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distributions of SL2
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Let p be a prime number. Let Dist(SL2) be the algebra of distri-
butions, supported at 1, on the algebraic group SL2 over Fp. The
Frobenius map Fr : SL2 → SL2 induces a map Fr : Dist(SL2)→
Dist(SL2) which is, in particular, a surjective algebra homomor-
phism. In this note, we construct a (unital) section of this map,
whenever p ≥ 3. The main ingredient of this construction is a cer-
tain congruence modulo p3, reminiscent of the congruence

(
np
p

)
≡ n

mod p3.

1. Introduction

Fix a prime number p, and let Fp denote the field with p elements. Let G be
an affine algebraic group defined over Fp. Following e.g. [3], we consider its
algebra of distributions H = Dist(G). This is an augmented Hopf algebra
analogous to the universal enveloping algebra in characteristic 0. The anal-
ogy is strong when G is simply-connected and semisimple, in the sense that
its category of finite-dimensional representations is equivalent to the cate-
gory Rep(G) of finite-dimensional (algebraic) representations of G. However,
structurally it is very different from the universal enveloping algebra, being
(for instance) not finitely generated. Indeed, it may in fact be regarded as a
‘divided power’ version of the universal enveloping algebra.

Nonetheless, its structure may with some effort be studied. One main
tool is the Frobenius morphism Fr : H → H (induced by the usual Frobe-
nius endomorphism of G). Fr is a surjective (augmented Hopf algebra) en-
domorphism of H, whose kernel is equal to the augmentation of a certain
finite-dimensional augmented subalgebra H1 of H. In fact, H1 is nothing
more than the algebra of distributions of the kernel of the Frobenius mor-
phism on G. Taking distribution algebras of kernels of higher and higher
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powers of Frobenius, we get an exhaustive filtration:

Fp = H0 ⊂ H1 ⊂ H2 ⊂ · · ·

of H. Each Hi is an augmented subalgebra of H, of dimension pi.dim(G); and
the Frobenius endomorphism induces surjections Hi → Hi−1 (for i ≥ 1), and
the identity map H0 → H0.

In [1], [2], the authors construct (for G = SL2 in [1], and for any G
simply-connected semisimple in [2]) a certain non-unital splitting of Fr :
H → H. This is a non-unital map of algebras (but neither augmented nor
Hopf) φ : H → H such that Fr ◦ φ = Id. In their splitting, the image of 1 is
equal to a certain idempotent element of Dist(T ) (for a choice T of Fp-split
maximal torus of G), whose effect on any finite-dimensional representation V
of G is to project to the sum V0 of all T -weight subspaces of weights divisible
by p. Consequently, their splitting amounts to giving V0 the structure of
representation of G. In other words, they construct a functor Rep(G)→
Rep(G), lying over the functor Rep(T )→ Rep(T ) given by V → V0.

An explicit description of φ is given as follows. Recall that H is generated

as an algebra by certain elements e
(pk)
α , f

(pk)
α , h

(pk)
i for k ≥ 0 (sometimes

denoted formally as ep
k

α

pk! ,
fp
k

α

pk! ,
(
hi
pk

)
) and we have

φ(1) =
∏
i

(1− hp−1i )

φ
(
e(p

k)
α

)
= e(p

k+1)
α .φ(1)

φ
(
f (p

k)
α

)
= f (p

k+1)
α .φ(1)

φ
(
h
(pk)
i

)
= h

(pk+1)
i .φ(1).

It is worth mentioning that the same formulas hold if we replace the expo-
nents pk with arbitrary positive integers n. The reason for the above value
of φ(1) is as follows. Imagine setting φ(1) = 1 in the formulas above: do
the resulting formulas determine a map of algebras? This amounts to the
vanishing of certain polynomials in the right hand sides of the resulting for-
mulas. However, these polynomials certainly do not vanish. In [1], [2], it is
shown that these polynomials are at least annihilated by the idempotent∏
i(1− h

p−1
i ) (on say the left), and since that idempotent commutes with

everything in sight the result follows.
The aim of this paper is to upgrade φ to a unital splitting θ in the

case G = SL2. In particular, for any r ∈ Fp, consider the functor Rep(T )→
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Rep(T ) which sends the finite-dimensional representation V of T to the
sum Vr of its T -weight subspaces of weights congruent to r mod p; then we
lift this to a functor Rep(G)→ Rep(G). We achieve this by giving explicit
generators and relations for H which make it rather clear. Namely, for a
Fp-split maximal torus T we choose a standard basis {e, f, h} of Lie(G) =
sl2(Fp) such that h spans the Lie algebra of T , and we have:

Theorem 1. H is generated by the elements e, e(p), e(p
2), . . . and f, f (p),

f (p
2), . . . subject to the relations:

1) [Xk, e
(pk)] = 2e(p

k), [Xk, f
(pk)] = −2f (p

k),

2) [Xk, e
(pk+n)] = 0 = [Xk, f

(pk+n)],

3) [e(p
k), e(p

k+n)] = 0 = [f (p
k), f (p

k+n)],

4) [e(p
k), f (p

k+n)] = (−1)n(f (p
k))p−1(f (p

k+1))p−1 · · · (f (pk+n−1))p−1(Xk + 1),
[e(p

k+n), f (p
k)] = (−1)n(Xk + 1)(e(p

k))p−1(e(p
k+1))p−1 · · · (e(pk+n−1))p−1,

5) (e(p
k))p = 0 = (f (p

k))p,

6) Xp
k = Xk

for all k ≥ 0 and n > 0. Here Xk := [e(p
k), f (p

k)].

Remarks.

1) Relation 1 says that the Lie subalgebra of H generated by e(p
k) and

f (p
k) is isomorphic to sl2. Relations 5 and 6 say that the subalgebra

generated by this Lie subalgebra is in fact the restricted enveloping
algebra. Relations 2, 3 and 4 indicate how these copies of the restricted
enveloping algebra fit together.

2) Notice that the Frobenius-splitting follows directly from these rela-
tions. Indeed there is a map θ : H → H of algebras given by sending
e(p

k) 7→ e(p
k+1), f (p

k) 7→ f (p
k+1) for all k ≥ 0. This is a right inverse to

Fr, and its image is the required subalgebra. Recall (or see below)
that Dist(T ) ⊂ H also contains elements h(p

k), which are often (un-
necessarily) included with the e(p

k), f (p
k) as generators of H. It is

straightforward to derive formulas for θ(h(p
k)), but they are not very

nice, nor even elements of Dist(T ).

3) The choice of basis e, f, h depends not only on T but also on a choice
of Borel subgroup B containing T . However, the map θ defined above
depends only on T .
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4) Let G be a simple group not of type A1. Fix simple root vectors ei and
negative simple root vectors fi, corresponding to Borel subgroups B,

B−. Then the elements e
(pk)
i generate Dist(B), the elements f

(pk)
i gen-

erate Dist(B−), and together they generate H. Moreover, it is shown

in [4] (Theorem 37.1.8, p.270) that the assignment e
(pk)
i 7→ e

(pk+1)
i de-

termines an algebra endomorphism of Dist(B), and likewise for the
negative root vectors and B−. However, together these assignments do
not extend to an algebra endomorphism of H. Indeed, for two non-

commuting simple root vectors e1, e2, one may check that e
(p)
2 is not

an eigenvector of ad[e(p)1 ,f
(p)
1 ]. In spite of this bad news, we are not quite

ready to rule out the existence of a unital splitting of H in this case.

The proof of Theorem 1 is composed of two parts. First we demonstrate
that, assuming relations 1,2,3,4,5 and 6, H is generated by e, e(p), e(p

2), . . .
and f, f (p), f (p

2), . . ., subject to those relations. We then prove the relations,
of which all but 6 are very easy. The proof is completely elementary.

Acknowledgements

The author thanks the Massachusetts Institute of Technology, where this
work was carried out during his PhD, and also Roman Bezrukavnikov for
his interest and encouragement.

2. Preliminaries

Kostant’s Z-form (see [3], chapters 10, 11). We present an analogue of the
PBW theorem which holds, in particular, for reductive algebraic groups G.
For simplicity we treat the case G = SL2.

Consider the algebraic group (SL2)Z, flat over Z. Its base-change to Fp is
the algebraic group SL2 = (SL2)Fp over Fp. Its base change to Q is the alge-
braic group (SL2)Q over Q. The integral distribution algebra Dist((SL2)Z)
is free over Z, and we have the identifications:

Dist((SL2)Q) = Dist((SL2)Z)⊗Z Q
H = Dist((SL2)Z)⊗Z Fp

We have also similar compatibilities between the Lie algebras, and the chosen
basis e, f, h of (sl2)Fp lifts to a standard basis, abusively also denoted e, f, h,
of (sl2)Z. Now Dist((SL2)Q) is nothing more that the universal enveloping
algebra U((sl2)Q) of (sl2)Q. Thus in order to give a basis (together with
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structure constants) for H, it suffices to do so for Dist((SL2)Z) (then reduce
modulo p); and in order to do so for Dist((SL2)Z), it suffices to present it as
a certain integral form of the (rational) universal enveloping algebra. Indeed,
we have:

Dist((SL2)Z) = spanZ

{
fa

a!
.

(
h

b

)
.
ec

c!

}
a,b,c∈Z≥0

⊂ U((sl2)Q).

We will write f (a) = fa/a!, h(b) =
(
h
b

)
, e(c) = ec/c!, and denote their images

in H the same way. Observe that ep = p!e(p) = 0 in H, and similarly hp = h
and fp = 0 in H. We have the following identity (which essentially deter-
mines the structure constants) in Dist((SL2)Z) (and hence in H):

Lemma 1. e(r)f (s) =
∑∞

k=0 f
(s−k)(h−s−r+2k

k

)
e(r−k).

Here, by definition f (a) = 0 = e(a) for any a < 0. Also(
h+ a

k

)
=

k∑
j=0

(
h

j

)(
a

k − j

)
remains in Kostant’s Z-form, and thus makes sense as an element of H.

The Casimir element. Recall that the center of U((sl2)Q) is the poly-
nomial subalgebra generated by δ = 4fe+ (h+ 1)2 = 4ef + (h− 1)2. For
technical reasons we may prefer to replace the base Z in the above consider-
ations by Z(p) (its localization at p). Since p 6= 2, we may thus consider δ/4
as an element of the ‘integral’ form Dist((SL2)Z(p)

) of H.

We are now ready to begin the proof. The real meat is in Section 4; the
reader may wish to skip there directly.

3. Sufficiency of the relations

Proposition 1. Assume that relations 1,2,3,4,5 and 6 hold. Then H is
generated by e, e(p), e(p

2), . . . and f, f (p), f (p
2), . . ., subject to (only) those re-

lations.

Proof. Let H ′ denote the algebra generated by the symbols e, e(p), e(p
2), . . .

and f, f (p), f (p
2), . . ., subject to relations 1,2,3,4,5 and 6. This is not intended

as a subalgebra of H, but rather an abstract algebra. By assumption there
is an obvious map H ′ → H; we have to show that this is an isomorphism.
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Lemma 2. Every element of H ′ is a linear combination of elements of the
form

(f)a0 · · · (f (pn))anXb0
0 · · ·X

bn
n (e(p

n))cn · · · (e)c0 .

Proof. Since H ′ is generated by e, e(p), e(p
2), . . . and f, f (p), f (p

2), . . ., it suf-
fices to show that every monomial in these generators may be expressed as
above. Let ξ = ξ1 · · · ξt, with each ξi = e(p

k) or f (p
k) for some k, be such a

monomial. We define the weight of such a monomial to be the sum of the
formal exponents of its factors, and the disorder of such a monomial to be
the number of pairs of factors which are out of order, i.e. the number of
pairs i < j with ξi = e(p

k) and ξj = f (p
l) for some k, l. Weight and disorder

are both non-negative integers.
If ξ has zero weight or zero disorder, then it is already of the required

form. So assume both these quantities are positive; we proceed by induction
on (weight, disorder) in Z≥0 × Z≥0, ordered lexicographically. Since ξ has
positive disorder, the set {i < j : ξi = e(p

k), ξj = f (p
l) for some k, l} is non-

empty. Choose an element i < j which minimizes min(k, l). Assume that
k ≤ l; the other case is similar. Then for any factor ξi = e(p

r) with r < k,
we may use relation 3 to move ξi to the right-hand side of ξ; likewise for
any factor ξi = f (p

r) with r < k, we may use relation 3 to move ξi to the
left-hand side of ξ. Hence ξ = αξ′β where α is a monomial in f, . . . , f (p

k−1),
β is a monomial in e, . . . , e(p

k−1) and ξ′ is a monomial in e(p
k), e(p

k+1), . . . and
f (p

k), f (p
k+1), . . . with some factor e(p

k) appearing to the left of some factor
f (p

l), for some l ≥ k. ξ′ has lower weight than ξ, and hence is less than ξ in
the lexicographic order, unless ξ′ = ξ. So assume ξ′ = ξ (else done).

Recall we have i < j with ξi = e(p
k) and ξj = f (p

l). Let m > i be minimal
such that ξm = f (p

r) for some r. Then we can reorder the factors of ξ so that
ξm−1 = e(p

k). In other words, we reduce to the case

ξ = ξ1 · · · ξm−2e(p
k)f (p

l)ξm+1 · · · ξt,

with each ξi being one of e(p
k), e(p

k+1), . . . or f (p
k), f (p

k+1), . . ., and l ≥ k.
Then:

ξ = ξ1 · · · ξm−2f (p
l)e(p

k)ξm+1 · · · ξt + ξ1 · · · ξm−2[e(p
k), f (p

l)]ξm+1 · · · ξt.

The first summand of the RHS has the same weight as ξ, but lower disorder,
so is less than ξ in the lexicographic ordering and may be ignored (by induc-
tion). The second summand is calculated using relation 1 or relation 4, de-
pending on the value of l. If l = k, then it is equal to ξ1 · · · ξm−2Xkξm+1 · · · ξt.



i
i

“9-Lonergan” — 2020/3/6 — 21:52 — page 1797 — #7 i
i

i
i

i
i

A strong splitting of Frobenius 1797

By relations 1 and 2, this is equal to ξ1 · · · ξm−2ξm+1 · · · ξt(Xk + 2q), where q
is the difference between the number of factors equal to e(p

k), and the num-
ber of factors equal to f (p

k), amongst ξm+1, . . . , ξt. Otherwise, l = k + r > k
and the second summand is equal to

(−1)rξ1 · · · ξm−2(f (p
k))p−1(f (p

k+1))p−1

· · · (f (pk+r−1))p−1ξm+1 · · · ξt(Xk + 1 + 2q).

In either case, we see that the second summand is equal to ±ξ′(Xk + c) for
some monomial ξ′ in the elements e(p

k), e(p
k+1), . . ., f (p

k), f (p
k+1), . . ., of lower

weight than ξ, and some constant c.
Note that the subalgebra of H ′ generated by e(p

k), e(p
k+1), . . ., f (p

k),
f (p

k+1), . . . is isomorphic to H ′, via e(p
r) 7→ e(p

r+k), f (p
r) 7→ f (p

r+k). Let ξ′′

be the preimage of ξ′ under this map; its weight is at most that of ξ′, and
so by induction we may write it as a linear combination of elements of the
form

(f)a0 · · · (f (pn))anXb0
0 · · ·X

bn
n (e(p

n))cn · · · (e)c0 .

Thus ξ′ is written as a linear combination of elements of the form

(f (p
k))a0 · · · (f (pk+n))anXb0

k · · ·X
bn
k+n(e(p

k+n))cn · · · (e(pk))c0 .

We conclude by observing that

(f (p
k))a0 · · · (f (pk+n))anXb0

k · · ·X
bn
k+n(e(p

k+n))cn · · · (e(pk))c0(Xk + c)

= (f (p
k))a0 · · · (f (pk+n))anXb0+1

k · · ·Xbn
k+n(e(p

k+n))cn · · · (e(pk))c0

+ (c− 2c0)(f
(pk))a0 · · · (f (pk+n))anXb0

k · · ·X
bn
k+n(e(p

k+n))cn · · · (e(pk))c0

has the required form (note that relation 2 implies that all Xi commute). �

Note that relations 5 and 6 allow us to take the exponents ai, bi, ci < p
in the statement of Lemma 2.

Now we show that the elements

Sa,b,c := (f)a0 · · · (f (pn))anXb0
0 · · ·X

bn
n (e(p

n))cn · · · (e)c0
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with ai, bi, ci < p of H form a basis; then we will be done. We know that H
has a basis consisting of

Ta,b,c := (f)a0 · · · (f (pn))an
(
h

p0

)b0
· · ·
(
h

pn

)bn
(e(p

n))cn · · · (e)c0

with ai, bi, ci < p. Define the weight of such a monomial to be b0 + b1p+
· · ·+ bnp

n. This basis is therefore well partially ordered, where one monomial
T.,.,. is less than another if it has lower weight. Note that

Sa,b,c = Ta,b,c + linear combination of lower weight monomials

from which it follows that the linear map H → H given by mapping

Ta,b,c 7→ Sa,b,c

is an isomorphism. �

4. Checking the relations

It remains to prove that relations 1,2,3,4,5 and 6 hold in H. Relations 3 and
5 are trivial. Relations 1,2 and 4 are short calculations:

Lemma 3. Relation 1 holds in H.

Proof. We have Xk = [e(p
k), f (p

k)] =
∑pk

i=1

(
h
i

)
f (p

k−i)e(p
k−i), so that

[Xk, e
(pk)] =

pk∑
i=1

[(
h

i

)
f (p

k−i)e(p
k−i), e(p

k)

]

= −
pk−1∑
i=1

(
h

i

)
[e(p

k), f (p
k−i)]e(p

k−i) +

[(
h

pk

)
, e(p

k)

]

= −
pk−1∑
i=1

(
h

i

) pk−i∑
j=1

f (p
k−i−j)

(
h+ i+ 2j

j

)
e(p

k−j)e(p
k−i) +

[(
h

pk

)
, e(p

k)

]
=

[(
h

pk

)
, e(p

k)

]
=

{(
h

pk

)
−
(
h− 2pk

pk

)}
e(p

k)

= 2e(p
k)
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as required. Similarly, [Xk, f
(pk)] = −2f (p

k). �

Lemma 4. Relation 2 holds in H.

Proof. We have

[Xk, e
(pk+r)] =

pk∑
i=1

[(
h

i

)
f (p

k−i)e(p
k−i), e(p

k+r)

]

= −
pk∑
i=1

(
h

i

)
[e(p

k+r), f (p
k−i)]e(p

k−i)

= −
pk−1∑
i=1

(
h

i

) pk−i∑
j=1

f (p
k−i−j)

(
h+ i+ 2j

j

)
e(p

k+r−j)e(p
k−i)

= 0

as required. Similarly [Xk, f
(pk+r)] = 0. �

Lemma 5. Relation 4 holds in H.

Proof. We have

[e(p
k+r), f (p

k)] =

p(k)∑
i=1

f (p
k−i)

(
h− pk + 2i

i

)
e(p

k+r−i)

=

p(k)∑
i=1

(
h+ pk

i

)
f (p

k−i)e(p
k+r−i)

=

p(k)∑
i=1

(
h

i

)
f (p

k−i)e(p
k+r−i) + e(p

k+r−pk)

=

p(k)∑
i=1

(
h

i

)
f (p

k−i)e(p
k−i)e(p

k+r−pk)
(
pk+r − i
pk − i

)−1
+ e(p

k+r−pk)

=

p(k)∑
i=1

(
h

i

)
f (p

k−i)e(p
k−i)e(p

k+r−pk) + e(p
k+r−pk)

= (Xk + 1)e(p
k+r−pk)

= (−1)r(Xk + 1)(e(p
k))p−1(e(p

k+1))p−1 · · · (e(pk+r−1))p−1
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as required. Similarly,

[e(p
k), f (p

k+r)] = (−1)r(f (p
k))p−1(f (p

k+1))p−1 · · · (f (pk+r−1))p−1(Xk + 1).

�

Now set tk := Xk −
(
h
pk

)
∈ H. Then relation 6 is equivalent to the state-

ment that tpk = tk. In fact, we prove the following

Theorem 2. t2k = tk.

Proof. We first prove the case k = 1 (case k = 0 is trivial). To that end, letH ′

denote Dist((SL2)Z) and H ′′ denote H ′ ⊗Z Z(p), so that H = H ′′ ⊗Z(p)
Fp.

We will construct a certain lift of X1 to H ′. Denote the central (Casimir)
element 4fe+ (h+ 1)2 = 4ef + (h− 1)2 ∈ H ′′ by δ. Then in H ′′ we have
the following equalities:

4p(p− 1)!2e(p)f (p) =

p−1∏
j=0

(δ − (h− 1− 2j)2)/p2

4p(p− 1)!2f (p)e(p) =

p−1∏
j=0

(δ − (h+ 1 + 2j)2)/p2.

The difference between the above expressions is a degree p− 1 polynomial in
δ with coefficients in 1

p2Z[h]; call it Q = Qp−1δ
p−1 +Qp−2δ

p−2 + · · ·+Q1δ +

Q0 ∈ H ′′. Notice that for any m, δm = 4mfmem + χm−1f
m−1em−1 + · · ·+

χ0 for some χi ∈ Z[h]. Now is the crux: it follows (by descending induction
on i) that, for each i, Qi ∈ H ′′. So the image of Q in H is equal to Q =
Qp−1δ

p−1 +Qp−2δ
p−2 + · · ·+Q1δ +Q0. Here Qi stands for the image of Qi

in H; it is an element of the distribution algebra of maximal torus T . By an
abuse of notation δ stands for its image in H. Of course, Q = 4X1.

Observe that δp − 2δ
p+1

2 + δ =
∏
j∈Fp(δ − j

2) = 0 in H; this is the min-
imal polynomial of δ. Likewise hp − h is the minimal polynomial of h in H.
Thus, in particular, the subalgebra of H generated by h, δ is isomorphic to

Fp[h]/(hp − h)⊗ Fp[δ]/(δp − 2δ
p+1

2 + δ)
∼=
{∏

i∈Fp Fp
}
⊗
{∏

j2=0 Fp ×
∏
j2∈F×

p
Fp[ε]/(ε2)

}
.

Here the map from Fp[h, δ] to the i, j2 factor Fp[ε]/(ε2) sends h to i and
δ to j2 + ε (for j2 ∈ F×p ), while the map to the i, 0 factor sends h to i and δ
to 0.
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We know that

t1 = X1 −
(
h

p

)
=

p−1∑
k=1

f (p−k)e(p−k)
(
h

k

)
∈ Fp[h, δ] ∼= Fp[h]⊗ Fp[δ],

from which it follows that Q1, . . . , Qp−1 ∈ Fp[h], while Q0 − 4
(
h
p

)
∈ Fp[h].

Thus we have

4t1 = Qp−1δ
p−1 +Qp−2δ

p−2 + · · ·+Q1δ +

(
Q0 − 4

(
h

p

))
∈ Fp[h, δ],

and to check that t21 = t1, it suffices to check that, for each i, j2, the image
of 4t1 in the i, j2 factor above is equal to 0 or 4.

First we should check that for j2 ∈ F×p , and any i, the image of 4t1 in the
i, j2 factor is constant (its coefficient of ε is 0). So assume j2 is a non-zero
quadratic residue in Fp. Choose any lift j̃ of j to Z. Write

Q := Qp−1δ
p−1 +Qp−2δ

p−2 + · · ·+Q1δ +Q0

= Rp−1(δ − j̃2)p−1 +Rp−2(δ − j̃2)p−2 + · · ·+R1(δ − j̃2) +R0

for some Ri ∈ 1
p2Z[h] ∩H ′′. We need to show that R1 = 0. It is equivalent

to showing that R1/p ∈ H ′′, or equivalently that p2R1 ∈ Z[h] maps every
integer value of h to an element of p3Z(p).

So fix any value of h ∈ Z. Then p2R1 ∈ Z[h] is the coefficient of δ − j̃2
in the δ − j̃2-adic expansion of

(δ − (h− 1)2)(δ − (h− 3)2) · · · (δ − (h− 2p+ 3)2)(δ − (h− 2p+ 1)2)

−(δ − (h+ 1)2)(δ − (h+ 3)2) · · · (δ − (h+ 2p− 3)2)(δ − (h+ 2p− 1)2).

So it is the difference between the coefficients of δ − j̃2 in the δ − j̃2-adic
expansions of

(δ − (h− 1)2)(δ − (h− 3)2) · · · (δ − (h− 2p+ 3)2)(δ − (h− 2p+ 1)2)

=

p∏
l=1

(δ − j̃2 + (j̃ + h− 2l + 1)(j̃ − h+ 2l − 1))
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and

(δ − (h+ 1)2)(δ − (h+ 3)2) · · · (δ − (h+ 2p− 3)2)(δ − (h+ 2p− 1)2)

=

p∏
l=1

(δ − j̃2 + (j̃ + h+ 2l − 1)(j̃ − h− 2l + 1)).

Let us denote the former coefficient by χ(h); then the latter coefficient is
equal to χ(h+ 2p). We have

χ(h) =

p∑
i=1

∏
1≤l≤p
l 6=i

(j̃ + h− 2l + 1)(j̃ − h+ 2l − 1)

=
1

2j̃

p∑
i=1

(j̃ + h− 2i+ 1 + j̃ − h+ 2i− 1)

×
∏

1≤l≤p
l 6=i

(j̃ + h− 2l + 1)(j̃ − h+ 2l − 1)

=
1

2j̃

p∑
i=1

(j̃ + h− 2i+ 1 + j̃ − h+ 2i− 1)

×
∏

1≤l≤p
l 6=i

(j̃ + h− 2l + 1)(j̃ − h+ 2l − 1)

=
1

2j̃


p∑
i=1

∏
1≤l≤p
l 6=i

(j̃ + h− 2l + 1).
∏

1≤l≤p
(j̃ − h+ 2l − 1)

+

p∑
i=1

∏
1≤l≤p

(j̃ + h− 2l + 1).
∏

1≤l≤p
l 6=i

(j̃ − h+ 2l − 1)

 .

For each 1 ≤ i ≤ p, there exists a unique 1 ≤ τ(i) ≤ p such that j̃ −
i+ τ(i) ≡ 0 mod p; τ is a bijection. Note that (j̃ + h− 2i+ 1) + (j̃ − h+
2τ(i)− 1) = 2(j̃ − i+ τ(i)). So we have
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χ(h) =
1

2j̃

p∑
i=1

2(j̃ − i+ τ(i))
∏

1≤l≤p
l 6=i

(j̃ + h− 2l + 1).
∏

1≤l≤p
l 6=τ(i)

(j̃ − h+ 2l − 1)

=
1

j̃

p∑
i=1

(j̃ − i+ τ(i))
∏

1≤l≤p
l 6=i

(j̃ + h− 2l + 1)(j̃ − h+ 2τ(l)− 1).

There is a unique l0, 1 ≤ l0 ≤ p, such that j̃ + h− 2l0 + 1 ≡ 0 mod p. Then
τ(l0) is the unique integer between 1 and p such that j̃ − h+ 2τ(l0)− 1 ≡
0 mod p. Since j̃ is not divisible by p, it follows that for every i 6= l0 with
1 ≤ i ≤ p, the corresponding summand above is divisible by p3. So set

φ(h) =
∏

1≤l≤p
l 6=l0

(j̃ + h− 2l + 1)(j̃ − h+ 2τ(l)− 1);

we need to show that φ(h)− φ(h+ 2p) is divisible by p2, or equivalently,
that φ′(h) is divisible by p. But we have

φ′(h) =
∑

1≤i≤p
i 6=l0

∏
1≤l≤p
l 6=i,l0

(j̃ + h− 2l + 1).
∏

1≤l≤p
l 6=l0

(j̃ − h+ 2τ(l)− 1)

−
∑

1≤i≤p
i 6=l0

∏
1≤l≤p
l 6=l0

(j̃ + h− 2l + 1).
∏

1≤l≤p
l 6=i,l0

(j̃ − h+ 2τ(l)− 1).

As i ranges from 1 to p, excluding l0, the expressions j̃ + h− 2l + 1, j̃ − h+
2τ(l)− 1 both take each non-zero residue modulo p precisely once. Therefore

φ′(h) ≡
p−1∑
i=1

(p− 1)!

i
(p− 1)!−

p−1∑
i=1

(p− 1)!
(p− 1)!

i
≡ 0 mod p,

as required.
Now we need to check that for any i, j2, the image of 4t1 in Fp[h, δ]/(h−

i, δ − j2) is 0 or 4. This is proved similarly. Indeed, choose any lift j̃ of j,
and let ĩ be the unique lift of i such that 0 ≤ ĩ < p (so that

(
i
p

)
= 0); we

should check that Qp−1(̃i)j̃
p−1 +Qp−2(̃i)j̃

p−2 + · · ·+Q1(̃i)j̃ +Q0(̃i), which
is an integer, is congruent to 0 or 4 modulo p. Equivalently we should show
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that

(j̃2 − (̃i− 1)2)(j̃2 − (̃i− 3)2) · · · (j̃2 − (̃i− 2p+ 3)2)(j̃2 − (̃i− 2p+ 1)2)/p2

− (j̃2 − (̃i+ 1)2)(j̃2 − (̃i+ 3)2) · · · (j̃2 − (̃i+ 2p− 3)2)(j̃2 − (̃i+ 2p− 1)2)/p2

is congruent to 0 or 4 modulo p. Let a, b be the unique integers between 1 and
p such that j̃ − ĩ+ 2a− 1, j̃ + ĩ− 2b+ 1 are both divisible by p, and write
them respectively as rp, sp. Then we need only show that rs− (r − 2)(s+
2) = −2(r − s) + 4 is congruent to 0 or 4 modulo p, or equivalently that r − s
is congruent to 0 or 2 modulo p. But (r − s)p = (2a− 1) + (2b− 1)− 2̃i is
an even multiple of p satisfying −2p+ 4 ≤ (r − s)p ≤ 4p− 2, so is equal to
0 or 2p.

This proves that t21 = t1. We show inductively that t2k = tk. We have

Xk =

pk∑
i=1

(
h

i

)
f (p

k−i)e(p
k−i)

=

p∑
j=1

pk−1∑
i=1

(
h

pk−1(j − 1) + i

)
f (p

k−1(p−j)+pk−1−i)e(p
k−1(p−j)+pk−1−i)

=

p∑
j=1

pk−1−1∑
i=1

(
h

pk−1(j − 1)

)(
h

i

)
f (p

k−1(p−j))f (p
k−1−i)e(p

k−1−i)e(p
k−1(p−j))

+

p∑
j=1

(
h

pk−1j

)
f (p

k−1(p−j))e(p
k−1(p−j))

=

(
Xk−1 −

(
h

pk−1

)) p∑
j=1

(
h

pk−1(j − 1)

)
f (p

k−1(p−j))e(p
k−1(p−j))

+

p∑
j=1

(
h

pk−1j

)
f (p

k−1(p−j))e(p
k−1(p−j))

= tk−1

p∑
j=1

(
Xk−1 − tk−1

j − 1

)
f (p

k−1(p−j))e(p
k−1(p−j))

+

p−1∑
j=1

(
Xk−1 − tk−1

j

)
f (p

k−1(p−j))e(p
k−1(p−j)) +

(
h

pk

)
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so that

tk = tk−1

(
Xk−1 − tk−1

p− 1

)
+

p−1∑
j=1

(
tk−1

(
Xk−1 − tk−1

j − 1

)
+

(
Xk−1 − tk−1

j

))
f (p

k−1(p−j))e(p
k−1(p−j))

= tk−1

(
Xk−1 − tk−1

p− 1

)
+

p−1∑
j=1

(
Xk−1
j

)
f (p

k−1(p−j))e(p
k−1(p−j))

since t2k−1 = tk−1. Moreover since Xp
k−1 = Xk−1, it follows that the subal-

gebra generated by e(p
k−1), f (p

k−1) is the restricted enveloping algebra. We
have already proved that

p−1∑
j=1

(
h

j

)
f (p−j)e(p−j) =

p−1∑
j=1

(
h

j

)
fp−jep−j/(p− j)!2

is idempotent, since it is equal to t1. Thus also

p−1∑
j=1

(
Xk−1
j

)
f (p

k−1(p−j))e(p
k−1(p−j))

=

p−1∑
j=1

(
Xk−1
j

)
(f (p

k−1))p−j(e(p
k−1))p−j/(p− j)!2

is idempotent. Since Xk−1 − tk−1 is fixed under raising to the pth power, we
have

(Xk−1 − tk−1)
(
Xk−1 − tk−1

p− 1

)
= −

(
Xk−1 − tk−1

p− 1

)
,

so (
Xk−1 − tk−1

p− 1

)2

=

(
−1

p− 1

)(
Xk−1 − tk−1

p− 1

)
=

(
Xk−1 − tk−1

p− 1

)
is idempotent. Therefore tk−1

(
Xk−1−tk−1

p−1
)

is idempotent since tk−1 commutes
with Xk−1. Finally,

tk−1

(
Xk−1 − tk−1

p− 1

)
Xk−1 = tk−1

(
Xk−1 − tk−1

p− 1

)
(tk−1 − 1)

= (t2k−1 − tk−1)
(
Xk−1 − tk−1

p− 1

)
= 0,
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and
∑p−1

j=1

(
Xk−1

j

)
f (p

k−1(p−j))e(p
k−1(p−j)) is divisible (on the left) by Xk−1 so

that the idempotents

tk−1

(
Xk−1 − tk−1

p− 1

)
and

p−1∑
j=1

(
Xk−1
j

)
f (p

k−1(p−j))e(p
k−1(p−j))

are orthogonal. �
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