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We establish a three-parameter Schur duality between the affine
Hecke algebra of type C and a coideal subalgebra of quantum affine
sl,. At the equal parameter specializations, we obtain Schur dual-
ities of types BCD.
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1. Introduction

The classic Schur duality exhibits the fundamental interactions between rep-
resentation theories of general linear Lie algebras and symmetric groups.
A quantized Schur duality was obtained by Jimbo [13] between quantum
groups and Hecke algebras of type A. There has also been various versions
of affine type A Schur duality; cf. [5] [12].

In developing a Kazhdan-Lusztig theory of (super) type BCD, Bao and
Wang [3] were led to a Schur type duality between Hecke algebra of type B
and an tquantum group which is a coideal subalgebra of a quantum group of
type A. There has been further development of such dualities which involve
Hecke algebra of type B of unequal or two parameters; see [II, 4]. We recall
a coideal subalgebra U* of a quantum group U together form a quantum
symmetric pair (U, U*); see [16] [17].
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The goal of this paper is to formulate and establish a Schur (U*(sl,), H)-
duality on V®¢, for n > 2d + 2 (and three additional variants). Here V is an
infinite-dimensional vector space with a basis parametrized by Z, H denotes
the Hecke algebra of affine type Cy in three parameters, and U¢(sl,) is an
affine :quantum group which is a coideal subalgebra of the affine type A
quantum group U(sl,). The actions of U(sl,) and H on V¢ are given by
explicit formulas.

It is well known (cf. [I5), I8, 19]) there is a 3-parameter Hecke algebra
H of affine type C over Q(q, qo,q1) which specializes to all kinds of Hecke
algebras of classical affine types. Remarkably, in the general theory of quan-
tum symmetric pairs [16] [I7], a coideal subalgebra of the quantum groups
of affine type A allows different parameters. In our setting suitable choices
of the parameters in the coideal subalgebras correspond to the 3 parameters
of Hecke algebras of affine type C.

A geometric approach and a Hecke algebraic approach were systemat-
ically developed in [9, [10] (also see [2]) toward the realizations of coideal
subalgebras of quantum groups of affine type A and constructions of their
canonical bases. A Schur duality involving affine Hecke algebra of type C
(of single parameter) was implicit in these papers and could be developed in
those frameworks naturally. It is conceivable that there will be other type
of Schur dualities (of single parameter) if one starts with different types of
affine flag varieties or affine Hecke algebras, and it would take considerable
work to set this up. Upon single parameter specializations, the 3-parameter
duality here immediately leads to several dualities involving Hecke algebras
of different affine types, which are expected to arise from geometric con-
structions using different types of flag varieties. In this way, the 3-parameter
Schur duality in this paper could serve as a helpful guideline on the geomet-
ric and categorical realizations of various equal parameter Schur dualities of
different types in the future.

In a very interesting work [6], Chen, Guay and Ma considered a duality
which is reminiscent to our but different in several aspects. They considered
2-parameter (instead of 3-parameter here) affine Hecke algebras, and their
formulation uses finite-dimensional tensor representations. The coideal alge-
bra therein used a different definition via reflection equations, and it is not
known (though is expected) if it is isomorphic to some suitable specialization
of the one used in this paper. It is interesting and should be possible to adapt
our work to study finite-dimensional representations of the multi-parameter
coideal algebras as well.
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The paper is organized as follows. In Section |2, we define an infinite-
dimensional tensor module V& for the affine Hecke algebra H. The Schur
(U‘(;[n), H)-duality is established in Section [3| In Section , inspired by the
considerations in [9]-[I0], we establish three additional variants of Schur du-
ality: the (U”(sl,), H)-duality, the (U*(sl,), H)-duality, and the (U*(sl,), H)-
duality. Here U7 (sly), U™ (sl,), U™ (;[n) denote different coideal subalgebras
in U(sl,—1),U(sl,—1),U(sl,—2), respectively.
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2. Quantum algebras and Hecke algebras

In this section we give a quick review on the quantum group of affine type
A its coideal subalgebra U¢(sl,,), and the Hecke algebra H of affine type C.

~

We formulate the actions of U¢(sl,,) and H on the tensor space V&4,

2.1. Quantum group of affine type A

Let q, qo, 1 be indeterminates, and denote by F the field

F= Q(qa q0, Q1)
The quantum affine gl,, is the associative algebra TU(gA[n) over [P generated
by
E,F; 0<i<n-1) DI (0<a<n-1)

subject to the following relations for 0 < a,b <n—1and for 0 <, <n —
1:
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1) ¢-Cartan relations:

D,D,=D,D,, D,D,'=1=D,'D,,
DanDgl — qé-aj*(;,l—l,jEj? DaFngl _ q75aj+5a71’ij7
K, - K !
E;F; - F;E; = 62']'#.
(Here and below K; := DiD,-lll and D,, = Dy.)

2) g-Serre relations:

FF; + F;F? = (¢+ ¢ HF,F,;F;,  if|i—jl=1,
EiEj = EjEi7 FzF] = FjFi; if 4 §é ] + 17

where i = j meansi = j (mod n). The quantum affine sl,, is the F-subalgebra
U(sl,) of U(gl,) generated by E;, F;, KF! (0 <i<n—1).

Remark 2.1. The algebra U(g[n) does not contain a “Heisenberg subalge-
bra” and it differs from U(sl,,) only on the finite Cartan subalgebra,; it plays
only an auxiliary role as it allows for simpler formulas. The algebra U(sl,,)
has level 0 and is sometimes called the quantum loop algebra of sl,.

The comultiplication A on U(g[n) is given as follows:

AE)=EcK '+12E,
AF,)=F,®1+K;®F;,, A(D,) =D,®D,.

Let V be the F-vector space with basis {v; | j € Z}. It has a natural module
structure over U(gl,,) (and hence over U(sl,)) as follows:
(2.1.1)

v; if j =14 viy1 if J =14; qu; if j = a;
Ei'Uj—i-l = J Fivj = { J Davj = J

0 else, 0 else, B v;  else.
2.2. An i1quantum group

From now on we take an integer » > 1, and let

n=2r+ 2.
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Let U‘(gAIn) be the associative algebra over F generated by
e, fi (0<i<r), h*! (0<a<r+1)),
subject to the following relations (in which k; := h;h_, +11) for 0 <a,b<r+
1,054, 5 <

1) g-Cartan relations:

h,hy, = hyh,, h,h,' =1=h;'h,,

q250jej if a = 0;
h,e;h, ' = { g~ 2ie; ifa=r+1;
qlei—0a—15 e; otherwise,
q 200 f; if a =0;
hafjhgl — q25m‘fj fa=r+1;
qda—13=0a; f; otherwise,
k; — k!

eifj - fjei = (51'7]'

- (i,4) # (0,0), (r,7).
2) g-Serre relations:

ele; +ejel = (q+q Veeje;, 2+ ££2 = (¢+ ¢ HELE, if i — 4| =1,
eie; = eje;, fif; =1ff; ifi£j4+1,
ef, + f.ef = (¢+q ") (efrer — g0y 'erky — g %o ks ),

fe, + e.f = (q+ ¢ (e fr — °qoqy 'kefr — 7k ),

ejfo + foef = (g + ¢ ) (eofoeo — qrgeoko — g5 'q eoky ),

fieo + eofy = (q+q ') (foeofo — qrakofo — g5 'q 'ky o).

Let U‘(;[n) be the subalgebra of U‘(g/g\[n) generated by e;, f;, k(0 <i < ).
Sometimes, U¢(sl,,) and U¢(gl,,) are called 1quantum groups.

We adopt the following identification for all i € Z:

Ei=Ein, Fi=Fin, D;i=Din, Ki=Ki,.
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Proposition 2.2. There are injective F-algebra homomorphisms
Uc(gl,,) — U(gl,,) and p: U(sl,) — U(sl,) defined by

h, = DD 4 (0<a<r+1)

e~ E+F_ 1K' fi—»E, +FK ;] ,, (1<i<r-—1)
e — Eo+ ¢y 'F1 Ky, foE_q+qq 'FoK |

e B¢ 'F L, K, £ =B+ g4 'F KD,

It follows that k. — K, K=! | (0<a<r). It turns out (U(gl,), U(gl,,))

—a—1
forms a quantum symmetric pair & la Letzter and Kolb.

Proof. Noting that the subalgebra of U(gA(n) generated by the right-hand
sides of (2.2.1)—(2.2.4) is a quantum symmetric pair coideal subalgebra (in

the sense of [16]) associated with the affine Dynkin diagram and involution
below, the proposition follows from [16, Theorem 7.8]. O

1")+1 with involution of type 77 = «¢.

Figure 1: Dynkin diagram of type A;

0 1 r—1 T
o} oO— - o o}
] E @ (|
o} o — o o}
2r+1 2r r—+2 r+1

Combining (2.1.1)) and (2.2.1)—(2.2.4), we obtain an explicit description

of the U¢(gl,,)-action on V as below.

Lemma 2.3. The vector space V admits a U‘(g/;\[n)-action as below. For
0<a<r+1 and fori+#0,r,

¢?vj ifa=0,r+1;a=j
h,(vj) =S qu;  ifa#0,r+1;4+a=j;
v; otherwise,
vip ifj=i+1; viy1 if j =14
e(vj) =< vjp1 if —j=i+1; fi(v)=qv1 if —j=i;
0 otherwise, 0 otherwise;
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Vi1 iijIS q1v +v jfj—()'

_ o 10541 + Uj-1 =
eo(vj) = qp v ifj=—-1; folvy) = {0 ! ’ otherwise;
0 otherwise; 7

qq; ‘v ifj =7
f.(vj) = vj—1 ifj=r+2;
0 otherwise.

Vj—1 —|—Uj+1 ifj E’I”—I—l;

e (vi) =
() 0 otherwise;

2.3. Affine Hecke algebra in 3 parameters

Let W be the Weyl group of affine type Cy generated by S = {so, s1,...,54}
with the affine Dynkin diagram

O= 00—+ —0<=0
0 1 d—1 d

Recall that V is the natural representation of U(;[n) with F-basis {v; | i €
Z}. The tensor space V®? then has an F-basis {M; | f € Z¢}, where

My =vq ®--Quy, ev®¥ for f= (f1,---s fa) ez
The group W admits a natural right action on Z%. Precisely, for

f=(f, ... fa) ez
we have

(f17'"7fi—17fi+17fi7fi+27‘”7fd) lfz#07d7
(2.3.1) frsi=q(=fi,fay o5 fa) if i = 0;
(f17f27"'7fd—17n_fd) ifi=d.

Let H be the affine Hecke algebra of type Cy with three parameters, that
is, H is an F-algebra generated by

T, (0<i<d—1), X' (1<a<d),
subject to the following relations, for 1 < a,b < dand for 0 < 1,75,k <d—1,
1) Toric relations:

XX =1=X1X,, X.X,=X,X,.
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2) Hecke relations:
(To—qa )(To+q) =0, (Ti—q )NTi+q)=0 (i#0),

(232)  TiTeiTh =T TiThs (k#0,1),
(TVTh)* = (WTh)?*, T,T; =T;T; (|i—j]>1).

3) Bernstein-Lusztig relations:

3.3) ToX: ' To = q5 ' a1 X1 + (05 'qn — 1) T,
(2.3.4) T XiTi = Xip1 (1 #0), TX;=X,T; (j #4,i+1).

We remark that the Hecke algebra H of affine type Cj in this paper can be
matched with the version in [19, Appendix A] with the following parameter
correspondence: our q <> their p, our qg <> their g1, our ¢ <> their gy. Also
see [15] in somewhat different notations.

The algebra H contains a subalgebra Ha generated by Ti,...,T4_1,

Xlﬂ, e ,le, which is an affine Hecke algebra of type A.
We define Ty € H by

(2.3.5) Tyi=qy ' XaTy - T T T T

Lemma 2.4. The element Ty € H satisfies the following relations:

1) (Ta = g7 )(Ta+gq5') =0

2) T,T; = T;Ty, for all0 <i<d-—2.

3) (Ty1Ty)? = (TyTy_1)?, ifd > 2.
Proof. These relations are verified by direct computations. Here we only
present proofs for (1) and (3) while leaving the verification of (2) to the
reader.

Thanks to ([2.3.4]), we have
XTIy =Ty - T (X0 Ty ).

Hence

(2.3.6) qTa=To - To(XaTy DT - T

It follows from ([2:3.3) that (X1Ty ' — qoq; )(X1Ty ' +1) =0, and thus
(40T — qog7 ) (90T + 1) = 0 by ([2:3.6). Part (1) follows.
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We compute

(T AT = g Tu—s
=@ T2

X T1 ..

(Td_le_—l1)2 = ‘J(Q)Td—l
X Ty—2

=3 Ty

X Tl .

= qud—l

TV T - .Td_lefle_2 - TYTOTY - -

VT Ty Tys - Th Th
T2 Ty Xy Xy,

T TTY - - -Td_le_l
VT - - - Td_nglTle

o TVTTy Ty 1Ty o - ThTh
T2 Ty X Xy T

o TVTTy Ty Ty - Ty Th

87

Ty X!

x Ty« Ty Ty A X X
Thus, to show the identity in (3) it suffices to show that

(2.3.7) (Ty—g---To- Ty1---To- - Ty_9)Ty_r

=Ty (Tyo- Ty -Ty1--- Ty Ty_s).

Let ag = —2€1, 4 = ¢; — €41 for 1 < i < d — 1. The highest root in the finite
type C Weyl group is 0 = ag + 201 + ... + 2099 + g1 = —€4_1 — €4 and
hence

(2.3.8) $0Sd—1 = Sd—150-

Therefore, (2.3.7)) follows by (2.3.8)) and noting that

Sd72."80".sd71."80".Sd72

is a reduced expression of sg. O

It follows by ([2.3.4)—(2.3.5)) that the algebra H is generated by Ty, 171, .. .,
Ty. For any w € W with a reduced form w = s;, - - - 54, set

(239) Ty:=1; T
and
q ifi=0;
(2.3.10) Gw = Gs,, """ (s, Where gs, :=1qgq if i #0,d;
gt ifi=d.
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It follows by the braid relations in (2.3.2) and Lemma that T, is inde-
pendent of the choice of the reduced form of w. Since the gs,’s satisfy the
same braid relations, g, is uniquely determined by w, too.

2.4. A tensor module for Hecke algebra

We first recall a well-known action of the Hecke algebra H 4 of affine type A
on V¥4 see [14]. We introduce linear operators z1, ..., zq which act on yed
(from the right) as below:

MfZZ = M(fl’“'»f'—l7fi+n7fi+17“'afd)'

Since each f; € Z has a unique expression f; = f; + cim, for some ¢; € Z such
that —r < f, <7+ 1, each basis element My has a unique expression

Mf:M?Zf, Zf:zfl-uz;d.

Recall the right W-action on Z¢ in (2.3.1)). Following [T4, (32)], the action
of Hy is given by, for 1 <i<d—1and 1 <a <d,

My, +(g" — Q)prf)@f) A if fiy1 > fis
(2.4.1) MyT; = qfleZf-si +(g - Q)MTPJ(:)(Zf) if fig1 =15
My, + (g7 — @) MzPY (Zy) if Fipr < i

(2.4.2) MpX,= Mz, "
Here Pg ) are operators given by

Zi—&—l(Zf-si) — ZZ‘Zf P(Z)(Zf) i 2i<Zf-si — Zf)
) + - -

2.4.3) POz =
( ) ( f) Zi4l — % Zi+l — %4

Now we shall enhance the action of H4 on V¥4 to an action of the Hecke
algebra H of affine type C in 3 parameters. For convenience we denote the
basis elements of V by

viz! =iy, (-r<i<r+1,j€Z).
Define

(2.4.4) MyTo = (v, To) @ vp, @ -+ Qg
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where vy, Tp is given by (below we assume f; = k + nj, for —r <k <r+1):

I o2 4 (g g — 1) S ot
ifk=r+1,7>0;

vz 4+ (g =) S o T (L= g ) Sy oI
ifk=r+1,7<0;

vz 4 (q — qo—l) ?:1 v 2 4 (Q()_lq1 —1) Zgzl v T2
if0<k<rj>0;

(24.5) vz + (g — ) Sy ok T A (L= gg @) 2o o
it0<k<rj<O0;

G vz (g — g )

g w0z + (g1 —qp ) Yol v T+ (gt — 1) Yop_ vo2d T

if kb =0,j > 0;
@0z + (g — q1) 3y vor T+ (1 — gt ) 357 wor IR
if k=0,j <0;

_ » B L - ‘ =
q 1Q1’U7kz T+ (n — % 1) Z?:l vp2d 2 4 (qo 1q1 ~1) 2{11 vz 12
if —r<k<0,j>0;

o o k2 + (g0t —a) Xy ez 2 4 (1= gy ) 32 oI
if —r<k<0,57<0.

The formula (2.4.5) above is obtained as follows. We first define the
action of Ty on {vi| —r <k <r+1} in V, and then extend the action to
all the basis vectors by the relation ([2.3.3)).

Proposition 2.5. The formulas in (2.4.1)—(2.4.5) define an action of H

on V&4,

Proof. It suffices to check the Hecke relation (2.3.2) and the Bernstein-
Lusztig relation (2.3.3) for Tp. This follows by a direct computation, and
here we only present the borderline cases in (2.4.5)). It is useful to give the
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following formulas for the borderline cases in (2.4.5)), for 1 < k <r,

vrp1do = qo_l(JW—r—l,

v 1Ty = vry1 + (g5t — q1)v_r1,

vpTo = v,

Ok T0 = Vn—t; + (a5 " — q1)Vk—n + (1 — g 'q1) i,
voTo = g5 "o,

v_nTo = qg vn + (¢ — @1)v—n + (1 — g5 "q1)vo,
v_kTo = g5 'qvk + (g0 " — q1)v—rk,

O xTo = gy q1vr—n + (05 "1 — 1)v_g.

We start with checking (2.3.2) for these cases as follows:

vrg1 (To — g5 )(To + 1) = g5 "1 (vrs1 + g v—r—1)
— g5 (g " qrv—r—1 + qrvr41) =0,
v 1 (To — ag D) (To + @1) = @5 "qrv—r—1 + qvr+1
— q1(Ur41 + @5 'v—p—1) =0,
oe(To — g5 ) (To + 1) = (g5 qrow + g v-y,)
— gy (v + qrug) =0,
v_i(To — q5 ) (To + @1) = ¢4 a1 (v—k + q1vg)
— qi(gy ' qrop + qp tv_g) = 0,
vo(To — a5 ) (To + 1) = 0,
von(To — g0 ) (To + q1) = 45 (@rv—n + (g5 'q1 — 1)vo + quvn)
+ (=g a) (g " + a)vo
—q1(gg 'vn + (1= ¢ "q1)vo + gg 'v—n) =0,
Uk (To — a5 ) (To + @1) = @5 ' q1ok—n + (65 a1 — 1)v_k + qron—y
— 1 (Vn—k + @5 Ok—n + (1 — g5 'q1) Vi)
+ (1 =gy 'q) (v + qox) =0,
vnk(To— g5 ) (To+ q1) = ¢5 ' @1 (vn—k + qo " Vk—n + (1 — g5 ' q1)vr)
+ (g0 ' — D(gp 'qron + g 'vr)
— ¢ " (g5 ' @1vk—n + (g5 @1 — Dk + q1on—g) = 0.
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The Bernstein-Lusztig relation (2.3.3)) for the extremal cases follow from the
following computation:

U1 To X1 T = (g5 q1)v—r—1,
v 1 To X7 T = g @10_311) + (g9 ' a1 = D01 + (g5 = @1)v—r1),
e To X7 ' To = g ' q1vk—n + (65 1 — vy,
vk To X1 To = go ' qo—k—n + (g9 'q1 — D(gg ' vk — (' — q1)v-),
vTo X7 ' To = ¢5 ' (q1v—n + (g5 'q1 — 1)vo),
vy To X7 Th = 5 ' qrv—an
+ (g5 @ = D(gg v + (1= g5 q)vo + (g — a1)v—y)
Ve—nTo X7 ' To = q5 ' q10k—2n
+ (g0 a1 — D) (vn—k + (g0 " — @)vk—n + (1 — g ' q1)vn),
on kT X7 o = g5 ' v + (99 1 — V(g ' @1vk—n + (0 "1 — D).

The proposition is proved. [l

IN

The action of T; (0<i<d—1) on theset {M; |0< fi < fo<---
fa < r+ 1} behaves nicely as below:

My if0< fi=fiq < 1,

46)  Mp=0 M HOSE=fmsrtlo g,
Mf-si lfOSfi<fi+1§T'+1,
g My if f1 =0,

(2.4.7) M;Ty = My.s, fo< fi<r+1;

G aMyps, it fr=r+1.
Combining (2.4.6)—(2.4.7) with (2.4.2)), we obtain the following.

Corollary 2.6. The tensor space V¢ is generated by {Mp|0< fi< fo<
coo < fa <r+1} as an H-module.

3. Schur duality in three parameters

In this section, we establish the Schur (TUC(;In), H)-duality on V¥4, To that
end, we study the structures of the affine Schur algebra.
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3.1. Affine Schur algebras

From now on, we fix
r,d € Z such that r>d>1.

Recall n = 2r 4+ 2. Let N ={0,1,2,...}. Denote the set of (weak) composi-
tions of d into r + 2 parts by

r+1
(3.1.1) An,d = {)\ = (Aoy ALy .oy Apg1) € Nrt+2 ‘ Z)\Z = d} .
=0

For X € A, 4, let W) be the parabolic (finite) subgroup of W generated by
S\{5x0> SAg1s---15r0, 1> Where Xg; = Ao+ A1 +--- 4+ ); for 1 <4 < r; note
)\O,r =d— )\7‘-‘,-1*

We note that the element

w = (0,1,...,1,0,...,0,0)GAn,d
N—— ——

makes sense under the assumption r > d.

Recall T, in (2.3.9) and g, in (2.3.10]). For any finite subset X C W and
for A € A, 4, set

Tx = Z q;ITw and x) :=Tw,.
weX

Lemma 3.1. For A € A, 4 and fori € {0,1,...,d} \ {Xo, M1, Ao}, we
have
qale if £ = 0;
o Ty = ¢ g toy ifi#0,d;
ql_lx)\ if 1 =d.
Proof. Let us write x = > wew, ¢ (Tw + ¢s,Tws,). Then

ws; <w
(Tw + QSiTwsi)ﬂ = Twsi (Tz + qgi)ﬂ = psiTwsi (,Tz + QSi) = Ps; (Tw + gs, Twsi)y
where
qo_1 if 1 =0;
ps, =1 q ' ifi#£0,d;
gt ifi=d.
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The lemma follows. O

The affine Schur algebra Sj, ; of 3-parameter is defined as the following
F-algebra

Sp.a = Endu(@aea, ,22H) = @ Homg(z,H, 2\ H).
A:MEAn,d

Denote by £(g) the length of g € W. Let
P i={g € W | L(wg) = L(w) + £(g), Yw € Wy}

Then Z) (respectively, 7, 1) is the set of minimal length right (respectively,
left) coset representatives of Wy in W. Denote by

9)\“:@)\(7@;1

the set of minimal length double coset representatives for W \W/W,,.
For A\,u € A, 4 and g € P, define qbf\,u €S;, 4 by

g\”u,(l'y) = 5#7VTWAQW,U Yv € An,d-
It is straightforward to show that {qﬁf\u | A\, i € Mgy g € Doy} form an F-

basis of S}, ; (cf., e.g., [7, 8, 10]).
Define the right H-module

nd = @ x\H.

AEAL 4

Thanks to Corollary and Lemma we have the following.

Lemma 3.2. There exists a unique H-module isomorphism & : T} ; —
V&4 which sends

Ty — M/\ = M(O*O,...,T—‘y—l’v*l)

=¥ @ @02 e VR VA€ Ay

This induces an algebra isomorphism Sy, ; ~ Endy (V®Y).
3.2. The 33-Schur duality

Proposition 3.3. The actions of US(sl,) and H on V¢ commute.
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Proof. Tt is known that the actions of U(E,A[n) and Hy on Vieid commute. It
remains to check that the Tp-action commutes with the U¢(sl,,)-action, and
it suffices to check the special case d = 1.

It follows from a direct computation (using Lemma and )
that the Tp-action commutes with the actions of all generators of U¢(sly,).
The calculation is simple except for eg, e, and fy, f;., which are complicated
but similar — here we only provide a verification for (eyv)Ty = eg(v1p) and
(e,v)Ty = e (vTy) for v =wvp2! € V.

(1) We claim that (eqv)Ty = eo(vTp).

Indeed, if k # +1, then (egvyz?)Ty = 0 = eg(vyz’Ty). There are four
cases remaining. If K =1 and j > 0, we have

J J
(eov12/)Th = g5 Moz + (@1 — g 1) Y _ w02’ + (qp'qn — 1) Y woa/ T
=1 =1
. j . j .
= e (v—127+(q1—q0_1) > 0 (g - 1) Zvlz’“”)
=1 =1
= ep(v12’'Tp).
If k=1 and j < 0, we obtain
. . _j . _j .
(eov12/)To = qrvoz ™ + (g5 —q1) Y w0z 7 " + (1 — g5 qn) Y woz 7+
1=0 =1
] —J
= ey (v 12774 (q N Zvlz I+ (1—qy n Zvlz JH1=2
=1

= eo(vlijo).
For k = —1 and j > 0, we have
(eo’l),lzj)To

j J
=g 0z g o — g DY w0 g gt — 1)) vt T
=1 =1

Jj—1 j
0 (qolqlmz—ﬂ + (g1 — qal) valzj_% + (qalql —1) Zvlzg+1—2z)

=1 =1
= eo(’l)_lij[)).

)



Schur duality with three parameters 95

Finally for k = —1 and j < 0, we have

(eov_lzj)To

- -
=g (quz‘] g =)D vz T+ (- 'q) Zvoz”“_”>
=0 =1

=eg (qolqwlz_J +(go ' —q1) Z vz A (1—gg ) Z v_lz—4+1—2l>
=0 =1

= ep(v_12/Tp).

(2) We claim that (e,v)Ty = e, (v1p).
Indeed, if k& # r + 1, then (e,v32/)Ty = 0 = e, (v;2/Tp). There are two

cases remaining. If k =7+ 1 and 5 > 0, we have

(€rvr12)Th = (vp2? + v 27 THT

j j
=v,z 7+ (- gD v P (gt = 1)) v T
= =

J
tagp tqoe T A (- gp ) D) v
=1

Jj+1 ‘
+(g ' — 1)) v
=1

i
=g qvrz T + (@ —qp ) v
=1

J
+ (qO_IQI - 1) Z 'UijJrlin + Q()_lq1v—r—227j
=1

J J
+ (g1 =g )Y v (gt = 1)) w2 T

=1 =1
. j .
=e, <Q()_IQIUTIZ_] =)D e
=1
j .
+(q ' —1) Zvr+1zj+1_2l)
=1

= er(vr+1ij0).
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If k=r+1and j <0, we have

(erUrJrle)TO = (Urzj + (o Zj+1)TO

—J
2, -1 —j41-21
2+ (g —q) Evz] + (1 —gq ql)gv,«zﬁ'
=1

+ao a7+ (gt — @) Z v_py I

—j—1
+(l—gylq) Y vz
I=1
= U—rzij + (qal - Q1) Z Urzijim + (1 - Q[)_lq1) Z Urzij+172l
=1 =2
+vpoz (gt — @ ZU 422 7 (1—gp @) ZUT+2Z7]+172Z
=2
=e, (v_r 12 J—i— — Zvﬂ_lz i=2
—j ‘
+(1—qp'q) Y oppaz T
1=2
= e, (vy4127Tp).
The proposition is proved. U

By Proposmon and the above identification S}, ; ~ ~ Endg(V®?), there
exists an F-algebra homomorphism

U US(sly) — S5 4

The next lemma follows by a standard Vandermonde determinant type ar-
gument.

Lemma 3.4. For each A € A,, 4, the element ¢§ A€ S¢ n.d belongs to the sub-
algebra of S}, ; generated by ‘I/(hﬂ) 0<a<r+1.
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Here, we define two families of maps ¢;, ﬁ tApg = ApgU{0} (01is a
formal symbol) by

~ A0y N, A+ LA — 1, Ao, .. A if A\jr1 > 0;
€Z(A) — {( 0 1 + +1 +2 +1) 1 +1

Fi(\) = Aoy s him, A — L A + L Aiga, o  Aegr)  3E A > 0;
v if \j = 0.

By convention, it is understood that My = 0 and qﬁg,# =0= ‘[)]\0'
Recall the comultiplication A of U(sl,,) from Section Then, we have

d—1
A(d_l) (El) — 1®]€ ® El ® (K;l)(@d—k—l’
k=0
d—1
A(d*l) (FZ) _ K;X)k QF; ® 1®d7k71.
k=0

Lemma 3.5. For 0 <1 <r, we have

Aci=lge if i #r;
U(e;) = Doaea qg(}\ _ﬁf’le)i(x),il 1 _ #
Z)\EA g\t 404, QSE;T(A),)\ if i = r,
Ai—1 e P .
E/\GA q ()\¢ﬁ(3\)7/\ if i £0,7r;
2(Xo—1) 4e e .
\Il(fz) = Z)\GA q14q ¢ﬁ)(k),A if 7 = 0;

—1 A —Ap1—1 e
Y xer 9091 4 + qﬁ%(/\)’)\ ifi=r.

Proof. The proof is by a direct computation. Below we present the details
only for verifying the most complicated equation

We) = D *™ Vaoar6f ()
AEA, 4
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First, we compute ¥(e,). It suffices to compute ¥(e,)(M,) for all A €
Ay, q. Since e, = E, + ¢ 'F_, 1K, ! we have

U(e,)(My) = ATD(E) My + g ATD(F_ )M,

A1'+1
— Arp1—k
= E q M(OAO,...,r'\r,r—&-l’“—l,r,r-i-l*f“*k)
k=1
)\7,+1
—1=X 4+, k—1
+4q o E :q M(oxo,...,Mr,rﬂk—l,r+2,r+1*r+1*’“)-
k=1

Next, we calculate ¢¢ ) . It suffices to compute ¢% (M)). By the
(M), ~(A),A
definition of ¢ NNEY it follows that

$ aM) = > g Mz ()T

wGWAm_@gT()\)

Note that
J— r+1
W N Dz (3) = {820,417 S2gsthet For
r+1
U {8x, 41" 5d-15d5d—1" S, r+k}k i
Moreover, sy, 41" Sx,,+k—1 and Sy, 41" *S84-15dSd—1"""Sr,,+k are
reduced expressions for 1 < k < \.y1. Hence, we have

Z _1M~ Ty = Z q_k+1M~ V41 Do -1
wGWAm.@gT(/\)
Ari1
+ 3 g P g M ()T 1 TaaTaTuy - Tog, k-
k=1

It is easily verified that

M, (30 Tooo 41 Togovk—1 = Mgro,_prr g 11 g 13es1 4
In order to compute the other terms, we first note that, from (2.3.6)),

Drg 1 TaaTaTa1-+ T, 4k
=gy Thgt1 Ta—1(Ty—1 -+ T1X1T0—1T—1 e Td—ll)Tdfl Ttk
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It then follows from ([2.3.3)) that

Ty, 41 Tg1TgTg1--Th,, 1k
=y ' Trg, 1 Ta1Ta1 - Tigoay (To X7 = (g ' —D)Ty - Tt
=g Tay,p1- T Tyor - T X T T

+ (a7 =g )T, 1 7 Tae1Tu1 - Tog, 4k

Since fora < bwehave Ty - TyTy - To =1+ (¢ = q) S Tu---Ti - Ta,
we obtain

T)\O,r+1 .. 'Td 1Tde 1 '”T)\or-i-k

Arg1—1

=& (1 +( Z Trg,1 Do gt T/\o,r+1)

X TAO,T"'T1T0X1 Tl . T;O +hk—1

+ (g7 - qo_l)T,\0 B VA i |

7‘+1_1
(1 +( Z Dotk Tog ol TAO,T+kz)
=q 1j—‘/\o ' TITOX 1T_ T)\_O Ak—1
Arp1—1
+art Z Do ov1 Ty 11T 41

xTAO,,,,H_l---TlTOX1 et k1

+ (a7 = a0 ) Thgt1 Tho, k1

+lg =g —q)
Arpr—1

X E Drg 41 Do pi—1Tong 41T i1+ T k-

Therefore, we need to compute

(3.2.1) Mz )T, - TV X T T 1+k ’
(3.2.2) Mz (3)Trg, 41 Do +1-1Tn0, 4100 411+ Thg 4k
(3.2.3) Mz )Thg 41 TAU,T+l—1TAU,T+l

J — —
X Ty 411+ ThTo Xy T1 TAO k=1
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which are given as below:

B21) = Mz, )T, - TiToT1 -+ Ty b1 X5,

=4 N Moo, ore 151 g 1
= M(O*O,...,Mr,r+11,r,r+1*r+1*171)TAo,r+l—1 Ttk
— qi(lik)M(oko,,,.,Mr,r+1‘,r,r+1’\r+17l71)’
= M(U*o,...,TM,r+1l,r,r+1*7'+1_Z_I)TAO,rJrl*l e '710)(1_1111_1 o 'TAU,TJF’“*l

—(— —1p—1
:q( )M(r+1,0>‘0,...,7'*7‘,r+1‘—1,r,r+1’\"'+1_l_l)TOXl Ty =Ty vkt

—(1-1),—-1 —1p—1
=4 ( )qO QIM(rJrlfn,O)\o,...,r*r,rJrll—l,r,r+1*r+1*“1)X1 T1 "'T)\o,,,—i-k—l

-1 -1 .
qk l 1q0 qlM(O)\O7...,7‘AT,7‘+1l_1,1”,7"+]_kr+171) if 1 S l S k — 1,

7 1 .
qk’ lqO qlM(OAO7...,T*T,r+ll,r,r+1>‘r+17l71) if k < l < )\7«+1 — 1.

Summarizing the calculations above, we have

Arg1

e _ —k+1
¢€,.()\),)\(M)\) = E q M(O)‘O,...,r“,r+1k—1,r,r+1’\"‘+1”")
k=1
Art1

—2X 1 —Art+k+1 -1
T2 e 9081 M(oro,...ore r 15 —pamr 4131 8)

k=1
Arg1 k—1
—2X i1 +k+1/, —1 k—I1—1
+ E :q i (¢ —q) E :q M(O*O,...,r'\r,1‘+1l*1,r,r+1’\7‘+1_l)
k=1 =1
)\7«+171
v
+ q (0%0,...,pAr p 1l 1 r+1 712
=k
Arg1
—2X, 11 +k+1 —1
+§ q A (qoql _1)M(O>‘0,...,1'M,r+1k*1,r,r+1)‘r+l_k)
k=1
Arg1
—2Xp1+k+1 —1 —1
+ > g gt = 1) (g - g)
k=1
Itk
X q M(O*O,...,TAT,T—l—ll,r,r—s—l)‘ﬂ-l’l’l)‘
=k

The coeflicient for M(OAO I R IS PR is

—3()\7«+1—1) —1—>\¢+)\7«+1+k’—1

q q04; 'q :
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while that for Mgra,.. rre g 15=1 g 1iesa—ry 18

Ar+1
q—k—l—l + q—2>\r+1+k+1(q0q;1 + Z q—2)\T+1—k+2m(q—1 o q)
m=k-+1
k—1 k—1
D D e ) R N R (R ) [T OB
m=1 m=1

One checks that the latter coincides with

72)\,“4,17]{24’3 73(}\,“4,1 1) -1 AT+1 k

q Q¢ =q q04; 'q

Thus, we obtain
. oy (M) = ¢V goqr (e, ) (M),
which proves the assertion. [l

Proposition 3.6. Assume r > d. Then the Schur algebra S, ; is generated
by W(e;), U(f;), U(hi') for0<i<rand0<a<r+1.

Proof. Let S denote the subalgebra of S}, ; generated by ¥(e; ), U(£;), U(htl),
for 0 <4 <r,and for 0 < a < r + 1. By Lemma[3.4and 3.5, for each A € A, 4

and 0 <i<r, Wehaved)~ )\ESandqbe() es.
Take A € Ay, 4 arb1trar11y It is easy to check that there exists a se-
quence (x1,...,x;) of &, fi’s such that A ==z ---2;(w) and {e} = Wy, C

- C Wy, = Wy, where \g =w and \; = a:i()\i,l). Then, we have

Qsi,w = ¢§\7‘1>\7‘—1 U ¢§\11>\0 € S
By the same way, we obtain ¢;, , € S.
Next, for 0 < i < d — 1, we have
¢Z,’e}(w) ’ qZs‘gl(w), ¢w W + q57 w w*
We also have
(;5 w, () ¢6 = ¢5),w + ¢i)d,w

These show that ¢, € S for 0 <1 S d. Since ¢, S}, 405, is generated by
S, €8,0<1¢<r, we have ¢f},wal?d¢fJ,w cS
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Finally, for each A, u € A,, 4, we have
¢§\,wS1c1,d¢fJ,u = (bi,w Z7w82,d¢g,w Z,u CS.
Since Sﬁl’d is the direct sum of gbi’wSﬁhdqf)Zw we conclude that S = Sf%d. O

Theorem 3.7. Supposer>d>1. We have the following Schur (U‘(g[n), H)-
duality:

U (U (sl,)) ~ Endy (V®9),

~ ®dy ~ [oP
EndUc(gln)(V ) >~ HP.
(To be consistent with the variants in next section, we can refer to this as

p-Schur duality.)

Proof. It follows by Proposition that \II(U‘(f,A[n)) =S, ;- Hence the first
isomorphism follows by Lemma
Since ¥(U¢(sl,)) =S¢ , induces an isomorphism

End (V®9) ~ Endyge 2 (VE),

Us (sl,,)

we have

Endy. 5 ) (V&) ~ End,se o (V&)
~ Ends: (T}, ¢) = (¢ Sn,a00,.) " ~ H?.

The second isomorphism follows. O
3.3. Specializations

When specializing H to the single parameter case by letting ¢y = 1 and
q1 = ¢%, we obtain the affine Hecke algebra of type C over Q(q), denoted
here by H¢,. This is the Hecke algebra appearing in [9]-[10].

When specializing H to qg = q1, we obtain the extended affine Hecke
algebra of type B over Q(q,q1) in 2 parameters ¢, q;. When specializing H
to the single parameter case by letting qo = ¢1 = ¢, we obtain the extended
affine Hecke algebra of type B over Q(g), denoted here by Hp,.

When specializing H to g = g1 = 1, we obtain the extended affine Hecke
algebra of type D over Q(q), denoted here by Hp,.

Specializing our main Theorem on the 3-parameter Schur duality to
2-parameter or l-parameter cases, we obtain several versions of dualities,



Schur duality with three parameters 103

each of which is meaningful in its own way. In this sense, the duality in
Theorem [3.7 is a master duality which unifies dualities of different types
(among which the 1-parameter dualities should admit geometric interpreta-
tions using different types of flags).

The framework in [J] provides a geometric setting for the
(U(sLn)lgo=1.9.=¢2, He,)-duality on V[ZL, .. Both US(sh,)lg=1.4,=g?
and H¢, are geometrically realized; while not discussed explicitly therein,
V@d:L Qg2 CAN also be geometrically realized in terms of varieties of pairs
of an “n-step” partial flag and a complete flag.

Remark 3.8. Our work can lead to several interesting future projects,
which are highly nontrivial to carry out. One bonus of carrying out these
geometric constructions will be the positivity of the resulting icanonical
bases.

1) A geometric setting in flag variety of affine type B similar to [9] for

the (U‘(Ejln)|q0:q1:q, Hp,)-duality on V|$%  _ s expected.

2) A geometric setting in flag variety of affine type D similar to [9] for

the (U‘(;[n)]q():ql:l, Hp,)-duality on V!id:ql:l is expected. The finite

type version of this duality would be a modification of the construction
in [I1].

3) The algebraic construction in [I0] is expected to generalize to the 3-
parameter case or various 2-parameter or equal parameter specializa-
tions.

4) Classify the finite-dimensional irreducible U*(sl,)-modules.

5) All remarks in §3.3here are valid for the variants of Schur (U‘(f?[n), H)-
duality considered in Section {4 below.

4. Variants of Schur dualities
Motivated by [9]-[10], we formulate in this section several variants of the

Schur (U‘(;[n), H)-duality in Theorem We continue to assume r > d > 1.
Furthermore we set

n=n—1=2r41, n=mn-—2=2r.
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4.1. The p-Schur duality

Let 'V, be the F-subspace of V spanned by v;, for i € Z such that 1 Z r + 1
(mod n). Note that 'V, is naturally an H-submodule of V, and moreover, it
is a direct sum of permutation modules. R

We consider an isomorphic copy of U(gl,) (with a different indexing
set for generators), denoted by U(‘gl,). The algebra U('gl,) is generated
by E;,F; (i € [0,n—1]\{r +1}),D! (a € [0,n — 1]\{r + 1}); here we re-
gard indices r,r + 2 adjacent. Denote by U(’sl,) the subalgebra of U('gl),)
generated by E;, F;, K; (i € [0,n — 1)\{r + 1}), where K, = D, D, !, K; =
DiD;Lll (i # r). Then 'V, is a natural representation of U('gl,), with the
action given by: for i € [0,n — 1]\{r + 1},a € [0,n)]\{r + 1},

vj ifj=i#r;

EZ‘Uj_A,_l: Uj—l ifj—lEiZT;
0 else,
(4.1.1)
vit1 g =iF7 "y
v; if j = a;
Fﬂ)j = Vj42 ifj =1 = 5 Davj = avs J
v;  else.

0 else,

Then U('gl,) and U('sl,) act on’ V&4 via iterated comultiplication.
For i,j € [0,7], we denote the Cartan integers by

Cij = 20i5 — 0ij+1 — 0ij-1.

Define Uﬂ(gln) (cf. [9, Chapter 7]) to be the F-algebra generated by
e;, f;, and kl:-tl (0<i<r—1)and t,, subject to the following relations: for
al0 <, <r—1,

kO(k% o kz_l) = q_l’ kzk;l = 1? klk_] = kjk’La kztr = trki’
kiejki—l — inj+6i,06j.Dej’ kifjki_l _ q_C”_&i»O(Sivij,

eiej = ejei, fz’fj = fjfia V|l - .7| > 17

ki — k! .y
e;f; —fie; = 5ijq_7qjlv v(i,j) # (0,0),

e;t, = trei, fitr = trfi, \4) <r-— 2,
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e; 1ty +trel = (g+q er_1tre i,

£t + 68 = (g + g D1t

tre, 1 +e, 1ty = (g + ¢ tre 1ty + qq; o1,

2,1 + f_1t2 = (¢ + ¢ Ot fo1t, + qog; o1,

ejej +ejel = (¢ +q eeje;, 2 + G = (¢ +q DEGE, Vil =1,
edfo + foef = (¢4 a~ ') (eofoeo — q1geoko — ¢ 'q 'eoky '),

fieo + eofy = (q+q ') (foeofo — gakofo — g5 'q kg o).

Proposition 4.1. There is an injective F-algebra homomorphism p :
U7 (sly) — U('sly) such that

k,—» KKt | (0<a<r-1)

e, > E+F_,K' fi—»E , +FK |, (1<i<r-1)

eo— Eo+qy 'Fu K'Y, fo=>E_1+qq 'FoK,

(4.1.2) t, — B, + qqoq] "F K+ (1 —qogy Y /(g — ¢ HKL

Proof. The proof is similar to the proof for Proposition 2.2} The subalgebra
here is a quantum symmetric pair coideal subalgebra associated with the
Dynkin diagram and involution below, and the proposition follows from [16],
Theorem 7.8]. O

Figure 2: Dynkin diagram of type Ag? with involution of type 7.

0 1 r—1

o o o
\SD

>

2r 2r—1 r—+1

Recalling A,, 4 from (3.1.1)), we define
Aﬂ,d = {)\ = ()\0,)\1, c 7)‘T+1) € An,d | )‘T‘Jrl - 0}

n

Note that w € Aﬁd. Define the right H-module

TV, = @ =H

AEAY ,
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Following [10], we define the p-variant of the Schur algebra S, ; as follows:

S% 4 = Endu(®renr oaH) = 5 Homp(w,H, z\H).
MUEATY ,

It is routine to show that {gf)i’\u |\ pe A g€ Dy} form an F-basis of
S% 4
The following is a variant of Lemma [3.2

Lemma 4.2. We have an isomorphism of H-modules: de = ’V?d.

Note U7 (sl,) acts on 'V via the embedding 7 : Uﬂ(;[n) — U('sly); we
denote this action by W7,

Theorem 4.3. We have the following Schur (Uﬂ(;[n),H)—duality:

(U (sl,)) ~ Endy ('VE?),

Endy, g, (Ve9) ~ H.

Proof. We first check that the actions of U” (s:A[n) and H on 'V%? commute.
As seen in Proposition it remains to verify that the Tp-action commutes
with the t,-action on V. For the unique expression f = k + jn such that

—r < k <r, we combine (4.1.2) and (4.1.1)) and then obtain

1— —1
toop = — Dy (F£rr+2),

q—dq
j -1 i1, 1— qoql_l -1, _j
trvrz! = qoqy v+ ———q v,
q—q
A A 1 — agnat A
trv_p2) = v 4 %qv%z].

q

Note that the t,-action is a scalar multiplication for f # r,r 4+ 2 and hence
it commutes with the Ty-action (2.4.5)). For k = r,5 > 0 we have
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j
(tror2?)To = qoay ' (quqwrz_J_l il —qp ) 2?2

=1
j+1 .
gt 1) z)

=1

1—qoqy —j e i
+——L g Moz (@ —gp )Y v

qa—4q I=1
+(g ' — 1) zj:vrzj_m“)v
=1
t, (027 Tp) = v,z 771 4 :_qofflqv rzd
J 1 j—2i41 , 1 _QOQ1_1 1. _j-2
(@1 —qo ; <‘I0q1 V_pZ + ﬁq UpZ )

J
- - L—qoqy~ 1 -
+ (g~ 1)) (qo(h ty_p 2 2”2+q7qllq Ly, 232041 |
=1

They are indeed equal. The rest can be checked similarly and the commu-
tivity follows.
For the first isomorphism, it suffices to show that

(4.1.3) W (U7 (s1,)) = S,

which follows from a variant of Proposition as below. Let 'S be the
subalgebra of S7', generated by ¥/ (e;), U (f;), 7' (k;) and ¥ (t,) for 0 <
i <r—1. Similar to the proof of Proposition one can show that 'S
contains the elements ¢¢, ,, ¢5 , for all X € A e and the elements ¢3 , for
0 <¢ < d—1. The only difference here is that gbw, € 'S follows from

T (t,) € > Fei

AEAY ,

For the second isomorphism, note that (4.1.3)) together with Lemma
induce an isomorphism Endy;,, 5 (’ V$9) ~ Endg: (T% ). The theorem now
follows since

Endgﬁd(Tﬁ ) ( w wa:dQSijw)Op ~ HOp.

O
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4.2. The y-Schur duality

Let V,, be the F-subspace of V spanned by wv;, for ¢ € Z such that ¢ #Z 0
(mod n). Note that V,, is naturally an H-submodule of V, and moreover, it
is a direct sum of permutation modules.

Recall U(gl,) is generated by E;, F;(0 <i <n —1), DF (1 < a <n). De-
note by U(sl,) the subalgebra of U(gl,) generated by E;, F;, K; (i € [0,n —
1]), where Ko = Dn,lDfl, K, = DiD;rll (i #0). Then V, is a natural rep-
resentation of [U(g[n), with the action given by

vj if j=i#0;

Ejvji1=Rvj_1 ifj=i=0;
0 else,
v; 1 = a;
Fivj=<vj40 ifj+1=i=0; D,v; = qu; J
v;  else.
0 else,

Then U(g[n) and U(sA[n) act on V¥4 via iterated comultiplication.

Define U%(sl,) to be an F-algebra generated by to, e;, f;, and kfﬂ (1<
i <r). We will not write down all its relations explicitly, as there is a Q(q)-
algebra isomorphism U"(sl,,) — U”(sl,), which sends qo — q1,¢1 — qo,to —
tr,e;— e, fi—f._;, k,— k,._;, for 1 <¢ <r. In particular, the Serre re-
lations for tg are as follows:

toer + e1t§ = (¢ +q toerto + QS1Q1917
tgfl + flt% =(qg+ qil)toflto + qo_lqlfl.

We refer to for the rest of relations of U7 (;[n)
The following proposition is a variant of Proposition associated to
the Dynkin diagram below in Figure

Figure 3: Dynkin diagram of type Ag},) with involution of type 2.

1 r—1 r

0 O 0 o)
30

\oj go Eo

2r r—+2 r+1
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Proposition 4.4. There is an injective F-algebra homomorphism 1y :
UY(sl,) — U(sl,) such that

k, —» KK} | (1<a<r)
e~ E +F_ 1K' fi»E, +FK |, (1<i<r-1)
e, —»E, +¢'F_ K\ f—E_,. | +qq 'FK}

—r—1
to — Eo + qqp ' e FoKy ' + (1 — 0 1) /(g — ¢ K™
Recalling A,, 4 from (3.1.1)), we define
Afljd = {)\ = ()\0,)\1, .. .,>\T+1) S Aan | )\0 = 0},

and define the right H-module

T, = @ aH.

AeAY 4

Following [10], we define the ¢ variant of the Schur algebra S, ; as follows:

Sy 4 = Endu(@reny ,22H) = @ Hompy (2, H, z\H).
7/'L€An d

The following is a variant of Lemma [3.2]

Lemma 4.5. We have an isomorphism of H-modules: T\ ; =~ V&9,

Note U%(sl,) acts on V& via the embedding 7 : U (sl,) — U(sl,); we
denote this action by W¥%. In particular, we give the tg-action on V, for
record in the following: for f # 0, we have

oy 2+qq,1qvf if f=1;

tovy = § 4o qlvf+z+ Loty if f = 1
h= qﬂl vy otherwise.
a—q

The following is a variant of Theorem and can be proved similarly.
Theorem 4.6. We have the following Schur (U”(g[n),]l-]l)—duality:

U9 (UY (sly)) ~ Endg(VEY),
Endyy, g, (Ve?) >~ H?.
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Remark 4.7. Starting with a natural [U(E;A[n)—module V, 1 with a basis
parametrized by %—FZ of periodicity n, we can reformulate the Schur
(U(sl,), H)-duality in Theorem on V?i accordingly. Similarly, starting

with a natural U(sA[n)—module Va0 with a basis parametrized by Z of peri-
odicity n, we can reformulate the Schur (U%(sl,), H)-duality in Theorem
on V%g accordingly.

4.3. The u-Schur duality

We shall assume r > 2 in this subsection. Let V,, be the F-subspace of V
spanned by v;, for i € Z such that i 20 (mod n) and i Zr + 1 (mod n).
Note V,, = V,, N'V,, is naturally an H-submodule of V, and moreover, it is
a direct sum of permutation modules.

We consider the F-algebra U(gl [,,) (with an unusual indexing set of gener-
ators). The algebra U(g/;\[n) is generated by E;, F; (i € [0,n — 1]\{r + 1}), D!
(a € [1,n]\{r + 1}); here we regard indices r, r + 2 adjacent. Denote by U(;[n)
the subalgebra of U(é\[n) generated by E; F; K; (i € [0,n—1]\{r +1}),
where Ko = D_1D;", K, =D,D,,, K; =D;D; )} (i #0,r). Then V, is
a natural representation of U(g[n), with the action given by: for i € [0,n —
IN{r+1},a € [0,n]\{r + 1},

vj ifj=i#0,r;
vi_y if j=i=0;

Eivjy1 =4 ’ e
vip ifj—-1=i=mr

0 else,

viy1 ifj=4i#0,r;
; if j+1=7¢=0; pif j=a;
Fvj = V42 Mg+ v D,v; = {QUJ ny=a

vjyo ifj=i=r; v;  else.

0 else,

Then [U(g[n) acts on Vf?d via iterated comultiplication.

Define U”(E’A[n) to be the F-algebra generated by to, t,-, e;, f;, k;-tl (1<i<
r — 1), subject to the relation tot, = t,to, and other defining relations which
can be found in the algebras U’ (sl,,) and U¥(sl,). (The relations would be
different in case r = 1 as ty and t, no longer commute.)
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Proposition 4.8. There is an injective F-algebra homomorphism w :
U*(sl,) — U(sl,) defined by

ki — KK |,

e, E+F_ 1K' fimE,,  +FK ], (1<i<r—1)
to — Eo+aqy aiFoKy' + (01 — g0 ) /(e — ¢ DK,

t, = By + q0q; ' Fo K 4+ (1—qog ) /(g — DK

Proof. The proof is similar to the proof for Proposition [2.2] The subalgebra
here is a quantum symmetric pair coideal subalgebra assocnated with the
Dynkin diagram and involution below, and the proposition follows from [16,
Theorem 7.8]. O

(1)

Figure 4: Dynkin diagram of type As,~ ; with involution of type 2.

1 7“—1
O/O ~_r
GO\OE (:O/ bED)
2r —1 r+1

Recalling A,, 4 from (3.1.1)), we define
77d = {)\ = ()\0,)\1, ce )\,».,.1) € An,d | Ao = )\7«+1 = 0} (: Aﬁd N A:id).

Define the right H-module

Ty = @D i

AeAL,

Following [10], we define the #-variant of the Schur algebra S, ; as follows:

nd = EndH(@,\eAu x \H) = @ Homp (x, H, 2\ H).
MHEAT

The following is a variant of Lemma

Lemma 4.9. We have an isomorphism of H-modules: Tn 4= V®d
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Note U“(g[n) acts on V?d via the embedding u : U“(E.A[n) — U(E.A[n); we
denote this action by ¥*. The following theorem can be established similarly
as for Theorem (4.3l

Theorem 4.10. Let r > d > 2. We have the following Schur (U“(;[n), H)-
duality:

T (U"(sl,)) ~ Endg(VEY),

~ ®dy ~
End[U“(s[n)(V77 ) ~ H.
Proof. The proof is similar to the previous counterparts except that we need
the following formulas for the images of tg,t, which follow from a direct
computation:

U(tg) € Y FoP,, W'(t) e Y Foi,.

)\EA:f,d )\EAj]l,d

The theorem is proved. O
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