)) −→ π−1 (γ (t))

by

Hs,t (x) = γ̃x (t) ,

where γ̃x is the unique lift of γ so that γ̃x (s) = x.

Proposition 5.3. If M is Riemannian and π is a manifold submetry, then
for all s, t ∈ (0, b) , Hs,t is a C∞ diffeomorphism.

Proof. Choose ε0 > 0 so that [s− ε0, t+ ε0] ⊂ (0, b) . By compactness we
cover [s, t] by finite number of open intervals of the form

(si − ιi, si + ιi) ,

were ιi is one-fourth of the injectivity radius of π−1 (γ (si)), and

s− ε0 = s0 < s1 < · · · < sm = t+ ε0.

Let F it be the flow of grad distπ−1(γ(si)). Then for r1, r2 ∈ (si, si+1 + ιi+1) ,
Hr1,r2 is the restriction of F ir2−r1 to π−1 (γ (r1)) and hence is a diffeomor-
phism onto its image π−1 (γ (r2)). Since Hs,t is the composition of a finite
number of the diffeomorphisms Hr1,r2 , it follows that Hs,t is a diffeomor-
phism. �

Remark 5.4. For γ and γ̃x as above, we define the holonomy fields along
γ̃x to be the Jacobi fields that correspond to variations by lifts of γ. If the
Lagrangian subspace Λπ−1(γ(s)) has no singularities on (s, t) , that is, if the
evaluation map Eu : Λπ−1(γ(s)) −→ Tγ(u)M is one-to-one for all u ∈ (s, t), it
follows that a field J ∈ Λπ−1(γ(s)) is holonomy if J (u) ∈ Tπ−1 (γ (u)) for
some u ∈ (s, t) .

5.2. Submetries and variational conjugate points

The following is the precise sense in which the term “conjugate point” is
used in Theorem F.

Definition 5.5. (Variational Conjugate Point) Let γ : [0, b] −→ X be a
unit speed geodesic in a complete, locally compact length space X. We say
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that γ (b) is variationally conjugate to γ (0) along γ if and only if for some
ε > 0, there is a continuous map V : [0, b]× (−ε, ε) −→ X with the following
properties.

1. For all t ∈ (0, b) ,

γ (t) = V (t, 0) .

2. There is a C > 0 and a t0 ∈ (0, b) so that for all sufficiently small s 6= 0,

dist (γ (t0) , V (t0, s)) ≥ Cs.

3. For each s ∈ (−ε, ε) ,
t 7→ V (t, s)

is a unit speed geodesic on [0, b] .

4. At the end points,

dist (V (0, 0) , V (0, s)) ≤ o (s) and

dist (V (b, 0) , V (b, s)) ≤ o (s) .

In the Riemannian case, this coincides with the usual definition of con-
jugacy, so it is not surprising that geodesics in Alexandrov spaces stop min-
imizing distance after variational conjugate points.

Proposition 5.6. If X is an Alexandrov space with curvature bounded from
below and γ (b) is variationally conjugate to γ (0) along γ, then for all ε > 0,
either γ does not extend to [0, b+ ε] or γ|[0,b+ε] is not minimal.

Proof. Suppose that γ|[0,b+η] is minimal and that η is small enough so that
t0 ∈ (η, b− η) . Since the comparison angle ˜̂ (γ (0) , γ (b) , γ (b+ η)) is π, it
follows that

^ (γ (0) , V (b, s) , γ (b+ η)) ≥ ˜̂ (γ (0) , V (b, s) , γ (b+ η)) > π − o
(
s

η

)
,

^ (γ (t0) , V (b, s) , γ (b+ η)) ≥ ˜̂ (γ (t0) , V (b, s) , γ (b+ η)) > π − o
(
s

η

)
.

The previous two inequalities, together with a hinge comparison argu-
ment in the space of directions of X at V (b, s) , gives

^ (γ (0) , V (b, s) , γ (t0)) ≤ o
(
s

η

)
.
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So by hinge comparison in X,

dist (V (t0, s) , γ (t0)) ≤ o
(
s

η

)
,

but this is contrary to Part 2 of the definition of variational conjugacy. �

Lemma 5.7. Let π : M −→ X be a manifold submetry. Let γ : [0, b] −→ X
be a geodesic, and let γ̃ be a horizontal lift of γ that has its first focal point
for π−1 (γ (0)) at b0 ∈ (0, b) . Then γ has a variational conjugate point at b0.

Proof. Since γ̃ has its first focal point for π−1 (γ (0)) at b0, there is a variation

Ṽ : [0, b0]× (ε, ε) −→M

of γ̃ by geodesics that leave π−1 (x) orthogonally at time 0 with

(12) Ṽ (0, s) ∈ π−1 (x) ,
∂

∂s
Ṽ

∣∣∣∣
(b0,0)

= 0 and
∂

∂s
Ṽ

∣∣∣∣
(t,0)

6= 0

for all t ∈ (0, b0) . If ∂
∂s Ṽ (t, 0) is vertical for all t ∈ (0, b0) , then by Re-

mark 5.4, Ṽ is a holonomy field. In this event, since b0 ∈ (0, b), it follows
from Proposition 5.3 that

∂

∂s
Ṽ

∣∣∣∣
(b0,0)

6= 0,

which is contrary to the second equation in (12). So for some t0 ∈ (0, b0),

(13)
∂

∂s
Ṽ

∣∣∣∣
(t0,0)

is not vertical.

Projecting Ṽ under π produces a variation V of γ in X by geodesics.
It follows from (13) that for all sufficiently small s 6= 0, there is a C > 0 so
that

dist (γ (t0) , V (t0, s)) ≥ Cs.

Since

Ṽ (0, s) ∈ π−1 (x) ,

dist
(
Ṽ (b0, 0) , Ṽ (b0, s)

)
≤ o (s) ,
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and π is distance nonincreasing,

V (0, 0) = x and

dist (V (b0, 0) , V (b0, s)) ≤ o (s) .

Thus γ has a variational conjugate point at time b0. �

Proof of Theorem F. Suppose that

π : M −→ X

is a manifold submetry of a complete Riemannian n–manifold with Rick ≥ k
and that for some x ∈ X, dimπ−1 (x) ≥ k. Let γ be a geodesic of X emanat-
ing from x. Suppose that γ extends to an interval I that properly contains[
−π

2 ,
π
2

]
. Then γ is defined on

[
−π

2 ,
π
2

]
and either extends past π

2 or ex-
tends past −π

2 . Without loss of generality, assume that γ extends past π
2 .

By Part 1 of Theorem 2.3, every horizontal lift of γ has its first focal point
for π−1 (x) at some t0 ∈

[
−π

2 ,
π
2

]
. If γ̃ is such a lift and t0 ∈

(
−π

2 ,
π
2

]
, then

by Lemma 5.7, γ (t0) is variationally conjugate to γ (0) . If t0 = −π
2 , then for

convenience, we reorient γ so that it extends past −π
2 and has its first focal

point at π
2 . Applying Part 2 of Lemma 2.1 with κ = 1, t0 = 0, tmax = π

2 ,

λ̃ = cot
(
t+ π

2

)
, and

Wt0 =
{
J |J (0) ∈ Tγ̃(0)π

−1 (x) and J ′ (0) = Sγ̃′(0)J (0)
}
,

we see that Wt0 is spanned by Jacobi fields of the form sin
(
t+ π

2

)
E, where

E is a parallel field. In particular, Sγ̃′(0) ≡ 0. So we can apply Part 1 of
Lemma 2.1 and conclude that γ̃ also has a focal point at s0 ∈

[
−π

2 , 0
)
.

Since γ extends past −π
2 , by Theorem 5.7, γ (s0) is variationally conjugate

to γ (0).
If all geodesics emanating from x ∈ X extend to

[
−π

2 ,
π
2

]
and are free

of variational conjugate points on
(
−π

2 ,
π
2

)
, then by Lemma 5.7, π−1 (x) has

focal radius ≥ π
2 . So if dimπ−1 (x) ≥ k, then by Part 3 of Theorem 2.3, the

universal cover of M is isometric to the sphere or a to projective space with
the standard metrics, and π−1 (x) is totally geodesic in M.

To prove Part 3 of Theorem F, suppose that p, q ∈ X are at maximal dis-
tance > π

2 , and dimπ−1 (p) ≥ k. Since M is a compact Riemannian manifold
and

π : M −→ X

is a submetry, X is an Alexandrov space with some lower curvature bound.
Since p and q are at maximal distance, π−1 (p) and π−1 (q) are at maximal
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distance. It follows that for any p̃ ∈ π−1 (p) ,

⇑π
−1(q)
p̃ ≡

{
ṽ ∈ ν1

p̃

(
π−1 (p)

) ∣∣ γṽ is a segment from p̃ to π−1 (q)
}

is a π
2 –net in ν1

p̃

(
π−1 (p)

)
. Let W be any k–dimensional subspace of

Tp̃π
−1 (p) . For ṽ ∈ ν1

p̃

(
π−1 (p)

)
and {Ei}ki=1 an orthonormal basis for W,

Trace (Sṽ|W ) =

〈
−

k∑
i=1

II (Ei, Ei) , ṽ

〉
.

Since ⇑π
−1(q)
p̃ is a π

2 –net in ν1
p̃

(
π−1 (p)

)
, it follows that for some ṽ ∈⇑π

−1(q)
p̃ ,

(14) Trace (Sṽ|W ) ≤ 0.

Let Λπ−1(p) be the Lagrangian family of Jacobi fields along γṽ that cor-
respond to variations by geodesics that leave π−1 (p) orthogonally at time
0. Then Inequality (14) combined with Lemma 2.1 gives us that γṽ has a
focal point in

[
0, π2

]
. As before, it follows that either π ◦ γṽ does not ex-

tend to an interval that properly contains
[
0, π2

]
, or π ◦ γṽ has a variational

conjugate point in
[
0, π2

]
. Since π ◦ γṽ is a minimal geodesic from p to q

and dist (p, q) > π
2 , the former case is excluded. The latter case implies, via

Proposition 5.6, that for all ε > 0, π ◦ γṽ|[0,π2 +ε] is not minimal, so it is also

contrary to our hypothesis that dist (p, q) > π
2 . �

Remark. By Theorem 1 of [27], X needs not have positive Ricci curvature,
even when π is a Riemannian submersion. So neither the first nor third
conclusion of Theorem F follow from the Bonnet-Myers Theorem.

Remark. There are also various notions of conjugacy in length spaces pro-
posed by Shankar and Sormani in [30]. Our variational notion is more readily
adaptable to the situation of Theorem F than are any of those in [30]. All
of the definitions have the common feature that γ stops minimizing after a
conjugate point.

Remark. By results in [12] and [34], the possibilities for π in Part 2 of
Theorem F can be listed, if π is a Riemannian submersion. More gener-
ally, Riemannian foliations of round spheres are classified if they are either
nonsingular ([21]) or they are singular and have fiber dimension ≤ 3 ([29]).
However, the singular Riemannian foliations of round spheres have not been
classified, and there is an abundance of examples ([28]).
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The version of Theorem F when k = 1 yields, via a different proof, the
inequality statements of Chen and Grove in Theorems A and B in [6], with
the additional information about the behavior of geodesics from conclusion 1.
In particular, if π is a Riemannian submersion, it follows that the conjugate
radius of X is ≤ π

2 . For a Riemannian submersion π : Mn+k −→ Bn with
the sectional curvature of M ≥ 1, Theorem A of [10] gives that

π
n− 1

k + n− 1
≥ conj (B) .

In particular, the conjugate radius of B is ≤ π
2 if k ≥ n− 1. (Cf also Corol-

lary 1.2 of [10].)
Theorem F has the following consequence for cohomogeneity one actions.

Corollary 5.8. Let M be a complete Riemannian manifold M with Rick ≥
k. If G×M →M is an isometric, cohomogeneity one action with a singular
orbit of dimension ≥ k, then the following hold.
1. The diameter of M/G is ≤ π

2 .
2. If the diameter of M/G is π

2 , then the universal cover of M is isometric to
the sphere or a projective space with the standard metrics, and the singular
orbits are totally geodesic in M.

Part 3 of Theorem F has the following corollary.

Corollary 5.9. Let M be a complete Riemannian manifold M with Rick ≥
k. If G×M →M is an isometric group action, the diameter of M/G is
> π

2 , and x is a point that realizes the diameter of M/G, then dimπ−1 (x)
≤ k − 1.

In particular, if G×M −→M is as above and is also a cohomogeneity
one action, then both singular orbits have dimension ≤ k − 1.

Remark. The sectional curvature case of Corollary 5.9 can be inferred
from Corollary 2.7 of [6].

ExamplesD and E of [18] show that the hypothesis about the dimensions
of the submanifolds can not be removed from Theorem F.
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