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Moduli spaces of anti-invariant vector

bundles and twisted conformal blocks

Hacen Zelaci

We prove a canonical identifications between the spaces of general-
ized theta functions on the moduli spaces of anti-invariant vector
bundles in the ramified case and the conformal blocks associated to
twisted Kac-Moody affine algebras. We also show a strange duality
on level one in the unramiffied case, this gives the dimensions of
the spaces of generalized theta functions of level one.

1. Introduction

Consider a smooth projective complex curve X of genus gX > 2 with an
involution σ and assume that the fixed locus of σ is not empty and contains
2n points. Let π : X → Y = X/σ the associated double cover and denote R
the ramification locus and B = π(R).

An anti-invariant vector bundle over X is a vector bundle E that has
an isomorphism ψ : σ∗E → E∗. If the this isomorphism verifies σ∗ψ = tψ
then E is called σ−symmetric, and if it verifies σ∗ψ = − tψ then it is called
σ−alternating, in this case the rank has to be even. If E is stable then ψ is
necessarily σ−symmetric or σ−alternating.

We constructed the moduli spaces of such vector bundles in [20], and in
[19], we showed that the locus SUσ,+X (r) of stable σ−symmetric anti-invariant
vector bundles with trivial determinant over X is irreducible. We also proved
that the locus SUσ,−X (r) (for even rank r) of stable σ−alternating vector
bundles with trivial determinant has 22n−1 connected components indexed
by some types τ = (τp)p∈R mod ± 1, where τp ∈ {±1} is the Pfaffian of the
σ−alternating isomorphism ψ : σ∗E → E∗ over p.

The main topic of this paper is the study of generalized theta func-
tions on the moduli stacks S U σ,+

X (r) (resp. S U σ,τ
X (r)) of σ−symmetric

(resp. σ−alternating of type τ) anti-invariant vector bundles (E, δ, ψ) over
X, where δ is a trivialisation of det(E) and ψ : σ∗E ∼= E∗ is σ−symmetric
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1850 Hacen Zelaci

(resp. σ−alternating of type τ) compatible with δ. When the type is τ triv-
ial, that’s τi = +1 for all i, the corresponding moduli stack is denoted simply
by S U σ,−

X (r).
These moduli stacks correspond to moduli stacks MY (G) of parahoric

G−torsors over the quotient curve Y , for some twisted parahoric Bruhat-Tits
group schemes G. Parahoric G−torsors have attracted the attention of many
mathematician recently (see [15], [10], [1], [2]), since they can be considered
as a generalization of parabolic G−bundles. Their moduli spaces has been
constructed in the untwisted case by Balaji and Seshadri [1]. For the twisted
case, we have constructed their moduli spaces in type An in [20].

The restriction of the determinant bundle D over the moduli stack of vec-
tor bundles of trivial determinant S U X(r) to the moduli stack S U σ,−

X (r)
turns out to have a square root for each σ−invariant theta characteristic,
we call them the Pfaffian of cohomology line bundles. However this is not
true for the σ−symmetric case.

In the étale case, the two stacks are isomorphic (see [19]). In this case
also, the determinant bundle has a square root. However, in this paper we
stick to the ramified case.

Our main result is the identification of the space of global sections of the
powers of a Pfaffian line bundle P and the determinant line bundle D (called
space of generalized theta functions) with the conformal blocks Vσ,±(k) as-
sociated to the twisted universal central extension of slr (see section 2 for a
precise definition).

Theorem 1.1. Let P be a Pfaffian line bundle over S U σ,−
X (r) and D

be the determinant line bundle over S U σ,+
X , and let k ∈ N. Then we have

canonical isomorphisms

H0(S U σ,−
X (r),Pk) ∼= Vσ,−(k),

H0(S U σ,+
X (r),Dk) ∼= Vσ,+(k).

Using the results of Heinloth [10], describe the Picard group of this
moduli stack. In fact it is infinite cyclic group whose generator is the Pfaffian
bundle.

Theorem 1.2. Let P be the Pfaffian bundle over S U σ,−
X (r), then

Pic(S U σ,+
X (r)) = ZP.



i
i

“12-Zelaci” — 2020/3/6 — 21:57 — page 1851 — #3 i
i

i
i

i
i

Anti-invariant bundles and twisted conformal blocks 1851

2. Preliminaries on twisted Kac-Moody algebras

In this first section, we recall briefly the construction of the twisted affine
Kac-Moody Lie algebras and the attached conformal blocks. We use nota-
tions of [11]. The definition of twisted conformal blocks is adapted from [8],
where a more general definition is given in the framework of vertex algebras.

Consider an outer automorphism τ of the Lie algebra slr(C). It is an
order two automorphism. The involution τ is extended to an automorphism
of the affine Kac-Moody algebra L̂(slr) = slr(K )⊕ CK, where K = C((t))
and K a central element, by sending x⊗ g(t) to τ(x)⊗ g(−t) and fixes the
center. Then the fixed subalgebra of this involution, denoted by L̂(slr, τ), is

an affine Lie algebra of type A
(2)
l (after adding a scaling element D), where

l = br/2c, and it is called twisted affine Lie algebra. Let g̊ be the finite simple
Lie algebra of L(slr, τ) (see [11, §6.3] for a precise definition). Then g̊ is of
type Cl if r is odd, and is isomorphic to the fixed subalgebra slr(C)τ if r is
even.

Since we will be interested mainly in the following two involutions

σ+(a(t)) = − ta(−t), σ−(a(t)) = −Jr ta(−t)J−1
r ,

where

Jr =

(
0 Ir/2
−Ir/2 0

)
,

we give an explicit constructions of L(slr, σ
±).

Let Mi,j be the canonical basis of the vector space of square matrices
of size r. Let h ⊂ slr(C) be the Cartan subalgebra of diagonal matrices and
let α′1, . . . , α

′
r−1 ∈ h∗ be the simple roots defined by αi = M∗i,i −M∗i+1,i+1.

Denote by E′1, . . . , E
′
r−1 and F ′1, . . . , F

′
r−1 the Chevalley generators of slr(C):

E′i = Mi,i+1, F ′i = − tE′i. Let α′0
∨ = M1,1 −Mr,r, E

′
0 = M1,r and F ′0 = − tE′0.

Then the Chevalley generators of L̂(slr) are given by

e0 = t⊗ E′0, f0 = t−1 ⊗ F ′0,

and for i ∈ {1, . . . , r − 1}

ei = 1⊗ E′i, fi = 1⊗ F ′i .

Recall the Lie bracket on L̂(slr) is given by

[g(t), h(t)] = [g, h]⊗ P (t)Q(t) + (g, h)Res

(
dP

dt
Q

)
K,
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where g, h ∈ slr, P,Q ∈ K and ( , ) is the normalized Killing form on slr.
Moreover, by extending the linear forms αi to h⊕ CK such that αi(K) =

0, then αi are the simple roots of L̂(slr).

Case L(slr, σ
−). Let r = 2l. This is the algebra constructed in [11, Page

128]. We can assume, after conjugation, that σ− sends E′i to E′r−i, F
′
i → F ′r−i

and α′i → α′r−i. So let’s define

• α∨i = α′∨i + α′∨r−i (1 6 i 6 l − 1), α∨l = α′∨l and α∨0 = −2α′∨0 + α′∨1 +
α′∨r−1.

• Ei = E′i+E
′
r−i (1 6 i 6 l−1), El = E′l and E0 = E′−α′0+α′r−1

−E′−α′0+α′1
.

• Fi = F ′i + F ′r−i (1 6 i 6 l − 1), Fl = F ′l and F0 = −E′α′0−α′r−1
+ E′α′0−α′1 .

The Chevalley generators of L̂(slr, σ
−) are given by

ei = 1⊗ Ei, fi = 1⊗ Fi for i = 1, . . . , l.

e0 = t⊗ E0, f0 = t−1 ⊗ F0.

Consider the elements α̃∨i = 2α∨i /(α
∨
i , α

∨
i ) ∈ h. Since the normalized bilinear

form ( ; ) is non-degenerate on h it induces an isomorphism h ∼= h∗. So let α̃i
be the images of α̃∨i under this bijection. Then the simple roots of L̂(slr, σ

−)
are given by

α0 =
1

2
⊗ α̃0, αi = 1⊗ α̃i, i = 1, . . . , l.

The simple coroots are just 1⊗ α∨i , for i = 1, . . . , l. We denote them again
by α∨i . For i = 0 the simple coroot is 2K + 1⊗ α∨0 . We denote it also by α∨0 .

In particular, the normalized bilinear form on L̂(slr, σ
−) is given by

(P ⊗ x;Q⊗ y) =
1

2
Res(t−1PQ)(x; y),

where ( , ) is the normalized bilinear form on slr(C). The 2−cocycle on
L(slr, σ

−) that defines L̂(slr, σ
−) is given by

ψ(g(t), h(t)) =
1

2
Res

(
Tr

(
dg

dt
h

))
.
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Case L(slr, σ
+). We treat the case r = 2l (the odd case is again treated

in [11]). We can assume, after conjugation, that σ+ sends E′i to −E′r−i,
F ′i → −F ′r−i and α′i → α′r−i. So we define the following elements of sl2l :

• β∨i = α′∨l−i + α′∨l+i (1 6 i 6 l − 1), β∨l = α′∨0 and β∨0 = 2α′∨l + α′∨l−1 +
α′∨l+1.

• Ei = E′i−E′r−i (1 6 i 6 l − 1), El = E′0 and E0 = E′α′l+α′l+1
−E′α′l+α′l−1

.

• Fi = F ′i − F ′r−i (1 6 i 6 l − 1), Fl = F ′0 and F0 = −E′−α′l−α′l+1
+

E′−α′l−α′l−1
.

Remark that the affine node β0 of L̂(slr, σ
+) is then the node αl with the

notation of Table Aff 2 of [11, Page 55]. Thus when deleting this node the
remaining diagram is of type Dl.

As before, we define the Chevalley generators of L̂(slr, σ
+) by

ei = 1⊗ Ei, fi = 1⊗ Fi for i = 1, . . . , l.

e0 = t⊗ E0, f0 = t−1 ⊗ F0.

The simple coroots of the simple invariant Lie algebra (= so2l) are given by

β̃∨i = 2β∨i /(β
∨
i , β

∨
i ), i = 0, . . . , l.

As above denote by β̃i the corresponding elements of h∗. Then the simple
roots of L̂(sl2l, σ

+) are given by

β0 = 2K + 1⊗ β̃0, βi = 1⊗ β̃i, i = 1, . . . , l.

From the construction of L̂(slr, σ
+), it is clear that the Coxeter coeffi-

cients and their duals in this case are taken in the inverse order. We recall
the dual Coxeter coefficients of the twisted Kac-Moody algebras L̂(slr, σ

±)
in the following table.

(1)

a∨0 a∨1 a∨2 · · · a∨l−1 a∨l
L̂(sl2l, σ

+) 2 2 2 · · · 1 1

L̂(sl2l, σ
−) 1 1 2 · · · 2 2

L̂(sl2l+1, σ
+) 1 2 2 · · · 2 2

Dual Coxeter coefficients.
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Now, when we add a scaling elements to the above algebras, i.e. deriva-
tions D± such that

[D±, t
n ⊗ x] = ntn ⊗ x,

then, by [11, Theorem 8.5], both Kac-Moody algebras L̂(slr, σ
±)⊕ CD± are

isomorphic to the Kac-Moody algebra g(A), where A is the affine generalized

Cartan matrix of type A
(2)
r−1. In particular, we deduce an isomorphism

L̂(slr, σ
+)⊕ CD+

∼= L̂(slr, σ
−)⊕ CD−.

Moreover, the derivations D± induces a weight decomposition of the algebras
L(slr, σ

±)⊕ CD±. The main observation is that the above isomorphism does
not respect the decompositions of these algebras in powers of t.
We will see in a moment that under the above isomorphism, the fundamental
weight λ+

0 of L̂(slr, σ
+)⊕ CD is sent to twice the fundamental weight λ−0 .

Twisted conformal blocks

Let λ±0 , . . . , λ
±
l be the fundamental wights of the twisted affine Lie algebras

L̂(slr, σ
±), i.e. λ±i are linear forms on the Cartan subalgebras such that

λ+
i (βj) = λ−i (αj) = δij , i, j = 0, . . . , l.

Denote by g̊ ⊂ L(slr, σ
±) the simple Lie algebra generated by ei and fi for

i = 1, . . . , l. Note that g̊ is of type Dl in the case of σ+ when r is even, and
it is of type Cl otherwise. Moreover, we have the identifications (see [11,
§12.4])

λ±i = λ̊i + a∨i λ
±
0 , i = 1, . . . , l,

where λ̊i (i = 1, . . . , l) are the fundamental weights of g̊.

Remark 2.1. Remark that, for an even rank r, the weight λ+
0 has level

equals a∨0 = 2, while λ−0 has level a∨0 = 1 (see Table 1).

Denote by Pσ,± the set of dominant integral weights of L̂(slr, σ
±). By

[11, §12.4], one deduces a bijection between Pσ,± and the set

P̃
σ,±

= {(λ, k) | λ ∈ P̊, 〈λ, %〉 6 k},

where P̊ is the set of dominant weights of g̊, and % is the highest coroot of
g̊ when r is even, and % is twice the highest coroot of g̊ when r is odd.
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For µ± ∈ Pσ,±, denote by Hµ±(k) the irreducible highest weight module

of level k of L̂(slr, σ
±) of highest weight µ±. Let −→µ ± = (µ±1 , . . . , µ

±
2n) be a

vector of elements of Pσ,± parameterized by the points of R, and define

H−→µ ±(k) = Hµ±1 (k)⊗ · · · ⊗ Hµ±2n(k).

Finally, let AR = H0(X rR,OX). By considering the associated Laurent
series at p ∈ R, we get an inclusion slr(AR)σ

± ⊂ slr(Kp)
σ± . We can then

define an action of slr(AR)σ
±

on H−→µ ±(k) as product of representations (i.e

diagonal action). More explicitly, for α ∈ slr(AR)σ
±

and X = X1 ⊗ · · · ⊗
X2n, we have

α ·X =
∑
i

X1 ⊗ · · · ⊗ α ·Xi ⊗ · · · ⊗X2n.

Definition 2.2. The conformal block attached to the data (X, σ, −→µ ±,
L̂(slr, σ

±),k) is defined by

Vσ,±(k) =
[(
H−→µ ±(k)

)
slr(AR)σ±

]∗
,

where for a g−module V , we denote by Vg the space of coinvariants of V ,
thus the largest quotient of V on which g acts trivially.

3. Loop groups and uniformization theorem

3.1. Bruhat-Tits parahoric G−torsors

Let G be a smooth affine group scheme over X. G is said to be a parahoric
Bruhat-Tits group scheme if there is a finite subset R ⊂ X such that if Ox
is the completion of the local ring at x ∈ R then GOx is a parahoric group
scheme over Spec(Ox) (in the sens of Bruhat-Tits, [6, Définition 5.2.6]) for
each x ∈ R and the fibers Gy is semisimple for all y ∈ X rR.
A class of examples of such group schemes is provided by the invariant Weil
restriction. Given a Galois cover π : X → X/Γ of curves and a semisimple
algebraic groupG overX with an action of Γ lifted from its action onX, then
G = πΓ

∗ (G) is a parahoric group scheme over X/Γ (provided it is not empty).
Moreover, it is shown in [1] that the stack of Γ−equivariant G−torsors over
X is in one to one correspondence with the stack of G−torsors over X/Γ.
In our case, we have Γ = Z/2 = 〈σ〉 and G = SLr. Consider the actions of σ
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on SLr given by

σ+(g) = tg−1, σ− = Jrσ
+J−1

r ,

where

Jr =

(
0 Ir/2
−Ir/2 0

)
,

Ir/2 is the identity matrix of size r/2.
Let G and H be the invariant Weil restrictions of the constant group

scheme SLr = X × SLr defined by

G = (π∗SLr)
σ+

, H = (π∗SLr)
σ− .

These two are smooth affine group schemes over Y which are parahoric.
Denote by MY (G) and MY (H) the stacks of G−torsors and H−torsors over
Y . By [20, Proposition 2.4], we have isomorphisms

S U σ,+
X (r) ∼= MY (G), S U σ,−

X (r) ∼= MY (H).

3.2. Uniformization theorem

For a ramification point p ∈ X, denote by Op the completion of the local ring
at p, Kp its fraction field and Vp a complementary vector subspace of Op in
Kp. Let S U X(r) denote the moduli stack of rank r vector bundles over X
with a trivialization of its determinant. Let’s fix the canonical linearization
on OX , so we identify σ∗OX and OX . Moreover, since all the types are iso-
morphic, we assume hereafter that τ = (+1, . . . ,+1) mod ± 1 and denote
the corresponding moduli stack by S U σ,−

X (r).
In [3], it is proved that

S U X(r) ∼= SLr(Op)\SLr(Kp)/SLr(Ap),

where Ap = H0(X − p,OX). Let t be a local parameter at p, then Kp
∼=

C((t)), Op
∼= C[[t]].

Consider the two involutions σ± on SLr(Kp) given by

g(t)→ σ+(g(t)) = tg(−t)−1,

g(t)→ σ−(g(t)) = Jr · tg(−t)−1 · J−1
r .

Let Q = SLr(Op)\SLr(Kp). In [16], it is proved that

Qσ+

= SLr(Op)
σ+\SLr(Kp)

σ+

.
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Note that SLr(Op)
σ+

is the maximal parahoric subgroup of SLr(Kp)
σ+

and,
with the notations of loc. cit. this case corresponds to I = {0}. In fact, their
involution is the conjugation of σ+ by the anti-diagonal matrix Dr with
all entries equal 1. But this does not change much. Indeed, by taking a
matrix A such that Dr = tAA (such matrix can be constructed easily),
then conjugation by A realizes an isomorphism between SLr(K )σ

+

and
their invariant locus.
We denote in the sequel by Qσ,± the quotient SLr(Op)

σ±\SLr(Kp)
σ± , for

some p ∈ R.

Theorem 3.1. We have an isomorphism of stacks

S U σ,±
X (r) ∼= SLr(Op)

σ±\SLr(Kp)
σ±/SLr(Ap)

σ± .

Moreover, the projections Qσ,± → S U σ,±
X (r) are locally trivial for the fppf

topology.

Proof. Recall that we have isomorphisms

S U σ,+
X (r) ∼= MY (G) , S U σ,−

X (r) ∼= MY (H).

Now, using the main Theorem of [10], we deduce, for a ramification point
p ∈ X over a branch point y ∈ Y , that

MY (G) ∼= G(Oy)\G(Ky)/H
0(Y r y,G)

∼= SLr(Op)
σ+\SLr(Kp)

σ+

/SLr(Ap)
σ+

,

MY (H) ∼= H(Oy)\H(Ky)/H
0(Y r y,H).

And we have H0(Y r y,H) ∼= SLr(Ap)
σ− . Thus

MY (H) ∼= SLr(Op)
σ−\SLr(Kp)

σ−/SLr(Ap)
σ− .

�

3.3. The Grassmannian viewpoint

Note that Qσ,+ is an ind-variety, which is a direct limit of a system of
projective varieties (Qσ,+

N )N>0, the Qσ,+
N are the quotients (S0)σ

+\(SN )σ
+

,
where SN is the subscheme of SLr(K ) parameterizing matrices A(t) such
that A(t) and A(t)−1 have poles of order at most N . As we said above, since
all the stacks S U σ,τ

X (r) are isomorphic, so for simplicity we assume that τ is
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the trivial type. So let’s denote Qσ,− the quotient SLr(Op)
σ−\SLr(Kp)

σ− .
This is again an ind-variety direct limit of (Qσ,−

N )N>0, the Qσ,−
N are the

quotients (S0)σ
−\(SN )σ

−
.

By [3, Proposition 2.4] , the varieties QN := S0\SN are identified with
subvarieties (with the same underlying topological spaces) of the Grass-
mannian Grt(rN, 2rN) of t−stable subspaces of dimension rN of F rN :=
t−NO⊕r/tNO⊕r.

Consider the σ−Hermitian forms Ψ± : K r ×K r −→ K defined by

Ψ+(v, w) = tv · σ(w) =

r∑
i=1

viσ(wi),

Ψ−(v, w) = tv · Jr · σ(w),

where v = t(v1, . . . , vi) and w = t(w1, . . . , wi) are in K r. Then the groups
SLr(K )σ

±
can be defined as the loci of matrices A ∈ SLr(K ) which are

unitary with respect to the forms Ψ±, i.e. Ψ±(A · v,A · w) = Ψ±(v, w) for
all v, w ∈ K r.
Consider the forms Ψ̃± on t−NOr ⊂ K r defined as the composition

Ψ̃± : t−NO⊕r × t−NO⊕r
Ψ±−−→ t−2NO

Res−−→ C,

where Res : K → C is the residue map. The forms Ψ̃± vanish on tNO⊕r ⊂
t−NO⊕r, hence they induce two forms, denoted again by Ψ̃±, on F rN

Ψ̃± : F rN × F rN −→ C.

Lemma 3.2. Ψ̃+ is an anti-symmetric non-degenerate bilinear form on
F rN , while Ψ̃− is a symmetric non-degenerate bilinear form.

Proof. Consider the canonical basis of the vector space Fr given by the
classes of tk for k = −N, . . . , N − 1. It induces a canonical basis of F rN .
Then for v = (vi)i, w = (wi)i ∈ F rN , the forms Ψ± are given explicitly in this
basis by

Ψ+(v, w) =

r∑
i=1

N−1∑
j=−N

(−1)−j−1aijb
i
−j−1,

Ψ−(v, w) =

r∑
i=1

N−1∑
j=−N

(−1)−j−1+ε(i)aijb
r−i
−j−1,
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where ε(i) equals 1 if i ∈ {1, . . . , r/2}, and 0 otherwise, and vi = (aij), wi =

(bij) are in FN . From this the result follows easily. �

Proposition 3.3. The spaces Qσ,±
N are isomorphic to closed subvarieties

(with the same underlying topological subspaces) of the isotropic Grassman-
nian Grt,σ± (rN, 2rN) which parameterizes Ψ̃±−isotropic t−stable vector sub-
spaces of F rN of dimension rN .

Proof. We prove it for the symmetric case, the other one follows similarly.
The image of O⊕r in F rN is Ψ̃+−isotropic, hence, for every A(t) ∈ (SN )σ

+

,
the corresponding point in Grt(rN, 2rN) of the class of A(t) in Qσ,+

N is

Ψ̃+−isotropic. Thus it is in Grt,σ+ (rN, 2rN).
Conversely, assume that we have a point W of the isotropic Grassman-

nian. Let A(t) ∈ SN be a representative of the corresponding class in S0\SN .
We have for every v, w ∈ Or, Ψ+(A · v,A · w) ∈ O, to see this assume that for
some v, w ∈ Or, the coefficient of t−k of Ψ+(A · v,A · w) is nonzero (k > 0),
then one deduces that Res(Ψ+(A · (tkv), A · w)) = Ψ̃+(A · (tkv), A · w) 6= 0
giving a contradiction. Now let (ei)i be the canonical basis of the K −vector
space K r and let B(t) = (Ψ+(A · ei, A · ej))i,j , we see that B(t) ∈ SLr(O) =
S0, and we have by definition B(t) = tA(t)A(−t). In particular we see that
B(t) = tB(−t), hence B(t) = tC(−t) · C(t) for some C(t) ∈ SLr(O), and
C(t)A(t) is also a representative of W and it is of course in (SN )σ

+

. In other
words the corresponding point of W in S0\SN is in Qσ,+

N . This proves the
proposition. �

Consider the variety QN = S0\SN which is as a topological space iso-
morphic to the Grassmannian Grt(rN, 2rN). Fix an identification of QN as
subspace of the homogeneous space SL2rN (C)/PN , where PN is the parabolic
subgroup of SL2rN of matrices of the form(

A B
0 C

)
,

where A,B and C are square rN × rN matrices. Let OQN
(1) be the line

bundle attached to the character χ : P→ C∗ which sends a matrix as above
to det(A−1). It is well known that the Picard group of QN is infinite cyclic
generated by OQN

(1) (it is actually isomorphic to the character group of the
maximal parabolic subgroup PN ).
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Proposition 3.4. The restriction of OQN
(1) to Qσ,−

N has a square root,
which we denote by OQσ,−

N
(1). It is in fact the generator of the Picard group

of Qσ,−
N .

Proof. By Proposition 3.3, the variety Qσ,−
N is isomorphic to a subvariety

of the classical Grassmannian SO2rN (C)/P′N , where P′N = PN ∩ SO2rN (C).
The restriction of the character χ to P′N is denoted again by χ. Now, consider
the universal cover of SO2rn(C), which is the Spin group Spin2rN (C). It is a
double cover of SO2rN (C). Let P̃N ⊂ Spin2rN (C) the inverse image of P′N .
Then, by [7, Chapter 5, Theorem 3.3.1], the lifting of χ to P̃N has a square
root which we denote by χ−. Since we have

Spin2rn(C)/P̃ ∼= SO2rn/P
′
N ,

we deduce that the line bundle over Qσ,−
N attached to χ− is the square root

of the restriction of OQN
(1).

The Picard group of Spin2rN/P̃N is infinite cyclic isomorphic to the character
group of P̃N , which is generated by χ−. This implies the second claim. �

Proposition 3.5. The ind-varieties Qσ,± are integral.

Proof. We know already that Qσ,± are connected, hence they are irreducible.
Moreover, by [16, Theorem 0.2], the flag varieties Qσ,± are reduced. �

3.4. Central extension

Consider the canonical central extension of SLr(K ) defined in [[5], Sec-
tion 4]:

0→ Gm → ŜLr(K )→ SLr(K )→ 0.

The actions of σ± lift to ŜLr(K ) giving a central extension of SLr(K )σ
±

0→ Gm → ŜLr(K )σ
± → SLr(K )σ

± → 0.

Indeed, let R be a C−algebra, for γ ∈ SLr(R((t))) let

γ =

(
a(γ) b(γ)
c(γ) d(γ)

)
be its decomposition with respect to R((t)) = VR ⊕R[[t]]. Recall that V is
a complementary vector subspace of O in K .
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By [3], an element of SLr(R((t))) is given, locally on Spec(R), by a pair (γ, u)
where γ ∈ SLr(R((t))), u ∈ Aut(VR) such that u ≡ a(γ) mod Endf (VR),
where Endf (VR) ⊂ End(VR) is the set of finite rank endomorphisms of VR.
By [3] Proposition 4.3, the map γ −→ a(γ) is a group homomorphism from
SLr(R((t))) onto the group Autf (VR) of units of End(VR)/Endf (VR). It
follows that

a(γ−1) = a(γ)−1,

hence

u−1 ≡ a(γ−1) mod Endf (VR).

So, define the following actions on ŜLr(K )

σ+ : (γ, u) −→ ( tγ(−t)−1, tu(−t)−1),

σ− : (γ, u) −→ ( Jr
tγ(−t)−1J−1

r , Jr
tu(−t)−1J−1

r ).

Clearly these are involutions which lift σ± on SLr(K ).

The Lie algebra attached to ŜLr(K ) is given by the central extension

(2) 0→ C→ ŝlr(K )→ slr(K )→ 0.

It is in fact isomorphic to the affine Lie algebra L̂(slr) = slr(K )⊕ C, with
the Lie algebra structure given by

[(α, u), (β, v)] =

(
[α;β],Res(Tr(

dα

dt
β))

)
,

where Res stands for the residue. By pulling back the exact sequence (2) via
the inclusions slr(K )σ

±
↪→ slr(K ) we get the central extensions

0 // C // ŝlr(K ) // slr(K ) // 0

0 // C // ŝlr(K )σ
± //

OO

slr(K )σ
±

OO

// 0,

where σ± act on ŝlr(K ) by their actions on the first summand (which are
given in Lemma 3.6 below). These are (after adding scaling elements) affine

Kac-Moody Lie algebras of twisted type A
(2)
r−1. They are in fact the Lie

algebras of the twisted groups ŜLr(K )σ
±

.
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Lemma 3.6. The Lie algebras associated to ŜLr(K )σ
±

are the twisted
affine Lie algebras of slr(K ) given by

L̂(slr, σ
±) = slr(K )σ

± ⊕ C,

where the actions of σ± on slr(K ) are given by

σ+(g(t)) = − tg(−t), σ−(g(t)) = −Jr tg(−t)J−1
r .

Proof. The proof is straightforward, we just remark that

t(Ir + εα)−1 = Ir − ε tα,

where ε2 = 0. �

4. Determinant and Pfaffian line bundles

Let T be a locally noetherian C−scheme. Denote by p1 and p2 the pro-
jection maps from X × T to X and T respectively. Let E be a vector
bundle over X × T . The derived direct image complex Rp2∗(E ) is repre-
sented by a complex of vector bundles 0→ F0 → F1 → 0. The line bundle
DE := det(F0)−1 ⊗ det(F1) over T is independent of the choice of the rep-
resenting complex and is called the determinant of cohomology of E . The
determinant of the universal family L over X ×S U X(r) is called the de-
terminant bundle over S U X(r).

4.1. Ramified case

Assume that π : X → Y is ramified along a divisor R and let

P− = Nm−1(KY ∆).

Proposition 4.1. Let (E , ψ) be a family of σ−alternating vector bundles
over X parameterized by T , with a σ−alternating non-degenerate form ψ :
σ∗E −→ E ∗. For any L ∈ P− let EL = E ⊗ p∗1L. Then the determinant of
cohomology line bundle DEL admits a square root PEL which we call Pfaffian
of cohomology line bundle.

Proof. Consider the family π∗EL over Y . It is equipped with a non-
degenerated quadratic form with values in KY . Indeed, by the projection
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formula, ψ induces an isomorphism

π∗EL ∼= π∗(σ
∗EL)

∼= π∗(E
∗
L(q−1

1 (R)))⊗ q∗1KY

∼= (π∗EL)∗ ⊗ q∗1KY ,

where the last isomorphism is the relative duality (see [9, Ex. III.6.10]) and
q1 : Y × T → Y is the first projection. In fact the associated bilinear form
is given by the composition

π∗EL ⊗ π∗EL −→ π∗(p
∗
1KX) = q∗1(KY ⊗∆)⊕ q∗1KY −→ q∗1KY .

Since we project on the −1 eigenspace of the linearization on KX (recall
that π∗KX = KY ∆⊕KY ) and because ψ is σ−alternating, we deduce that
this bilinear form is symmetric.

We can apply now [13, Proposition 7.9] to get a square root of Dπ∗EL .
To finish the proof we just have to remark that

DEL = Dπ∗EL . �

In particular, if we consider the universal family over X ×S U σ,−
X (r),

we get, for each L ∈ P−, a Pfaffian of cohomology line bundle PL over
S U σ,−

X (r).

On the other hand, consider the character χ : ŜLr(O)→ Gm which is

just the second projection (recall that ŜLr(O) splits). More precisely, a point

of ŜLr(O) can be represented locally on Spec(R) by a pair (γ, u), for γ ∈
SLr(R[[t]]) and u an automorphism of VR such that a(γ) ≡ u mod Endf (VR).
So χ sends this point to det(a(γ)−1u). To this character one may associate
a line bundle Lχ over Q (see [3, §3]). Moreover Lχ is isomorphic to the
pullback of the determinant bundle.

Lemma 4.2. The restriction of the character χ to ŜLr(O)σ
−

has a square
root which we denote by χ−.

Proof. With the notations of the proof of Proposition 3.4, one can see that
SLr(O)σ

−
is the direct limit of the parabolic subgroups P′N . So just take

the direct limit in Proposition 3.4. �

Let L− be the line bundle over Qσ,− defined by the character χ− and denote
by q : Qσ,− −→ S U σ,−

X (r) the quotient maps (there should be no confusion
about which map is considered).
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Denote by D the determinant of cohomology line bundle over S U σ,−
X (r)

and by L its pullback to Qσ,−.

Theorem 4.3. Let r > 3. Then the isomorphism class of the Pfaffian bun-
dles PL is independent of L, so we just denote it by P, and its pullback q∗P
is isomorphic to Lχ−. Moreover we have

Pic(S U σ,+
X (r)) = ZD, Pic(S U σ,−

X,0(r)) = ZP.

Proof. Since P− is connected and the group Pic(S U σ,−
X (r)) is discrete, we

deduce that the map L→ PL is constant. Hence all PL are isomorphic.
Now, by [20, Proposition 2.3], we have

0→ Sym0
r(C)

i→ Gp → SOr(C)→ 0.

Even though that this extension does not split, SOr can be embedded in
Gp via the map g → g + ε× 0. Let X∗(Gp) is the character group of Gp and
λ ∈ X∗(Gp). Since SOr(C) is semi-simple, the restriction of λ to SOr(C) is
trivial. Moreover, the restriction of χ to i(Sym0

r(C)) is trivial too because
Sym0

r(C) is a unipotent.
Now, by [10, Theorem 3], we have

0→ Πp∈BX
∗(Gp)→ Pic(MY (G))→ Z→ 0,

it follows that Pic(S U σ,+
X (r)) ∼= Z. It is well known that the pullback of

the determinant line bundle over S U X(r) to Q is Lχ (see for example
[13]). Furthermore, D has no square root. Indeed, by [19, Theorem 4.16],
the stack S U σ,+

X (r) is dominated by the intersection of two Prym varieties
P̃ ∩ Q̃ which is not principally polarized. Hence if D has a square root, it
follows that the polarization of P̃ ∩ Q̃ has also a square root, which is not
true. Thus D is a generator of Pic(S U σ,+

X (r)).
With the same method we deduce that P has no root, this implies that

that Pic(S U σ,−
X (r)) ∼= ZP. �

Remark 4.4. The case r = 2 is special. In this case, the moduli stack
S U σ,+

X (2) is connected and S U σ,−
X (2) has 22n−1 connected component. It

is pointed out in [19] that these moduli stacks can be identified with some
moduli of parabolic rank 2 bundles on Y . Hence one can deduce their Picard
groups using [13].
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4.2. Unramified case

Assume here that π : X → Y is étale. Let P+ = Pev+ ∪ Pod+ = Nm−1(KY ) and
P− = P a− ∪ P b− = Nm−1(KY ∆). Note the subscript in the + case is canonical
and it corresponds to the parity of h0 of the line bundles. Then we have the
following

Proposition 4.5. Let (E ±, ψ) be a family of σ−symmetric (resp. σ−
alternating) vector bundles over X parameterized by T , with a σ−symmetric
(resp. σ−alternating) non-degenerated form ψ : σ∗E ± −→ E ±

∗
. For any L ∈

P+ (resp. L ∈ P−) let E ±L = E ± ⊗ p∗1L. Then the determinant of cohomol-
ogy line bundle DE±L

admits a square root P±
E±L

which we call Pfaffian of

cohomology line bundle.

Proof. The proof is similar to that of Proposition 4.1. We note just that
when L ∈ P+, the norm map induces a quadratic form on π∗L, and when it
is in P−, the induced form is alternating. �

Let U ± be universal families on S U σ,+
X (r) and S U σ,−

X (2r), then for
any L ∈ P±, we have a Pfaffian of cohomology line bundle P±L := Pf(U ±

L ).
Moreover, since Pic(S U σ,±

X (r)) are discrete groups (this can be deduced
from the uniformization theorem for example), we deduce that there is at
most two isomorphism classes of P±L parametrized by the connected compo-
nents of P±. So we denote them by P±ev and P±od.

5. Generalized theta functions and conformal blocks

Assume in this section that the cover π : X → Y is ramified. We have formu-
lated the uniformization theorem over a single ramification point. However
we can use a bunch of points to uniformize our moduli stack. If we consider
all the ramification points R, then we get the following

S U σ,±
X (r) ∼=

∏
p∈R

Qσ,±
p /SLr(AR)σ

±
,

where Qσ,±
p =SLr(Op)

σ±\SLr(Kp)
σ± , and AR=H0(X rR,OX). Of course

all Qσ,±
p are isomorphic, but we emphasise on the fixed points.

Roughly speaking, this isomorphism can be seen as follows: choose a formal
neighborhood Dp of each p ∈ R. Then giving a σ−symmetric vector bundle
(E,ψ) of trivial determinant, we choose a σ−invariant local trivializations
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ϕp near each p and a σ−invariant trivialization ϕ0 on X rR. Then the cor-
responding point of the right hand side is just the class of (ϕp ◦ ϕ−1

0 )p∈R.
Conversely, giving a class of functions (fp)p∈R of the RHS, we can construct
a σ−symmetric vector bundle by gluing the trivial bundles on Dp and X rR
using the functions fp.

We have seen that the line bundle L− over Qσ,−
p is isomorphic to q∗P

and that the line bundle L over Qσ,+
p is isomorphic to q∗D. For x ∈ R,

let qx :
∏
p∈R Qσ,±

p → Qσ,±
x be the canonical projection. We define the line

bundles

L− =
⊗
p∈R

q∗pL− and L =
⊗
p∈R

q∗pL

over
∏
p∈R Qσ,−

p and
∏
p∈R Qσ,+

p respectively. One can see that L− and L

are in fact the pullback via the projections
∏
p∈R Qσ,±

p → S U σ,±
X (r) of the

line bundles P and D respectively. In particular, both of these line bundles
have canonical SL(AR)σ

±−linearizations. In fact these are the only ones due
to the following

Proposition 5.1. SLr(AR)σ
±

are integral and they have only the trivial
character.

Proof. The proof is inspired from [13].
Using the local triviality of the projection

∏
p∈R Qσ,±

p → S U σ,±
X (r) and

Proposition 3.5 we deduce that SLr(AR)σ
±

are reduced.
Now, since connected ind-groups are irreducible, it is sufficient to prove

that SLr(AR)σ
±

is connected. For a points p1, . . . , pk ∈ X rR we denote by
Ri = R ∪ {p1, σ(p1), . . . , pi, σ(pi)}. We claim the following

Claim. We have an isomorphism

SLr(ARi)
σ±/SLr(ARi−1

)σ
± ∼= (Qpi ×Qσ(pi))

σ± ,

where the action of σ± on the right hand side is given by

σ±(f, g) = (σ±(g), σ±(f)).

Proof. We have a canonical map SLr(ARi)
σ± → (Qpi ×Qσ(pi))

σ± which is

clearly trivial on SLr(ARi−1
)σ
±

. Hence we deduce a map

SLr(ARi)
σ±/SLr(ARi−1

)σ
± → (Qpi ×Qσ(pi))

σ±
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which is actually injective. Now, by considering the uniformization over the
two points {pi, σ(pi)}, we get

S U σ,±
X (r) ∼= (Qpi ×Qσ(pi))

σ±/SLr(A{pi,σ(pi)})
σ± .

Hence, for an C−algebra S, giving a point of (Qpi ×Qσ(pi))
σ±(S) is the

same as giving an anti-invariant (σ−symmetric or σ−alternating following
±) vector bundle E over XS and a σ±−invariant trivialization δ : E|X∗S →
X∗S × Cr, where X∗S = XS r {pi, σ(pi)}. For an S−algebra S′, let T (S′) be
the space of σ±−invariant trivializations of ES′ over XS,i−1 = XS rRi−1.
Then SLr(ARi−1

)σ
±

acts on T , and in fact it is a torsor under that group.

Moreover δ induces a map δ̃ : T → SLr(ARi)
σ± by sending a trivialization

φ to φ ◦ δ−1. Associating to (E, δ) the map δ̃ gives an inverse to the above
inclusion. �

It is clear to see that (Qpi×Qσ(pi))
σ±∼=Qpi = SLr(Opi)\SL(Kpi) which

is simply connected. So using the homotopy exact sequence, we deduce that

π0(SLr(ARi)) = π0(SLr(ARi−1
)).

Now let g ∈ SLr(AR)σ
±

and consider g as an element of SLr(K)σ
±

, where
K is the function field of X. By [18] (see also [15] Section 4), we know that
the special unitary groups are simply connected and quasi-split. Steinberg
([17]) has showed the Kneser-Tits property for quasi-split simply connected
groups over any field (Recall that this property means that these groups are
generated by the unipotent radicals of their standard parabolic subgroups).
So applying that to SLr(K)σ

±
, we can assume that g =

∏
i exp(Ni), where

Ni are nilpotent elements of slr(K)σ
±

. Let {p1, . . . , pk} be the set of poles
of the Ni’s. For t ∈ A1, we let gt =

∏
i exp(tNi). Then for any t ∈ A1 we

see that gt ∈ SLr(ARk)
σ± and t→ gt is a path in SLr(ARk)

σ± that relates
g to the identity. Hence SLr(ARk)

σ± is connected. So the same is true for
SLr(AR)σ

±
by what we have shown above.

Now let λ be a character of SLr(AR)σ
±

; seeing λ as a function, we con-
sider its derivative at the identity which turns out to be a Lie algebras
morphism from slr(AR)σ

±
to the trivial algebra C. However, the affine alge-

bra slr(AR)σ
±

equals the direct sum of two commutator subalgebras. Indeed,
the algebra slr(AR) equals to its commutator, and we have eigenspace de-
composition with respect to σ±

slr(AR) = g−1 ⊕ g1,
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it follows

[g−1 ⊕ g1, g−1 ⊕ g1] = [g−1, g−1]⊕ [g−1, g1]⊕ [g1, g−1]⊕ [g1, g1].

Hence slr(AR)σ
±

= g1 = [g−1, g−1]⊕ [g1, g1]. So the derivative of λ at the
identity is zero. Since λ is a group homomorphism, its derivative is identically
zero everywhere. Since SLr(AX)σ

±
is integral, we can write it as limit of

integral varieties Vn and for n large 1 ∈ Vn, so λ|Vn = 1, hence λ = 1. �

Fix an integer k > 0. For any dominant weight λ± ∈ Pσ,±, there is a line
bundle L (λ±) over Qσ,± associated to the principal SLr(O)σ

±−bundle:

SLr(K )σ
± −→ Qσ,±,

defined using the character e−λ
±

on SLr(O)σ
±

. Further, it is shown in [12]
that the space of global sections of powers of L (λ) is isomorphic to the dual
of the irreducible highest integrable representation of L̂(slr, σ

±) associated
to λ±.
We are mainly interested in the case where λ± = λ±0 . Denote by H±(k) the

highest weight representation of level k of L̂(slr, σ
±) associated to the weight

λ±0 . It is called the basic representation of level k. So the above result of [12]
(see also [14]) can be formulated as follows

Theorem 5.2 (Kumar, Mathieu).

1) The space H0(Qσ,−, q∗Pk) is canonically isomorphic, as L̂(slr, σ
−)−

module, to the dual of the basic representation H−(k).

2) The space H0(Qσ,+, q∗Dk) is canonically isomorphic, as L̂(slr, σ
+)−

module, to the dual of the basic representation H+(k).

Note that by Remark 2.1, when r is even, the weight λ+
0 has level 2

while λ−0 is of level 1. This explains why we have to take the determinant
line bundle in σ+ case and the Pfaffian line bundle in σ− case.

The point that should be stressed here is that in [12], Kumar has defined
the ind-group SLr(O)\SLr(K ) using representation theory of Kac-Moody
algebras. It is shown in [3] that this construction coincides with the usual
functorial definition. Moreover, Pappas and Rapoport have claimed in [15]
(page 3) that the constructions of Kumar coincide with their definitions of
the Schubert varieties. In particular, we deduce in our special case that the
ind-variety structure on the twisted flag varieties Qσ,± are the same as those
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defined by Kumar.

Conjecture 3.7 of Pappas and Rapoport ([15]) relates the space of sec-
tions of a line bundle on the moduli stack of parahoric Bruhat-Tits torsors
with the space of invariants sections of the pullback of that line bundle to the
flag variety. The following proposition is a special case of this conjecture.
The key point in its proof is the integrality of the ind-group SLr(AR)σ

±

(Proposition 5.1).

Proposition 5.3. We have isomorphisms

H0(S U σ,−
X (r),Pk) ∼=

∏
p∈R

H0(Qσ,−
p ,Lk−)

slr(AR)σ
−

,

H0(S U σ,+
X (r),Dk) ∼=

∏
p∈R

H0(Qσ,+
p ,Lk)

slr(AR)σ
+

.

Proof. Since SLr(AR)σ
±

and Qσ± are integral, the result follows, using the
Künneth formula, from [5, Proposition 7.4]. �

Now, Proposition 5.3 and Theorem 5.2 imply our main result

Theorem 5.4. Let k ∈ N, we have

1) The space of global sections H0(S U σ,−
X (r),Pk) is canonically isomor-

phic to the conformal block space Vσ,−(k).

2) The space of global sections H0(S U σ,+
X (r),Dk) is canonically isomor-

phic to the conformal block space Vσ,+(k).

6. Strange duality at level one

In this section, we show a strange duality at level one for the moduli spaces
SUσ,+X (r) of σ−symmetric vector bundles in the unramiffied case. Since
Uσ,−X (r) ∼= Uσ,+X (r), similar results hold for the σ−alternating case.

So assume that π : X → Y is étale. Let ∆ ∈ JY [2] the line bundle associ-
ated to this cover. We use notation from subsection 4.2. In particular, since
we will deal just with the σ−symmetric case, we shall denote simply by Pev

the space Pev+ and by Pev the isomorphism class of the Pfaffian bundles PL,
for L ∈ Pev.



i
i

“12-Zelaci” — 2020/3/6 — 21:57 — page 1870 — #22 i
i

i
i

i
i

1870 Hacen Zelaci

The moduli stack U σ,+
X (r) of σ−symmetric bundles has two connected

components distinguished by the parity of h0(E ⊗ L), for fixed L ∈ Pev.
The even connected component is denoted U σ,+

X,0 (r). The moduli S U σ,+
X (r)

are connected. The associated moduli spaces has been constructed in [20].
Here we consider the moduli spaces Uσ,+X (r) (resp. SUσ,+X (r)) of stable σ−
symmetric vector bundles (resp. with trivial determinant).

Lemma 6.1. The Pfaffian line bundle Pev over U σ,+
X,0 (r) descends to the

moduli space Uσ,+X,0 (r).

Proof. The moduli space Uσ,+X (r) is constructed using GIT as a SL(H)−
quotient of a parameter scheme Quotσ(C), where H = Cm for some m (see
[20]). Let L ∈ Pev and a = (E, q, ψ) be a point of Quotσ(C). Since E is stable,
the stabilizer of a under the action of SL(H) is just {±1}. The action of this
stabilizer on (PL)a is by definition multiplication by gh

1(E⊗L), for g ∈ {±1}.
Since Uσ,+X,0 (r) is connected, we have

h1(E ⊗ L) =

{
1 if r ≡ 1 mod 2 and L ∈ Pod

0 otherwise.

This can be shown using Hitchin system (cf. [19, Theorem 4.12]). Since L
is even, it follows that −1 acts trivially on (PL)a, for any a. Using Kempf’s
Lemma we deduce the result. �

Now we show the existence of the Pfaffian divisor. Let UX(r, 0) be the
moduli space of rank r and degree 0 stable vector bundles over X, and let ΘL

be the divisor in UX(r, 0) supported on vector bundles E such that E ⊗ L
has a non-zero global section, where L ∈ Pev is fixed.

Let us recall from [19] some basic results about the Hitchin system in
this case. The Hitchin morphism on UX(r, 0) induces a fibration

H : T ∗Uσ,+X (r) −→W σ,+,

where W σ,+ =
⊕
H0(Ki

X)+. For general s ∈W σ,+ the associated spectral
curve q : X̃s → X is smooth and it has a fixed point free involution σ̃ that
lifts σ. Moreover, the quotient curve Ỹs = X̃s/σ̃ is a smooth spectral curve
over Y with spectral data in KY ⊗∆. Let S be the ramification divisor
of Ỹs → Y . Then the fiber Nm−1

X̃/Ỹs
(O(S)) has two connected components

P̃
ev ∪ P̃

od
, distinguished by the parity of h0(−⊗ q∗L) (+ for even), where L
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is in Pev. Now by [19, Theorem 4.17] the push-forward map

q∗ : P̃
ev ∩ Q̃ 99K SUσ,+X (r)

is dominant, where Q̃ = Nm−1
X̃s/X

(δ), δ = det(q∗OX̃s)
−1.

Lemma 6.2. Let L ∈ Pev. The restrictions of the divisor ΘL ⊂ UX(r, 0) to
Uσ,+X,0 (r) and SUσ,+X (r) are again divisors. The associated reduced divisors are
denoted ΞL.

Proof. It is enough to produce a semistable σ−symmetric vector bundle with
trivial determinant that does not belong to ΘL. Let ΞL be the (principal)
polarization on P := Prym(X → Y ). Then the linear system |rΞL| is base
point free for any r > 2 and the group P[r] acts irreducibly on it. Hence
let α ∈ P[r] such that OX 6∈ T ∗αΞL = Ξα⊗L. In other words h0(α⊗ L) = 0.
Define E := α⊕r. It is obviously a semistable σ−symmetric vector bundle
with trivial determinant, hence it belongs to the closures of SUσ,±X (r) and
Uσ,+X,0 (r) and it is not in the restriction of the divisor ΘL. �

Note that the other connected component Uσ,+X,1 (r) is entirely included in
ΘL for any L ∈ Pev. For the moduli of σ−alternating bundles, the same hap-
pens, i.e. the restriction of ΘL to Uσ,−X,0 (r) is again a divisor and Uσ,−X,1 (r) ⊂ ΘL.

Lemma 6.3. We have dim(H0(Uσ,+X,0 (r),Pev)) = 1.

Proof. Let q : X̃s → X be a smooth spectral curve over X attached to a
general s ∈W σ,+ (see [19] for more details and notations). First, for some
positive integer m, the pullback of the determinant bundle via q∗ : Jm

X̃s
→

UX(r, 0) is the line bundle O(Θq∗κ) attached to the Riemann theta divisor
Θq∗κ over Jm

X̃s
(modulo a translation). Let S ⊂ P̃

ev
be the locus of line

bundles L such that q∗L is stable. The codimension of the complement of S
is at least 2. Indeed, it is clear that this codimension is at least 1. Now let
S̃ be the locus of line bundle such that q∗L is semi-stable. Then using the
same argument as in [4, Proposition 5.1], we get that codimension of the
complement of S̃ is at least 2. Since the codimension of S ⊂ S̃ is at least 1,
one get that the codimension of the complement of S is at least 2.
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Since q∗ : S −→ Uσ,+X,0 (r) is dominant, we get an injection

H0(Uσ,+X,0 (r),PL) ↪→ H0(P̃
ev
, L̃),

where L̃ is the principle polarization on P̃
ev

. So h0(Uσ,+X,0 (r),PL) is at most
1.

Now by Lemma 6.2, there is an effective divisor ΞL such that 2ΞL =
ΘL|Uσ,+X,0 (r). In particular, PL has a non trivial global section. �

Denote by L and L̃ line bundles defining principal polarizations on Pev

and P̃
ev

respectively. The restriction of Pev to SUσ,+X (r) is denoted again
by Pev.

Theorem 6.4. We have an isomorphism

H0(Pev,Lr)∗ ∼= H0(SUσ,+X (r),Pev).

In particular we deduce

dim(H0(SUσ,+X (r),Pev)) = rgY−1.

Proof. Consider the following commutative diagram

P̃
ev ∩ Q̃× Pev //

��

P̃
ev

��
SUσ,+X (r)× Pev // Uσ,+X,0 (r,KX),

where Uσ,+X,0 (r,KX) = {E ⊗ L | E ∈ Uσ,+X,0 (r)}, it has a canonical Pfaffian line
bundle P. Using [4, Theorem 3], we deduce that the pullback of the line
bundle P to SUσ,+X (r)× Pev is isomorphic to p∗1Pev ⊗ p∗2Lr.
Now the rational map P̃

ev ∩ Q̃ −→ SUσ,+X (r) is dominant ([19, Theorem
4.16]). It follows, by the same argument used in the proof above, that the
map

H0(SUσ,+X (r),Pev)→ H0(P̃
ev ∩ Q̃, L̃)

is injective, where here we denote abusively by L̃ the restriction of L̃ to P̃
ev ∩

Q̃ ⊂ P̃
ev

. Since the two subvarieties Pev and P̃
ev ∩ Q̃ are (torsors under)

complementary pair inside P̃
ev

, we obtain, using [4, Proposition 2.4], an
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isomorphism

H0(P̃
ev ∩ Q̃, L̃) ∼= H0(Pev,Lr)∗.

Hence we deduce an injective map

H0(SUσ,+X (r),Pev) ↪→ H0(Pev,Lr)∗.

Moreover the group P[r] acts on PH0(Pev,Lr)∗ as well as on SUσ,+X (r), hence
it acts also on the linear system PH0(SUσ,+X (r),Pev). Since the projective
representation PH0(Pev,Lr)∗ is irreducible, the map H0(SUσ,+X (r),Pev) ↪→
H0(Pev,Lr)∗, which is equivariant for these actions, is necessarily an iso-
morphism. �

Note that we have a map

ρ : SUσ,+X (r) 99K |Lr| = PH0(Pev,Lr),

given by

E −→ ρ(E) = divPf(π∗(p2E ⊗K )),

where K is the normalized Poincaré bundle over Pev such that σ∗K '
K −1 ⊗ p∗2KX . Note that the family π∗(p

∗
2E ⊗K ) has a non-degenerated

quadratic form with values in KY . Note that ρ∗O(1) ∼= Pev. So this map
and the duality of complimentary pairs induce the following commutative
diagram

H0(Pev,Lr)∗ //

**

H0(SUσ,+X (r),Pev)

��
H0(P̃

ev ∩ Q̃, L̃),

where all maps in the above diagram are isomorphisms. In other words, the
isomorphism of Theorem 6.4 is exactly ρ∗.
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