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1. Introduction

Let L/Qp be a finite extension with ring of integers o = oL. In [32] the au-

thors introduced certain sheaves of differential operators1 D†n,k on a family
of semistable formal models Xn of the rigid-analytic projective line over L
(the notion of formal model is in the sense of [7, Def. 4 in Sec. 7.4]). A key
result there is that Xn is D†n,k-affine. Moreover, it was shown in loc. cit.
how admissible locally L-analytic representations with trivial infinitesimal
character of the L-analytic group GL2(L), or rather their associated coad-
missible modules, can be described in terms of GL2(L)-equivariant projective
systems of coherent sheaves Mn over D†n,n. We generalized the construction

of the sheaves D†n,k to higher-dimensional formal schemes, which are not
necessarily semi-stable, in [22].

In this paper we generalize the previous results on D†-affinity, as well
as the representation theoretic results to (not necessarily semistable) formal
models of general flag varieties of split reductive groups. So let G0 be a
connected split reductive group scheme over o, and denote by X0 the formal
completion of the flag schemeX0 of G0. We then consider a formal admissible
blow-up X of X0. In Section 2 we briefly recall the definition of the sheaves of
differential operators D†X,k as introduced in [22]. Here k is an integer which
we call the congruence level. It is bounded below by a non-negative integer
kX which depends on the blow-up morphism X→ X0. Our first main result
is then

Theorem 1 (cf. 4.3.2). For all k ≥ kX the formal scheme X is D†X,k-affine.

This means that the global sections functor furnishes an equivalence
of categories between coherent modules over D†X,k and finitely presented

modules over the ring H0(X,D†X,k). It is shown that H0(X,D†X,k) can be
identified with the central reduction Dan(G(k)◦)θ0 of Emerton’s analytic
distribution algebra Dan(G(k)◦) of the wide open rigid-analytic kth con-
gruence subgroup G(k)◦ of G0, cf. [15, 5.2, 5.3], [29, 5.3]. The functor
M  L oc†X,k(M) := D†X,k ⊗Dan(G(k)◦)θ0

M is quasi-inverse to the global sec-
tions functor. Compare [5, 11, 12] for the classical setting of modules over the
Lie algebra of G = G0 ×Spec(o) Spec(L) and localization on the flag variety
X of G.

1These sheaves were denoted ‹D†
n,k in [32] to distinguish them from the sheaves of

arithmetic differential operators introduced by P. Berthelot. For ease of notation,
we have decided to drop the tilde throughout this paper.
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D†-affinity of formal models of flag varieties 1679

As in [32] our main motivation for this result concerns locally analytic
representations. The category of admissible locally analytic representations
of the locally L-analytic group G := G(L) with trivial infinitesimal character
θ0 is anti-equivalent to the category of coadmissible modules over D(G,L)θ0 ,
the central reduction of the locally L-analytic distribution algebra D(G,L)
of G at θ0.

On the geometric side, we consider the (semisimple) Bruhat-Tits build-
ing B of G [9, 10]. This is a simplicial complex whose dimension equals the
semisimple rank of G and which is equipped with an action of G. Most
important for our purposes is the G-stable subset of B of so-called special
vertices. To any such vertex v the theory of Bruhat and Tits associates a
reductive group scheme Gv over o whose generic fiber comes equipped with
a canonical isomorphism to G. (The group scheme G0 we considered before
can be taken to be one of those group schemes Gv0 , say.) The flag scheme
Xv,0 of Gv therefore has the property that its generic fiber is canonically
isomorphic to X2. Passing to formal completions we thus obtain a family
of smooth formal schemes Xv,0, indexed by the set of special vertices of B,
which is equipped with a G-action. Furthermore, we consider for every spe-
cial vertex v the set Fv of all admissible blow-ups X of Xv,0, and we define
Fv ⊂ Fv × N to be the set of pairs (X, k) with X ∈ Fv and k ≥ kX. There
is a natural partial ordering on F :=

∐
v Fv which makes this a directed set

(5.3.1), and F :=
∐
v Fv naturally carries a G-action, cf. 5.3.2 for details.

A coadmissible G-equivariant arithmetic D-module on F consists of a
family

M = (MX,k)(X,k)∈F

of coherent D†X,k-modules MX,k satisfying certain compatibility properties,
cf. 5.3.3. In particular, these properties make it possible to form the projec-
tive limit

Γ(M ) := lim←−
(X,k)∈F

H0(X,MX,k)

which, as we show, carries the structure of a coadmissible D(G,L)θ0-module.
On the other hand, given a coadmissible D(G,L)θ0-moduleM we let V = M ′

be its continuous dual, which is an admissible locally analytic representation
ofG. We then letMv,k be the continuous dual of the subspace VGv(k)◦−an ⊂ V

2The index “0” of Xv,0 indicates that we think of Xv,0 as the bottom layer of
the tower of admissible blow-ups of this scheme.
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of Gv(k)◦-analytic vectors in V . For any (X, k) ∈ Fv we have the coherent
D†X,k-module

L oc†X,k(Mv,k) = D†X,k ⊗Dan(Gv(k)◦)θ0
Mv,k.

We denote the family of all those modules by L ocG(M). Our main result
is then

Theorem 2 (cf. 5.3.4). The functors L ocG and Γ are quasi-inverse equiva-
lences between the category of coadmissible D(G,L)θ0-modules and the cat-
egory CG

F of coadmissible G-equivariant arithmetic D-modules on F .

The projective limit X∞ := lim←−X∈F X is the Zariski-Riemann space at-

tached to Xrig. The latter space is in turn isomorphic (as a ringed space, after
inverting p on the structure sheaf) to the adic space attached to Xrig, cf. [41,
Thm. 4 in Sec. 2, Thm. 4 in Sec. 3]. One can also form the projective limit
D∞ of the sheaves D†X,k which is then a G-equivariant sheaf of p-adically
complete rings of differential operators on X∞, cf. 5.2.6. Similarly, for any
object M = (MX,k) in CG

F one can form the projective limit M∞ of the
sheaves MX,k which is then a G-equivariant D∞-module. The assignment
M  M∞ is a faithful functor from CG

F to the category of G-equivariant
D∞-modules, cf. 5.3.6. We remark that it is possible to modify the target
category by way of equipping the objects with the structure of locally con-
vex D∞-modules (and by requiring morphisms to be continuous),3 so as to
obtain a fully faithful functor M  M∞, cf. 5.3.7.

In a final section we illustrate this localization theory by computing the
D†X,k-modules associated to certain classes of locally analytic representa-
tions.

In this paper we only treat the case of the central character θ0, but there
is an extension of this theorem available for characters more general than θ0

by using twisted versions of the sheaves D†X,k. Moreover, the construction of

the sheaf D†∞ carries over to general smooth rigid-analytic (or adic) spaces
over L. These questions will be addressed in future work.

We would also like to mention that K. Ardakov and S. Wadsley are de-
veloping a theory of D-modules on general rigid-analytic spaces, cf. [1, 2, 4].

3Equipping D-modules with locally convex structures is a common technique in
the theory of complex analytic D∞-modules, cf. [33, 38].
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In their work they consider deformations of the sheaves of crystalline differ-
ential operators (as in [3]), whereas we take as a starting point deformations
of Berthelot’s rings of arithmetic differential operators. That the rings of
differential operators considered by us are close in spirit to the theory of
rigid cohomology will, as we hope, open a way to use techniques and results
from rigid cohomology to investigate locally analytic representations. A first
example for such an interaction can be found in [32, Sec. 7].

Notation. L denotes a finite extension of Qp, with ring of integers o and
uniformizer $. Let q be the cardinality of the residue field o/($) which we
also denote by Fq. G0 denotes a split connected reductive group scheme over
o and B0 ⊂ G0 a Borel subgroup scheme. We let G = G0 ×Spec(o) Spec(L)
be the generic fiber of G0. The Lie algebra of G0 is denoted by go. If X
is a smooth scheme over Spec(o), we denote by TX its relative tangent
sheaf, i.e., TX = TX/Spec(o). If X (resp. X) is a scheme (resp. formal scheme)
over Spec(o) (resp. Spf(o)), a coherent sheaf of ideals I ⊂ OX (resp. I ⊂
OX) is said to be open (w.r.t. the p-adic topology) if $ is locally nilpotent
on Spec(OX/I) (resp. Spf(OX/I)). A scheme (or a formal scheme) over
Spec(o) (resp. Spf(o)) which arises from blowing up an open ideal sheaf
on X (resp. X) will be called an admissible blow-up of X (resp. admissible
formal blow-up of X). If X denotes a scheme over o, we always denote by
X the completion of X along its special fiber X ×Spec(o) Spec(Fq). The set
of non-negative integers will be denoted by N (in particular, our convention
is such that N contains zero). If V is a topological vector space over L,
then V ′ = Homcont

L (V,L) denotes space of continuous linear forms on V , and
when we write V ′b , then the subscript ”b” indicates that we equip this space
with the strong topology of bounded convergence. If not said otherwise, all
modules are tacitly assumed to be left modules.

2. The sheaves D
(k,m)
X and D̂

(k,m)
X

While Sections 3–6 of this paper are only about flag varieties and their
formal models, we work in this section in somewhat greater generality, as
this is more natural for the material considered here. For more details about
the constructions discussed below, as well as the proofs of the main result
of this section, we refer the reader to [22].

2.1. Differential operators with levels and congruence levels

Here we briefly recall the local description of Berthelot’s sheaf D (m) of dif-
ferential operators of level m. Moreover, we introduce a kind of deformation
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of this sheaf, to be denoted by D (k,m), where k ∈ N is what we call a con-
gruence level. For k = 0 we have D (0,m) = D (m). As will become apparent in
Section 3.3, this terminology is motivated by the relation of these sheaves,
in the case of flag varieties, to principal congruence subgroups. In the spe-
cial case of the projective line, the sheaves with congruence levels have been
introduced in [32], and similar constructions also appeared earlier in [3].

Let X0 be a smooth scheme over o and X0 the associated formal scheme,
i.e., the completion of X0 along the special fiber X0 ×Spec(o) Spec(Fq). The
usual sheaf of relative differential operators [18, 16.8] on X0 over o will be
denoted by DX0/Spec(o) (without superscripts as ‘decorations’). Let U0 be an
affine open subset of X0, endowed with local coordinates x1, . . . , xM , and
let ∂1, . . . , ∂M be the corresponding derivations. Denote by m a fixed non-

negative integer. For a non-negative integer νl, we let q
(m)
νl be the quotient

of the euclidean division of νl by pm, i.e., q
(m)
νl = b νlpm c. Then we set

(2.1.1) ∂
〈νl〉(m)

l = q(m)
νl !∂

[νl]
l ,

where, as usual, ∂
[νl]
l ∈ Γ(U0,DU0/Spec(o)) is such that l!∂

[νl]
l = ∂νll . For ν =

(ν1, . . . , νM )∈NM , we put ∂〈ν〉(m) =
∏M
l=1 ∂

〈νl〉(m)

l , ∂[ν] =
∏M
l=1 ∂

[νl]
l , and |ν| =

ν1 + · · ·+ νM .

Denote by D
(m)
X0

:= D
(m)
X0/Spec(o) ⊂ DX0/Spec(o) the ring of level m differen-

tial operators of Berthelot, cf. [6, Sec. 2] (from now on we agree on omitting
the base scheme Spec(o) in the notation as in [6, 2.2.3]). Then we have the
following description in local coordinates:

Γ(U0,D
(m)
X0

) =

{
<∞∑
ν

aν∂
〈ν〉(m) | aν ∈ Γ(U0,OX0

)

}
,

as follows from [6, 2.2.5]. Now let k ∈ N be another non-negative integer (the

congruence level mentioned above). We then define a subring Γ(U0,D
(k,m)
X0

) ⊂
Γ(U0,D

(m)
X0

) by setting

(2.1.2) Γ(U0,D
(k,m)
X0

) =

{
<∞∑
ν

$k|ν|aν∂
〈ν〉 | aν ∈ Γ(U0,OX0

)

}
.

It is straightforward to see that this is indeed a subring of Γ(U0,D
(m)
X0

).
And, as the notation already suggests, it is not hard to show that these rings

glue together to give a subsheaf D
(k,m)
X0

of D
(m)
X0

.
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Remark 2.1.1. Let X0,η = X0 ×Spec(o) Spec(L) be the generic fiber of X0

which is an open subset of X0. We note that for any pair (k,m) ∈ N2

the inclusion D
(k,m)
X0

⊂ DX0
induces a canonical isomorphism D

(k,m)
X0

∣∣∣
X0,η

=

DX0

∣∣∣
X0,η

= DX0,η
, because $ is invertible on X0,η. Any of the sheaves D

(k,m)
X0

therefore extends the sheaf DX0,η
to the whole scheme X0.

2.2. Differential operators with levels and congruence levels
on blow-ups

2.2.1. Lifting the sheaves to blow-ups. Denote by pr : X → X0 an
admissible blow-up. That is to say, X is obtained by blowing up a sheaf
of ideals I ⊂ OX0

containing some power of $, say $k. In particular, the
blow-up morphism pr induces a canonical isomorphism Xη ' X0,η between
the generic fibers, cf. 2.1.1 for the notation.

The sheaf pr−1
(
D

(k,m)
X0

)
on X is again a sheaf of rings, and it follows

from 2.1.1 that there is a canonical isomorphism pr−1
(
D

(k,m)
X0

)∣∣∣
Xη

= DXη .

In particular, OXη is naturally a module over pr−1
(
D

(k,m)
X0

)∣∣∣
Xη

. Now the

question arises for which congruence levels k ∈ N this module structure ex-

tends to a module structure on OX over pr−1
(
D

(k,m)
X0

)
. Since functions on

X are determined by their restriction to Xη, any such extension of module
structure is unique. As in [22, 2.1.10] one shows that the condition $k ∈ I
implies that OX carries a natural structure of a module over pr−1

(
D

(k,m)
X0

)
.

Therefore, the sheaf

(2.2.1) D
(k,m)
X := pr∗D

(k,m)
X0

= OX ⊗pr−1(OX0
) pr−1

(
D

(k,m)
X0

)
can be equipped with a multiplication which extends the sheaf of rings

structure of pr−1
(
D

(k,m)
X0

)
. Explicitly, if ∂1, ∂2 are both derivations and lo-

cal sections of pr−1
(
D

(k,m)
X0

)
, and if f1, f2 are local sections of OX , then

(f1 ⊗ ∂1) · (f2 ⊗ ∂2) = f1∂1(f2)⊗ ∂2 + f1f2 ⊗ ∂1∂2. We set

(2.2.2) kX = min
I

min{k ∈ N | $k ∈ I},

where the first minimum is taken over all open ideal sheaves I such that the
blow-up of I is isomorphic to X (over X0). Suppose U0 ⊂ X0 is an affine
open subset which is endowed with local coordinates x1, . . . , xM . Consider
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an affine open subset U ⊂ pr−1(U0) ⊂ X. Then we have the following de-

scription of the sections of D
(k,m)
X over U :

(2.2.3) Γ(U,D
(k,m)
X ) =

{
<∞∑
ν

$k|ν|aν∂
〈ν〉(m) | aν ∈ Γ(U,OX)

}
.

2.2.2. Filtrations on D
(k,m)
X . Using this description, we observe that the

sheaf D
(k,m)
X is filtered by the order of differential operators. More precisely,

if d ∈ N is given, we define the subsheaf D
(k,m)
X,d as follows. Let V ⊂ X be any

open subset. Then Γ(V,D
(k,m)
X,d ) consists of those elements P ∈ Γ(V,D

(k,m)
X )

such that for any open affine U0 ⊂ X0 as above, and for any open affine U ⊂
V ∩ pr−1(U0), the restriction P |U is of the form

∑
|ν|≤d$

k|ν|aν∂
〈ν〉(m) with

aν ∈ Γ(U,OX) and where, as usual, |ν| = ν1 + · · ·+ νM . There are canonical

isomorphisms D
(k,m)
X,d = pr∗D

(k,m)
X0,d

. We put

(2.2.4) TX,k := $kpr∗(TX0
) ⊂ pr∗(TX0

),

and we denote by

Sym(m)(TX,k) =
⊕
d

Sym
(m)
d (TX,k)

the graded level m symmetric algebra generated by the sheaf TX,k, cf. [21,
Sec. 1.2]. If U0 is affine endowed with local coordinates x1, . . . , xM as before,
and ξ1, . . . , ξM a basis of TX0

restricted to U0, then using notations of 2.1.1
one has for an open affine U ⊂ pr−1(U0)

Γ(U,Sym
(m)
d (TX,k)) =

⊕
|ν|=d

O(U)$kdξ〈ν〉(m) .

In [22, 2.2.2] we show the following

Proposition 2.2.1. Suppose k ≥ kX . Then the associated graded algebra

of D
(k,m)
X for the filtration by the order of differential operators is isomorphic

to Sym(m)(TX,k).

2.2.3. p-adic completions. We denote the completion of X0 and X

along their special fibers by X0 and X, respectively, and we let “D (k,m)
X be

the p-adic completion of D
(k,m)
X which we consider as a sheaf on the formal
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scheme X. For fixed k ≥ kX , cf. 2.2.2, we also define

D†X,k = lim−→
m

“D (k,m)
X,Q .

Remark. We emphasize that the sheaves D
(k,m)
X , “D (k,m)

X , D†X,k do not only
depend on X, resp. X, but in an essential way on the blow-up morphism to
X0, resp. X0.

In this paper we will only be working with formal schemes X which are
completions along their special fibers of admissible blow-ups X → X0 of a
smooth scheme X0 over Spec(o). In this regard we have the following

Proposition 2.2.2. Let X→ X0 be an admissible formal blow-up, obtained
by blowing up an open ideal sheaf I ⊂ OX0

. Then there is an open ideal sheaf
I ⊂ OX0

such that I is the restriction of the p-adic completion of I to X0,
and X is therefore the completion of the blow-up X of I along its special
fiber.

Proof. We remark that X0 being smooth over o implies that it is locally
noetherian, which is all we need for this statement to hold. Consider the
quotient sheaf Q = OX0

/I and the canonical surjection

σ : OX0
−→ Q

of sheaves on X0, and let i : X0 → X0 be the closed embedding of the special
fiber. This is a morphism of ringed spaces. We consider the corresponding
map of sheaves OX0

→ i∗OX0
which we compose with i∗σ to obtain the

morphism of sheaves on X0

τ : OX0
→ i∗Q.

Our first goal is to show that τ is surjective. Let U ⊂ X0 be an affine
open subscheme, and U ⊂ X0 be the completion along its special fiber. We
have $nQU = 0 for some n ∈ N, and hence $nQU = 0. The restriction of
the surjection σ to U thus factors as

σ|U : OX0
|U = OU −→ OU ⊗o o/($

n) −→ Q|U.

Since OU is the restriction to U of the p-adic completion of OU , we
see that the canonical map OU → i∗OU induces an isomorphism OU ⊗o
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o/($n)
'−→ i∗

(
OU ⊗o o/($

n)
)

and therefore a surjection

OU � OU ⊗o o/($
n) = i∗

(
OU ⊗o o/($

n)
)
� i∗(Q|U) = (i∗Q)|U .

Of course, this map is the same as τ |U , and τ |U is thus surjective. There-
fore, τ is surjective. Put I = ker(τ) and consider the tautological exact se-
quence of coherent sheaves on X0

0 −→ I −→ OX0
−→ i∗Q −→ 0.

By [16, 10.8.8], the completion functor is exact on coherent sheaves, and
the previous exact sequence thus yields an exact sequence of sheaves on X0

0 −→ Î|X0
−→ OX0

σ−→ Q −→ 0.

This shows that I is the restriction to X0 of the p-adic completion of I.
The very definition of admissible formal blow-up, cf. [7, Def.3 in Sec. 8.2]
shows that then X is equal to the formal completion along its special fiber
of the blow-up of I. �

Given an admissible formal blow-up X→ X0 we put

(2.2.5) kX = min
I

min{k ∈ N | $N ∈ I},

where the first minimum is taken over all open ideal sheaves I ⊂ OX0
such

that the blow-up of I is isomorphic to X (over X0).

Convention 2.2.3. In the remainder of this paper, whenever we consider

the sheaves D
(k,m)
X on the admissible blow-up X of X0 we tacitly assume

that k ≥ kX . Similarly, whenever we consider the sheaves “D (k,m)
X , “D (k,m)

X,Q ,

or D†X,k on the admissible formal blow-up X of X0 we tacitly assume that
k ≥ kX.

We will also need the following result from [22, 2.2.2, 2.3.3]:

Theorem 2.2.4. Let π : X′ → X be a morphism over X0 between admissible
formal blow-ups of X0, and let k ≥ max{kX, kX′}.

(i) “D (k,m)
X,Q and D†X,k are coherent sheaves of rings. Moreover, “D (k,m)

X,Q has
noetherian rings of sections over all open affine subsets.



i
i

“5-Strauch” — 2020/3/6 — 21:39 — page 1687 — #11 i
i

i
i

i
i

D†-affinity of formal models of flag varieties 1687

(ii) There is a canonical isomorphism π∗D
†
X′,k = D†X,k. If M ′ is a co-

herent D†X′,k-module, then Rjπ∗M ′ = 0 for j > 0. The functor π∗ induces

an exact functor from the category of coherent modules over D†X′,k to the

category of coherent modules over D†X,k.

3. Formal models of flag varieties

3.1. Models, formal models, and group actions

3.1.1. Models and formal models. For the remainder of this paper
G0 denotes a split connected reductive group scheme over o and B0 ⊂ G0 a
Borel subgroup scheme. The Lie algebra of G0 is denoted by go. By

X0 = B0\G0,

we denote the flag scheme of G0, which is smooth and projective over o
[14, Exp. XXVI, Cor. 3.5], and we let X0 be the completion of X0 along its
special fiber X0 ×Spec(o) Spec(Fq). By G = G0 ×Spec(o) Spec(L) (resp. B) we
denote the generic fiber of G0 (resp. B0), and we let g be the Lie algebra
of G. The flag variety B\G of G will be denoted by X, and we let Xrig be
the rigid-analytic space associated by the GAGA functor to X, cf. [7, 5.4].
Any admissible formal o-scheme X (in the sense of [7, Def. 1 in Sec. 7.4])
whose associated rigid-analytic space is isomorphic to Xrig will be called a
formal model of Xrig, or simply a formal model of the flag variety associated
to G, cf. [7, Def. 4 in Sec. 7.4]. For any two formal models X1,X2 of Xrig

there is a third formal model X′ and admissible formal blow-up morphisms
X′ → X1 and X′ → X2, cf. [7, Remark 10 in Sec. 8.2]. In particular, for every
formal model X there is a formal model X′ and admissible formal blow-up
morphisms X′ → X and X′ → X0.

3.1.2. Group actions. We equip X0 with the translation action on the
right by G0, i.e.,

X0 ×Spec(o) G0 → X0, (B0g, h) 7→ B0gh.

The right action of G0 on X0 induces a right action4 of G on X. We fix
once and for all a very ample line bundle OX0

(1) on X0 over Spec(o).

4We remark that the flag schemes, or flag varieties, considered in [32] and [30] are
also equipped with right group actions. This will be of some importance later when
we consider certain ring homomorphisms. Namely, those ring homomorphisms are
indeed homomorphisms and not anti-homomorphisms, cf. 3.3.2.
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3.2. Preliminaries on blow-ups of the flag scheme X0

Let pr : X → X0 be an admissible blow-up, and let I ⊂ X0 be the ideal
sheaf that is blown up. The inverse image ideal sheaf pr−1(I) · OX is an
invertible sheaf on X which we denote by OX/X0

(1), cf. [19, ch. II, 7.13]. By
[17, remark after 8.1.3] the blow-up morphism is projective, and X is thus
itself projective over o.

Lemma 3.2.1. There is a0 ∈ Z>0 such that the line bundle

LX = OX/X0
(1)⊗ pr∗

(
OX0

(a0)
)

on X is very ample over Spec(o), and it is very ample over X0.

Proof. By [19, ch. II, ex. 7.14 (b)], the sheaf

L = OX/X0
(1)⊗ pr∗

(
OX0

(a0)
)

is very ample on X over Spec(o) for suitable a0 > 0. We fix such an a0. By
[17, 4.4.10 (v)] it is then also very ample over X0. �

3.2.1. Twisting by LX . We fix a0 ∈ Z>0 such that the line bundle LX
from 3.2.1 is very ample over Spec(o). In the following we will always use
this line bundle to ‘twist’ OX -modules. If F is a OX -module and r ∈ Z we
thus put

F(r) = F ⊗OX L⊗rX .

Some caveat is in order when we deal with sheaves which are equipped
with both a left and a right OX -module structure (which may not coincide).

For instance, if Fd = D
(k,m)
X,d , cf. 2.2.2, then we let

Fd(r) = D
(k,m)
X,d (r) = D

(k,m)
X,d ⊗OX L⊗rX ,

where we consider Fd = D
(k,m)
X,d as a right OX -module. Similarly we put

D
(k,m)
X (r) = D

(k,m)
X ⊗OX L⊗rX ,

where we consider D
(k,m)
X as a right OX -module. Then we have D

(k,m)
X (r) =

lim−→d
Fd(r). When we consider the associated graded sheaf of D

(k,m)
X (r), it is
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with respect to the filtration by the Fd(r). The sheaf D
(k,m)
X (r) is a coher-

ent left D
(k,m)
X -module since it is locally isomorphic with D

(k,m)
X as D

(k,m)
X -

module.

Lemma 3.2.2. Let pr : X → X0 and pr′ : X ′ → X0 be admissible blow-ups
of X0, and let π : X ′ → X be a morphism over X0, i.e., pr ◦ π = pr′. Fur-
thermore, let k, k′ be two non-negative integers (not necessarily greater or
equal to kX or kX′).

(i) In the case π∗OX′ = OX , one has

$k′−kTX,k = π∗(TX′,k′)

as subsheaves of TX ⊗o L (cf. 2.2.4 for the definition of TX,k).

(ii) The group action of G0 on X0 induces a morphism go → H0(X0,TX0
)

of Lie algebras over o. This map induces an OX0
-linear map α : OX0

⊗o

go → TX0
. The map $kpr∗α : OX ⊗o $

kgo → TX,k is an OX-linear map
which in turn induces a morphism $kgo → H0(X,TX,k) of Lie algebras
over o.

(iii) If X is normal, then π∗OX′ = OX . This holds, in particular, if
X = X0 and π is the blow-up morphism X ′ → X0.

Proof. The assertion (i) follows from the projection formula and the fact
that

$k′−kπ∗TX,k = TX′,k′

by definition of the sheaves, if k′ ≥ k. Otherwise, we have

π∗TX,k = $k−k′TX′,k′ .

(ii) The first assertion is [13, II, §4, 4.4] (note that in loc. cit. the map is
an anti-homomorphism because in loc. cit. the group acts from the left on the
scheme in question). The remaining assertions are immediate consequences
of the first assertion.

(iii) Let I ⊂ OX0
be the ideal that is blown up to obtain X. The sheaf

S =
⊕

d≥0 Id is naturally a subsheaf of the sheaf of polynomial algebras
OX0

[t], and is thus a sheaf of integral domains, since X0 is integral. There-
fore, X is integral too. The same holds for X ′. Since pr′ is projective (cf.
the beginning of this subsection), and since pr ◦ π = pr′, we conclude that
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π is projective too, by [17, 5.5.5]. Now let J ⊂ OX be the ideal sheaf which
is blown up to obtain X ′. As J contains a power of $, the vanishing locus
of J is contained in the special fiber of X, and π is hence an isomorphism
on the generic fibers, and hence birational. π is thus a projective birational
morphism between noetherian integral schemes. The assertion follows now
from Zariski’s Main Theorem, cf. [19, 11.4 in ch. III] and its proof. �

We remind the reader of our convention 2.2.3 regarding the congruence
level k.

Proposition 3.2.3. Let π : X ′ → X be a morphism over X0 of admissible
blow-ups of X0 (as in 3.2.2). If k ≥ max{kX , kX′} and if π∗OX′ = OX , then

π∗

(
D

(k,m)
X′

)
= D

(k,m)
X .

Proof. The sheaves D
(k,m)
X0,d

of differential operators of order ≤ d are locally

free of finite rank, and so are the sheaves D
(k,m)
X,d , by construction. We can

thus apply the projection formula and get

π∗

(
D

(k,m)
X′,d

)
= D

(k,m)
X,d .

The claim follows because the direct image commutes with inductive
limits on a noetherian space. �

3.3. Global sections of D
(k,m)
X , “D(k,m)

X , and D†X,k

3.3.1. Congruence group schemes. We let G(k) denote the k-th
scheme-theoretic congruence subgroup of the group scheme G0 [42, Sec. 1],
[43, 2.8]. So G(0) = G0 and G(k + 1) equals the dilatation, in the sense of [8,
3.2], of the trivial subgroup of G(k)×Spec(o) Spec(Fq) on G(k). In particular,
if G(k) = Spec o[t1, . . . , tN ] with a set of parameters ti for the unit section of
G(k), then G(k + 1) = Spec o[ t1$ , . . . ,

tN
$ ]. The o-group scheme G(k) is again

smooth, has Lie algebra equal to $kgo and its generic fibre coincides with
the generic fibre of G0.

3.3.2. Divided power enveloping algebras. We denote by D(m)(G(k))
the distribution algebra of the smooth o-group scheme G(k) of level m [29,
4.1.3]. It is noetherian and admits the following explicit description. Let
go = n−o ⊕ to ⊕ no be a triangular decomposition of go. We fix basis ele-
ments (fi), (hj) and (ei) of the o-modules n−o , to and no respectively. Then
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D(m)(G(k)) equals the o-subalgebra of U(g) = Uo(go)⊗o L generated by the
elements

(3.3.1) q(m)
ν !

($ke)ν

ν!
· q(m)
ν′ !$k|ν′|

(
h

ν ′

)
· q(m)
ν′′ !

($kf)ν
′′

ν ′′!
.

An element of this type has order d = |ν|+ |ν ′|+ |ν ′′|, and the o-span of

elements of order ≤ d form an o-submodule D
(m)
d (G(k)) ⊂ D(m)(G(k)), and

D(m)(G(k)) becomes in this way a filtered o-algebra. In the case of the group
GL2 we considered the same algebra in [32, 3.3.1] (denoted differently there).
D(m)(G(k)) is a noetherian ring [29, 4.1.13], and so is its p-adic completion“D(m)(G(k)) [26]. The ring D(m)(G(k)) obviously contains the enveloping
algebra Uo($kgo) of $kgo over o, and the inclusion Uo($kgo)→ D(m)(G(k))

induces an isomorphism of L-algebras U(g)
'−→ D(m)(G(k))⊗o L. Denote by

Z(g) the center of U(g), and let θ0 : Z(g)→ L be the character with which
the center acts on the trivial one-dimensional representation of g. We are
now going to use a key result by Beilinson and Bernstein from [5].

Proposition 3.3.1. (i) Let pr : X → X0 be an admissible blow-up. There
is a unique filtered L-algebra homomorphism

(3.3.2) QX,k,L : U(g) −→ H0(X,D
(k,m)
X )⊗o L,

such that the following diagram is commutative

(3.3.3) g� _

��

// H0(X,TX,k)⊗o L

��

U(g) // // H0(X,D
(k,m)
X )⊗o L

Here, the upper horizontal map is obtained from the map $kgo→H0(X,TX,k)
in 3.2.2 by tensoring with L. The vertical map on the right is induced by the

canonical homomorphism of sheaves TX,k → D
(k,m)
X .

(ii) QX,k,L is surjective and its kernel is the two-sided ideal U(g) ker(θ0)

so that QX,k,L induces an isomorphism U(g)θ0
'−→ H0(X,D

(k,m)
X )⊗o L,

where U(g)θ0 = U(g)/U(g) ker(θ0).

Proof. We first note that by 3.2.3 and 3.2.2 we have pr∗(D
(k,m)
X ) = D

(k,m)
X0

and therefore H0(X,D
(k,m)
X ) = H0(X0,D

(k,m)
X0

). Flat base change gives us
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H0(X0,D
(k,m)
X0

)⊗o L = H0(X,DX)⊗o L, where DX is the sheaf of differen-
tial operators on the flag variety X. The existence and uniqueness of QX,k,L
follow from the universal property of U(g). The assertions about the surjec-
tivity and kernel of this map are simply restatements of [5, Lemme 3], cf.
also [20, 11.2.2]. �

Proposition 3.3.2. Let pr : X → X0 be an admissible blow-up. There is a
canonical homomorphism of filtered o-algebras

(3.3.4) Q
(k,m)
X : D(m)(G(k)) −→ H0(X,D

(k,m)
X ),

such that the following diagram is commutative

(3.3.5) D(m)(G(k))� _

��

// H0(X,D
(k,m)
X )

��

U(g) // // H0(X,D
(k,m)
X )⊗o L

Here, the lower horizontal map is the map QX,k,L in 3.3.2. In particular,

the map Q
(k,m)
X induces an isomorphism(

D(m)(G(k))⊗o L
)
/
(
D(m)(G(k))⊗o L

)
ker(θ0)

'−→ H0(X,D
(k,m)
X )⊗o L.

Proof. We begin with a remark on sheaves of filtered o-algebras and their
associated sheaves of Rees rings. This material, in the setting of rings, instead
of sheaves of rings, is well-known (cf. [27, ch. 12, §6], [24, ch. I, §4]), and
its version for sheaves is entirely analogous. A sheaf of filtered o-algebra
A with positive filtration (FdA)d≥0 and o ⊂ F0A gives rise to the sheaf of
graded rings R(A) := ⊕d≥0FdAtd, its associated sheaf of Rees rings. This
is a sheaf of subrings of the polynomial algebra A[t] over A. The sheaf
of Rees rings is equipped with the filtration by the sheaves of subgroups
Rd(A) = ⊕di=0FiAti ⊂ R(A). Specialising R(A) in an element λ ∈ o yields
a sheaf of filtered subrings Aλ of A. Precisely, Aλ equals the image under
the homomorphism of sheaves of rings R(A)→ A, t 7→ λ. We equip Aλ =∑

d≥0 λ
dFdA with the filtration induced by A.

Claim 3.3.3. If the sheaf of graded rings gr(A), associated with the filtra-
tion (FdA)d, is flat over o, then for all d

Fd(Aλ) =
∑

0≤i≤d
λiFiA.
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Proof of the claim. The right hand side is obviously contained in the left
hand side. So we only have to show the other inclusion. Consider an ele-
ment x ∈ Fd(Aλ), and write it as x =

∑n
i=0 λ

ixi with n ≥ d and xi ∈ FiA
for i = 0, . . . , n. Put x′ =

∑d
i=0 λ

ixi. Then x′ is contained in the right hand
side, and it suffices to see that x′′ = x− x′ lies in the right hand side too.
Set y =

∑n
i=d+1 λ

i−d−1xi so that x′′ = λd+1y. If y does not lie in FdA,
then choose j > d such that y ∈ FjA \ Fj−1A. Then the symbol σ(y) := y +
Fj−1A in FjA/Fj−1A is nonzero, but λd+1σ(y) = λd+1y + Fj−1A = x′′ +
Fj−1A is zero in grjA, since x′′ lies in Fd(Aλ) ⊂ FdA ⊂ Fj−1A. Because we

assume that gr(A) is flat over o, this implies that λd+1 = 0, i.e., λ = 0. But
then x = x0 is contained in the right hand side. On the other hand, if y lies
in Fd(A), then x′′ = λd+1y lies in the right hand side. �

For fixed λ, the formation of Aλ is functorial in A. We now consider the
canonical homomorphism of filtered o-algebras

Qm : D(m)(G(0)) −→ H0(X0,D
(m)
X0

)

appearing in [29, 4.4.5]. It comes by functoriality from the right G0-action on
X0. After tensoring with L the morphism Qm is equal to the map QX0,0,L of
3.3.2. Given an o-algebra A we will denote by A the corresponding constant
sheaf on X0. The map Qm then gives rise to an homomorphism of associated
constant sheaves of filtered o-algebras

Q
m

: D(m)(G(0)) −→ H0(X0,D
(m)
X0

).

We compose this map with the canonical map of sheaves H0(X0,D
(m)
X0

)

→ D
(m)
X0

and obtain a homomorphism of sheaves of filtered o-algebras

D(m)(G(0)) −→ D
(m)
X0

.

To this map we now apply the remark regarding Rees rings (and sheaves
of Rees rings) we made in the beginning. That is, we pass to the sheaves of
Rees rings associated with the filtrations (on the domain and target of this
map), and then we specialize the parameter on both sides to t = $k. This
gives a filtered homomorphism of sheaves of filtered o-algebras

D(m)(G(0))
$k
−→

(
D

(m)
X0

)
$k
.

The definition of the filtration on D(m)(G(k)), cf. 3.3.2, together with 3.3.3,
imply that D(m)(G(0))$k = D(m)(G(k)) as filtered subrings of D(m)(G(0)),
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and it follows from this that there is a canonical identification

D(m)(G(0))
$k

= D(m)(G(k)).

The explicit description of sections over open affine subsets U0 ⊂ X0

in 2.1.2, together with 3.3.3, imply that the sheaf (D
(m)
X0

)$k coincides with

D
(k,m)
X0

as filtered subsheaves of D
(m)
X0

. We obtain thus a homomorphism of
sheaves of filtered o-algebras

D(m)(G(k)) −→ D
(k,m)
X0

.

Taking global sections we obtain a homomorphism of filtered o-algebras

H0
(
X0, D

(m)(G(k))
)
−→ H0(X0,D

(k,m)
X0

)

As X0 is connected, the domain of this map is D(m)(G(k)). Moreover, in
the situation considered here, we can apply 3.2.2 (iii) and get that pr∗OX =
OX0

. We can thus use 3.2.3 and conclude that

H0(X,D
(k,m)
X ) = H0(X0,D

(k,m)
X0

).

This gives the homomorphism of filtered o-algebras

Q
(k,m)
X : D(m)(G(k))→ H0(X,D

(k,m)
X ),

as claimed. The last assertion follows now from 3.3.1 (ii). �

We put A(k,m)
X = OX ⊗o D

(m)(G(k)), and we equip this sheaf with
the skew ring multiplication (smash product) coming from the action of

D(m)(G(k)) on OX via Q
(k,m)
X . This is a sheaf of associative o-algebras.5

This sheaf has a natural filtration whose associated graded equals the OX -

algebra OX ⊗o Sym(m)(Lie(G(k))) [29, Cor. 4.4.7 (iii)]. In particular, A(k,m)
X

has noetherian sections over open affines. The map Q
(k,m)
X induces a unique

OX -linear map ξ
(k,m)
X : A(k,m)

X → D
(k,m)
X which is also a morphism of sheaves

of filtered o-algebras.

5The point here is that the algebra D(m)(G(k)) is an integral form of the universal
enveloping algebra U(g) and its action on OX is induced by the usual action of U(g)
on OX,Q. Since elements from g act as derivations one may form Sweedler’s smash
product algebra OX,Q#U(g) [39, 7.2], cf. also [27, 1.7.10]. It is associative and hence

so is the subalgebra A(k,m)
X .
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Proposition 3.3.4. The homomorphism ξ
(k,m)
X : A(k,m)

X → D
(k,m)
X is sur-

jective.

Proof. We are going to adapt the argument of [29, 4.4.8.2 (ii)]. The homo-
morphism is filtered. Applying Sym(m) to the surjection in (ii) of 3.2.2 we
obtain a surjection

OX ⊗o Sym(m)(Lie(G(k))→ Sym(m)(TX,k)

which equals the associated graded homomorphism by 2.2.1. Hence the ho-
momorphism is surjective as claimed. �

Proposition 3.3.5. Let M be a coherent left A(k,m)
X -module.

(i) H0(X,A(k,m)
X ) = D(m)(G(k)).

(ii) There is a surjection A(k,m)
X (−r)⊕s →M of A(k,m)

X -modules for suit-
able r, s ≥ 0.

(iii) For any i≥0 the group H i(X,M) is a finitely generated D(m)(G(k))-
module.

(iv) The ring H0(X,D
(k,m)
X ) is a finitely generated D(m)(G(k))-module

and hence noetherian.

Proof. Points (i)-(iii) are a restatement of [30, 3.3]. By 3.3.4 the sheaf D
(k,m)
X

is a coherent A(k,m)
X -module to which we can apply assertion (iii) with i = 0.

This proves statement (iv). �

3.3.3. Passing to the completion. We now consider the formal scheme
X which is the formal completion of X along its special fiber. We are inter-

ested in certain properties of the sheaves of rings “D (k,m)
X and D†X,k introduced

in 2.2.1. Put“D(m)(G(k))L,θ0 =
(“D(m)(G(k))⊗o L

)
/
(“D(m)(G(k))⊗o L

)
ker(θ0).

This is the same central reduction considered in [32, Sec. 3.3.1] for the
group GL2.

In the proposition below, and in the remainder of this paper, certain
rigid-analytic ‘wide open’ groups G(k)◦ will be important. To define them,
consider first the formal completion G(k) of the group scheme G(k) along



i
i

“5-Strauch” — 2020/3/6 — 21:39 — page 1696 — #20 i
i

i
i

i
i

1696 C. Huyghe, D. Patel, T. Schmidt, and M. Strauch

its special fiber, which is a formal group scheme (of topologically finite type)
over Spf(o). Then let “G(k)◦ be the completion of G(k) along its unit sec-
tion Spf(o)→ G(k), and denote by G(k)◦ its associated rigid-analytic space,
which is a rigid-analytic group.

Wide-open rigid-analytic groups play a special role in M. Emerton’s
approach to locally analytic representations of p-adic groups, cf. [15]. The
analytic distribution algebra of G(k)◦ is defined to be the continuous dual
space of the space of rigid-analytic functions on G(k)◦, i.e.,

Dan(G(k)◦) := OG(k)◦(G(k)◦)′b = Homcont
L

(
OG(k)◦(G(k)◦), L

)
b
,

which is equipped with the strong topology. This is a topological L-algebra
of compact type. In [15, Sec. 5.2] Emerton gives a description of this ring as
the inductive limit of completions of the rings “D(m)(G(k))⊗o L, i.e.,

(3.3.6) Dan(G(k)◦) ' lim−→
m

“D(m)(G(k))⊗o L.

This is an isomorphism of topological L-algebras of compact type, cf.
[15, 5.2.6, 5.3.11], [29, 5.3.1].

Proposition 3.3.6. (i) The homomorphism Q
(k,m)
X induces an algebra iso-

morphism “D(m)(G(k))L,θ0
'−→ H0(X, “D (k,m)

X,Q ).

(ii) H0(X,D†X,k) and Dan(G(k)◦)θ0 are canonically isomorphic topologi-
cal L-algebras.

Proof. (i) For the purpose of this proof put ker(θ0)o = D(m)(G(k)) ∩ ker(θ0).
Because D(m)(G(k)) is an o-form of U(g), it follows that ker(θ0)o ⊗o L =
ker(θ0). Now set D(m)(G(k))θ0 := D(m)(G(k))/D(m)(G(k)) ker(θ0)o and

D(m)(G(k))L,θ0 :=
(
D(m)(G(k))⊗o L

)
/
(
D(m)(G(k))⊗o L

)
ker(θ0).

We then have D(m)(G(k))θ0 ⊗o L = D(m)(G(k))L,θ0 . By 3.3.2, the homo-

morphism of o-algebras Q
(k,m)
X induces a homomorphism

Q
(k,m)
X,θ0

: D(m)(G(k))θ0 → H0(X,D
(k,m)
X ),

and the induced morphism

Q
(k,m)
X,θ0

⊗o L : D(m)(G(k))L,θ0 → H0(X,D
(k,m)
X )⊗o L
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is an isomorphism of L-algebras. By 3.3.5 the ring H0(X,D
(k,m)
X ) is a finitely

generated D(m)(G(k))θ0-module. We have now shown that all assumption in
[30, Lemma 3.5] hold in the context considered here. By the very assertion

of [30, Lemma 3.5] we find that Q
(k,m)
X,θ0

gives rise to an isomorphism“D(m)(G(k))L,θ0
'−→ “H0(X,D

(k,m)
X )⊗o L,

where “H0(X,D
(k,m)
X ) is the p-adic completion of H0(X,D

(k,m)
X ). By 4.2.1,

we have a canonical isomorphism “H0(X,D
(k,m)
X ) ' H0(X, “D (k,m)

X ). (We note
that his does not introduce a circular argument, as Section 4 is only about
sheaves of differential operators and their modules, and there is no connec-
tion made to distribution algebras.)

(ii) Follows from (i) and the isomorphism 3.3.6 �

4. Localization on X via D†X,k

The general line of arguments developed here follows fairly closely [28]. As
in the previous section, pr : X → X0 denotes an admissible blow-up of X0 =
B0\G0, and X→ X0 is the induced morphism between the completions of
X and X0 along their special fibers, respectively. The number k ≥ kX = kX,
cf. 2.2.2, 2.2.5, is fixed throughout this section so that the sheaves of rings

D
(k,m)
X , “D (k,m)

X , and D†X,k are defined.

4.1. Cohomology of coherent D
(k,m)
X -modules

Lemma 4.1.1. Let E be an abelian sheaf on X. For all i > dimX one has
H i(X, E) = 0.

Proof. Since the spaceX is noetherian the result follows from Grothendieck’s
vanishing theorem [19, Thm. 2.7]. �

We recall that the sheaf D
(k,m)
X has been equipped with a filtration,

cf. 2.2.2. We denote by gr
(
D

(k,m)
X

)
the associated sheaf of graded rings.

Proposition 4.1.2. There is a natural number r0 such that for all r ≥ r0

and all i ≥ 1 one has

(4.1.1) H i
(
X, gr

(
D

(k,m)
X

)
(r)
)

= 0.
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Proof. Since LX is very ample over o by 3.2.1, the Serre theorems [19,
II.5.17/III.5.2] imply that there is a number u0 such that for all u ≥ u0

the module OX(u) is generated by global sections and has no higher coho-
mology. After this remark we prove the proposition along the lines of [28,
Prop. 2.2.1]. By [28, 1.6.1], the tangent sheaf TX0

is is generated by its global
sections, and hence there is an OX0

-linear surjection (OX0
)⊕a → TX0

for a
suitable natural number a. Applying (pr)∗ and multiplying by $k gives an
OX -linear surjection (OX)⊕a ' $k(OX)⊕a → TX,k. By functoriality we get
a surjective morphism of algebras

C := Sym(m)((OX)⊕a) −→ Sym(m)(TX,k).

The target of this map equals gr
(
D

(k,m)
X

)
according to 2.2.1. It therefore

suffices to prove the following: given a coherent C-module E , there is a num-
ber r0 such that for all r ≥ r0 and i ≥ 1, one has H i(X, E(r)) = 0. Since E
is C-coherent, it is a quasi-coherent OX -module. Because X is noetherian, E
equals the union over its OX -coherent submodules Ei [16, 9.4.9]. Again, since
E is C-coherent and C has noetherian sections over open affines [21, 1.3.6],
there is a C-linear surjection C ⊗OX Ei → E . Choose a number s0 such that
Ei(−s0) is generated by global sections. We obtain a OX -linear surjection
OX(s0)⊕a0 → Ei for a number a0. This yields a C-linear surjection

C0 := C(s0)⊕a0 −→ E .

The OX -module C0 is graded and each homogeneous component equals a
sum of copies of OX(s0). It follows that H i(X, C0(r)) = 0 for all r ≥ u0 − s0

and all i ≥ 1. The rest of the argument proceeds now as in [28, 2.2.1]. �

Corollary 4.1.3. Let r0 be the number occuring in the preceding proposi-
tion. For all r ≥ r0 and all i ≥ 1 one has

(4.1.2) H i
(
X,D

(k,m)
X (r)

)
= 0.

Proof. For d ≥ 0 we let Fd = D
(k,m)
X,d . We consider the exact sequence

(4.1.3) 0→ Fd−1 → Fd → grd

(
D

(k,m)
X

)
→ 0

(where F−1 := 0) from which we deduce the exact sequence

(4.1.4) 0→ Fd−1(r)→ Fd(r)→ grd

(
D

(k,m)
X

)
(r)→ 0
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because tensoring with a line bundle is an exact functor. Since cohomology
commutes with direct sums, we have for all r ≥ r0 and i ≥ 1 that

H i(X, grd

(
D

(k,m)
X

)
(r)) = 0

according to the preceding proposition. Using the sequence 4.1.4 we can then
deduce by induction on d that for all r ≥ r0 and i ≥ 1

H i(X,Fd(r)) = 0.

Because cohomology commutes with inductive limits on a noetherian
scheme we obtain the asserted vanishing result. �

Proposition 4.1.4. Let E be a coherent D
(k,m)
X -module.

(i) There is a number r = r(E) ∈ Z and s ∈ Z≥0 and an epimorphism of

D
(k,m)
X -modules (

D
(k,m)
X (−r)

)⊕s
� E .

(ii) There is r1(E) ∈ Z such that for all r ≥ r1(E) and all i > 0

H i
(
X, E(r)

)
= 0.

Proof. (i) AsX is a noetherian scheme, E is the inductive limit of its coherent
subsheaves. There is thus a coherent OX -submodule F ⊂ E which generates

E as a D
(k,m)
X -module, i.e., there is an epimorphism of sheaves

D
(k,m)
X ⊗OX F

α−→ E ,

where D
(k,m)
X is considered with its right OX -module structure. Next, there

is r > 0 such that the sheaf

F(r) = F ⊗OX L⊗rX

is generated by its global sections. Hence there is s > 0 and an epimorphism
O⊕sX � F(r), and thus an epimorphism of OX -modules

(OX(−r))⊕s � F .

From this morphism we get an epimorphism of D
(k,m)
X -modules(

D
(k,m)
X (−r)

)⊕s
= D

(k,m)
X ⊗OXn (OX(−r))⊕s � D

(k,m)
X ⊗OX F

α−→ E .
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(ii) Consider for i ≥ 1 the following assertion (ai): for any coherent

D
(k,m)
X -module E , there is a number ri(E) such that for all r ≥ ri(E) and

all i ≤ j one has Hj(X, E(r)) = 0. For i > dimX the assertion holds, cf.
4.1.1. Suppose the statement (ai+1) holds. Using (i) we find an epimorphism

of D
(k,m)
X -modules

β : C0 :=
(
D

(k,m)
X (s0)

)⊕s
� E

for numbers s0 ∈ Z and s ≥ 0. By 2.2.1, the kernel R = ker(β) is a coherent

D
(k,m)
X -module. Recall the number r0 of the preceding corollary. For any

r ≥ max(r0 − s0, ri+1(R)) we have the exact sequence

0 = H i(X, C0(r)) −→ H i(X, E(r)) −→ H i+1(X,R(r)) = 0

which showsH i(X, E(r)) = 0 for these r. So we may take as ri(E) any of these
r which is larger than ri+1(E) and obtain the statement (ai). In particular,
(a1) holds which proves (ii). �

Proposition 4.1.5. (i) Fix r ∈ Z. There is c1 = c1(r) ∈ Z≥0 such that for

all i > 0 the cohomology group H i(X,D
(k,m)
X (r)) is annihilated by pc1.

(ii) Let E be a coherent D
(k,m)
X -module. There is c2 = c2(E) ∈ Z≥0 such

that for all i > 0 the cohomology group H i(X, E) is annihilated by pc2.

Proof. (i) Since the blow-up morphism pr : X → X0 becomes an isomor-

phism over X0 ×o L any coherent module over D
(k,m)
X ⊗Q induces a coher-

ent module over the sheaf of usual differential operators on X0 ×o L. By
[5] we conclude that the global section functor on X is exact for coherent

D
(k,m)
X ⊗Z Q-modules. In particular, the cohomology group H i(X,D

(k,m)
X (r))

is p-torsion. To see that the torsion is bounded, we deduce from 3.3.4

that D
(k,m)
X (r) is a coherent module over A(k,m)

X . According to 3.3.5,

H i(X,D
(k,m)
X (r)) is therefore finitely generated over D(m)(G(k)). Now con-

sider a finite set of generators of H i(X,D
(k,m)
X (r)) as D(m)(G(k))-module.

These are annihilated by a finite power pc1,i of p, and since there are only

finitely many integers i > 0 with non-zero H i(X,D
(k,m)
X (r)), cf. 4.1.1, we can

take c2 := max{c2,i | i ≥ 0}.

(ii) We consider for any i ≥ 1 the following assertion (ai): for any co-

herent D
(k,m)
X -module E , there is a number ri(E) such that the groups

Hj(X, E), i ≤ j are all annihilated by pri(E). For i > dimX the assertion
is true, cf. 4.1.1. Let us assume that (ai+1) holds and consider an arbitrary
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coherent D
(k,m)
X -module E . According to 4.1.4 we have a D

(k,m)
X -linear sur-

jection

E0 := D
(k,m)
X (r)⊕s −→ E

for numbers r ∈ Z and s ≥ 0. Let E ′ be the kernel. We have an exact sequence

H i(X, E0)
ι→ H i(X, E)

δ→ H i+1(X, E ′).

Then pc1(r) annihilates the image of ι according to (i) and pri+1(E ′) annihi-
lates the image of δ according to (ai+1). So we may take as ri(E) any number
greater than the maximum of ri+1(E) and c1(r) + ri+1(E ′) and obtain the
statement (ai). In particular, (a1) holds which proves (ii). �

4.2. Cohomology of coherent “D(k,m)
X,Q -modules

We denote by Xj the reduction of X modulo pj+1.

Proposition 4.2.1. Let E be a coherent D
(k,m)
X -module on X and Ê =

lim←−j E/p
j+1E its p-adic completion, which we consider as a sheaf on X.

(i) For all i ≥ 0 one has H i(X, Ê) = lim←−j H
i
(
Xj , E/pj+1E

)
.

(ii) For all i > 0 one has H i(X, Ê) = H i(X, E).

(iii) H0(X, Ê) = lim←−j H
0(X, E)/pj+1H0(X, E).

Proof. Put Ej = E/pj+1E . Let Et be the subsheaf defined by

Et(U) = E(U)tor,

where the right hand side denotes the group of torsion elements in E(U).
This is indeed a sheaf (and not only a presheaf) because X is a noetherian

space. Furthermore, Et is a D
(k,m)
X -submodule of E . Because the sheaf D

(k,m)
X

has noetherian rings of sections over open affine subsets of X, cf. 2.2.4,

the submodule Et is a coherent D
(k,m)
X -module. Et is thus generated by a

coherent OX -submodule F of Et. The submodule F is annihilated by a fixed

power pc of p, and so is Et. Put G = E/Et, which is again a coherent D
(k,m)
X -

module. Using 4.1.5, we can then assume, after possibly replacing c by a
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larger number, that

(a) pcEt = 0,
(b) for all i > 0 : pcH i(X, E) = 0,
(c) for all i > 0 : pcH i(X,G) = 0.

From here on the proof of the proposition is exactly as in [32, 4.2.1]. �

Proposition 4.2.2. Let E be a coherent “D (k,m)
X -module.

(i) There is r1(E ) ∈ Z such that for all r ≥ r1(E ) there is s ∈ Z≥0 and

an epimorphism of “D (k,m)
X -modules

(“D (k,m)
X (−r)

)⊕s
� E .

(ii) There is r2(E ) ∈ Z such that for all r ≥ r2(E ) and all i > 0

H i
(
X,E (r)

)
= 0.

Proof. (i) Because E is a coherent “D (k,m)
X -module, and becauseH0(U, “D (k,m)

X )
is a noetherian ring for all open affine subsets U ⊂ X, cf. 2.2.4, the torsion

submodule Et ⊂ E is again a coherent “D (k,m)
X -module. As X is quasi-compact,

there is c ∈ Z≥0 such that pcEt = 0. Put G = E /Et and G0 = G /pG . For j ≥ c
one has an exact sequence

0→ G0
pj+1

−→ Ej+1 → Ej → 0.

We note that the sheaf G0 is a coherent module over “D (k,m)
X /p“D (k,m)

X . We
view X as a closed subset of X and denote the closed embedding temporarily
by i. Because the canonical map of sheaves of rings

(4.2.1) D
(k,m)
X /pD

(k,m)
X

'−→ i∗

(“D (k,m)
X /p“D (k,m)

X

)
is an isomorphism, i∗G0 can be considered a coherent D

(k,m)
X -module via

this isomorphism. Hence we can apply 4.1.4 to i∗G0 and deduce that there
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is r2(G0) such that for all r ≥ r2(G0) one has

H1(X,G0(r)) = H1(X, i∗G0(r)) = 0.

The canonical maps

(4.2.2) H0(X,Ej+1(r)) −→ H0(X,Ej(r))

are thus surjective for r ≥ r2(G0) and j ≥ c. Similarly, Ec is a coherent mod-

ule over D
(k,m)
X /pcD

(k,m)
X -module, in particular a coherent D

(k,m)
X -module.

By 4.1.4 there is r1(Ec) such that for every r ≥ r1(Ec) there is s ∈ Z≥0 and
a surjection

λ :
(
D

(k,m)
X /pcD

(k,m)
X

)⊕s
� Ec(r).

Let r1(E ) = max{r2(G0), r1(Ec)}, and assume from now on that r ≥
r1(E ). Let e1, . . . , es be the standard basis of the domain of λ, and use
4.2.2 to lift each λ(et), 1 ≤ t ≤ s, to an element of

lim←−
j

H0(X,Ej(r)) ' H0(X,’E (r)),

by 4.2.1 (i). But ’E (r) = “E (r), and “E = E , as follows from [6, 3.2.3 (v)]. This
defines a morphism (“D (k,m)

X

)⊕s
−→ E (r)

which is surjective because, modulo pc, it is a surjective morphism of sheaves

coming from coherent “D (k,m)
X -modules by reduction modulo pc, cf. [6, 3.2.2

(ii)].

(ii) We deduce from 4.1.3 and 4.2.1 that for all i > 0

H i
(
X, “D (k,m)

X (r)
)

= 0,

whenever r ≥ r0, where r0 is as in 3.2.1. Since the sheaf “D (k,m)
X is coherent,

cf. 3.3.6, and X is a noetherian space of finite dimension, the statement in
(ii) can now be deduced by descending induction on i exactly as in the proof
of part (ii) of 4.1.4. �

Proposition 4.2.3. Let E be a coherent “D (k,m)
X -module.

(i) There is c = c(E ) ∈ Z≥0 such that for all i > 0 the cohomology group
H i(X,E ) is annihilated by pc.
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(ii) H0(X,E ) = lim←−j H
0(X,E )/pjH0(X,E ).

Proof. (i) Let r ∈ Z. By 4.2.1 we have for i > 0 that

H i(X, “D (k,m)
X (−r)) = H i(X,D

(k,m)
X (−r)),

and this is annihilated by a finite power of p, by 4.1.5. The proof now
proceeds by descending induction exactly as in the proof of part (ii) of 4.1.5.

(ii) Let Et ⊂ E be the subsheaf of torsion elements and G = E /Et. Then
the discussion in the beginning of the proof of 4.2.1 shows that there is c ∈
Z≥0 such that pcEt = 0. Part (i) gives that pcH1(X,E ) = pcH1(X,G ) = 0,
after possibly increasing c. Now we can apply the same reasoning as in the
proof of 4.2.1 (iii) to conclude that assertion (ii) is true. �

4.2.1. Let Coh(“D (k,m)
X ) (resp. Coh(“D (k,m)

X,Q )) be the category of coherent“D (k,m)
X -modules (resp. “D (k,m)

X,Q -modules). Let Coh(“D (k,m)
X )Q be the category

of coherent “D (k,m)
X -modules up to isogeny. We recall that this means that

Coh(“D (k,m)
X )Q has the same class of objects as Coh(“D (k,m)

X ), and for any two
objects M and N one has

Hom
Coh(D̂(k,m)

X )Q
(M,N ) = Hom

Coh(D̂(k,m)

X )
(M,N )⊗Z Q.

Proposition 4.2.4. (i) The functorM MQ=M⊗Z Q induces an equiv-

alence between Coh(“D (k,m)
X )Q and Coh(“D (k,m)

X,Q ).

(ii) For every coherent D†X,k-module M there is m ≥ 0 and a coherent“D (k,m)
X,Q -module Mm and an isomorphism of D†X,k-modules

ε : D†X,k ⊗D̂(k,m)

X,Q
Mm

'−→M .

If (m′,Mm′ , ε
′) is another such triple, then there is l ≥ max{m,m′} and

an isomorphism of “D (k,l)
X,Q -modules

εl : “D (k,l)
X,Q ⊗D̂(k,m)

X,Q
Mm

'−→ “D (k,l)
X,Q ⊗D̂(k,m′)

X,Q
Mm′

such that ε′ ◦
(

idD†X,k
⊗ εl

)
= ε.

Proof. (i) This is [6, 3.4.5]. Note that the sheaf “D (k,m)
X satisfies the conditions

in [6, 3.4.1], by 3.3.6. We point out that the formal scheme X in [6, Sec. 3.4]
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is not supposed to be smooth over a discrete valuation ring, but only locally
noetherian, cf. [6, Sec. 3.3].

(ii) This is [6, 3.6.2]. In this reference the formal scheme is supposed
to be noetherian and quasi-separated, but not necessarily smooth over a
discrete valuation ring. �

Theorem 4.2.5. Let E be a coherent “D (k,m)
X,Q -module (resp. D†X,k-module).

(i) There is r(E ) ∈ Z such that for all r ≥ r(E ) there is s ∈ Z≥0 and an

epimorphism of “D (k,m)
X,Q -modules (resp. D†X,k-modules)

(“D (k,m)
X,Q (−r)

)⊕s
� E ( resp.

(
D†X,k(−r)

)⊕s
� E ).

(ii) For all i > 0 one has H i(X,E ) = 0.

Proof. (a) We first show both assertions (i) and (ii) for a coherent “D (k,m)
X,Q -

module E . By 4.2.4 (i) there is a coherent “D (k,m)
X -module F such that F ⊗Z

Q = E . We use 4.2.2 to find for every r ≥ r1(F ) a surjection(“D (k,m)
X (−r)

)⊕s
� F ,

for some s (depending on r). Tensoring with Q gives then the desired sur-
jection onto E . Hence assertion (i). Furthermore, for i > 0

H i(X,E ) = H i(X,F )⊗Z Q = 0,

by 4.2.3, and this proves (ii).

(b) Now suppose E is a coherent D†X,k-module. By 4.2.4 (ii) there is

m ≥ 0 and a coherent module Em over “D (k,m)
X,Q and an isomorphism of D†X,k-

modules

D†X,k ⊗D̂(k,m)

X,Q
Em

'−→ E .

Now use what we have just shown for Em in (a) and get the sought for
surjection after tensoring with D†X,k. This proves the first assertion. We have

E = D†X,k ⊗D̂(k,m)

X,Q
Em = lim−→

`≥m

“D (k,l)
X,Q ⊗D̂(k,m)

X,Q
Em = lim−→

`≥m
E`
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where E` = “D (k,l)
X,Q ⊗D̂(k,m)

X,Q
Em is a coherent “D (k,l)

X,Q -module. Then we have for

i > 0

H i(X,E ) = lim−→
`≥m

H i(X,E`) = 0,

by part (a). And this proves assertion (ii). �

4.3. X is “D(k,m)
X,Q -affine and D†X,k-affine

Proposition 4.3.1. (i) Let E be a coherent “D (k,m)
X,Q -module. Then E is

generated by its global sections as “D (k,m)
X,Q -module. Furthermore, E has a res-

olution by finite free “D (k,m)
X,Q -modules.

(ii) Let E be a coherent D†X,k-module. Then E is generated by its global

sections as D†X,k-module. H0(X,E ) is a H0(X,D†X,k)-module of finite pre-

sentation. Furthermore, E has a resolution by finite free D†X,k-modules.

Proof. (i) Using 4.2.5 it remains to see that any “D (k,m)
X,Q -module of type“D (k,m)

X,Q (−r) admits a linear surjection (“D (k,m)
X,Q )⊕s → “D (k,m)

X,Q (−r) for suit-

able s ≥ 0. We argue as in [21, 5.1]. Let M := H0(X,D
(k,m)
X (−r)), a finitely

generated D(m)(G(k))-module by 3.3.5. Consider the linear map of D
(k,m)
X -

modules equal to the composite

D
(k,m)
X ⊗D(m)(G(k)) M → D

(k,m)
X ⊗H0(X,D(k,m)

X ) M → D
(k,m)
X (−r)

where the first map is the surjection induced by the map Q
(k,m)
X appearing

in 3.3.2. Let E be the cokernel of the composite map. Since D(m)(G(k))
is noetherian, the source of the map is coherent and hence E is coher-

ent. Moreover, E ⊗Q = 0 since D
(k,m)
X (−r)⊗Q is generated by global sec-

tions [5]. All in all, there is i with piE = 0. Now choose a linear surjection
(D(m)(G(k)))⊕s →M . We obtain the exact sequence of coherent modules

(D
(k,m)
X )⊕s → D

(k,m)
X (−r)→ E → 0.

Passing to p-adic completions (which is exact in our situation [6, 3.2])
and inverting p yields the linear surjection

(“D (k,m)
X,Q )⊕s → “D (k,m)

X,Q (−r).

This shows (i).
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(ii) This follows from (i) exactly as in [21]. �

4.3.1. The functors L oc
(k,m)
X and L oc†X,k. Let E be a finitely gener-

ated H0(X, “D (k,m)
X,Q )-module (resp. a finitely presented H0(X,D†X,k)-module).

Then we let L oc
(k,m)
X (E) (resp. L oc†X,k(E)) be the sheaf on X associated

to the presheaf

U  “D (k,m)
X,Q (U)⊗

H0(X,D̂k,m
k,Q )

E (resp. U  D†X,k(U)⊗H0(X,D†X,k) E ).

It is obvious that L oc
(k,m)
X (resp. L oc†X,k) is a functor from the cat-

egory of finitely generated H0(X, “D (k,m)
X,Q )-modules (resp. finitely presented

H0(X,D†X,k)-modules) to the category of sheaves of modules over “D (k,m)
X,Q

(resp. D†X,k).

Theorem 4.3.2. (i) The functors L oc
(k,m)
X and H0 (resp. L oc†X,k and H0)

are quasi-inverse equivalences between the categories of finitely generated

H0(X, “D (k,m)
X,Q )-modules and coherent “D (k,m)

X,Q -modules (resp. finitely presented

H0(X,D†X,k)-modules and coherent D†X,k-modules).

(ii) The functor L oc
(k,m)
X (resp. L oc†X,k) is an exact functor.

Proof. The proof of (i) uses the same arguments as the proof of [28, 2.3.7].
The second assertion then follows because any equivalence between abelian
categories is exact. �

5. Localization of representations of G(L)

Although we do recall a few basic facts in the beginning of this section,
we assume from now on some familiarity with the theory of locally analytic
representations as developed by P. Schneider and J. Teitelbaum [36, 37], and
we also make use of the point of view introduced by M. Emerton in [15].

For the sake of convenience, all representations which we consider in this
section are on topological L-vector spaces, and all modules over distribution
algebras are topological L-vector spaces. We thus assume throughout this
section that the so-called coefficient field, cf. [36, beginning of Sec. 2], usually
denoted by K in papers like [36, 37], over which those topological vector
spaces are defined, is equal to our base field L. However, all results in this
section also hold when the representations (or the modules over distribution
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algebras) are topological K-vector spaces, where K/L is a complete and
discretely valued extension (such that the valuation topology on K induces
the valuation topology on L), cf. 5.3.9.

5.1. Locally analytic representations and distribution algebras

5.1.1. The module associated to a locally analytic representation.
In the following we will be interested in locally analytic representations of
the compact locally L-analytic group G0 = G0(o). Let C la(G0, L) be the
space of L-valued locally L-analytic functions on G0, and let

D(G0, L) := C la(G0, L)′b

be its strong dual, i.e. its continuous dual space equipped with the strong
topology, which carries the structure of a Fréchet-Stein algebra [37, 5.1]. The
product of δ1, δ2 ∈ D(G0, L) is defined by

(δ1 · δ2)(f) = δ1

(
x 7→ δ2(y 7→ f(xy))

)
,

for f ∈ C la(G0, L). Given an admissible locally analytic representation V
of G0, cf. [37, Sec. 6], we let M := V ′b be its strong dual, which is, by the
very definition of “admissible representation”, a coadmissible module over
D(G0, L). Explicitly, if we denote by g.v the action of g ∈ G0 on v ∈ V ,
then the D(G0, L)-module structure on M is given by

(δ ·m)(v) = δ
(
g 7→ m(g−1.v)

)
,

form ∈M and δ ∈ D(G0, L). For g ∈ G0 the delta distribution δg ∈ D(G0, L)
is defined by δg(f) = f(g). These delta distributions are invertible in
D(G0, L), and the map g 7→ δg is an injective group homomorphism from
G0 into the group of units of D(G0, L).

We also recall that the category of coadmissible D(G0, L)-modules is
a full abelian subcategory of all abstract D(G0, L)-modules [37, Thm. 5.1]
and, by construction, anti-equivalent to the category of admissible locally
analytic G0-representations.

5.1.2. The distribution algebras D(G(k)◦, G0). Recall the wide open
congruence subgroup G(k)◦ introduced in 3.3.3 and its analytic distribution
algebra Dan(G(k)◦) = O(G(k)◦)′b. Given a continuous representation W of
G0, one can consider the subspace WG(k)◦−an ⊂W of G(k)◦-analytic vectors,
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cf. [15, 3.4.1]. This applies to the action of G0 on the space Ccts(G0, L)
of continuous L-valued functions given by the formula (g.f)(x) = f(g−1x).
With this notation, one has a canonical isomorphism of topological L-vector
spaces

(5.1.1) lim−→
k

Ccts(G0, L)G(k)◦−an
'−→ C la(G0, L)

Following the notation introduced in [15, proof of 5.3.1] we denote by
D(G(k)◦, G0) the strong dual of the space of G(k)◦-analytic vectors of
Ccts(G0, L), i.e.,

D(G(k)◦, G0) := (Ccts(G0, L)G(k)◦−an)′b.

The ring D(G(k)◦, G0) naturally contains Dan(G(k)◦). Moreover, the
delta distributions δg, for g in the normal subgroup Gk+1 := G(k)◦(o) =
G(k + 1)(o) of G0, are contained in this subring too. One obtains a decom-
position of D(G(k)◦, G0) as a Dan(G(k)◦)-module:

(5.1.2) D(G(k)◦, G0) = ⊕g∈G0/Gk+1
Dan(G(k)◦)δg,

cf. [15, proof of 5.3.1]. This is a topological direct sum decomposition in the
sense that the subspace topology of Dan(G(k)◦) is equal to its topology as
an L-algebra of compact type, and the topology on D(G(k)◦, G0) is equal to
the product topology on the right of 5.1.2. Dualizing the isomorphism 5.1.1
then yields an isomorphism of topological L algebras

D(G0, L)
'−→ lim←−

k

D(G(k)◦, G0).

This is the weak Fréchet-Stein structure on the locally analytic distribu-
tion algebra D(G0, L) as introduced by Emerton in [15, Prop. 5.3.1]. In an
obviously similar manner we may define the ring D(G(k)◦, G0)θ0 and obtain

an isomorphism D(G0, L)θ0
'−→ lim←−kD(G(k)◦, G0)θ0 .

5.1.3. Let V be again an admissible locally analytic representation of G0,
andM = V ′b be as in 5.1.1. The subspace VG(k)◦−an ⊂ V is naturally a nuclear
Fréchet space [15, 6.1.6], and we let Mk := (VG(k)◦−an)′b be its strong dual. It
is a space of compact type and a topological D(G(k)◦, G0)-module which is
finitely generated [15, 6.1.13]. According to [15, 6.1.20] the modules Mk :=
(VG(k)◦−an)′ form a (D(G(k)◦, G0))k∈N-sequence, in the sense of [15, 1.2.8],
for the coadmissible module M relative to the weak Fréchet-Stein structure
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on D(G0, L). This implies that one has

(5.1.3) Mk = D(G(k)◦, G0)⊗̂D(G0,L)M

as D(G(k)◦, G0)-modules for any k. Here, the completed tensor product is
understood in the sense of [15, Lem. 1.2.3].

Lemma 5.1.1. (i) The D(G(k)◦, G0)-module Mk is finitely presented.

(ii) There are natural isomorphisms

D(G(k − 1)◦, G0)⊗D(G(k)◦,G0) Mk
'−→Mk−1.

(iii) The natural map D(G(k)◦, G0)⊗D(G0,L) M
'−→Mk is bijective.

Proof. The points (i) and (ii) can be proved exactly as [32, 5.2.4]. For (iii) we
consider the D(G(k)◦, G0)-submodule generated inside Mk by M . It clearly
forms a dense subspace and is closed according to [32, 5.1.1 (ii)]. Hence
the map in question is surjective. Moreover, this argument shows that the
finitely generated D(G(k)◦, G0)-module Mk is generated by finitely many
elements in the image of M . To prove injectivity of the map in question, we
abbreviate A := D(G0, L) and Ak := D(G(k)◦, G0) and consider an element
b1 ⊗ x1 + · · ·+ bs ⊗ xs ∈ Ak ⊗AM such that b1x1 + · · ·+ bsxs = 0 in Mk.
Consider the homomorphism

(Ask′)k′ −→ (Mk′)k′ , (a1, . . . , as) 7→ a1x1 + · · ·+ asxs

where k′ ≥ k. Let N be the kernel of the corresponding map of coadmissible
modules As →M . By the above surjectivity argument, there are finitely

many elements (c
(1)
1 , . . . , c

(1)
s ), . . . , (c

(r)
1 , . . . , c

(r)
s ) in N whose images generate

the kernel of the map Ask −→Mk as an Ak-module. From here one may follow
the argument in the proof of [37, Cor. 3.1] word for word. �

Remark. These results have obvious analogues when the character θ0 is
involved.

5.2. G0-equivariance and the functor L ocG0

5.2.1. Group actions on blow-ups. We recall that it is our convention
that the group scheme G0 acts on the right on X0 = B0\G0, cf. 3.1.2. This
yields a right action of the group G0 on X0, and we denote the automorphism
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of X0 given by g ∈ G0 by ρg, i.e., ρg : X0 → X0. As the action of G0 on X0

is on the right, we have ρg ◦ ρh = ρhg for all g, h ∈ G0. We also denote by

ρ]g : OX0
→ (ρg)∗OX0

the comorphism of ρg. We then have

(5.2.1) (ρg)∗(ρ
]
h) ◦ ρ]g = ρ]hg.

Now let H ⊂ G0 be an open subgroup. We say that an open ideal sheaf
I ⊂ OX0

is H-stable if for all g ∈ H the comorphism ρ]g maps I ⊂ OX0
into

(ρg)∗I ⊂ (ρg)∗OX0
. In that case ρ]g induces a morphism of sheaves of graded

rings ⊕
d≥0

Id −→ (ρg)∗

⊕
d≥0

Id


on X0. This morphisms of sheaves in turn induces an automorphism of the

blow-up X = Proj
(⊕

d≥0 Id
)

, and the action of H on X0 lifts thus to an

action of H on X, which we again denote by ρ for ease of notation.

The same considerations apply when we pass to the formal completion
X0 of X0, in which case we denote the morphism X0 → X0 induced by ρg
also by ρg, for ease of notation. If now I is an open ideal sheaf on X0 which
is H-stable, and if X is the formal blow-up of I, we also say that X is H-
equivariant. There is at most one way to lift the action of H on X0 (resp.
X0) to X (resp. X), because the blow-up morphism induces an isomorphism

between the generic fibers Xη
'−→ X0,η (resp. rigid spaces Xrig '−→ Xrig

0 ), and
the group action on the generic fiber (resp. associated rigid space), is thus
pre-determined, and in turn determines the action on X (resp. X) uniquely.

Lemma 5.2.1. Let pr : X→ X0 be an admissible blow-up, and assume k ≥
kX. Then X is Gk = G(k)(o)-equivariant and the induced action of every g ∈
Gk+1 on the special fiber of X is the identity. Therefore, Gk+1 acts trivially
on the topological space underlying X.

Proof. Consider the action µ : X0 ×Spec(o) G0 → X0 of G0 on X0. If g :
Spec(o)→ G0 is in G1, then the induced map on the mod-$-fibers gs :
Spec(Fq)→ G0 ×Spec(o) Spec(Fq) is the identity element in G0(Fq). Because
ρg is defined in terms of µ, and since µ is compatible with base change
Spec(Fq)→ Spec(o), it follows that all elements g ∈ G1 act trivially on the
special fiber of X0. In particular, the morphism ρg : X0 → X0 is the identity
map on the topological space underlying X0 if g ∈ G1. This takes care of the
case when k = 0 (hence kX = 0, and thus X = X0). We therefore assume in
the following k ≥ 1.
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For the purpose of this proof we let G be the completion of G0 along
its special fiber (this formal group scheme is denoted by G(0) in 4.2.1).
The quotient morphism σ : G0 → X0 induces a quotient morphism σ∧ : G→
X0 of the corresponding formal schemes. Moreover, the right multiplication
of g ∈ G0 on G0 induces a right multiplication ρ̃g : G→ G, such that the
following diagram is commutative

(5.2.2) G
ρ̃g //

σ∧

��

G

σ∧

��
X0

ρg // X0

If g ∈ G1, then, as we remarked above, the map underlying the morphism
ρg is the identity map on X0, and, for the same reason, the map underlying
the morphism ρ̃g is the identity map on G. It follows from the very definition
of Gk that for g ∈ Gk, for all open subsets U ⊂ G, and for all f ∈ OG(U)
one has (ρ̃g)

]
U (f) ≡ f mod ($k). If now V ⊂ X0 is an open subset and U :=

(σ∧)−1(V ), then 5.2.2 gives rise to a commutative diagram

OG(U) OG(U)
(ρ̃g)]U

oo

OX0
(V )

(σ∧)]V

OO

OX0
(V )

(ρg)]V

oo

(σ∧)]V

OO

As U → V is a locally trivial fiber bundle, the ring homomorphism (σ∧)]V
is injective [23, I.5.7 (1)] and identifies OX0

(V ) with the subring of B-
invariants of OG(U) where B denotes the completion of B0 along its special
fiber [23, I.5.8 (2)]. In the following we will therefore suppress the notation
(σ∧)]V and view this homomorphism as an inclusion. By the above discus-
sion, we then have for all f ∈ OX0

(V ) that

(ρg)
]
V (f)− f = $kf̃

with some f̃ ∈ OG(U). Now f̃ is B-invariant: indeed, $kf̃ is B-invariant,
and so we have

∆($kf̃)−$kf̃ ⊗ 1 = 0

in OG(U)⊗o OB(B) where ∆ denotes the comodule map of the B-module
OG(U) [23, I.2.10 (2)]. Since ∆ is o-linear and OG(U)⊗o OB(B) is o-
torsionfree, this implies ∆(f̃)− f̃ ⊗ 1 = 0, as claimed. Since f̃ is B-invariant,
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we may conclude that (ρg)
]
V (f) ≡ f mod ($k) for all f ∈ OX0

(V ). Now sup-
pose I ⊂ OX0

is an open ideal sheaf, and assume $k ∈ I and g ∈ Gk ⊂ G1.
Then, for any open subset V ⊂ X0, and any f ∈ I(V ) we have (ρg)

]
V (f) =

f +$kf̃ for some f̃ ∈ OX0
(V ). Since $kf̃ ∈ I(V ), we find that (ρg)

]
V maps

I into itself, and the blow-up X of I is Gk-equivariant.

If now g is in Gk+1 we even have (ρg)
]
V (f) = f +$k+1f̃ for some f̃ ∈

OX0
(V ). And since $k ∈ I we conclude that (ρg)

]
V (f) ≡ f mod $I. This

implies that the morphism induced by (ρg)
] on the sheaf

(⊕
d≥0 I

d
)
⊗o

o/($), which is a sheaf on the special fiber of X0, is the identity. And

Proj
((⊕

d≥0 I
d
)
⊗o o/($)

)
is the special fiber of the formal blow-up X

of I. �

5.2.2. For the rest of this section we let H ⊂ G0 be an open subgroup. If
X→ X0 is an H-equivariant admissible blow-up with lifted action ρ, then
there is an induced action of H on the sheaf D†X,k

(5.2.3) Ad(g) : D†X,k
'−→ (ρg)∗D

†
X,k, P 7→ ρ]gP (ρ]g)

−1,

for all k ≥ kX. This is an action on the left in the sense that

(ρg)∗(Ad(h)) ◦Ad(g) = Ad(hg),

as follows from 5.2.1. Furthermore, the group Gk+1 is contained in
Dan(G(k)◦) as a set of delta distributions, and for g ∈ Gk+1 we also write
δg for its image in H0(X,D†X,k) = Dan(G(k)◦)θ0 , cf. 3.3.6.

Definition 5.2.2. Let X be an H-equivariant admissible blow-up of X0.
A strongly H-equivariant D†X,k-module is a D†X,k-module M together with a
family (φg)g∈H of isomorphisms

φg : M −→ (ρg)∗M

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h ∈ H we have (ρg)∗(φh) ◦ φg = φhg.

(ii) For all open subsets U ⊂ X, all P ∈ D†X,k(U), and all m ∈M (U) one
has φg(P.m) = Ad(g)(P ).φg(m).
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(iii) 6 For all g ∈ H ∩Gk+1 the map φg : M → (ρg)∗M = M is equal to

the multiplication by δg ∈ H0(X,D†X,k).

A morphism between two strongly H-equivariant D†X,k-modules

(M , (φM
g )g∈H) and (N , (φN

g )g∈H) is a D†X,k-linear morphism ψ : M → N
such that

φN
g ◦ ψ = (ρg)∗(ψ) ◦ φM

g

for all g ∈ H. We denote the category of stronglyH-equivariant D†X,k-modules

which are, moreover, coherent as D†X,k-modules by Coh(D†X,k, H).

Remarks. ‘Strongly equivariant’ refers to the additional condition that the
action coincides with multiplication by δg if g ∈ H ∩Gk+1. This is the ana-

logue of [40, Prop. 2.6] in our situation. We also note that any D†X,k-module is
strongly Gk+1-equivariant for the natural Gk+1-action, cf. 5.2.1. The follow-
ing result could be stated in greater generality for H-equivariant blow-ups
X→ X0 if we had introduced the ring D(G(k)◦, H) also for open subgroups
H ⊂ G0 (containing Gk+1) instead of just G0.

Theorem 5.2.3. Let X→ X0 be a G0-equivariant admissible blow-up, and
let k ≥ kX. The functors L oc†X,k and H0 induce quasi-inverse equivalences
between the category of finitely presented D(G(k)◦, G0)θ0-modules and
Coh(D†X,k, G0).

Proof. This follows from 4.3.2, 3.3.6, the definition of Coh(D†X,k, G0), and
the description of D(G(k)◦, G0) in 5.1.2. �

5.2.3. Suppose now that π : X′ → X is a G0-equivariant morphism over X0

between admissible formal G0-equivariant blow-ups of X0 (whose lifted ac-
tions we denote by ρX

′
and ρX respectively), and that k ≥ kX and k′ ≥

max{kX′ , k}. According to 2.2.4 there is then a morphism of sheaves of rings

(5.2.4) Ψ : π∗D
†
X′,k′ = D†X,k′ ↪→ D†X,k

which is G0-equivariant, i.e. satisfying

Ad(g) ◦Ψ = (ρXg )∗(Ψ) ◦ π∗(Ad(g))

6To make sense of this condition, we use that elements g ∈ Gk+1 act trivially on
the topological space underlying X, cf. 5.2.1.
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for all g ∈ G0. Suppose we are given two modules MX′ ∈ Coh(D†X′,k′ , G0)

and MX ∈ Coh(D†X,k, G0) together with a morphism

ψ : π∗MX′ −→MX

linear relative to (5.2.4) and which is G0-equivariant, i.e. satisfying

φMX
g ◦ ψ = (ρXg )∗(ψ) ◦ π∗(φMX′

g )

for all g ∈ G0. We obtain thus a morphism

D†X,k ⊗π∗D†X′,k′ π∗MX′ −→MX

of D†X,k-modules. Denote, by K the submodule of D†X,k ⊗π∗D†X′,k′ π∗MX′

locally generated by all elements of the form Pδh ⊗m− P ⊗ (h.m), where
h ∈ Gk+1, m is a local section of π∗MX′ , and P is a local section of D†X,k.

For convenience we will abbreviate the quotient (D†X,k ⊗π∗D†X′,k′ π∗MX′)/K

by

D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗MX′ .

Now since the target of the preceding morphism is strongly equivari-
ant, the morphism will factor through this quotient and we thus obtain a
morphism of D†X,k-modules

(5.2.5) ψ : D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗MX′ −→MX.

The domain of this morphism lies in Coh(D†X,k, G0) when we equip it
with the action defined on simple tensors by

g.(P ⊗m) = Ad(g)(P )⊗ (g.m),

for g ∈ G0, where P and m are local sections of D†X,k and π∗MX′ , respec-
tively. Since (5.2.4) is G0-equivariant, the map (5.2.5) is then seen to be in
fact a morphism in Coh(D†X,k, G0). The question, in which situations this
morphism will actually be an isomorphism will be crucial in the definition
of a coadmissible G0-equivariant arithmetic D-module, cf. 5.2.9 below.

We finish this paragraph by an auxiliary result which will be used in the
proof of Thm. 5.2.10.
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Lemma 5.2.4. Let X′,X ∈ FX0
be G0-equivariant. Suppose (X′, k′) � (X, k)

with canonical morphism π : X′ → X over X0 and let M be a coherent
D(G(k′)◦, G0)θ0-module with localization

M = L oc†X′,k′(M) ∈ Coh(D†X′,k′ , G0).

Then there is a canonical isomorphism in Coh(D†X,k, G0) given by

D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗M

'−→ L oc†X,k(D(G(k)◦, G0)⊗D(G(k′)◦,G0) M).

Proof. We denote a system of representatives in Gk+1 for the cosets in
Gk+1/Gk′+1 by R. For simplicity, we abbreviate

D(k) := Dan(G(k)◦)θ0 and D(k,G0) := D(G(k)◦, G0)θ0

and similarly for k′. We have the natural inclusion D(k) ↪→ D(k,G0) from
5.1.2 which is compatible with variation in k. Now suppose M is a D(k′, G0)-
module. We then have the free D(k)-module D(k)⊕M×R on a basis em,h
indexed by the elements (m,h) of the set M ×R. Its formation is functorial
in M : if M ′ is another module and f : M →M ′ a linear map, then em,h →
ef(m),h induces a linear map between the corresponding free modules. The
free module comes with a linear map

fM : D(k)⊕M×R → D(k)⊗D(k′) M

given by

⊕(m,h)λm,hem,h 7→ (λm,hδh)⊗m− λm,h ⊗ (δh ·m)

for λm,h ∈ D(k) where we consider M a D(k′)-module via the inclusion
D(k′) ↪→ D(k′, G0). Note that, since M is a D(k′, G0)-module, and because
G0 is contained in D(k′, G0), the expression δh ·m is defined for any partic-
ular h ∈ Gk+1. The linear map is visibly functorial in M and gives rise to
the sequence of linear maps

D(k)⊕M×R
fM−→ D(k)⊗D(k′) M

canM−→ D(k,G0)⊗D(k′,G0) M −→ 0

where the second map is induced from the inclusion D(k′) ↪→ D(k′, G0). The
sequence is functorial in M , since so are both occuring maps.

Claim 1: If M is a finitely presented D(k′, G0)-module, then the above
sequence is exact.
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Proof. This can be proved as in the proof of [32, Prop. 5.3.5]. �

Claim 2: Suppose M is a finitely presented D(k′)-module and let M :=
L oc†X′,k′(M). The natural morphism

L oc†X,k(D(k)⊗D(k′) M)
'−→ D†X,k ⊗π∗D†X′,k′ π∗M

is bijective.

Proof. The functor π∗ is exact on coherent D†X′,k′-modules according to 2.2.4.
Choosing a finite presentation of M reduces to the case M = D(k′) which
is obvious. �

Now let M be a finitely presented D(k′, G0)-module. Let m1, . . . ,mr be
generators for M as a D(k′)-module. We have a sequence of D(k)-modules⊕

i,h

D(k)emi,h
f ′M−→ D(k)⊗D(k′) M

canM−→ D(k,G0)⊗D(k′,G0) M −→ 0

where f ′M denotes the restriction of the map fM to the free submodule of
D(k)⊕M×R generated by the finitely many vectors emi,h, i = 1, . . . , r, h ∈ R.
Since im(f ′M ) = im(fM ) the sequence is exact by the first claim. Since it
consists of finitely presented D(k)-modules, we may apply the exact functor
L oc†X,k to it. By the second claim, we get an exact sequence

(D†X,k)
⊕r|R| → D†X,k ⊗π∗D†X′,k′ π∗M → L oc†X,k(D(k,G0)⊗D(k′,G0) M)→ 0

where M = L oc†X′,k′(M). The cokernel of the first map in this sequence
equals by definition

D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗M ,

whence an isomorphism

D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗M

'−→ L oc†X,k(D(k,G0)⊗D(k′,G0) M).

This proves the lemma. �

5.2.4. The purpose of the rest of this section is to first explain how to form
G0-equivariant compatible systems of coherent D†X,k-modules when the for-
mal models X and the congruence levels k vary in a suitable family. Here
we will only be considering formal models of the rigid-analytic flag variety
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which are admissible formal blow-ups of X0. In a second step, we will re-
late such G0-equivariant systems to coadmissible D(G0, L)θ0-modules thus
establishing a version of the classical localization theorem for equivariant al-
gebraic D-modules [5] in our setting. In Sec. 5.3 these constructions will be
generalized to the setting of G-equivariant compatible systems.

We recall that we denote by X = B\G the flag variety of G, and by
Xrig the rigid-analytic space associated by the GAGA functor to X, cf. 3.1.
Furthermore, we denote by X∞ the projective limit of all formal models of
Xrig (in the sense of 3.1). This space is known to be homeomorphic to the
adic space corresponding to Xrig, cf. [41, Thm. 4 in Sec. 2, Thm. 4 in Sec. 3]
where this space is denoted by Val(Xrig).

Consider the set FX0
of admissible formal blow-ups X→ X0. This set

is ordered by X′ � X if the blow-up morphism π : X′ → X0 factors as the
composition of a morphism X′ → X and the blow-up morphism X→ X0. In
fact, the morphism X′ → X is then necessarily unique [19, II, 7.14], and is
itself a blow-up morphism [25, ch. 8, 1.24]. By [7, Remark 10 in Sec. 8.2]
the set FX0

is directed in the sense that any two elements have a common
upper bound, and it is cofinal in the set of all formal models. In particular,
X∞ = lim←−FX0

X.

Proposition 5.2.5. Any formal model X of Xrig is dominated by one which
is a G0-equivariant admissible blow-up of X0.

Proof. By [7, Remark 10 in Sec. 8.2] we may assume that X is already an
admissible blow-up of X0. Let I be the ideal which is blown up to obtain
X. If $k ∈ I for some k ≥ 1, then Gk acts trivially on the topological space
underlying X0 and stabilizes I in the sense that ρ]g : OX0

→ OX0
maps I into

I for all g ∈ Gk. Let 1 = g1, . . . , gN be a system of representatives for G0/Gk
and let J be the product of the finitely many ideals ρ]gi(I). Then J is G0-
stable and contains I. Blowing up J on X0 yields a G0-stable formal scheme
X′, and X′ is also the admissible formal blow-up of the sheaf pr−1J · OX on
X, and the blow-up morphism X′ → X0 factors as the composition of the
blow-up morphisms X′ → X→ X0. �

Definition 5.2.6. We denote the set of pairs (X, k), where X ∈ FX0
and

k ∈ N satisfies k ≥ kX, by FX0
. This set is ordered by (X′, k′) � (X, k) if and

only if X′ � X and k′ ≥ k.

Since FX0
is directed, the set FX0

is directed, too.
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Lemma 5.2.7. Let I be an open ideal sheaf on X0, and let g ∈ G0. Then
K = (ρ]g)−1((ρg)∗(I)) is again an open ideal sheaf on X0. Let X be the blow-up
of I, and let X.g be the blow-up of K. Then there is a morphism ρg : X→ X.g
such that the following diagram is commutative (where the vertical maps are
the blow-up morphisms):

X
ρg //

��

X.g

��
X0

ρg // X0

We have kX.g = kX. Moreover, for any two elements g, h ∈ G0 we have a

canonical isomorphism (X.g).h ' X.(gh), and the morphism X
ρg−→ X.g

ρh−→
(X.g).h ' X.(gh) is equal to ρgh. This gives a right action of the group G0

on the family FX0
.

Proof. It is easy to check that K is indeed an open ideal sheaf. Moreover,
the comorphism ρ]g : OX0

→ (ρg)∗OX0
induces a morphism

(5.2.6)
⊕
d≥0

Kd −→ (ρg)∗

⊕
d≥0

Id


of sheaves of graded rings which is linear with respect to ρ]g and which

coincides with ρ]g in degree zero. The morphism of sheaves 5.2.6 induces the
morphism between the blow-ups X and X.g. That 5.2.6 is linear with respect
to ρ]g implies the existence of the commutative diagram. The assertion about
the congruence levels follows straightforwardly from the definition 2.2.5. The
remaining assertions follow directly from the construction. �

Corollary 5.2.8. Assume that (X′, k′) � (X, k) for X,X′ ∈ FX0
and let

π : X′ → X be the unique morphism over X0. Let g ∈ G0. Then (X′.g, k′) �
(X.g, k) and if we denote the unique morphism X′.g → X.g over X0 by π.g,
then the diagram

X′
ρg //

π

��

X′.g

π.g

��
X

ρg // X.g

is commutative.

Proof. Follows easily from the preceding lemma. �
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Definition 5.2.9. A coadmissible G0-equivariant arithmetic D-module on
FX0

consists of a family M := (MX,k) of coherent D†X,k-modules MX,k, for
all (X, k) ∈ FX0

, with the following properties:

(a) For any g ∈ G0 with morphism ρg : X→ X.g (cf. 5.2.7), there exists
an isomorphism

φg : MX.g,k −→ (ρg)∗MX,k

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h ∈ G0 we have (ρg)∗(φh) ◦ φg = φhg.

(ii) For all open subsets U ⊂ X.g, all P ∈ D†X.g,k(U), and allm ∈MX.g,k(U)
one has φg(P.m) = Ad(g)(P ).φg(m).

(iii) 7 For all g ∈ Gk+1 the map φg : MX,k → (ρg)∗MX,k = MX,k is equal

to the multiplication by δg ∈ H0(X,D†X,k).

(b) Suppose X′,X ∈ FX0
are both G0-equivariant, and assume further

that (X′, k′) � (X, k), and that π : X′ → X is the unique morphism over X0.
In this situation we require the existence of a transition morphism ψX′,X :

π∗MX′,k′ →MX,k, linear relative to the canonical morphism Ψ : π∗D
†
X′,k′ →

D†X,k (5.2.4) and satisfying

(5.2.7) φ
MX,k
g ◦ ψX′,X = (ρXg )∗(ψX′,X) ◦ π∗(φ

MX′,k′
g )

for any g ∈ G0 (note that π∗ ◦ (ρX
′

g )∗ = (ρXg )∗ ◦ π∗ according to cor. 5.2.8
and so the composition of maps on the right-hand side makes sense). The
morphism induced by ψX′,X, cf 5.2.5,

(5.2.8) ψX′,X : D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗MX′

'−→MX

is required to be an isomorphism of D†X,k-modules. Additionally, the mor-
phisms ψX′,X : π∗MX′,k′ →MX,k are required to satisfy the transitivity con-
dition ψX′,X ◦ π∗(ψX′′,X′) = ψX′′,X, whenever (X′′, k′′) � (X′, k′) � (X, k) in
FX0

. Moreover, ψX,X = idMX,k
.

7To make sense of this condition, we use that for k ≥ kX the action of Gk+1 on
X0 lifts to X, cf. 5.2.1. In this case X.g = X, and elements g ∈ Gk+1 act trivially on
the topological space underlying X.
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A morphism M → N between two such modules consists of morphisms
MX,k → NX,k of D†X,k-modules compatible with the extra structures. We

denote the resulting category by CG0

X0
.

5.2.5. We now build the bridge to the category of coadmissible D(G0, L)θ0-
modules, cf. 5.1.1. Given such a module M we have its associated admis-
sible locally analytic G0-representation V = M ′b together with its subspace
of G(k)◦-analytic vectors VG(k)◦−an ⊂ V . The latter is stable under the G0-
action and its dual Mk := (VG(k)◦−an)′ is a finitely presented D(G(k)◦, G0)θ0-

module, cf. 5.1.1. In this situation Thm. 4.3.2 produces a coherent D†X,k-
module

L oc†X,k(Mk) = D†X,k ⊗Dan(G(k)◦)θ0
Mk

for any element (X, k) in FX0
. On the other hand, let M be an arbi-

trary coadmissible G0-equivariant arithmetic D-module on FX0
. The tran-

sition morphisms ψX′,X : π∗MX′,k′ →MX,k induce maps H0(X′,MX′,k′)→
H0(X,MX,k) on global sections. We let

Γ(M ) := lim←−
(X,k)∈FX0

H0(X,MX,k)

where the projective limit is taken in the sense of abelian groups and over
the cofinal subfamily, cf. Prop. 5.2.5, consisting of those (X, k) with G0-
equivariant X. This limit naturally carries the structure of a coadmissible
D(G0, L)θ0-module, as will follow from part (ii) of the next theorem.

Theorem 5.2.10. (i) The family

L ocG0(M) := (L oc†X,k(Mk))(X,k)∈FX0

forms a coadmissible G0-equivariant arithmetic D-module on FX0
, i.e., gives

an object of CG0

X0
. The formation of L ocG0(M) is functorial in M .

(ii) The functors L ocG0 and Γ(·) induce quasi-inverse equivalences be-
tween the category of coadmissible D(G0, L)θ0-modules and CG0

X0
.

Proof. Let M be a coadmissible D(G0, L)θ0-module and let M ∈ CG0

X0
. Both

parts of the theorem follow from the four following assertions.

Assertion 1: One has L ocG0(M) ∈ CG0

X0
and L ocG0(M) is functorial

in M .
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Proof. We start by verifying condition (a) for L ocG0(M) and define the
morphisms, for g ∈ G0,

φg : L ocG0(M)X.g,k −→ (ρg)∗L ocG0(M)X,k

satisfying the requirements (i), (ii) and (iii) in definition 5.2.9. So consider

L ocG0(M)X.g,k = L oc†X.g,k(Mk) = D†X.g,k ⊗Dan(G(k)◦)θ0
Mk.

Let φ̃g : Mk→Mk denote the map dual to the map VG(k)◦−an→VG(k)◦−an

given by w 7→ g−1w. Let U ⊂ X.g be an open subset and P ∈ D†X.g,k(U),
m ∈Mk. We define

φg(P ⊗m) := Ad(g)(P )⊗ φ̃g(m).

One has an isomorphism

(ρg)∗

(
L oc†X′,k′(Mk′)

)
'−→
(

(ρg)∗D
†
X′,k′

)
⊗Dan(G(k′)◦)θ0

Mk′ .

Indeed, (ρg)∗ is exact and so choosing a finite presentation of Mk′ as
Dan(G(k′)◦)θ0-module reduces to the case of Mk′ = Dan(G(k′)◦)θ0 which is
trivially true. This means that the above definition extends to a map

φg : D†X.g,k ⊗Dan(G(k)◦)θ0
Mk −→ (ρg)∗

(
D†X,k ⊗Dan(G(k)◦)θ0

Mk

)
.

By construction, it satisfies the requirements (i), (ii) and (iii). We next
verify condition (b). So suppose that X′,X are G0-equivariant and we have
(X′, k′) � (X, k) with canonical morphism π : X′ → X over X0. One then has
an isomorphism

π∗

(
L oc†X′,k′(Mk′)

)
'−→
(
π∗D

†
X′,k′

)
⊗Dan(G(k′)◦)θ0

Mk′ .

Indeed, π∗ is exact by 2.2.4 and we may argue as for (ρg)∗. Furthermore,
G(k′)◦ ⊆ G(k)◦ and we denote by ψ̃X′,X : Mk′ →Mk the map dual to the
natural inclusion VG(k)◦−an ⊆ VG(k′)◦−an. Let U ⊂ X be an open subset and

P ∈ π∗D†X′,k′(U), m ∈Mk′ . We then define

ψX′,X(P ⊗m) := ΨX′,X(P )⊗ ψ̃X′,X(m)
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where ΨX′,X denotes the canonical morphism π∗D
†
X′,k′ → D†X,k. This defini-

tion extends to a map

ψX′,X : π∗

(
L oc†X′,k′(Mk′)

)
→ L oc†X,k(Mk)

according to our above description of π∗

(
L oc†X′,k′(Mk′)

)
. The map ψX′,X

satisfies condition 5.2.7 and the required transitivity properties. It remains
to see that the corresponding map ψX′,X is an isomorphism, as required in

5.2.8. But ψX′,X corresponds under the isomorphism of Lem. 5.2.4 to the
linear extension

D(G(k)◦, G0)⊗D(G(k′),G0) Mk′ →Mk

of ψ̃X′,X via functoriality of L oc†X,k. But the linear extension of ψ̃X′,X is an

isomorphism by part (i) of Lem. 5.1.1 and hence, so is ψX′,X. This shows

L ocG0(M) ∈ CG0

X0
. Given a morphism M → N of coadmissible D(G0, L)θ0-

modules, one obtains maps Mk → Nk for any k which are compatible with
the maps φ̃g and ψ̃X′,X. By functoriality of L oc†X,k, they give rise to linear
morphisms

L oc†X,k(Mk) −→ L oc†X,k(Nk)

which are compatible with the maps φg and ψX′,X. In other words, L ocG0(M)
is functorial in M . �

Assertion 2: Γ(M ) is a coadmissible D(G0, L)θ0-module.

Proof. For given k we choose a (X, k) ∈ FX0
and let Nk := H0(X,MX,k). By

5.2.8 together with Lem. 5.2.4, we then have linear isomorphisms

D(G(k)◦, G0)⊗D(G(k′),G0) Nk′ ' Nk

whenever k′ ≥ k. Thus, the modules Nk form a (D(G(k)◦, G0))k∈N-sequence,
in the sense of [15, 1.2.8] and their projective limit is therefore a coadmissible
module. �

Assertion 3: Γ ◦L ocG0(M) 'M .

Proof. Let V = M ′b. We have compatible isomorphisms

H0(X,L ocG0(M)X,k) ' (VG(k)◦−an)′

for all (X, k) by 4.3.2 and the coadmissible modules Γ ◦L ocG0(M) and M
have therefore isomorphic (D(G(k)◦, G0))k∈N-sequences. �
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Assertion 4: L ocG ◦ Γ(M ) 'M .

Proof. Let N := Γ(M ) and V = N ′b the corresponding admissible represen-
tation. Let N = L ocG0(N). According to part (ii) in Lem. 5.1.1 setting
Nk = D(G(k)◦, G0)⊗D(G0,L) N produces a (D(G(k)◦, G0))k∈N-sequence for
the coadmissible module N which is isomorphic to its constituting sequence
H0(X,MX,k) from Assertion 2. Now let (X, k) ∈ FX0

. By what we just said
we have linear isomorphisms

NX,k = L oc†X,k(Nk) ' L oc†X,k(H
0(X,MX,k)) 'MX,k,

where the final isomorphism comes from 4.3.2. Via this isomorphism, the
action map φ

NX,k
g , constructed for N = L ocG0(N) along the lines of Asser-

tion 1, corresponds to φ
MX,k
g , as follows directly from the Ad(g)-linearity of

these two maps. Similarly, if (X′, k′) � (X, k) for G0-equivariant X′,X, then
the transition map ψN

X′,X, constructed for N = L ocG0(N) along the lines of

Assertion 1, corresponds to ψM
X′,X, as follows directly from the ΨX′,X-linearity

of these two maps. Hence, N 'M in CG0

X0
. �

This finishes the proof of the theorem. �

5.2.6. We indicate how coadmissible G0-equivariant D-modules can be ’real-
ized’ as honest (equivariant) sheaves on the topological space X∞ = lim←−FX0

X,

cf. 5.2.4. The induced G0-action on X∞ is denoted by ρg : X∞ → X∞ for
g ∈ G0. We denote the canonical projection map X∞ → X by spX for each
X and define the following sheaf of rings on X∞. Assume V ⊂ X∞ is an open
subset of the form sp−1

X (U) with an open subset U ⊂ X for a model X ∈ FX0
.

We have that

spX′(V ) = π−1(U)

for any morphism π : X′ → X over X0 and so, in particular, spX′(V ) ⊂ X′ is
an open subset for such X′. Moreover,

π−1(spX′(V )) = spX′′(V )

whenever π : X′′ → X′ is a morphism over X. In this situation, the morphism
(5.2.4) induces the ring homomorphism

(5.2.9) D†X′′,k′′(spX′′(V )) = π∗D
†
X′′,k′′((spX′(V ))→ D†X′,k′(spX′(V ))

and we form the projective limit

D∞(V ) := lim←−
X′→X

D†X′,k′(spX′(V ))
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over all these maps. The open subsets of the form V form a basis for the
topology on X∞ and D∞ is a presheaf on this basis. We denote the associated
sheaf on X∞ by the symbol D∞ as well. It is a G0-equivariant sheaf of rings
on X∞ in the usual sense: given g ∈ G0, the actions Ad(g) on each individual
sheaf D†X,k, cf. (5.2.3), assemble to a left action

(5.2.10) Ad(g) : D∞
'−→ (ρg)∗D∞

on D∞.

5.2.7. Suppose M := (MX,k) is an object of CG0

X0
. We have the transition

maps ψX′,X : π∗MX′,k′ →MX,k which are linear relative to the morphism
(5.2.4). In a completely analogous manner as above, we obtain a sheaf M∞
on X∞ together with a family (φg)g∈G0

of isomorphisms

(5.2.11) φg : M∞ −→ (ρg)∗M∞

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h ∈ G0 we have (ρg)∗(φh) ◦ φg = φhg.

(ii) For all open subsets U ⊂ X∞, all P ∈ D∞(U), and all m ∈M∞(U)
one has φg(P.m) = Ad(g)(P ).φg(m).

In particular, M∞ is an equivariant D∞-module on the topological G0-
space X∞ in the usual sense. The formation of M∞ is functorial in M ∈ CG0

X0
.

Proposition 5.2.11. The functor M  M∞ from the category CG0

X0
to

G0-equivariant D∞-modules is a faithful functor.

Proof. We have spX(X∞) = X for all X. The global sections of M∞ are there-
fore equal to

H0(X∞,M∞) = lim←−
(X,k)∈FX0

H0(X,MX,k) = Γ(M )

where we have used Prop. 5.2.5. Now let f, h be two morphisms M → N
in CG0

X0
such that f∞ = h∞. By the equivalence of categories in 5.2.10, it

suffices to verify Γ(f) = Γ(h) (as maps between sets, say). But this is clear
since H0(X∞, f∞) = H0(X∞, h∞). �
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We denote by L ocG0
∞ the composite of the functor L ocG0 with (·)∞, i.e.

{ coadmissible D(G0, L)θ0 −modules }
L ocG0

∞−−−−→ { G0 − equivariant D∞ −modules }.

Since L ocG0 is an equivalence, the preceding proposition implies that
L ocG0

∞ is a faithful functor.

5.2.8. In this section we explain how the functor M  M∞ on the category
CG0

X0
becomes fully faithful if we change the target category by requiring that

objects (resp. morphisms) carry the structure of locally convex topological
D∞-modules (resp. are continuous). We start by explaining how D∞ can be
considered as a sheaf of locally convex topological algebras.8

Let X ∈ FX0
be an admissible blow-up of X0. If U ⊂ X is an open affine

subset, then the ring D†X,k(U) is naturally a locally convex L-algebra of com-
pact type, cf. [22, proof of 3.1.3]. If U ′ ⊂ X is an arbitrary open subset, we
equip D†X,k(U

′) with the initial topology, with respect to all restriction maps

D†X,k(U
′)

res−→ D†X,k(U), where U ⊂ U ′ runs through an open affine covering
of U ′. It is a locally convex topology, cf. [35, ch. 1, §5], independent of the
covering.

If V ⊂ X∞ is of the form sp−1
X (U), with an open subset U ⊂ X for a

model X ∈ FX0
, then we give D∞(V ) the initial topology with respect to

all maps D∞(V )→ D†X′,k′(spX′(V )), cf. the definition of D∞(V ) after 5.2.9.
Finally, for an arbitrary open subset V ′ ⊂ X∞ we give D∞(V ′) the initial
topology with respect to all maps D∞(V ′)

res−→ D∞(V ), where V ⊂ V ′ runs
through the open subsets of V ′ of the form considered before. This gives D∞
the structure of a sheaf of locally convex L-algebras.

We now consider the category of G0-equivariant locally convex D∞-
modules. The objects are sheaves M of locally convex L-vector spaces, en-
dowed with the structure of a topological D∞-module9, and which are G0-
equivariant: there is a family (φg)g∈G0

of isomorphisms φg : M −→ (ρg)∗M
of sheaves of L-vector spaces, satisfying conditions (i) and (ii) as above (see
5.2.11). Morphisms are D∞-linear maps which are continuous for the locally
convex topologies and which are compatible with the group action.

8In fact, one can show that D∞ is a sheaf of Fréchet algebras, but since we do
not need this here, we work in the larger category of locally convex vector spaces.

9I.e., the multiplication maps D∞(V )×M(V )→M(V ), for open subsets V ⊂
X∞, are required to be continuous.
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Let M = (MX,k) be an object of CG0

X0
. Each sheaf MX,k is a coherent

D†X,k-module. Hence for every point x ∈ X there is an open affine neigh-

borhood U ⊂ X such that MX,k|U is a finitely presented D†X,k|U -module. It

then follows from [22, 2.2.13] that MX,k(U) is a finitely presented D†X,k(U)-

module, and thus is canonically a topological D†X,k(U)-module, cf. [32, Prop.
5.1.1]. For an open subset V ⊂ X∞ we define on M∞(V ) a topology in the
same way as above for D∞(V ). In this way M∞ becomes an object of the
category of G0-equivariant locally convex D∞-modules. With these prelim-
inaries we have the following result.

Proposition 5.2.12. The functor M  M∞ is a fully faithful functor
from CG0

X0
to the category of G0-equivariant locally convex D∞-modules.

Proof. By 5.2.11, it remains to see the fullness. We begin by reminding
the reader that any G0-equivariant continuous L-linear map f : M → N
between two coadmissible D(G0, L)-modules M,N is in fact D(G0, L)-linear
[36, Lemma 3.1]. After this generality, let

F : M∞ → N∞

be a morphism. Consider the coadmissible D(G0, L)θ0-module M := Γ(M )
and let V := M ′ be the corresponding admissible locally analytic G0-
representation. The subspace VG(k)◦−an ⊂ V is naturally a nuclear locally
convex space and we let Mk := (VG(k)◦−an)′b be its strong dual. Now, on the
one hand, the strong topology on Mk coincides with the canonical topology
as finitely generated module over the compact type algebra Dan(G(k)◦)θ0 , cf.
[32, Prop. 5.1.1]. On the other hand, the canonical topology on the coadmis-
sible D(G0, L)-module M = lim←−kMk equals the projective limit topology, cf.
5.1.3. This means, that the locally convex topology on the space of global
sections M∞(X∞) = Γ(M ) = M (cf. the beginning of the proof of 5.2.11)
of the locally convex D∞-module M∞ coincides with the canonical topology
of the coadmissible D(G0, L)θ0-module M (and similarly for N∞). Hence
the morphism F : M∞ → N∞ induces a G0-equivariant continuous L-linear
map Γ(M )→ Γ(N ). By our initial reminder, this map is then necessarily
D(G0, L)θ0-linear and we may apply the functor L ocG0 to it. This results
in a morphism M → N which is a preimage of F . �

Of course, the composite functor L ocG0
∞ = (.)∞ ◦L ocG0 then also be-

comes a fully faithful functor into the category of G0-equivariant locally
convex D∞-modules.
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5.3. G-equivariance and the functor L ocG

Let G := G(L). Denote by B the (semi-simple) Bruhat-Tits building of the
p-adic group G together with its natural G-action. In accordance with our
convention that the group G acts on the right on the flag variety, we also
consider B with a right action: B ×G→ B, (x, g) 7→ xg. We reserve the letter
v for special vertices of B.

The purpose of this subsection is to extend the above results from G0-
equivariant objects to objects equivariant for the full group G.

5.3.1. To each special vertex v ∈ B Bruhat-Tits theory associates a con-
nected reductive group scheme Gv over o. The generic fiber of Gv is canon-
ically isomorphic to G. We denote by Xv,0 the flag scheme of Gv. Is is a
smooth scheme over o whose generic fiber is canonically isomorphic to the
flag variety X of G. All constructions in Sections 3 and 4 are associated
with the group scheme G0 with vertex v0, say, but can be done canonically
for any other of the reductive group schemes Gv. We distinguish the various
constructions from each other by adding the corresponding vertex v to them,
i.e., we write Xv for an admissible blow-up of the smooth model Xv,0, Gv,0
for the group of points Gv(o), and Gv,k for the group of points Gv(k)(o).
The same conventions apply when we work with the formal completions, i.e.,
Xv,0 is the formal completion of Xv,0, and Xv always denotes an admissible
formal blow-up of Xv,0. We make the general convention that the blow-up
morphism Xv → Xv,0 is part of the datum of Xv. That is to say, even if a
blow-up Xv of Xv,0 also allows for a blow-up morphism to another smooth
formal model Xv′,0, with v′ 6= v, we only consider it a blow-up of Xv,0. We
denote by Fv := FXv,0 the set of all admissible formal blow-ups Xv → Xv,0
of Xv,0 and by Fv := FXv,0 the set of pairs defined analogously to 5.2.6. By
the convention we just introduced, the sets Fv and Fv′ are disjoint if v and
v′ are two distinct vertices. Let

F :=
∐
v

Fv,

where v runs over all special vertices of B, be the disjoint union of all these
models. We recall that X∞ equals the projective limit of all formal models of
Xrig, cf. 5.2.4. The set F is partially ordered via Xv′ � Xv if the projection
prXv : X∞ → Xv factors through the projection prXv′ : X∞ → Xv′ . In this
case, the resulting morphism Xv′ → Xv is an admissible formal blow-up of
Xv [25, Thm. 8.1.24]. Finally, by the property recalled at the end of 3.1.1,



i
i

“5-Strauch” — 2020/3/6 — 21:39 — page 1729 — #53 i
i

i
i

i
i

D†-affinity of formal models of flag varieties 1729

the ordered set (F ,�) is directed in the sense that any two elements have a
common upper bound.

Definition 5.3.1. We denote by F =
∐
v Fv the disjoint union of all Fv,

where v runs through all special vertices of B. We define an ordering on this
set by declaring (Xv′ , k

′) � (Xv, k) if and only if Xv′ � Xv and $k′Lie(Gv′) ⊆
$kLie(Gv) as lattices in Lie(G).

5.3.2. For any special vertex v ∈ B, any element g ∈ G induces a isomor-
phism ρvg : Xv,0 → Xvg,0. The morphism induced by ρvg on the generic fibers
Xv,0 × Spec(L) ' X ' Xvg,0 × Spec(L) coincides with the right translation
by g on X. Moreover, ρvg induces a morphism Xv,0 −→ Xvg,0,which we again
denote by ρvg or ρg, and which coincides with the right translation action on

Xv,0 for g ∈ Gv,0 (note that vg = v in this case). Let ρ]g : OXvg,0 → (ρg)∗OXv,0

be the comorphism of ρg. If π : Xv → Xv,0 is an admissible blow-up of an

ideal I ⊂ OXv,0 , then blowing-up (ρ]g)−1((ρg)∗I) produces a formal scheme
Xvg (which, for g ∈ Gv,0, we denoted by Xv.g in 5.2.7), together with an
isomorphism ρg = ρvg : Xv → Xvg. We have again kXv = kXvg in this situa-
tion. For any g, h ∈ G and any admissible formal blow-up Xv of Xv,0 we
have ρvgh ◦ ρ

v
g = ρvgh : Xv → Xvgh. This gives a right G-action on the family

F and on the projective limit space X∞.10 Finally, if Xv′ � Xv with mor-
phism π : Xv′ → Xv and g ∈ G, then Xv′g � Xvg with a resulting morphism
Xv′g → Xvg which we denote by π.g, as in cor. 5.2.8.

On the level of differential operators, we have the following two key
properties as before, cf. paragraph 5.2.2. Let g ∈ G. The isomorphism ρg :
Xv −→ Xvg induces an adjoint action

(5.3.1) Ad(g) : D†Xvg,k
'−→ (ρg)∗D

†
Xv,k

, D 7→ ρ]gD(ρ]g)
−1,

for k ≥ kXv = kXvg . Secondly, we identify the global sections Γ(Xv,D
†
Xv,k

)
with Dan(Gv(k)◦)θ0 and obtain the group homomorphism

(5.3.2) Gv,k+1 −→ Γ(Xv,D
†
Xv,k

)×, g 7→ δg,

where Gv,k+1 = Gv(k)◦(L) denotes the group of L-rational points.

10The existence of the G-action on X∞ can also be deduced from the fact that
X∞ is canonically and functorially associated to Xrig whose G-action is induced by
the G-action on X.
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Proposition 5.3.2. Suppose (Xv′ , k
′) � (Xv, k) for two pairs (Xv′ , k

′),
(Xv, k) ∈ F with morphism π : Xv′ → Xv. There exists a canonical morphism
of sheaves of rings11

Ψ : π∗D
†
Xv′ ,k′

→ D†Xv,k

which is G-equivariant in the sense that for every g ∈ G the following dia-
gram is commutative:

(π.g)∗D
†
Xv′ .g,k′

Ψ //

(π.g)∗(Ad(g))
��

D†Xv.g,k

Ad(g)
��

(π.g)∗(ρ
v′
g )∗D

†
Xv′ ,k

= (ρvg)∗π∗D
†
Xv′ ,k

(ρvg)∗(Ψ)
// (ρvg)∗D

†
Xv,k

Proof. Let pr : Xv → Xv,0 and pr′ : Xv′ → Xv′,0 be the blow-up morphisms,
and put p̃r = pr ◦ π. The following diagram displays these morphisms:

Xv′

pr′

��

π //‹pr

((

Xv

pr

��
Xv′,0 Xv,0

Fix m ∈ N. We show first the existence of a canonical morphism of
sheaves of o-algebras

(5.3.3) D
(k′,m)
Xv′

−→ p̃r∗D
(k,m)
Xv,0

.

Here Xv′ , Xv′,0, Xv, and Xv,0 are the schemes of finite type over o
whose completions are Xv′ , Xv′,0, Xv, and Xv,0, respectively, cf. 2.2.2. The
morphisms between these schemes of finite type over o will be denoted by
the same letters, e.g., pr : Xv → Xv,0. We recall that there this a canonical
surjective morphism

ξ
(k′,m)
Xv′

: A(k′,m)
Xv′

= OXv′ ⊗o D
(m)(Gv′(k

′))� D
(k′,m)
Xv′

,

cf. 3.3.4 of sheaves on Xv′ . On the other hand we apply p̃r∗ to the surjection

ξ
(k,m)
Xv,0

: A(k,m)
Xv,0

= OXv,0 ⊗o D
(m)(Gv(k))� D

(k,m)
Xv,0

,

11In order to alleviate notation we do not indicate that these maps depend on
(Xv′ , k

′) and (Xv, k). The source and target of these maps should be clear from the
context.
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and obtain a surjection OXv′ ⊗o D
(m)(Gv(k))� p̃r∗D

(k,m)
Xv,0

. Recall that

(Xv′ , k
′) � (Xv, k) implies that $k′Lie(Gv′) is contained in $kLie(Gv). The

description of the ring D(m)(Gv(k)) in 3.3.2 shows that the inclusion
$k′Lie(Gv′) ⊂ $kLie(Gv) gives rise to an injective ring homomorphism
D(m)(Gv′(k

′)) ↪→ D(m)(Gv(k)). We now claim that the composition

OXv′ ⊗o D
(m)(Gv′(k

′)) ↪→ OXv′ ⊗o D
(m)(Gv(k))� p̃r∗D

(k,m)
Xv,0

factors through D
(k′,m)
Xv′

. As all those sheaves are $-torsion free, this can be

checked after tensoring with L in which case we use that D
(k′,m)
Xv′

⊗o L '
p̃r∗D

(k,m)
Xv,0

⊗o L is the (push-forward of the) sheaf of (algebraic) differen-
tial operators on the generic fiber of Xv′ . We thus get a canonical mor-
phism of sheaves 5.3.3. Passing to completions induces a canonical mor-

phism “D (k′,m)
Xv′

→ p̃r∗ “D (k,m)
Xv,0

. Taking the inductive limit over all m and in-

verting $ gives a canonical morphism D†Xv′ ,k′ → p̃r∗D†Xv,0,k. Now we con-
sider the formal scheme Xv′ as a blow-up of Xv,0 via p̃r. Then π becomes

a morphism of formal schemes over Xv,0, and we can consider p̃r∗D†Xv,0,k
as the sheaf of arithmetic differential operators with congruence level k
defined on Xv′ via p̃r, as introduced in 2.2.3. Using 2.2.4 in this setting

shows then that π∗

(
p̃r∗D†Xv,0,k

)
= D†Xv,k. Then, applying π∗ to the mor-

phism D†Xv′ ,k′ → p̃r∗D†Xv,0,k gives the morphism Ψ : π∗D
†
Xv′ ,k′

→ D†Xv,k of the

statement. Making use of the maps ξ
(k,m)
X , as above, the assertion regarding

G-equivariance can similarly be reduced to some obvious functorial proper-
ties of the rings D(m)(Gv(k)). �

Definition 5.3.3. A coadmissible G-equivariant arithmetic D-module on
F consists of a family M := (MX,k)(X,k)∈F of coherent D†X,k-modules MX,k

with the following properties:12

(a) For any v and g ∈ G with isomorphism ρvg : Xv −→ Xvg, there exists
a isomorphism

φvg : MXvg,k −→ (ρvg)∗MXv,k

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h ∈ G we have (ρvg)∗(φ
v
h) ◦ φvg = φvhg.

12From now on we use the notation Xv instead of X to indicate that the model
is an admissible formal blow-up of Xv,0.
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(ii) For all open subsets U⊂Xvg, all P ∈D†Xvg,k(U), and all m∈MXvg,k(U)

one has φvg(P.m) = Ad(g)(P ).φvg(m).

(iii) 13 For all g ∈ Gk+1,v the map φvg : MXv,k → (ρvg)∗MXv,k = MXv,k is

equal to the multiplication by δg ∈ H0(Xv,D
†
Xv,k

).

(b) For any two pairs (Xv′ , k
′) � (Xv, k) in F with morphism π : Xv′ →

Xv there is a transition morphism ψXv′ ,Xv : π∗MXv′ →MXv , linear relative

to the canonical morphism Ψ : π∗D
†
Xv′ ,k′

→ D†Xv,k (5.3.2) and satisfying

(5.3.4) φvg ◦ ψXv′g,Xvg = (ρvg)∗(ψXv′ ,Xv) ◦ (π.g)∗(φ
v′

g )

for any g ∈ G. If v′ = v, and (X′, k′) � (X, k) in Fv, and if X,X′ are Gv,0-
equivariant, then we require additionally that the morphism induced by
ψX′,X, cf 5.2.5,

(5.3.5) ψX′,X : D†X,k ⊗π∗D†X′,k′ ,Gk+1
π∗MX′,k′

'−→MX,k

is an isomorphism of D†X,k-modules. In general, the morphisms ψXv′ ,Xv :
π∗MXv′ ,k′ →MXv,k are required to satisfy the transitivity condition ψXv′ ,Xv ◦
π∗(ψXv′′ ,Xv′ ) = ψXv′′ ,Xv , whenever (Xv′′ , k

′′) � (Xv′ , k
′) � (Xv, k) in F . More-

over, ψXv,Xv := idMXv,k
.

A morphism M → N between two coadmissible G-equivariant arith-
metic D-modules consists of morphisms MX,k → NX,k of D†X,k-modules
which are compatible with the extra structure. We denote the resulting
category by CG

F .

5.3.3. We now make the link to the category of coadmissible D(G,L)θ0-
modules, cf. 5.1.1. Let M be such a module and let V := M ′b. Fix a special
vertex v. Let VGv(k)◦−an be the subspace of Gv(k)◦-analytic vectors and
let Mv,k be its continuous dual. For any (Xv, k) ∈ F we have the coherent

D†Xv,k-module

L oc†Xv,k(Mv,k) = D†Xv,k ⊗Dan(Gv(k)◦)θ0
Mv,k,

13To make sense of this condition, we use that elements g ∈ Gk+1,v act trivially
on the topological space underlying Xv, cf. 5.2.1.
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according to Thm. 4.3.2. On the other hand, given an object M ∈ CG
F , we

may consider the projective limit

Γ(M ) := lim←−
(X,k)∈F

H0(X,MX,k)

with respect to the transition maps ψX′,X. Here, the projective limit is taken
in sense of abelian groups and over the cofinal family of pairs (Xv, k) ∈ F
with Gv,0-equivariant Xv.

Theorem 5.3.4. (i) The family

L ocG(M) := (L oc†Xv,k(Mv,k))(Xv,k)∈F

forms a coadmissible G-equivariant arithmetic D-module on F , i.e., gives
an object of CG

F . The formation of L ocG(M) is functorial in M .

(ii) The functors L ocG and Γ(·) induce quasi-inverse equivalences be-
tween the category of coadmissible D(G,L)θ0-modules and CG

F .

Proof. The proof is an extension, taking into account the additional G-
action, of the proof for the compact subgroup G0 treated in the preceding
subsection, cf. 5.2.10. Let M be a coadmissible D(G,L)θ0-module and let
M ∈ CG

F . The theorem follows from the four following assertions.

Assertion 1: One has L ocG(M) ∈ CG
F and L ocG(M) is functorial in M .

Proof. For condition (a) for L ocG(M) we need the maps

φvg : L ocG(M)Xvg,k −→ (ρvg)∗L ocG(M)Xv,k

satisfying the requirements (i), (ii) and (iii). Let φ̃vg : Mvg,k →Mv,k denote
the map dual to the map VGv(k)◦−an −→ VGvg(k)◦−an given by w 7→ g−1w
(note that Gvg(k)◦ = g−1Gv(k)◦g in Grig). Let U ⊂ Xvg be an open subset

and P ∈ D†Xvg,k(U), m ∈Mvg,k. We define

(5.3.6) φvg(P ⊗m) := Ad(g)(P )⊗ φ̃vg(m).

This definition extends to a map

φvg : D†Xvg,k ⊗Dan(Gvg(k)◦)θ0
Mvg,k −→ (ρvg)∗(D

†
Xv,k
⊗Dan(Gv(k)◦)θ0

Mv,k)

which satisfies the requirements (i), (ii) and (iii). We next verify condi-
tion (b). Given (Xv′ , k

′) � (Xv, k) in F , we have Gv′(k
′)◦ ⊆ Gv(k)◦ in Grig
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and we denote by ψ̃Xv′ ,Xv : Mv′,k′ →Mv,k the map dual to the natural in-
clusion VGv(k)◦−an ⊆ VGv′ (k′)◦−an. Let U ⊂ Xv be an open subset and P ∈
π∗D

†
Xv′ ,k′

(U), m ∈Mv′,k′ . We then define

(5.3.7) ψXv′ ,Xv(P ⊗m) := ΨXv′ ,Xv(P )⊗ ψ̃Xv′ ,Xv(m)

where ΨXv′ ,Xv denotes the canonical morphism π∗D
†
Xv′ ,k′

→ D†Xv,k from Prop.
5.3.2. This definition extends to a map

ψXv′ ,Xv : π∗L ocG(M)Xv′ ,k′ → L ocG(M)Xv,k

which satisfies all required conditions. The functoriality of L ocG is verified
entirely similar to the case of L ocG0 . �

Assertion 2: Γ(M ) is a coadmissible D(G,L)θ0-module.

Proof. We already know that Γ(M ) is a coadmissible D(Gv,0, L)θ0-module
for any v, cf. Thm. 5.2.10. So it suffices to exhibit a compatible G-action on
Γ(M ). Let g ∈ G. The isomorphism

φvg : MXvg,k −→ (ρvg)∗MXv,k

is compatible with transition maps according to 5.3.4. We therefore obtain
an isomorphism

Γ(M ) = lim←−
Fvg

Γ(Xvg,MXvg,k)
g−→ lim←−
Fv

Γ(Xv,MXv,k) = Γ(M ).

According to (i), (ii) and (iii) in 5.3.3, this gives indeed a G-action on
Γ(M ) which is compatible with its various D(Gv,0, L)-module structures.

�

Assertion 3: Γ ◦L ocG(M) 'M .

Proof. We already know that this hold as coadmissible D(G0, L)θ0-modules,
cf. Thm. 5.2.10, so it suffices to identify the G-action on both sides. Let v
be a special vertex. According to 5.3.6, the action

Γ ◦L ocG(M) ' lim←−
k

Mvg,k → lim←−
k

Mv,k ' Γ ◦L ocG(M)

of an element g ∈ G on Γ ◦L ocG(M) is induced by φ̃vg : Mvg,k →Mv,k.
The identification M ' lim←−kMvg,k ' lim←−kMv,k (coming from dualizing V =
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∪kVGvg(k)◦−an = ∪kVGv(k)◦−an) therefore gives back the original action of g
on M . �

Assertion 4: L ocG ◦ Γ(M ) 'M .

Proof. We know that L ocG(Γ(M ))Xv,k 'MXv,k as D†Xv,k-modules for any
(Xv, k) ∈ F , cf. 4.3.2. It now remains to check that these isomorphisms are
compatible with the maps φvg and ψXv′ ,Xv on both sides. This works as in
the G0-case, but let us spell out the argument for the maps φvg in detail. The
maps φvg on the left-hand side are induced by the maps on the right-hand
side as follows. Given

φvg : MXvg,k −→ (ρvg)∗MXv,k,

the corresponding map

φvg : L ocG(Γ(M ))Xvg,k −→ (ρvg)∗(L ocG(Γ(M ))Xv,k)

equals the map

D†Xvg,k ⊗Dan(Gvg(k)◦)θ0
H0(Xvg,MXvg,k) −→ (ρvg)∗(D

†
Xv,k
⊗Dan(Gv(k)◦)θ0

H0(Xv,MXv,k))

given locally by Ad(g)(·)⊗H0(Xvg, φ
v
g), cf. 5.3.6. Let U ⊂ Xv be an open

subset and P ∈ D†Xv,k(U), m ∈Mv,k = H0(Xvg,MXv,k). The isomorphisms

L ocG(Γ(M ))Xv,k 'MXv,k are induced (locally) by P ⊗m 7→ P.(m|U ). Us-
ing condition (ii) in 5.3.3, one then sees that these isomorphisms interchange
the maps φvg, as desired. The compatibility with transition maps ψXv′ ,Xv for
two models (Xv′ , k

′) � (Xv, k) in F is deduced in an entirely similar man-
ner from 5.3.7 and the fact that ψXv′ ,Xv is linear relative to the canonical

morphism Ψ : π∗D
†
Xv′ ,k′

→ D†Xv,k. �

This finishes the proof of the theorem. �

As in the case of the group G0, we now indicate how objects from CG
F

can be ’realized’ as honest G-equivariant sheaves on the G-space X∞. Recall
that we have the G0-equivariant sheaf D∞ on X∞, cf. 5.2.6.

Proposition 5.3.5. The G0-equivariant structure on the sheaf D∞ extends
to a G-equivariant structure.

Proof. This can be shown very similar to [32, Proof of Prop. 5.4.5]. �
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Recall the faithful functor M  M∞ from coadmissible G0-equivariant
arithmetic D-modules on FX0

to G0-equivariant D∞-modules on X∞, cf.
5.2.11. If M comes from a coadmissible G-equivariant D-module on F , then
M∞ is in fact G-equivariant. This gives the

Proposition 5.3.6. The functor M  M∞ induces a faithful functor from
CG
F to G-equivariant D∞-modules on X∞.

Remark 5.3.7. In analogy with the G0-equivariant case, cf. 5.2.8, the func-
tor M  M∞ becomes fully faithful in the G-equivariant setting too, if one
considers the category of G-equivariant locally convex D∞-modules (defined
as in 5.2.8) as target category.

Remark 5.3.8. We explain briefly how our equivariant constructions on
the flag variety relate to the (nonequivariant) theory of ÙD-modules on smooth
rigid-analytic spaces developed by Ardakov-Wadsley [4]. First of all, there

is a nonequivariant version C
G={1}
F of the category CG

F which can be con-
struced by ignoring the G-action in the definition of CG

F . That is to say, by
deleting the condition (a) and by replacing 5.3.5 of (b) by

ψX′,X : D†X,k ⊗π∗D†X′,k′ π∗MX′
'−→MX

in 5.3.3. We then have a functor M  M∞ from C
G={1}
F to D∞-modules as

in Prop. 5.3.6. Now by the equivalence of categories between abelian sheaves
on Xrig and on X∞ [7, Prop. 9.3.4] we may consider our sheaf of infinite order
differential operators D∞ to be a sheaf on Xrig. One can show that this sheaf
coincides with the sheaf ÙDXrig introduced by Ardakov-Wadsley. Given this
identification, the functor M  M∞ induces then an equivalence between

C
G={1}
F and Ardakov-Wadsley’s category of coadmissible ÙDXrig-modules.

Remark 5.3.9. Let L ⊂ K be a complete and discretely valued extension
field such that the topology of K induces the topology on L. If we con-
sider the K-algebras D(G0, L)“⊗LK and D(G,L)“⊗LK as well as the sheaf
of K-algebras D†X,k“⊗LK, then one may establish versions ’over K’ of the pre-
ceding theorems in a straightforward manner. Here, we use the completed
topological tensor products for the projective tensor product topology on the
ordinary tensor product of two locally convex L-vector spaces [35, ch. IV].



i
i

“5-Strauch” — 2020/3/6 — 21:39 — page 1737 — #61 i
i

i
i

i
i

D†-affinity of formal models of flag varieties 1737

6. Examples of localizations

In this section we compute the G-equivariant arithmetic D-modules corre-
sponding to certain classes of admissible locally analytic G-representations.
The discussion is a generalization of the GL(2)-case treated in [32]. We keep
the notation developed in the previous section. For the rest of this section
we fix an element (X, k) ∈ FX0

such that X is G0-equivariant.

Let g denote the Lie algebra of G and let L ⊂ K be a complete and
discretely valued extension field. To simplify notation, we make the con-
vention that, when dealing with universal enveloping algebras, distribution
algebras, differential operators etc. we write U(g), D(G0), D†X,k etc. to de-
note the corresponding objects after base change to K, i.e., what is precisely
U(gK), D(G0)⊗̂LK, D†X,k⊗̂LK and so on (compare also final remark in the
preceding section).

6.1. Smooth representations

If V is a smooth G-representation (i.e. the stabilizer of each vector v ∈ V
is an open subgroup of G), then VG(k)◦−an equals the space of fixed vectors
V Gk+1 in V under the action of the compact subgroup Gk+1. If V is admissi-
ble, then this vector space has finite dimension. In this case one finds, since
gV = 0, that

(6.1.1) L oc†X,k((V
Gk+1)′) = OX,Q ⊗K (V Gk+1)′,

where G0 acts diagonally and D†X,k acts through its natural action on OX,Q.

6.2. Representations attached to certain U(g)-modules

In this section, we will compute the arithmetic D-modules for a class of
coadmissible D(G)-modules M related to the pair (g, B) where B = B(L).
This includes the case of principal series representations which will be dis-
cussed separately in the next section. Let b be the Lie algebra of B. Let
T ⊂ B be a maximal split torus, put T := T(L) and let t be the Lie algebra
of T .

The group G and its subgroup B act via the adjoint representation on
U(g) and we denote by

(6.2.1) D(g, B) := D(B)⊗U(b) U(g)
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the corresponding skew-product ring. The skew-multiplication here is in-
duced by

(δb′ ⊗ x′) · (δb ⊗ x) = δb′b ⊗ δb−1(x′)x

for b, b′ ∈ B and x, x′ ∈ U(g). A module over D(g, B) is the same as a module
over g together with a compatible locally analytic B-action [31]. Replacing
B by B0 = B ∩G0, we obtain a skew-product ring D(g, B0) with similar
properties. Given a D(g, B)-module M one has

(6.2.2) D(G)⊗D(g,B) M = D(G0)⊗D(g,B0) M

as D(G0)-modules [34, 4.2]. We consider the functor

(6.2.3) M  M := D(G)⊗D(g,B) M

from D(g, B)-modules to D(G)-modules [31]. If M is finitely generated as
U(g)-module, then M is coadmissible by [34, 4.3]. From now on we assume
that M is a finitely generated U(g)-module. We let V := M′

b be the locally
analytic G-representation corresponding to M and denote by

(6.2.4) Mk := (VG(k)◦−an)′

the dual of the subspace of its G(k)◦-analytic vectors. According to [32,
5.2.4] the D(G(k)◦, G0)-module Mk is finitely presented and has its canon-
ical topology.

Lemma 6.2.1. The canonical map

D(G(k)◦, G0)⊗D(G0) M
'−→Mk

induced by dualising the inclusion VG(k)◦−an ⊂ V is an isomorphism.

Proof. This can be proved as in [32, 6.2.4]. �

Recall the congruence subgroup Gk+1 = G(k)◦(L) of G0. Put Bk+1 :=
Gk+1 ∩B0. The corresponding skew-product ring D(g, Bk+1) is contained
in Dan(G(k)◦) according to 5.1.2. Let C(k) be a (finite) system of represen-
tatives in G0 containing 1 for the residue classes in G0/Gk+1 modulo the
subgroup B0/Bk+1. Note that for an element g ∈ G0 and a Dan(G(k)◦)-
submodule N of D(G0), the abelian group δgN is again a Dan(G(k)◦)-
submodule because of the formula xδg = δgAd(g−1)(x) for any x ∈
Dan(G(k)◦).
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Lemma 6.2.2. The natural map of (Dan(G(k)◦), D(g, B0))-bimodules∑
:
⊕

g∈C(k)

δg

(
Dan(G(k)◦)⊗D(g,Bk+1) D(g, B0)

)
'−→ D(G(k)◦, G0)

is an isomorphism.

Proof. This can be proved as in [32, 6.2.5]. �

The two lemmas allow us to write

Mk = ⊕g∈C(k)δg

(
Dan(G(k)◦)⊗D(g,Bk+1) M

)
= ⊕g∈C(k)δgM

an
k

as modules over Dan(G(k)◦). Here

Man
k := Dan(G(k)◦)⊗D(g,Bk+1) M,

a finitely presented Dan(G(k)◦)-module. If M has character θ0, so has Man
k .

As explained above, the ’twisted’ module δgM
an
k can and will be viewed as

having the same underlying group as Man
k but with an action of Dan(G(k)◦)

pulled-back by the automorphism Ad(g−1). Since G is connected, the adjoint
action of G fixes the center in U(g) and so the character of the module δgM

an
k

(if existing) does not depend on g.

If M has character θ0, then the D†X,k-module L oc†X,k(δgM
an
k ) on X can

be described as follows. For any g ∈ G0 let, as before, (ρg)∗ denote the
direct image functor coming from the automorphism ρg of X. If N denotes

a (coherent) D†X,k-module, then (ρg)∗N is a (coherent) D†X,k-module via the

isomorphism Ad(g) : D†X,k
'−→ (ρg)∗D

†
X,k, cf. 5.2.3.

Lemma 6.2.3. One has

L oc†X,k(δgM
an
k ) = (ρg)∗L oc†X,k(M

an
k ) = (ρg)∗

(
D†X,k ⊗D(g,Bk+1) M

)
.

Proof. This can be proved as in [32, 6.2.6]. �

Since L oc†X,k commutes with direct sums, we may summarize the whole
discussion in the general identity

(6.2.5) L oc†X,k(Mk) = ⊕g∈C(k) (ρg)∗

(
D†X,k ⊗D(g,Bk+1) M

)
of D†X,k-modules, valid for an arbitrary D(g, B)-module M (finitely gener-
ated over U(g)) and its coadmissible module M.
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6.3. Principal series representations

We first note the general observation which follows directly from the defini-
tion of the algebra D(g, ·), cf. Subsection 6.2. If B′ ⊂ B is an open subgroup
and if λ denotes a locally analytic character of B′, then we have a canonical
algebra isomorphism

(6.3.1) D(g, B′)/D(g, B′)I(λ) ' U(g)/U(g)I(dλ)

where I(λ) and I(dλ) denote the ideals equal to the kernel of D(B′)
λ−→ K

and b
dλ−→ K respectively.

Now let λ be a locally analytic character of T viewed as a character of
B. We then have the locally analytic principal series representation

V := IndGB(λ−1) = {f ∈ C la(G,K) : f(gb) = λ(b)f(g) for all g ∈ G, b ∈ B}

with G acting by left translations. Here, C la(·,K) denotes K-valued locally
analytic functions. We wish to compute the localization L oc†X,k of the dual
of its subspace of G(k)◦-analytic vectors VG(k)◦−an for any sufficienly large
k. We therefore assume in the following that k is large enough such that the
restriction of λ to T ∩Gk+1 is T(k)◦-analytic. Let dλ : t→ K be the induced
character of t viewed as a character of b and let

M(λ) := U(g)⊗U(b) Kdλ

be the induced module. Then M(λ) is naturally a D(g, B)-module and the
D(G)-module M(λ) associated with M(λ) by the functor 6.2.3 equals the
coadmissible module of the representation V [31]. In particular, M(λ)k =
(VG(k)◦−an)′ in our notation 6.2.4 and therefore

L oc†X,k(M(λ)k) = ⊕g∈C(k) (ρg)∗

(
D†X,k ⊗D(g,Bk+1) M(λ)

)
by the general formula 6.2.5. We wish to reinterpret this formula in terms of
the classical Beilinson-Bernstein localization of the U(g)-module M(λ) [5].

First of all,

M(λ) = D(g, Bk+1)/D(g, Bk+1)Ik+1(λ)

as aD(g, Bk+1)-module where Ik+1(λ) denotes the kernel ofD(Bk+1)
λ−→ K,

cf. 6.3.1. By the choice of k the character dλ extends to a character of
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Dan(B(k)◦) whose kernel is generated by I(dλ) ⊂ U(b). It follows

M(λ)an
k = Dan(G(k)◦)/Dan(G(k)◦)Ik+1(λ)(6.3.2)

= Dan(G(k)◦)⊗U(g) M(λ).

Now the Beilinson-Bernstein localization [5] of a finitely generated U(g)-
module M with character θ0 is a coherent DX-module Loc(M) over the sheaf
DX of usual algebraic differential operators on the algebraic flag variety
X = B\G. Let Xrig be the associated rigid-analytic space with its canonical
morphism ι : Xrig → X of locally ringed spaces. Let spX : Xrig → X denote
the specialization morphism. Then (spX)∗ι

∗Loc(M) is an OX,Q-module with
an action of the sheaf (spX)∗ι

∗DX. We denote its base change along the
natural morphism

(spX)∗ι
∗DX −→ D†X,k

by

Loc(M)†X,k := D†X,k ⊗ (spX)∗ι
∗Loc(M),

a coherent D†X,k-module. Suppose now that λ is associated by the Harish-
Chandra isomorphism to the central character θ0 and consider M := M(λ).
We then have

Loc(M(λ))†X,k = D†X,k ⊗U(g) M(λ) = L oc†X,k(M(λ)an
k )

according to 6.3.2. We may thus state

L oc†X,k((VG(k)◦−an)′) = ⊕g∈C(k) (ρg)∗Loc(M(λ))†X,k.

Let for example λ = −2ρ where ρ denotes half the sum over the pos-
itive roots (relative to B) of G. The sheaf Loc(M(−2ρ)) is known to be
a skyscraper sheaf with support in the origin B ∈ X [12, 5.1.1]. The fibre
ι−1(B) is a single point in Xrig and o := spX(ι−1(B)) is a closed point in X.
It follows that Loc(M(−2ρ))†X,k is a skyscraper sheaf supported at the point

o. Hence if V := IndGB(2ρ) (an irreducible representation by [31]), then the
localization L oc†X,k((VG(k)◦−an)′) is a sum of copies of this skyscraper sheaf
placed at the finitely many points go ∈ X for g ∈ C(k).
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élémentaire de quelques classes de morphismes, Inst. Hautes Études
Sci. Publ. Math. (1961), no. 8, 222.
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