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9'-affinity of formal models of
flag varieties

CHRISTINE HUYGHE, DEEPAM PATEL, TOBIAS SCHMIDT,
AND MATTHIAS STRAUCH

Let G be a connected split reductive group over a finite extension
L of Q,, denote by X the flag variety of G, and let G = G(L). In
this paper we prove that formal models X of the rigid analytic flag
variety X'i& are @;k—afﬁne for certain sheaves of arithmetic dif-
ferential operators 9; - Furthermore, we show that the category
of admissible locally analytic G-representations with trivial central
character is naturally anti-equivalent to a full subcategory of the
category of G-equivariant families (.#x ) of modules .#x j over
.@; . on the projective system of all formal models X of X"&.
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1. Introduction

Let L/Q, be a finite extension with ring of integers o = or,. In [32] the au-
thors introduced certain sheaves of differential operator Ql’k on a family
of semistable formal models X,, of the rigid-analytic projective line over L
(the notion of formal model is in the sense of [7, Def. 4 in Sec. 7.4]). A key
result there is that X, is .@i p-affine. Moreover, it was shown in loc. cit.
how admissible locally L—anafytic representations with trivial infinitesimal
character of the L-analytic group GLo(L), or rather their associated coad-
missible modules, can be described in terms of GLg(L)-equivariant projective
systems of coherent sheaves .#,, over %E,n. We generalized the construction
of the sheaves .@:L  to higher-dimensional formal schemes, which are not
necessarily semi-stable, in [22).

In this paper we generalize the previous results on Z'-affinity, as well
as the representation theoretic results to (not necessarily semistable) formal
models of general flag varieties of split reductive groups. So let Gg be a
connected split reductive group scheme over o, and denote by Xy the formal
completion of the flag scheme X of Gg. We then consider a formal admissible
blow-up X of Xy. In Section [2] we briefly recall the definition of the sheaves of
differential operators @;e,k as introduced in [22]. Here £ is an integer which
we call the congruence level. It is bounded below by a non-negative integer
kx which depends on the blow-up morphism X — Xy. Our first main result
is then

Theorem 1 (cf. . For all k > kx the formal scheme X is .@;k-aﬂine.

This means that the global sections functor furnishes an equivalence
of categories between coherent modules over @; r and finitely presented

modules over the ring H?(X, @;k) It is shown that HY(X, @;k) can be
identified with the central reduction D**(G(k)®)g, of Emerton’s analytic
distribution algebra D*(G(k)°) of the wide open rigid-analytic k" con-
gruence subgroup G(k)° of Gy, cf. [15, 5.2, 5.3], [29, 5.3]. The functor
M ~ foc%k(M) = 9;k ®pan(G(k)°)s, M is quasi-inverse to the global sec-
tions functor. Compare [0 [IT}, 12] for the classical setting of modules over the

Lie algebra of G = Go Xgpec(o) Spec(L) and localization on the flag variety
X of G.

!These sheaves were denoted @i . in [32] to distinguish them from the sheaves of
arithmetic differential operators introduced by P. Berthelot. For ease of notation,
we have decided to drop the tilde throughout this paper.
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As in [32] our main motivation for this result concerns locally analytic
representations. The category of admissible locally analytic representations
of the locally L-analytic group G := G(L) with trivial infinitesimal character
0o is anti-equivalent to the category of coadmissible modules over D(G, L)y, ,
the central reduction of the locally L-analytic distribution algebra D(G, L)
of G at 6.

On the geometric side, we consider the (semisimple) Bruhat-Tits build-
ing B of G [9, [10]. This is a simplicial complex whose dimension equals the
semisimple rank of G and which is equipped with an action of G. Most
important for our purposes is the G-stable subset of B of so-called special
vertices. To any such vertex v the theory of Bruhat and Tits associates a
reductive group scheme G, over o whose generic fiber comes equipped with
a canonical isomorphism to G. (The group scheme Gq we considered before
can be taken to be one of those group schemes G,,, say.) The flag scheme
Xy,0 of G, therefore has the property that its generic fiber is canonically
isomorphic to Xﬂ Passing to formal completions we thus obtain a family
of smooth formal schemes X, o, indexed by the set of special vertices of B,
which is equipped with a G-action. Furthermore, we consider for every spe-
cial vertex v the set F, of all admissible blow-ups X of X, o, and we define
F, C Fy x N to be the set of pairs (X, k) with X € F, and k > kx. There
is a natural partial ordering on F := [[, F, which makes this a directed set

(5.3.1), and F := [[, F, naturally carries a G-action, cf. for details.

A coadmissible G-equivariant arithmetic Z-module on F consists of a
family

M = (Mx k) (x k)eF

of coherent .@; p-modules .Z j satisfying certain compatibility properties,
cf.[5.3:3] In partlcular these properties make it possible to form the projec-
tive limit
D(A) = lm HX, Mxy)
(X,k)eE

which, as we show, carries the structure of a coadmissible D(G, L)g,-module.
On the other hand, given a coadmissible D(G, L)g,-module M welet V- = M’
be its continuous dual, which is an admissible locally analytic representation
of G. We then let M, j be the continuous dual of the subspace Vg (r)o—an C V

2The index “0” of X, 0 indicates that we think of X, ¢ as the bottom layer of
the tower of admissible blow-ups of this scheme.
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of G,(k)°-analytic vectors in V. For any (X, k) € F, we have the coherent
@; p-module

ZLock (My k) = D% @pen(@.(0)2)ay Mok

We denote the family of all those modules by .Zoc® (M). Our main result
is then

Theorem 2 (cf. . The functors Loc® and T' are quasi-inverse equiva-
lences between the category of coadmissible D(G, L)g,-modules and the cat-
egory ‘K}G of coadmissible G-equivariant arithmetic Z-modules on F.

The projective limit X, := @xe ]__% is the Zariski-Riemann space at-
tached to X', The latter space is in turn isomorphic (as a ringed space, after
inverting p on the structure sheaf) to the adic space attached to X", cf. [41,
Thm. 4 in Sec. 2, Thm 4 in Sec. 3]. One can also form the projective limit
9 of the sheaves 71 Xk which is then a G-equivariant sheaf of p-adically
complete rings of dlfferentlal operators on X, cf. [5.2.6] Similarly, for any
object M4 = (Mxy) in €F one can form the projective limit .#s of the
sheaves .#x  which is then a G-equivariant Z,.-module. The assignment
M~ Moo 1s a faithful functor from ‘5]9 to the category of G-equivariant
PDso-modules, cf. We remark that it is possible to modify the target
category by way of equipping the objects with the structure of locally con-
vex Pso-modules (and by requiring morphisms to be Continuous)ﬂ SO as to
obtain a fully faithful functor .# ~~ #, cf.

In a final section we illustrate this localization theory by computing the
@; p-modules associated to certain classes of locally analytic representa-
tions.

In this paper we only treat the case of the central character 6y, but there
is an extension of this theorem available for characters more general than 6
by using twisted versions of the sheaves @; i+ Moreover, the construction of
the sheaf @io carries over to general smooth rigid-analytic (or adic) spaces
over L. These questions will be addressed in future work.

We would also like to mention that K. Ardakov and S. Wadsley are de-
veloping a theory of D-modules on general rigid-analytic spaces, cf. [1, 2] 4].

3Equipping D-modules with locally convex structures is a common technique in
the theory of complex analytic D*°-modules, cf. [33] 38].
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In their work they consider deformations of the sheaves of crystalline differ-
ential operators (as in [3]), whereas we take as a starting point deformations
of Berthelot’s rings of arithmetic differential operators. That the rings of
differential operators considered by us are close in spirit to the theory of
rigid cohomology will, as we hope, open a way to use techniques and results
from rigid cohomology to investigate locally analytic representations. A first
example for such an interaction can be found in [32, Sec. 7].

Notation. L denotes a finite extension of QQ,, with ring of integers o and
uniformizer w. Let ¢ be the cardinality of the residue field o/(w) which we
also denote by ;. G denotes a split connected reductive group scheme over
o and By C Go a Borel subgroup scheme. We let G = Gg Xgpec(o) SPec(L)
be the generic fiber of Gg. The Lie algebra of Gq is denoted by g,. If X
is a smooth scheme over Spec(o), we denote by Jx its relative tangent
sheaf, i.e., 7x = Jx/spec(o)- If X (resp. X) is a scheme (resp. formal scheme)
over Spec(o) (resp. Spf(0)), a coherent sheaf of ideals Z C Ox (resp. J C
Ox) is said to be open (w.r.t. the p-adic topology) if w is locally nilpotent
on Spec(Ox/Z) (resp. Spf(Ox/J)). A scheme (or a formal scheme) over
Spec(o) (resp. Spf(o)) which arises from blowing up an open ideal sheaf
on X (resp. X) will be called an admissible blow-up of X (resp. admissible
formal blow-up of X). If X denotes a scheme over o, we always denote by
X the completion of X along its special fiber X Xgpec(o) Spec(Fy). The set
of non-negative integers will be denoted by N (in particular, our convention
is such that N contains zero). If V is a topological vector space over L,
then V/ = Hom§*™(V, L) denotes space of continuous linear forms on V', and
when we write V}/, then the subscript ”b” indicates that we equip this space
with the strong topology of bounded convergence. If not said otherwise, all
modules are tacitly assumed to be left modules.

2. The sheaves 2™ and 2™

While Sections 3-6 of this paper are only about flag varieties and their
formal models, we work in this section in somewhat greater generality, as
this is more natural for the material considered here. For more details about
the constructions discussed below, as well as the proofs of the main result
of this section, we refer the reader to [22].

2.1. Differential operators with levels and congruence levels

Here we briefly recall the local description of Berthelot’s sheaf 2(™) of dif-
ferential operators of level m. Moreover, we introduce a kind of deformation
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of this sheaf, to be denoted by 2™ where k € N is what we call a con-
gruence level. For k = 0 we have 2™ = 9(m)_ Ag will become apparent in
Section [3:3] this terminology is motivated by the relation of these sheaves,
in the case of flag varieties, to principal congruence subgroups. In the spe-
cial case of the projective line, the sheaves with congruence levels have been
introduced in [32], and similar constructions also appeared earlier in [3].

Let X be a smooth scheme over 0 and Xy the associated formal scheme,
i.e., the completion of Xg along the special fiber X Xgpec(o) Spec(Fy). The
usual sheaf of relative differential operators [18, 16.8] on X over o will be
denoted by Zx, /spec(o) (without superscripts as ‘decorations’). Let Uy be an
affine open subset of X, endowed with local coordinates x1,...,x, and
let 04, ...,0p be the corresponding derivations. Denote by m a fixed non-
negative integer. For a non-negative integer v;, we let q,(,:n) be the quotient
of the euclidean division of v; by p™, i.e., ql,:n) = L;’—;J Then we set

(211) al<l/l>(m ql(/l )'a[l/l}

where, as usual, 8[”1 € I'(Uy, .@Uo/spec(o)) is such that zva[”l] 0/'. For v =
(1, ..., var) ENM e put 9Wem = [T, o) gl = M 18[’”] and |v| =
VL

Denote by .@Qg’) = @)((T}Spec( o) C DX, /Spec(o) the ring of level m differen-
tial operators of Berthelot, cf. [6, Sec. 2] (from now on we agree on omitting
the base scheme Spec(o0) in the notation as in [0l 2.2.3]). Then we have the

following description in local coordinates:

<00
F(U07 9)((?)) - {Z aZQ<Z>(m> ’az € F(U()? OX0>} )

as follows from [0, 2.2.5]. Now let £ € N be another non-negative integer (the
congruence level mentioned above). We then define a subring I'(Uj, Q(k m)) C

I'(Uy, .@)((0)) by setting
(2.1.2) L(Up, 2™ = {ZwkMa 9% |a, € F(UO,OXO)}

It is straightforward to see that this is indeed a subring of I'(Up, @( )).
And, as the notation already suggests, it is not hard to show that these rmgs
glue together to give a subsheaf .@)(?D’m) of .@)((n;).
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Remark 2.1.1. Let Xo, = Xo Xgpec(o) Spec(L) be the generic fiber of X

which is an open subset of X;. We note that for any pair (k,m) € N?

the inclusion @%m) C Px, induces a canonical isomorphism .@é{}z’m)‘X =
0,7

)

Dx, = 9x,,,, because w is invertible on Xy ;. Any of the sheaves @)((ko’m

therefore extends the sheaf Dx,., to the whole scheme Xj.

2.2. Differential operators with levels and congruence levels
on blow-ups

2.2.1. Lifting the sheaves to blow-ups. Denote by pr: X — Xy an
admissible blow-up. That is to say, X is obtained by blowing up a sheaf
of ideals Z C Ox, containing some power of w, say w”. In particular, the
blow-up morphism pr induces a canonical isomorphism X, ~ X, between
the generic fibers, cf. for the notation.

The sheaf pr—! <9)(é€0,m)) on X is again a sheaf of rings, and it follows

from [2.1.1| that there is a canonical isomorphism pr—! (@(k’m)> ‘X = Yx,.-

Xo

"
In particular, O, is naturally a module over pr‘l(g)(f(;m)) - Now the
question arises for which congruence levels k € N this module structure ex-

tends to a module structure on Oy over pr— <@)(?0 ’m)). Since functions on
X are determined by their restriction to X, any such extension of module
structure is unique. As in [22] 2.1.10] one shows that the condition w* € Z
implies that Ox carries a natural structure of a module over pr—* (@)(fg’m)>.

Therefore, the sheaf
(2.2.1) @)(f’m) = pr*@)(fo’m) = Ox @pr-1(0x,) pr! (@)(?O’m))

can be equipped with a multiplication which extends the sheaf of rings
structure of pr—! (@)(fo’m)) Explicitly, if 01,0y are both derivations and lo-

cal sections of pr_1<.@)(§”m)), and if fi, fo are local sections of Ox, then
(f1®0h) - (fa®02) = [101(f2) ® Oz + f1f2 ® 010. We set
(2.2.2) kx = mZinmin{k cN|w* e},

where the first minimum is taken over all open ideal sheaves Z such that the
blow-up of Z is isomorphic to X (over Xj). Suppose Uy C Xj is an affine
open subset which is endowed with local coordinates x1,...,xys. Consider
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an affine open subset U C pr—!(Up) C X. Then we have the following de-
(k,m)

scription of the sections of Zy""" over U:
<00
(2.2.3) U, 2%™) = {Z wta, 0¥ |a, € T(U, (9x)} :

2.2.2. Filtrations on @%’m) . Using this description, we observe that the
sheaf @)(? ™ s filtered by the order of differential operators. More precisely,
if d € N is given, we define the subsheaf .@)(égn) as follows. Let V' C X be any
open subset. Then I'(V, @)(égn)) consists of those elements P € I'(V, _@)(?’m))
such that for any open affine Uy C X as above, and for any open affine U C
V Npr~Y(Up), the restriction P|y is of the form > lvl<d whlla, dW e with
a, € I'(U, Ox) and where, as usual, |v| = vy + - - - + vps. There are canonical

isomorphisms @)(( ™) — prt gﬁg) We put
(2.2.4) TIxx = @'pr*(Tx,) C pr*(Tx,),

and we denote by

Sym gX k @ Symd 9)( k

the graded level m symmetric algebra generated by the sheaf Ix i, cf. [21,
Sec. 1.2]. If Uy is affine endowed with local coordinates x1, ...,z as before,
and &1,...,&y a basis of Ix, restricted to Up, then using notations of
one has for an open affine U C pr—!(Up)

INQOR Symd ng @ o L) m)
lv|=d

In [22, 2.2.2] we show the following

Proposition 2.2.1. Suppose k > kx. Then the associated graded algebra
of @)(?’m) for the filtration by the order of differential operators is isomorphic
to Sym(m)(yka).

2.2.3. p-adic completions. We denote the completion of Xy and X
along their special fibers by Xy and X, respectively, and we let @(k ™ be
(k,m)

the p-adic completion of ¥y which we consider as a sheaf on the formal
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scheme X. For fixed k > kx, cf. we also define

.. S(kym)
gaTeJc = hﬂl‘@;,@ :

Remark. We emphasize that the sheaves .@)(?’m), "@\;‘k,m)’ .@; . do not only

depend on X, resp. X, but in an essential way on the blow-up morphism to
Xp, resp. Xg.

In this paper we will only be working with formal schemes X which are
completions along their special fibers of admissible blow-ups X — X of a
smooth scheme X over Spec(o). In this regard we have the following

Proposition 2.2.2. Let X — Xy be an admissible formal blow-up, obtained
by blowing up an open ideal sheaf I C Ox,. Then there is an open ideal sheaf
Z C Ox, such that J is the restriction of the p-adic completion of T to Xy,
and X is therefore the completion of the blow-up X of T along its special
fiber.

Proof. We remark that Xy being smooth over o implies that it is locally
noetherian, which is all we need for this statement to hold. Consider the
quotient sheaf Q = Ox,/J and the canonical surjection

o:0x, — 0

of sheaves on Xg, and let i : Xy — Xg be the closed embedding of the special
fiber. This is a morphism of ringed spaces. We consider the corresponding
map of sheaves Ox, — 1.Ox, which we compose with i,o to obtain the
morphism of sheaves on X

7:0 Xo Z*Q
Our first goal is to show that 7 is surjective. Let U C X be an affine
open subscheme, and 4 C X be the completion along its special fiber. We
have @"Qy = 0 for some n € N, and hence @™y = 0. The restriction of
the surjection o to U thus factors as

U|u : 0350|u = Ou — Ou Ro 0/(@”) — Q|u

Since Oy is the restriction to U of the p-adic completion of Oy, we
see that the canonical map Oy — 1,0y induces an isomorphism Oy ®,
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0o/(w") — is (Ou ®o 0/(w”)) and therefore a surjection

Ou = Oy @, 0/ (") = i..(Ou B0 0/ (")) = i (Qst) = (1.9) 1.

Of course, this map is the same as 7|y, and 7|y is thus surjective. There-
fore, 7 is surjective. Put Z = ker(7) and consider the tautological exact se-
quence of coherent sheaves on X

0—Z7Z— Ox, — i:.Q — 0.

By [16], 10.8.8], the completion functor is exact on coherent sheaves, and
the previous exact sequence thus yields an exact sequence of sheaves on X

0— Z|x, — Ox, —Q — 0.

This shows that J is the restriction to Xg of the p-adic completion of 7.
The very definition of admissible formal blow-up, cf. [7, Def.3 in Sec. 8.2]
shows that then X is equal to the formal completion along its special fiber
of the blow-up of Z. O

Given an admissible formal blow-up X — X we put
(2.2.5) kx = minmin{k € N | = € 7},

where the first minimum is taken over all open ideal sheaves J C O, such
that the blow-up of J is isomorphic to X (over Xg).

Convention 2.2.3. In the remainder of this paper, whenever we consider

the sheaves .@)(?’m) on the admissible blow-up X of Xy we tacitly assume

that & > kx. Similarly, whenever we consider the sheaves @;k’m), /9;3(?(51 ),

—~

or .@;k on the admissible formal blow-up X of Xy we tacitly assume that
k> kx.

We will also need the following result from [22] 2.2.2, 2.3.3]:

Theorem 2.2.4. Letw: X' — X be a morphism over X between admissible
formal blow-ups of Xo, and let k > max{kx,kx }.

(i) .@\géﬂ ) and .@;k are coherent sheaves of rings. Moreover, @;kén ) has
noetherian rings of sections over all open affine subsets.
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(i) There is a canonical isomorphism ﬂ*.@; = .@;k. If A" is a co-
herent @;/7k—module, then Rim,' =0 for j > 0. The functor 7, induces
an exact functor from the category of coherent modules over 71, i to the

category of coherent modules over .@; ko
3. Formal models of flag varieties
3.1. Models, formal models, and group actions

3.1.1. Models and formal models. For the remainder of this paper
Go denotes a split connected reductive group scheme over o and By C Gg a
Borel subgroup scheme. The Lie algebra of Gg is denoted by g,. By

Xo = Bo\Go,

we denote the flag scheme of Gg, which is smooth and projective over o
[14, Exp. XXVI, Cor. 3.5, and we let Xy be the completion of X along its
special fiber X Xgpec(o) SPec(Fy). By G = Go Xgpec(o) SPec(L) (resp. B) we
denote the generic fiber of Gy (resp. Bg), and we let g be the Lie algebra
of G. The flag variety B\G of G will be denoted by X, and we let X'& be
the rigid-analytic space associated by the GAGA functor to X, cf. [7, 5.4].
Any admissible formal o-scheme X (in the sense of [7, Def. 1 in Sec. 7.4])
whose associated rigid-analytic space is isomorphic to X"® will be called a
formal model of X*&, or simply a formal model of the flag variety associated
to G, cf. [T, Def. 4 in Sec. 7.4]. For any two formal models X1, Xy of X"&
there is a third formal model X’ and admissible formal blow-up morphisms
X' — X; and X' — Xy, cf. [7, Remark 10 in Sec. 8.2]. In particular, for every
formal model X there is a formal model X’ and admissible formal blow-up
morphisms X’ — X and X’ — X.

3.1.2. Group actions. We equip Xy with the translation action on the
right by Gy, i.e.,

X0 Xgpec(o) Go = Xo, (Bog, h) = Bogh.

The right action of Gg on Xy induces a right actionlﬂ of G on X. We fix
once and for all a very ample line bundle Ox, (1) on X over Spec(o).

“We remark that the flag schemes, or flag varieties, considered in [32] and [30] are
also equipped with right group actions. This will be of some importance later when
we consider certain ring homomorphisms. Namely, those ring homomorphisms are

indeed homomorphisms and not anti-homomorphisms, cf.
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3.2. Preliminaries on blow-ups of the flag scheme X

Let pr: X — Xy be an admissible blow-up, and let Z C Xy be the ideal
sheaf that is blown up. The inverse image ideal sheaf pr—(Z)  Ox is an
invertible sheaf on X which we denote by Ox/x, (1), cf. [19, ch. II, 7.13]. By
[17, remark after 8.1.3] the blow-up morphism is projective, and X is thus
itself projective over o.

Lemma 3.2.1. There is ag € Z~q such that the line bundle

Ly = Ox/x,(1) @ pr’ <0X0(a0))
on X is very ample over Spec(o), and it is very ample over Xj.

Proof. By [19} ch. II, ex. 7.14 (b)], the sheaf

L=0x/x,(1)@pr* (OXO(%))

is very ample on X over Spec(o) for suitable ag > 0. We fix such an ag. By
[17, 4.4.10 (v)] it is then also very ample over Xj. O

3.2.1. Twisting by Lx. We fix ag € Z~¢ such that the line bundle Lx
from is very ample over Spec(o). In the following we will always use
this line bundle to ‘twist’ Ox-modules. If F is a Ox-module and r € Z we
thus put

F(r) = F 0o, LY.

Some caveat is in order when we deal with sheaves which are equipped
with both a left and a right O x-module structure (which may not coincide).

For instance, if F4 = .@g?gn), cf. [2.2.2) then we let

Falr) = 7877 (0) = 287 @0, LY,
where we consider Fy = @)(?7 ’;n) as a right Ox-module. Similarly we put

2E™(r) = %™ ®o, LY,

where we consider @)(?’m) as a 1ight Ox-module. Then we have 9)(?””) (r) =

hgl y Fa(r). When we consider the associated graded sheaf of .@g?’m) (r), it is
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with respect to the filtration by the F;(r). The sheaf .@g?’m) (r) is a coher-
ent left .@)(?’m)—module since it is locally isomorphic with .@)(? ™) as .@)(?’m)—
module.

Lemma 3.2.2. Letpr: X — Xg and pr’ : X' — X, be admissible blow-ups
of Xo, and let 7 : X' — X be a morphism over Xg, i.e., prow = pr’. Fur-
thermore, let k, k" be two non-negative integers (not necessarily greater or
equal to kx or kx).

(i) In the case m.Ox: = Ox, one has
wk,_ky)(’k = W*(gxf,k/)

as subsheaves of Tx ®, L (cf. for the definition of Tx ).

(ii) The group action of Go on Xo induces a morphism g, — H°(Xo, x,)
of Lie algebras over o. This map induces an Ox,-linear map o : Ox, @,
9o — Ix,- The map oFpria: Ox @, whg, — Ixk 15 an Ox-linear map
which in turn induces a morphism wFg, — H(X, Ix i) of Lie algebras
over 0.

(iii) If X is normal, then m.Ox = Ox. This holds, in particular, if
X = Xy and 7 is the blow-up morphism X' — Xj.

Proof. The assertion (i) follows from the projection formula and the fact
that

" _kﬂ’*yx,k = yX’,kz’

by definition of the sheaves, if k¥’ > k. Otherwise, we have
W*gX,k = wk_k,yx/k/.

(ii) The first assertion is [13] 11, §4, 4.4] (note that in loc. cit. the map is
an anti-homomorphism because in loc. cit. the group acts from the left on the
scheme in question). The remaining assertions are immediate consequences
of the first assertion.

(iii) Let Z C Ox, be the ideal that is blown up to obtain X. The sheaf
S =@ >0 Z% is naturally a subsheaf of the sheaf of polynomial algebras
Ox,[t], and is thus a sheaf of integral domains, since Xj is integral. There-
fore, X is integral too. The same holds for X'. Since pr’ is projective (cf.
the beginning of this subsection), and since pr o7 = pr’, we conclude that
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7 is projective too, by [I7, 5.5.5]. Now let J C Ox be the ideal sheaf which
is blown up to obtain X’. As J contains a power of w, the vanishing locus
of J is contained in the special fiber of X, and 7 is hence an isomorphism
on the generic fibers, and hence birational. 7 is thus a projective birational
morphism between noetherian integral schemes. The assertion follows now
from Zariski’s Main Theorem, cf. [I9, 11.4 in ch. III] and its proof. O

We remind the reader of our convention regarding the congruence
level k.

Proposition 3.2.3. Let 7 : X' — X be a morphism over X of admissible
blow-ups of Xo (as in. If k > max{kx, kx '} and if 7.Ox, = Ox, then
r. (75m) = e,

Proof. The sheaves @%’Z) of differential operators of order < d are locally

free of finite rank, and so are the sheaves @)(f gn), by construction. We can
thus apply the projection formula and get

Tk (@)(?,’ZZL)) = .@)(?7’;7’).

The claim follows because the direct image commutes with inductive
limits on a noetherian space. O

3.3. Global sections of @ﬁ?’m), @;k,m)’ and 9;,,6

3.3.1. Congruence group schemes. We let G(k) denote the k-th
scheme-theoretic congruence subgroup of the group scheme Gy [42], Sec. 1],
[43, 2.8]. So G(0) = Gp and G(k + 1) equals the dilatation, in the sense of [8,
3.2], of the trivial subgroup of G(k) Xgpec(o) SPec(Fy) on G(k). In particular,
if G(k) = Spec olt1, ..., tn] with a set of parameters ¢; for the unit section of
G(k), then G(k + 1) = Spec o[Z, ..., ] The o-group scheme G(k) is again
smooth, has Lie algebra equal to w”g, and its generic fibre coincides with
the generic fibre of Gy.

3.3.2. Divided power enveloping algebras. We denote by D) (G (k))
the distribution algebra of the smooth o-group scheme G(k) of level m [29]
4.1.3]. It is noetherian and admits the following explicit description. Let
go =N, @t, Bn, be a triangular decomposition of g,. We fix basis ele-
ments (f;), (h;) and (e;) of the o-modules n;,t, and n, respectively. Then
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D) (G(k)) equals the o-subalgebra of U(g) = U,(go) ®o L generated by the

elements

"

k _\v k v
(3.3.1) q£m)1(we),ql(/@!wkw|<h) WNM‘

V! v ) e

An element of this type has order d = |v| + |V/| + ||, and the o-span of
elements of order < d form an o-submodule Dc(lm) (G(k)) ¢ D™)(G(k)), and
D) (G(k)) becomes in this way a filtered o-algebra. In the case of the group
GL3 we considered the same algebra in [32], 3.3.1] (denoted differently there).
D) (G(k)) is a noetherian ring [29, 4.1.13], and so is its p-adic completion
D™)(G(k)) [26]. The ring D™ (G(k)) obviously contains the enveloping
algebra U, (w"g,) of @”g, over o, and the inclusion U, (w*g,) — D™ (G (k))
induces an isomorphism of L-algebras U(g) — D™ (G(k)) ®, L. Denote by
Z(g) the center of U(g), and let 6y : Z(g) — L be the character with which
the center acts on the trivial one-dimensional representation of g. We are
now going to use a key result by Beilinson and Bernstein from [5].

Proposition 3.3.1. (i) Let pr: X — Xo be an admissible blow-up. There
s a unique filtered L-algebra homomorphism

(3.3.2) Qx s Ulg) — HOX, 2F™) @, L,
such that the following diagram is commutative

(3.3.3) g

HY(X, Ixx) ®o L

i

U(g) —= H(X, 2¢™) @, L

Here, the upper horizontal map is obtained from the map w”g, — H°(X, IX k)
in[3.2.9 by tensoring with L. The vertical map on the right is induced by the
canonical homomorphism of sheaves Ix j, — .@)(?’m).

(1t) Qx 1, is surjective and its kernel is the two-sided ideal U(g) ker (o)
so that Qx 1 induces an isomorphism U(g)g, = H(X, _@)(f’m)) ®o L,
where U(g)e, = U(g)/U(g) ker(bo).

Proof. We first note that by |3.2.3| and [3.2.2| we have pr*(ﬁ)(?’m)) = ngo’m)
and therefore HO(X, _@)(?’m)) =H O(XO,_@)(?OM)). Flat base change gives us
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HO(Xo, _@g‘;’m)) ®, L = HY(X, %) ®, L, where Px is the sheaf of differen-
tial operators on the flag variety X. The existence and uniqueness of Qx 1,
follow from the universal property of U(g). The assertions about the surjec-
tivity and kernel of this map are simply restatements of [5, Lemme 3], cf.
also [20} 11.2.2]. O

Proposition 3.3.2. Let pr: X — Xg be an admissible blow-up. There is a
canonical homomorphism of filtered o-algebras

(3:3.4) s D (G () — HOX, 7™,

such that the following diagram is commutative

(3.3.5) D(m) (f}(k)) HO(x, 2™
Ul(g) HO(X, 28™) @, L

Here, the lower horizontal map is the map Qx r,1, in[3.3.2 In particular,
the map le;,m) nduces an isomorphism

(D(m)(G(k:)) R0 L)/(D(m) (G(k)) ®, L) ker(fo) = H(X, 7" @, L.

Proof. We begin with a remark on sheaves of filtered o-algebras and their
associated sheaves of Rees rings. This material, in the setting of rings, instead
of sheaves of rings, is well-known (cf. [27, ch. 12, §6], [24, ch. I, §4]), and
its version for sheaves is entirely analogous. A sheaf of filtered o-algebra
A with positive filtration (FygA)g>0 and o C FyA gives rise to the sheaf of
graded rings R(A) := eBdZOFdAtd7 its associated sheaf of Rees rings. This
is a sheaf of subrings of the polynomial algebra A[t] over A. The sheaf
of Rees rings is equipped with the filtration by the sheaves of subgroups
Ry(A) = ¢ F,At' C R(A). Specialising R(A) in an element \ € o yields
a sheaf of filtered subrings Ay of A. Precisely, Ay equals the image under
the homomorphism of sheaves of rings R(A) — A,t+— A\. We equip Ay =
> y>0 A FuA with the filtration induced by A.

Claim 3.3.3. If the sheaf of graded rings gr(.A), associated with the filtra-
tion (FyA)g, is flat over o, then for all d

Fy(A)) = D NFA

0<i<d
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Proof of the claim. The right hand side is obviously contained in the left
hand side. So we only have to show the other inclusion. Consider an ele-
ment = € Fy(Ay), and write it as x =) ;- 0)‘sz with n > d and z; € F; A
fori =0,...,n. Put 2’ = ZZ -0 )\ZJ:‘Z Then z’ is contained in the right hand
side, and it suffices to see that 2”7 = z — 2’ lies in the right hand side too.
Set y=>1 ;. A%z so that 2’ = Ay, If y does not lie in FyA,
then choose j > d such that y € F; A\ F;_1A. Then the symbol o(y) :=y +
Fj_1A in F;A/F;_1A is nonzero, but A\ lo(y) = AXHly + F; 1A =2" +
Fj_1Ais zero in gr;A, since x” lies in Fy(Ay) C FgA C Fj_1.A. Because we
assume that gr(A) is flat over o, this implies that A“*! = 0, i.e., A = 0. But
then x = xg is contained in the right hand side. On the other hand, if y lies
in F;(A), then 2" = A%y lies in the right hand side. O

For fixed A, the formation of Ay is functorial in A. We now consider the
canonical homomorphism of filtered o-algebras

Qm : D™ (G(0)) — H(Xo, 24")

appearing in [29] 4.4.5]. It comes by functoriality from the right Gg-action on
Xo. After tensoring with L the morphism @, is equal to the map Qx, 0,1, of
Given an o-algebra A we will denote by A the corresponding constant
sheaf on Xy. The map @, then gives rise to an homomorphism of associated
constant sheaves of filtered o-algebras

Q, : D" (G(0)) — H(Xo, Z23").

We compose this map with the canonical map of sheaves H(Xj, Q(m))

— 9)(2?) and obtain a homomorphism of sheaves of filtered o-algebras
D™ (G(0) — 2.

To this map we now apply the remark regarding Rees rings (and sheaves
of Rees rings) we made in the beginning. That is, we pass to the sheaves of
Rees rings associated with the filtrations (on the domain and target of this
map), and then we specialize the parameter on both sides to t = w”. This
gives a filtered homomorphism of sheaves of filtered o-algebras

D(E()_, — (@ﬁ(’;‘))

% .
w wk

The definition of the filtration on D™ ), cf. - together with .
imply that D™ (G(0))mr = D™ (G(k:)) as ﬁltered subrings of D™ (G(0)),
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and it follows from this that there is a canonical identification

DI(G(0))_, = D™(G(R)).

T

The explicit description of sections over open affine subsets Uy C Xy
in [2.1.2 together with [3.3.3] imply that the sheaf (.@)(;Un))wk coincides with

.@)(fo ") as filtered subsheaves of .@&T). We obtain thus a homomorphism of
sheaves of filtered o-algebras

DU(G(k) — 2™
Taking global sections we obtain a homomorphism of filtered o-algebras
H(Xo, DU (G(R))) — H (X0, 74™)

As X is connected, the domain of this map is D™ (G(k)). Moreover, in
the situation considered here, we can apply (iii) and get that pr,Ox =
Ox,. We can thus use and conclude that

HO(X, 2$™) = HO(Xo, 25™).
This gives the homomorphism of filtered o-algebras
QY™ : DG (k) — HO(X, 7™,

as claimed. The last assertion follows now from [3.3.1] (ii). O

We put Ag];’m) = Ox ®, D™ (G(k)), and we equip this sheaf with
the skew ring multiplication (smash product) coming from the action of
D™)(G(k)) on Ox via le;,m). This is a sheaf of associative o—algebras
This sheaf has a natural filtration whose associated graded equals the Ox-
algebra Ox ®, Sym™ (Lie(G(k))) [29, Cor. 4.4.7 (iii)]. In)particular, .Ag];’m)

Ox-linear map fg?m) : Agf’m) — @)(f’m) which is also a morphism of sheaves
of filtered o-algebras.

. . k,m) . .
has noetherian sections over open affines. The map Qg( induces a unique

5The point here is that the algebra D(™)(G(k)) is an integral form of the universal
enveloping algebra U(g) and its action on Oy is induced by the usual action of U(g)
on Ox g. Since elements from g act as derivations one may form Sweedler’s smash
product algebra Ox o#U (g) [39, 7.2], cf. also [27], 1.7.10]. It is associative and hence
; (k,m)
so is the subalgebra A% .
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Proposition 3.3.4. The homomorphism Eg?’m) : Ag’;’m) — .@g?’m) 18 sur-
jective.

Proof. We are going to adapt the argument of [29, 4.4.8.2 (ii)]. The homo-
morphism is filtered. Applying Sym(™) to the surjection in (ii) of m we
obtain a surjection

Ox ®, Sym™ (Lie(G(k)) — Sym™ (T 1)

which equals the associated graded homomorphism by Hence the ho-
momorphism is surjective as claimed. O

Proposition 3.3.5. Let M be a coherent left Ag];’m)—module.
(i) H'(X, A5™) = DO (G (k).

(ii) There is a surjection Ag’;’m)(—r)@S —- M ong?’m)—modules for suit-
able r,s > 0.

(iii) For anyi>0 the group H'(X, M) is a finitely generated D™ (G(k))-
module.

(iv) The ring HO(X, ng’m)) is a finitely generated D™ (G(k))-module
and hence noetherian.

Proof. Points (i)-(iii) are a restatement of [30} 3.3]. By the sheaf .@gf’m)

is a coherent Ag];’m)—module to which we can apply assertion (iii) with ¢ = 0.
This proves statement (iv). O

3.3.3. Passing to the completion. We now consider the formal scheme
X which is the formal completion of X along its special fiber. We are inter-
ested in certain properties of the sheaves of rings .@;k’m) and .@; ;. introduced

in 2291 Put
DG (k))1.0, = (D™(G(k)) @6 L) /(D (G(k)) @4 L) ker(6o).
This is the same central reduction considered in [32] Sec. 3.3.1] for the
group GLo.

In the proposition below, and in the remainder of this paper, certain
rigid-analytic ‘wide open’ groups G(k)°® will be important. To define them,
consider first the formal completion &(k) of the group scheme G(k) along
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its special fiber, which is a formal group scheme (of topologically finite type)
over Spf(o). Then let &(k)° be the completion of &(k) along its unit sec-
tion Spf(o) — &(k), and denote by G(k)° its associated rigid-analytic space,
which is a rigid-analytic group.

Wide-open rigid-analytic groups play a special role in M. Emerton’s
approach to locally analytic representations of p-adic groups, cf. [I5]. The

analytic distribution algebra of G(k)° is defined to be the continuous dual
space of the space of rigid-analytic functions on G(k)°, i.e.,

D(G(k)°) i= Ogqey: (G(R)*) = Hom™ (Ogqaye (G(K)°), L) ,

which is equipped with the strong topology. This is a topological L-algebra
of compact type. In [I5], Sec. 5.2] Emerton gives a description of this ring as
the inductive limit of completions of the rings D™ (G(k)) ®, L, i.e.,

(3.3.6) D*(G(k)°) = lim D™ (G(k)) @, L.

This is an isomorphism of topological L-algebras of compact type, cf.
[15, 5.2.6, 5.3.11], [29, 5.3.1].

Proposition 3.3.6. (i) The homomorphism Qg’?m) induces an algebra iso-
morphism

D(G(k)) .0, = HO(X, DY3).

(ii) HO(X, @;k) and D**(G(k)°)g, are canonically isomorphic topologi-
cal L-algebras.

Proof. (i) For the purpose of this proof put ker(6g), = D™ (G(k)) Nker(6p).

Because D) (G(k)) is an o-form of U(g), it follows that ker(fp), ®, L =

ker(6p). Now set D™ (G(k))g, := D™ (G(k))/D™(G(k))ker(fg)o and
DG (k) 10, := (D) (G(R)) @0 L)/ (DG (R) @5 L) ker(t).

We then have D™ (G (k))g, ®o L = D™ (G(k))1.4,- By the homo-
. k,m) . .
morphism of o-algebras Q%" induces a homomorphism

QY DU(G(k))g, — HO(X, ™),
and the induced morphism

QY @0 L DG (K)) 1.0, — HO(X, 2¢™) @, L
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is an isomorphism of L-algebras. Bythe ring HO(X, @)(f’m)) is a finitely
generated D™ (G(k))g,-module. We have now shown that all assumption in
[0, Lemma 3.5] hold in the context considered here. By the very assertion
of [30, Lemma 3.5] we find that Qg];”gz ) gives rise to an isomorphism

DU (G(k)) .0, — HOX, 2™ @, L,

where ﬁO(X, Qg’m)) is the p-adic completion of H°(X, @(k’m)). By
we have a canonical isomorphism H°(X, .@)(?’m)) ~ HY(X, ./@\ka)) (We note
that his does not introduce a circular argument, as Section (4] is only about
sheaves of differential operators and their modules, and there is no connec-
tion made to distribution algebras.)

(ii) Follows from (i) and the isomorphism [3.3.6] O
4. Localization on X via 9;,1@

The general line of arguments developed here follows fairly closely [28]. As
in the previous section, pr : X — Xy denotes an admissible blow-up of Xy =
Bo\Go, and X — X is the induced morphism between the completions of
X and Xg along their special fibers, respectively. The number k& > kx = kx,

cf. is fixed throughout this section so that the sheaves of rings
_@)(( . D ™ and @; ;. are defined.

4.1. Cohomology of coherent @)(? ™) _modules

Lemma 4.1.1. Let £ be an abelian sheaf on X. For all © > dim X one has
H{(X,&) =0.

Proof. Since the space X is noetherian the result follows from Grothendieck’s
vanishing theorem [19, Thm. 2.7]. O

We recall that the sheaf 9)(? ™ has been equipped with a filtration,

cf. 2.2.2L We denote by gr <@§é€,m)> the associated sheaf of graded rings.

Proposition 4.1.2. There is a natural number ro such that for all r > rg
and all i > 1 one has

(4.1.1) Jig (X, gr (%@m)) (r)) ~0.
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Proof. Since Lx is very ample over o by the Serre theorems [19]
I1.5.17/I11.5.2] imply that there is a number ug such that for all u > ug
the module Ox (u) is generated by global sections and has no higher coho-
mology. After this remark we prove the proposition along the lines of |28,
Prop. 2.2.1]. By [28] 1.6.1], the tangent sheaf Jx, is is generated by its global
sections, and hence there is an Oy, -linear surjection (Ox,)%* — Jx, for a
suitable natural number a. Applying (pr)* and multiplying by w” gives an
Ox-linear surjection (Ox)®* ~ @®(Ox)®* — Fx x. By functoriality we get
a surjective morphism of algebras

C := Sym™((0x)®) — Sym™ (T ).

The target of this map equals gr (@)(f m) according to[2.2.1| It therefore

suffices to prove the following: given a coherent C-module &£ There is a num-
ber 7o such that for all r > ry and i > 1, one has H*(X,&(r)) = 0. Since &€
is C-coherent, it is a quasi-coherent O x-module. Because X is noetherian, £
equals the union over its O x-coherent submodules &; [16], 9.4.9]. Again, since
& is C-coherent and C has noetherian sections over open affines [21} 1.3.6],
there is a C-linear surjection C ®p, & — £. Choose a number sy such that
Ei(—so) is generated by global sections. We obtain a Ox-linear surjection
Ox (s0)P% — &; for a number ag. This yields a C-linear surjection

Co :=C(50)%% — &.
The Ox-module Cy is graded and each homogeneous component equals a
sum of copies of Ox (sg). It follows that H*(X,Co(r)) = 0 for all 7 > ug — sg
and all 7 > 1. The rest of the argument proceeds now as in [28, 2.2.1]. O

Corollary 4.1.3. Let rg be the number occuring in the preceding proposi-
tion. For all r > rg and all i > 1 one has

(4.1.2) H' (X, @)(?’m)(r)) =0.

Proof. For d > 0 we let Fy = @)(? ’Zln). We consider the exact sequence
(4.1.3) 0 Fy1 — Fy— g1y (@)(f’m)) S0

(where F_; := 0) from which we deduce the exact sequence

(4.1.4) 0 — Fa—1(r) = Fa(r) — gry (9§7m)> (r) =0
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because tensoring with a line bundle is an exact functor. Since cohomology
commutes with direct sums, we have for all » > rg and 7 > 1 that

Hi(X, gr, (9)(?””)) () = 0

according to the preceding proposition. Using the sequence f.1.4 we can then
deduce by induction on d that for all * > rg and ¢ > 1

HY(X, Fy(r)) = 0.

Because cohomology commutes with inductive limits on a noetherian
scheme we obtain the asserted vanishing result. U

Proposition 4.1.4. Let £ be a coherent @)(?’m)—module.

(i) There is a number r =r(E) € Z and s € Z>o and an epimorphism of
.@;?’m) -modules

k,m ®s
(2™ (n) " e
(ii) There is () € Z such that for all v > r1(€) and all i > 0
o (X,g(r)) ~0.

Proof. (i) As X is a noetherian scheme, & is the inductive limit of its coherent

subsheaves. There is thus a coherent O x-submodule F C £ which generates
(k,m) . . . .

& as a Py ’-module, i.e., there is an epimorphism of sheaves

.@)(?’m) ®oy F N £,

where .@)(?’m) is considered with its right Ox-module structure. Next, there
is r > 0 such that the sheaf

.7:(7“) = .7:®(9X E%T

is generated by its global sections. Hence there is s > 0 and an epimorphism
0% — F(r), and thus an epimorphism of Ox-modules

(Ox(-1)" = F.

From this morphism we get an epimorphism of @)(? ™)_modules

m ®s m s ,m o
(787(n) " = A @0y, (Ox(=)F — ZE™ @0, F 5.
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(ii) Consider for i > 1 the following assertion (a;): for any coherent
.@)(?’m)—module &, there is a number 7;(€) such that for all » > r;(£) and
all ¢ <j one has H7(X,&(r)) =0. For ¢ > dim X the assertion holds, cf.
4.1.1, Suppose the statement (a;41) holds. Using (i) we find an epimorphism
of _@;’m)—modules

B:Cp:= (.@)(f’m)(so))@s —- &

for numbers sg € Z and s > 0. By the kernel R = ker(f3) is a coherent
@)(f’m)—module. Recall the number ry of the preceding corollary. For any

r > max(ro — So,Ti+1(R)) we have the exact sequence
0= H'(X,Co(r)) — H'(X,E(r)) — H" (X, R(r)) =0

which shows H (X, E(r)) = 0 for these r. So we may take as r;(€) any of these
r which is larger than r;41(€) and obtain the statement (a;). In particular,
(a1) holds which proves (ii). O

Proposition 4.1.5. (i) Fiz r € Z. There is ¢; = c1(r) € Z>o such that for
all i > 0 the cohomology group H'(X, @)(?’m) (r)) is annihilated by p*.

(ii) Let £ be a coherent @)(?’m)—module. There is co = c2(E) € Z>q such
that for all i > 0 the cohomology group H' (X, &) is annihilated by p°.

Proof. (i) Since the blow-up morphism pr: X — X becomes an isomor-
phism over Xy X, L any coherent module over @)(? ) ® Q induces a coher-
ent module over the sheaf of usual differential operators on Xy x, L. By
[5] we conclude that the global section functor on X is exact for coherent
@)(?’m) ®z Q-modules. In particular, the cohomology group H(X, _@)(?’m) (r))
is p-torsion. To see that the torsion is bounded, we deduce from [3.3.
that @)(?’m) (r) is a coherent module over Ag];’m). According to Ig,q
HY(X, @)(?’m) (r)) is therefore finitely generated over D™ (G(k)). Now con-
sider a finite set of generators of H(X, Qy’m)(r)) as D™ (G(k))-module.
These are annihilated by a finite power p“-i of p, and since there are only
finitely many integers i > 0 with non-zero H*(X, @)(f’m) (r)), cf.|4.1.1, we can
take co := max{cp; | ¢ > 0}.

(ii) We consider for any 7 > 1 the following assertion (a;): for any co-
herent .@)(? ™ _module &, there is a number r;(£) such that the groups
HI(X,E),i < j are all annihilated by p"(¢). For i > dim X the assertion
is true, cf. Let us assume that (a;41) holds and consider an arbitrary
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coherent Q)(? ™) _module E. According to we have a .@g(k’m)—linear sur-

jection

o= ZEM(r)® — €

for numbers r € Z and s > 0. Let £ be the kernel. We have an exact sequence
HU(X, &) % H(X,&) > HTY(X, &).

Then p® (") annihilates the image of + according to (i) and p"+(€") annihi-
lates the image of ¢ according to (a;+1). So we may take as r;(£) any number
greater than the maximum of 7;11(€) and ¢1(r) + ri+1(E’) and obtain the
statement (a;). In particular, (aq) holds which proves (ii). O

4.2. Cohomology of coherent Aa(ek,én )_modules

We denote by X; the reduction of X modulo Pt

Proposition 4.2.1. Let £ be a coherent .@)(f’m)—module on X and & =
@j E/pIHLE its p-adic completion, which we consider as a sheaf on X.

(i) For all i > 0 one has H'(X,E) = l'&lj H' (X;,E/pTE).
(it) For all i > 0 one has H(X,E) = H'(X,£).
(iii) HO(%,€) = lim  HO(X, &)/ HO(X,€).

Proof. Put &; = E/pIH1E. Let & be the subsheaf defined by
gt(U) = g(U)tora

where the right hand side denotes the group of torsion elements in E(U).
This is indeed a sheaf (and not only a presheaf) because X is a noetherian
space. Furthermore, & is a _@)(?’m)—submodule of £. Because the sheaf @)(f’m)
has noetherian rings of sections over open affine subsets of X, cf.
the submodule &; is a coherent Qg’m)—module. & is thus generated by a
coherent Ox-submodule F of &. The submodule F is annihilated by a fixed
power p° of p, and so is &. Put G = £/&;, which is again a coherent _@)(?’m)—
module. Using we can then assume, after possibly replacing ¢ by a
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larger number, that

(a) pcgt :07 ]
(b) foralli>0:p°H'(X,E) =0,
(¢) foralli>0:p°H(X,G)=0.

From here on the proof of the proposition is exactly as in [32] 4.2.1]. O

Proposition 4.2.2. Let & be a coherent .@a(ek’m)-module.

(i) There is r1(&) € Z such that for all v > r1(&) there is s € Z>p and

g \k:m)

an epimorphism of @xk’m -modules

—~ Ds
(ZE™(n) " > &
(ii) There is ro(&) € Z such that for all r > ro(&) and all i > 0
g (3e @@(r)) —0.

Proof. (i) Because & is a coherent @a(ek’m)—module, and because H(U, @;km))

is a noetherian ring for all open affine subsets U C X, cf. the torsion
submodule &; C & is again a coherent @;k’m)—module. As X is quasi-compact,
there is ¢ € Z>¢ such that p°&; = 0. Put ¢ = & /&, and % = ¢ /p¥. For j > ¢
one has an exact sequence

G+1
O%%bé%lﬁéoj%o.

We note that the sheaf % is a coherent module over @a(ekm) / p@g’m). We
view X as a closed subset of X and denote the closed embedding temporarily
by 4. Because the canonical map of sheaves of rings

(4.2.1) 28™ [p7 ™ = (§a(sk’m)/p§§gk’m))

is an isomorphism, i,%, can be considered a coherent .@)(? ’m)-module via
this isomorphism. Hence we can apply to 1,%, and deduce that there
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is r72(%) such that for all r > rq(%) one has
HY (%, %(r)) = H (X, i:%(r)) = 0.
The canonical maps
(122) HOR, &11(r) — HO(X, &(r))

are thus surjective for r > r9(%) and j > c. Similarly, &, is a coherent mod-
ule over Q(k ™) /D c@(k ™) -module, in particular a coherent @)(f’m)—module.
By - there is r1(&:) such that for every r > r1(&;) there is s € Z>( and
a surjection

BDs
A (@)(;c,m)/pcg)(f,m)> — &(r).

Let 71(&) = max{r2(%),r1(&:)}, and assume from now on that r >
r1(&). Let e1,...,es be the standard basis of the domain of A, and use
to lift each A(e¢), 1 <t < s, to an element of

lim HO(X, &(r)) ~ H'(X, £(r)),

by- . But 5 = &(r), and & = &, as follows from [6, 3.2.3 (v)]. This
defines a morphlsrn

(.@;k’m)>@s — &(r)

which is surjective because, modulo p€, it is a surjective morphism of sheaves
coming from coherent @;k’m)—modules by reduction modulo p¢, cf. [6, 3.2.2

(ii)].
(ii) We deduce from and that for all i > 0
H (35 Zlm (r)) ~ 0.

whenever r > rg, where rg is as in Since the sheaf .@\gm) is coherent,
cf. and X is a noetherian space of finite dimension, the statement in
(i) can now be deduced by descending induction on i exactly as in the proof

of part (ii) of O
Proposition 4.2.3. Let & be a coherent @gf’m)-module.

(i) There is c = ¢(&) € Z>o such that for all i > 0 the cohomology group
HY(X,&) is annihilated by p°.
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(ii) HO(X. &) = lm_ HO(X,8)/p H(X, &),
Proof. (i) Let r € Z. By we have for ¢ > 0 that
H (X, ™ (=) = HY(X, 2™ (<r)),

and this is annihilated by a finite power of p, by The proof now
proceeds by descending induction exactly as in the proof of part (ii) of

(ii) Let & C & be the subsheaf of torsion elements and 4 = & /&;. Then
the discussion in the beginning of the proof of shows that there is ¢ €
Z>¢ such that p°&; = 0. Part (i) gives that p°H (X, &) = p°H (X, 9) = 0,
after possibly increasing c. Now we can apply the same reasoning as in the
proof of (iii) to conclude that assertion (ii) is true. O
4.2.1. Let Coh(@(k m)) (resp. Coh(@( ))) be the category of coherent
@ék ™)_modules (resp. _@( m)—modules) Let Coh(ﬁ(k m)) be the category
of coherent 9( m)-modules up to isogeny. We recall that this means that

Coh(g(k m)) has the same class of objects as Coh(@(k m)) and for any two
objects M and N one has

Hom (M,N) =Hom (M,N) @z Q.

Coh(2¢™)q Coh(2{™)

Proposition 4.2.4. (i) The functor M~» Mg=M ®z Q induces an equiv-
alence between Coh(Q(k m))@ and Coh(.@(k m)).

(ii) For every coherent @; p-module ./ there is m >0 and a coherent

@gfén)—module Moy, and an isomorphism of @; -modules

. gt . ~
(Sl @Z{,k ®9§£k‘,én) %m — .

If (m/, Moy, €') is another such triple, then there is | > max{m, m'} and
an isomorphism of .@3(5 D _modules

PED @ 5 T 6
£l x,0 ®@;€kQ ) Mo, x,0 ®9¥cQ )'//m
such that &' o (idw ® 5l) =

Xk

Proof. (i) This is [6], 3.4.5]. Note that the sheaf "@\(ka) satisfies the conditions
in [6, 3.4.1], by We point out that the formal scheme X in [6l, Sec. 3.4]
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is not supposed to be smooth over a discrete valuation ring, but only locally
noetherian, cf. [6, Sec. 3.3].

(ii) This is [6, 3.6.2]. In this reference the formal scheme is supposed
to be noetherian and quasi-separated, but not necessarily smooth over a
discrete valuation ring. O

Theorem 4.2.5. Let & be a coherent _/@\;]fg)—module (resp. 9; p-module).

(i) There is r(&) € Z such that for all ™ > r(&) there is s € Z>o and an
epimorphism of Qg’m)-modules (resp. Qiyk—modules)

(@gg‘)(_r))@s —- &  (resp. <9;’k(—r)>@s —- &).

(ii) For all i > 0 one has H'(X,&) = 0.

Proof. (a) We first show both assertions (i) and (ii) for a coherent @;k(én ).

module &. By 4.2.4 (i) there is a coherent ./Qja(ek’m)—module Z such that .# ®y

Q = &. We use [4.2.2] to find for every r > r1(.#) a surjection

(74 ()"~ 7,

for some s (depending on r). Tensoring with Q gives then the desired sur-
jection onto &. Hence assertion (i). Furthermore, for ¢ > 0

HY(X,6)=H'(X,.7)®,Q =0,

by and this proves (ii).

(b) Now suppose & is a coherent @;k—module. By (ii) there is

m > 0 and a coherent module &, over @\;k&z ) and an isomorphism of .@; =

modules
@T R~ . (g" ; g
%,k @g‘i’z ) 4

Now use what we have just shown for &, in (a) and get the sought for
surjection after tensoring with .@; - This proves the first assertion. We have

. (k1 .
(op = ‘@;k ®§¥,6L) (53 = hgl @;7@) ®§g,{§n) éa = llﬂ (apg

>m >m
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where & = 9 o ®%m &m is a coherent Py g -module. Then we have for
b I) K
i>0 ¢
H'(X,&) = lim H'(X,6) =0

>m
by part (a). And this proves assertion (ii). O
4.3. X is .@(k ™) _affine and .@;,k—afﬁne

Proposition 4.3.1. (i) Let & be a coherent @gf(’én)-module. Then & is
5 k.m) ’

generated by its global sections as @x,@ -module. Furthermore, & has a res-

7m)

olution by finite free -/9;3(“@ -modules.

(ii) Let & be a coherent .@; i-module. Then & is generated by its global
sections as @;k-module. HO(%,&) is a HO(X, 9;k)—module of finite pre-

sentation. Furthermore, & has a resolution by finite free @; ,-modules.

Proof. (i) Using [4.2.5] it remains to see that any @( )—module of type
@gén)(—r) admits a linear surjection (@gc(én))@s — Q(k m)( r) for suit-
able s > 0. We argue as in [21}, 5.1]. Let M := H°(X, @)(? m)( 1)), a finitely

generated D™ (G(k))-module by Consider the linear map of @)(? m)_
modules equal to the composite

.@( )®D<m)(G(k))M—>.@(km) ®H0(Xj(l« m))M%@(km)( 7“)

where the first map is the surjection induced by the map @ )};’m) appearing
in Let € be the cokernel of the composite map. Since D™ (G(k))
is noetherian, the source of the map is coherent and hence £ is coher-
ent. Moreover, £ ® Q = 0 since .@gf’m (—r) ® Q is generated by global sec-
tions [5]. All in all, there is i with p’€ = 0. Now choose a linear surjection
(D™)(G(k)))®* — M. We obtain the exact sequence of coherent modules

(2Em™es o g™ (—p) 5 £ 0.

Passing to p-adic completions (which is exact in our situation [0, 3.2])
and inverting p yields the linear surjection

(93(?6”))@5 _ g(k m)(—r).

This shows (i).
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(ii) This follows from (i) exactly as in [21]. O

4.3.1. The functors .i”oc;’m) and .i”oc;,k. Let E be a finitely gener-
ated H(X, @gﬁg))—module (resp. a finitely presented H(X, @;gk)—module).

Then we let gocg?’m) (E) (resp. Zoc; x(E)) be the sheaf on X associated
to the presheaf

U~ @(k»m)(U) ® E  (resp. U~ Q;Vk(U) ®H0(3E,@; %) E).

%,0 HO(X, 787
It is obvious that .i”oc(;’m) (resp. .Xoc;re ) is a functor from the cat-

egory of finitely generated HC(X, @\;k(gl ))-modules (resp. finitely presented

HO(X, .@; x)-modules) to the category of sheaves of modules over .@a(ek(gb )

(resp. @;k)

Theorem 4.3.2. (i) The functors .Zocg?’m) and H® (resp. foc; . and H)
are quasi-inverse equivalences between the categories of finitely generated
HO(%, .@;k(’g))—modules and coherent _@;%n)—modules (resp. finitely presented

HO(X, .@;k)—modules and coherent _@;k-modules).

(i) The functor ,iﬂocg?’m) (resp. goc; i) s an exact functor.

Proof. The proof of (i) uses the same arguments as the proof of [28], 2.3.7].
The second assertion then follows because any equivalence between abelian
categories is exact. ]

5. Localization of representations of G(L)

Although we do recall a few basic facts in the beginning of this section,
we assume from now on some familiarity with the theory of locally analytic
representations as developed by P. Schneider and J. Teitelbaum [36l 37], and
we also make use of the point of view introduced by M. Emerton in [I5].

For the sake of convenience, all representations which we consider in this
section are on topological L-vector spaces, and all modules over distribution
algebras are topological L-vector spaces. We thus assume throughout this
section that the so-called coefficient field, cf. [36] beginning of Sec. 2], usually
denoted by K in papers like [36, 37], over which those topological vector
spaces are defined, is equal to our base field L. However, all results in this
section also hold when the representations (or the modules over distribution
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algebras) are topological K-vector spaces, where K/L is a complete and
discretely valued extension (such that the valuation topology on K induces

the valuation topology on L), cf.

5.1. Locally analytic representations and distribution algebras

5.1.1. The module associated to a locally analytic representation.
In the following we will be interested in locally analytic representations of
the compact locally L-analytic group Gy = Gg(o0). Let C'(Gg, L) be the
space of L-valued locally L-analytic functions on Gg, and let

D(G()v L) = Cla(G())L)g)

be its strong dual, i.e. its continuous dual space equipped with the strong
topology, which carries the structure of a Fréchet-Stein algebra [37, 5.1]. The
product of 61,2 € D(Gy, L) is defined by

(651 0:)(f) = 81 (2 = Galy = F(ay)) ).

for f € C'*(Gy, L). Given an admissible locally analytic representation V'
of Gy, cf. [37, Sec. 6], we let M : =V} be its strong dual, which is, by the
very definition of “admissible representation”, a coadmissible module over
D(Go, L). Explicitly, if we denote by g.v the action of g € Gy on v €V,
then the D(Go, L)-module structure on M is given by

(6-m)(v) = 5(g = mlg~")),

form € M and 6 € D(Go, L). For g € Gy the delta distribution 6, € D(Gy, L)
is defined by d4(f) = f(g). These delta distributions are invertible in
D(Go, L), and the map g+ ¢, is an injective group homomorphism from
Gy into the group of units of D(Go, L).

We also recall that the category of coadmissible D(Gy, L)-modules is
a full abelian subcategory of all abstract D(Go, L)-modules [37, Thm. 5.1]
and, by construction, anti-equivalent to the category of admissible locally
analytic Go-representations.

5.1.2. The distribution algebras D(G(k)°,Go). Recall the wide open
congruence subgroup G(k)° introduced in and its analytic distribution
algebra D**(G(k)°) = O(G(k)°);. Given a continuous representation W of
Go, one can consider the subspace Wg(y)o—an C W of G(k)°-analytic vectors,



P -affinity of formal models of flag varieties 1709

cf. [15, 3.4.1). This applies to the action of Gy on the space C°(Gy, L)
of continuous L-valued functions given by the formula (g.f)(z) = f(g~ ).
With this notation, one has a canonical isomorphism of topological L-vector

spaces

(5.1.1) IQC“S(GO, L)G(k)o—an —> C"*(Go, L)
k

Following the notation introduced in [15, proof of 5.3.1] we denote by
D(G(k)°,Gp) the strong dual of the space of G(k)°-analytic vectors of
C(Gy, L), i.e.,

D(G(k)°, Go) := (C®(Go, L)g(k)o—an)b-

The ring D(G(k)°, Gp) naturally contains D**(G(k)°). Moreover, the
delta distributions d4, for g in the normal subgroup Gy := G(k)°(0) =
G(k + 1)(o) of Gp, are contained in this subring too. One obtains a decom-
position of D(G(k)°, Go) as a D**(G(k)°)-module:

(5.1.2) D(G(k)®, Go) = Bgeco/Gu P (G(K)°)dy,

cf. [15] proof of 5.3.1]. This is a topological direct sum decomposition in the
sense that the subspace topology of D**(G(k)°) is equal to its topology as
an L-algebra of compact type, and the topology on D(G(k)°, Gy) is equal to
the product topology on the right of Dualizing the isomorphism [5.1.1
then yields an isomorphism of topological L algebras

D(Go, L) — lim D(G(k)°, Go).
k

This is the weak Fréchet-Stein structure on the locally analytic distribu-
tion algebra D(Go, L) as introduced by Emerton in [I5, Prop. 5.3.1]. In an
obviously similar manner we may define the ring D(G(k)°, Go)g, and obtain
an isomorphism D(Go, L)g, — lim, D(G(k)°, Go)s,-

5.1.3. Let V be again an admissible locally analytic representation of Gy,
and M =V} be as in The subspace Vg () —an C V is naturally a nuclear
Fréchet space [15], 6.1.6], and we let M}, := (Vg (k)o—an)j, De its strong dual. It
is a space of compact type and a topological D(G(k)°, Gg)-module which is
finitely generated [15, 6.1.13]. According to [15, 6.1.20] the modules M}, :=
(Vg (k)o—an)’ form a (D(G(k)°, Go))ren-sequence, in the sense of [15, 1.2.8],
for the coadmissible module M relative to the weak Fréchet-Stein structure
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on D(Gy, L). This implies that one has
(5.1.3) M, = D(G(k)°, Go)®p(cy,0) M

as D(G(k)°, Gp)-modules for any k. Here, the completed tensor product is
understood in the sense of [15, Lem. 1.2.3].

Lemma 5.1.1. (i) The D(G(k)°, Go)-module My, is finitely presented.

(ii) There are natural isomorphisms
D(G(k —1)°,Go) @p(c(k)o,Go) Mk —> My—1.
(i4i) The natural map D(G(k)°, Go) @p(G,,0) M =5 My, is bijective.

Proof. The points (i) and (ii) can be proved exactly as [32] 5.2.4]. For (iii) we
consider the D(G(k)°, Gp)-submodule generated inside M, by M. It clearly
forms a dense subspace and is closed according to [32, 5.1.1 (ii)]. Hence
the map in question is surjective. Moreover, this argument shows that the
finitely generated D(G(k)°, Gp)-module M}, is generated by finitely many
elements in the image of M. To prove injectivity of the map in question, we
abbreviate A := D(Go, L) and A, := D(G(k)°, Go) and consider an element
b1 @x1+ - +bs Qs € A, 4 M such that bixy + -+ bsxs =0 in M.
Consider the homomorphism

(A — (Mg g, (a1, ... as) — a1z1 + -+ - + asTs

where k' > k. Let N be the kernel of the corresponding map of coadmissible
modules A®* — M. By the above sur)jectivit(y) argument, there are finitely

many elements (cgl)7 . ,cgl)), e (cgr ,...,cs’)in N whose images generate
the kernel of the map Aj, — M}, as an Ag-module. From here one may follow
the argument in the proof of [37, Cor. 3.1] word for word. O

Remark. These results have obvious analogues when the character 6y is
involved.

5.2. Go-equivariance and the functor Zoc%°
5.2.1. Group actions on blow-ups. We recall that it is our convention

that the group scheme Gq acts on the right on Xy = Bo\Gy, cf. This
yields a right action of the group Gy on Xg, and we denote the automorphism
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of Xq given by g € G by py, i.e., pg : Xo — Xo. As the action of Gy on X
is on the right, we have py 0 pj, = png for all g,h € Go. We also denote by
pg : Ox, = (pg)+Ox, the comorphism of p,. We then have

(5.2.1) (pg)«(P}) 0 P = -

Now let H C G be an open subgroup. We say that an open ideal sheaf
7 C Ox, is H-stable if for all g € H the comorphism pg maps Z C Oy, into
(pg)+I C (pg)+Ox,. In that case pg induces a morphism of sheaves of graded

rings

B — (. (DT
d>0 d>0
on Xg. This morphisms of sheaves in turn induces an automorphism of the

blow-up X = Proj(@dzo Id), and the action of H on Xy lifts thus to an
action of H on X, which we again denote by p for ease of notation.

The same considerations apply when we pass to the formal completion
Xo of Xp, in which case we denote the morphism Xg — Xy induced by pg4
also by pg, for ease of notation. If now J is an open ideal sheaf on Xy which
is H-stable, and if X is the formal blow-up of J, we also say that X is H-
equivariant. There is at most one way to lift the action of H on Xy (resp.
Xo) to X (resp. X), because the blow-up morphism induces an isomorphism
between the generic fibers X, = Xo,n (resp. rigid spaces xris =, .’{gg), and
the group action on the generic fiber (resp. associated rigid space), is thus
pre-determined, and in turn determines the action on X (resp. X) uniquely.

Lemma 5.2.1. Letpr: X — Xg be an admissible blow-up, and assume k >
kx. Then X is G, = G(k)(o)-equivariant and the induced action of every g €
G411 on the special fiber of X is the identity. Therefore, Giy1 acts trivially
on the topological space underlying X.

Proof. Consider the action p: Xo Xgpec(o) Go = Xo of Go on Xo. If g:
Spec(o) — Gy is in Gy, then the induced map on the mod-w-fibers g :
Spec(Fy) = Go Xgpec(o) SPec(Fy) is the identity element in Go(F,). Because
pg is defined in terms of p, and since p is compatible with base change
Spec(F,) — Spec(o), it follows that all elements g € G act trivially on the
special fiber of Xg. In particular, the morphism p, : Xo — X is the identity
map on the topological space underlying X if g € G1. This takes care of the
case when k = 0 (hence kx = 0, and thus X = Xy). We therefore assume in
the following k > 1.
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For the purpose of this proof we let & be the completion of Gy along
its special fiber (this formal group scheme is denoted by &(0) in [4.2.1).
The quotient morphism o : Gy — X induces a quotient morphism o” : & —
Xo of the corresponding formal schemes. Moreover, the right multiplication
of g € Go on Gy induces a right multiplication p, : & — &, such that the
following diagram is commutative

(5.2.2) 66

i“ i“

Xo 1~ %

If g € GG1, then, as we remarked above, the map underlying the morphism
pg is the identity map on Xo, and, for the same reason, the map underlying
the morphism p, is the identity map on &. It follows from the very definition
of Gy that for g € Gy, for all open subsets U C &, and for all f € Og(U)
one has (ﬁg)gj(f) = f mod (w"). If now V C X is an open subset and U :=
(6™)71(V), then gives rise to a commutative diagram

Os(U) .~ Os(U)
(pg)U
(UA)Q/T (UA)Q/T
Ox,(V) Ox,(V)

(po)Y
As U — V is alocally trivial fiber bundle, the ring homomorphism (a/\)%/
is injective [23, 1.5.7 (1)] and identifies Ox,(V) with the subring of B-
invariants of Og (U) where B denotes the completion of By along its special
fiber [23] 1.5.8 (2)]. In the following we will therefore suppress the notation
(0/\)3/ and view this homomorphism as an inclusion. By the above discus-
sion, we then have for all f € Ox, (V) that

(o)l (f) — f =" f

with some f € Os(U). Now f is B-invariant: indeed, @ f is B-invariant,
and so we have

Al@f)—offo1=0
in Og(U) ®, O (B) where A denotes the comodule map of the B-module
Os(U) [23, 1.2.10 (2)]. Since A is o-linear and Og(U) ®, Ox(B) is o-
torsionfree, this implies A(f) — f ® 1 = 0, as claimed. Since f is B-invariant,
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we may conclude that (pg)t‘i/(f) = f mod («®) for all f € Ox, (V). Now sup-
pose J C Oy, is an open ideal sheaf, and assume @* € J and g € G} C G1.
Then, for any open subset V' C Xy, and any f € J(V') we have (pg)t‘i,(f) =
f + @k f for some f € Ox, (V). Since w”f € J(V), we find that (pg)jé/ maps
J into itself, and the blow-up X of J is Gj-equivariant.

If now g is in Giy1 we even have (pg)t‘i/(f) = f+ @t f for some f €
Ox,(V). And since @w” € J we conclude that (pg)g/(f) = f mod wJ. This
implies that the morphism induced by (py)* on the sheaf (EBd>0 ’Jd> ®o
o/(w), which is a sheaf on the special fiber of Xy, is the iden%ity. And
Proj((@d>0 3d> ®o 0/(w)> is the special fiber of the formal blow-up X
of 7. O

5.2.2. For the rest of this section we let H C Gg be an open subgroup. If
X — Xg is an H-equivariant admissible blow-up with lifted action p, then
there is an induced action of H on the sheaf @; i

(5.2.3) Ad(g) : 7% = (pg)s Dk o P> i P(p5) 71,
for all £ > kx. This is an action on the left in the sense that
(g)+(Ad(h)) o Ad(g) = Ad(hg),

as follows from Furthermore, the group Gjgiq is contained in
D*(G(k)°) as a set of delta distributions, and for g € Gi41 we also write
8, for its image in HO(X, 2L ) = D™ (G(k)®)g,, cf. [3.3.6

Definition 5.2.2. Let X be an H-equivariant admissible blow-up of Xj.
A strongly H -equivariant @; p-module is a @; p-module .# together with a
family (¢4)germ of isomorphisms

Gy M — (pg)stl

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g,h € H we have (pg)«(¢n) 0 ¢g = dng-

(i) For all open subsets U C X, all P € .@;k(U), and all m € .#(U) one
has ¢,(P.m) = Ad(g)(P).¢g(m).



1714 C. Huyghe, D. Patel, T. Schmidt, and M. Strauch

(111) H For all g € HN Gy the map ¢g : A — (pg)s M = M is equal to
the multiplication by 6, € H(X, @; k)

A  morphism between two strongly H-equivariant @; p-modules

(A, ((b;/[)geH) and (A, (gﬁ;’/)geH) is a 9;k—linear morphism ¢ : A — N
such that

¢ o1h = (pg)u(vh) 0 ¢

for all g € H. We denote the category of strongly H-equivariant _@; p-modules
which are, moreover, coherent as @; x-modules by Coh(@;6 o H).

Remarks. ‘Strongly equivariant’ refers to the additional condition that the
action coincides with multiplication by ¢, if g € H N Gj41. This is the ana-
logue of [40, Prop. 2.6] in our situation. We also note that any .@; p-module is
strongly Gy 1-equivariant for the natural G} 1-action, cf. The follow-
ing result could be stated in greater generality for H-equivariant blow-ups
X — Xy if we had introduced the ring D(G(k)°, H) also for open subgroups
H C Gy (containing Gj1) instead of just Gy.

Theorem 5.2.3. Let X — X be a Gg-equivariant admissible blow-up, and
let k > kx. The functors .32”002€ e and HY induce quasi-inverse equivalences
between the category of finitely presented D(G(k)°, Go)g,-modules and
Coh(ZL ., Go).

Proof. This follows from the definition of Coh(@j6 w» Go), and
the description of D(G(k)®, Gp) in O

5.2.3. Suppose now that 7 : X' — X is a Gp-equivariant morphism over X
between admissible formal Gg-equivariant blow-ups of Xy (whose lifted ac-
tions we denote by p* and p* respectively), and that k > kx and k' >
max{kx:, k}. According to there is then a morphism of sheaves of rings

(5.2.4) Uom gL, =9, = 9L,
which is Gg-equivariant, i.e. satisfying

Ad(g) oW = (py)«(¥) o m.(Ad(g))

6To make sense of this condition, we use that elements g € Gy act trivially on
the topological space underlying X, cf.
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for all g € Gy. Suppose we are given two modules .#Zx € Coh(.@;, v Go)
and Ax € Coh(@;r€ w» Go) together with a morphism

U Wl — Mz
linear relative to ([5.2.4) and which is Gy-equivariant, i.e. satisfying

35" 0 = (py ) (1) 0 (%)
for all g € Gy. We obtain thus a morphism

‘@;7’?3 ®7T*_@;/ % Tr*%xl - %x

of .@;k—modules. Denote, by £ the submodule of .@;k ®m@;/ y Ty M
locally generated by all elements of the form Pd;, ® m — P ® (h.m), where
h € Git+1, m is a local section of m,.#x/, and P is a local section of @;k.
For convenience we will abbreviate the quotient (@;k B, 21, , Tallxr) | H
by

T
gf,k ®7l'*9;/‘kqu+1 71'*%;{/.

Now since the target of the preceding morphism is strongly equivari-
ant, the morphism will factor through this quotient and we thus obtain a

morphism of @; -modules

(5.2.5) DL @ gt Telle — M.

X/ K

The domain of this morphism lies in Coh(@j€ w» Go) when we equip it
with the action defined on simple tensors by

g-(P®m) = Ad(g)(P) ® (g.m),

for g € Gy, where P and m are local sections of .@; . and m.Zx:, respec-
tively. Since ((5.2.4)) is Go-equivariant, the map is then seen to be in
fact a morphism in Coh(ﬁgk, Go). The question, in which situations this
morphism will actually be an isomorphism will be crucial in the definition
of a coadmissible Gg-equivariant arithmetic Z-module, cf. below.

We finish this paragraph by an auxiliary result which will be used in the
proof of Thm. [5.2.10
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Lemma 5.2.4. Let X', X € Fx, be Go-equivariant. Suppose (X', k') = (X, k)
with canonical morphism m: X — X over Xo and let M be a coherent
D(G(K')°, Go)g,-module with localization

M = ZLock, (M) € Coh(ZL, . Go).
Then there is a canonical isomorphism in Coh(@;r€ w Go) given by
@;re,k By o Grrn T+ = focge,k(D(G(k)o, Go) @pG(k)e,Go) M)-

Proof. We denote a system of representatives in Gj,q1 for the cosets in
Gr+1/Gr 41 by R. For simplicity, we abbreviate

D(k) := D*™(G(k)°)g, and D(k,Go) = D(G(k)®, Go)g,

and similarly for &’. We have the natural inclusion D(k) < D(k,Gg) from
Which is compatible with variation in k. Now suppose M is a D(kK', Gg)-
module. We then have the free D(k)-module D(k)®M*% on a basis ey
indexed by the elements (m, h) of the set M x R. Its formation is functorial
in M: if M’ is another module and f : M — M’ a linear map, then e, ;, —
€¢(m),n induces a linear map between the corresponding free modules. The
free module comes with a linear map

fa s D(R)EME = D(k) @ py M
given by
@(m,h)Am,hem,h — (/\mﬁéh) R m — >\m,h X (5}1 . m)

for Ap,n € D(k) where we consider M a D(k’)-module via the inclusion
D(K') — D(K',Gy). Note that, since M is a D(k’, Gp)-module, and because
Gy is contained in D(k', Gy), the expression dy - m is defined for any partic-
ular h € Gg41. The linear map is visibly functorial in M and gives rise to
the sequence of linear maps

D(k)EM*E L0 D (k) @ pry M ¥ D(k, Go) @ par.gy) M — 0

where the second map is induced from the inclusion D(k") < D(k’, G). The
sequence is functorial in M, since so are both occuring maps.

Claim 1: If M is a finitely presented D(K', Go)-module, then the above
sequence is exact.
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Proof. This can be proved as in the proof of [32, Prop. 5.3.5]. O

Claim 2: Suppose M is a finitely presented D(k')-module and let M =
.,S,”oc;,k,(M). The natural morphism

Lock 1 (D(F) ©py M) = Dy ©r g, Toll
1s bijective.
Proof. The functor 7, is exact on coherent .@; w-modules according to

Choosing a finite presentation of M reduces to the case M = D(k') whic
is obvious. t

Now let M be a finitely presented D(k’, Gg)-module. Let my, ..., m, be
generators for M as a D(k')-module. We have a sequence of D(k)-modules

@D( )em.h S, D(k) ®@pny M ™ D(k,Go) @pr,.Goy M — 0

where f}, denotes the restriction of the map fyps to the free submodule of
D(k)®MxE generated by the finitely many vectors ey, p,i = 1,...,7, h € R.
Since im(f},;) = im(fas) the sequence is exact by the first claim. Since it
consists of finitely presented D(k)-modules, we may apply the exact functor
A oc;,k to it. By the second claim, we get an exact sequence

(@;k)@"IR\ — '@;,k ®W*@;,7k, Tl — foch’k(D(k, Go) @pr,co) M) — 0

where 4 =2 oc;, w(M). The cokernel of the first map in this sequence
equals by definition

.|.
@xk 7l Gk+177*j/’

x/ k/7
whence an isomorphism

gx k@ sy Toll = zoc;k(p(k, Go) @p(.ce) M).

'{/ k!
This proves the lemma. U

5.2.4. The purpose of the rest of this section is to first explain how to form
Go-equivariant compatible systems of coherent .@x p-modules when the for-
mal models X and the congruence levels k vary in a suitable family. Here
we will only be considering formal models of the rigid-analytic flag variety
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which are admissible formal blow-ups of Xg. In a second step, we will re-
late such Gy-equivariant systems to coadmissible D(Gy, L)g,-modules thus
establishing a version of the classical localization theorem for equivariant al-
gebraic D-modules [5] in our setting. In Sec. these constructions will be
generalized to the setting of G-equivariant compatible systems.

We recall that we denote by X = B\G the flag variety of G, and by
X" the rigid-analytic space associated by the GAGA functor to X, cf.
Furthermore, we denote by X, the projective limit of all formal models of
X*8 (in the sense of [3.1). This space is known to be homeomorphic to the
adic space corresponding to X"8, cf. [41, Thm. 4 in Sec. 2, Thm. 4 in Sec. 3]
where this space is denoted by Val(X'e).

Consider the set Fx, of admissible formal blow-ups X — Xy. This set
is ordered by X’ = X if the blow-up morphism 7 : X’ — Xy factors as the
composition of a morphism X’ — X and the blow-up morphism X — Xj. In
fact, the morphism X’ — X is then necessarily unique [19, II, 7.14], and is
itself a blow-up morphism [25 ch. 8, 1.24]. By [7, Remark 10 in Sec. 8.2]
the set Fx, is directed in the sense that any two elements have a common
upper bound, and it is cofinal in the set of all formal models. In particular,

Xoo = @}—xo X.

Proposition 5.2.5. Any formal model X of X' is dominated by one which
is a Go-equivariant admissible blow-up of Xg.

Proof. By [T, Remark 10 in Sec. 8.2] we may assume that X is already an
admissible blow-up of Xy. Let Z be the ideal which is blown up to obtain
X. If w* € T for some k > 1, then G}, acts trivially on the topological space
underlying Xy and stabilizes Z in the sense that pg : Ox, = Ox, maps Z into
Zforall g € Gg. Let 1 = g1,...,gn be a system of representatives for Go/G},
and let J be the product of the finitely many ideals pgi (Z). Then J is Go-
stable and contains Z. Blowing up J on Xy yields a Gp-stable formal scheme
X', and X’ is also the admissible formal blow-up of the sheaf pr='7 - Ox on
X, and the blow-up morphism X’ — X factors as the composition of the
blow-up morphisms X’ — X — X,. O

Definition 5.2.6. We denote the set of pairs (X, k), where X € Fx, and
k € N satisfies k > kx, by Fy, . This set is ordered by (X', k') = (X, k) if and
only if X' = X and k¥’ > k.

Since Fx, is directed, the set Fy is directed, too.
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Lemma 5.2.7. Let J be an open ideal sheaf on Xo, and let g € Go. Then
R= (Pg)_l((Pg)*(ff)) is again an open ideal sheaf on Xo. Let X be the blow-up
of 3, and let X.g be the blow-up of . Then there is a morphism py : X — X.g
such that the following diagram is commutative (where the vertical maps are
the blow-up morphisms):

x—"s3%xyg

L,

Xo 24> %o

We have kx 4 = kx. Moreover, for any two elements g, h € Go we have a
canonical isomorphism (X.g).h ~ X.(gh), and the morphism X L, X.g -2
(X.9).h ~ X.(gh) is equal to pgn. This gives a right action of the group Go
on the family Fx,.

Proof. Tt is easy to check that K is indeed an open ideal sheaf. Moreover,
the comorphism pg : Ox, = (pg)+Ox, induces a morphism

(5.2.6) P & — (pg)« | P

d>0 d>0
of sheaves of graded rings which is linear with respect to »% and which
coincides with pg in degree zero. The morphism of sheaves induces the
morphism between the blow-ups X and X.g. That is linear with respect
to pg implies the existence of the commutative diagram. The assertion about
the congruence levels follows straightforwardly from the definition [2.2.5] The

remaining assertions follow directly from the construction. O

Corollary 5.2.8. Assume that (X', k') = (X,k) for X,X' € Fx, and let
7 : X' — X be the unique morphism over Xgy. Let g € Go. Then (X'.g, k') =
(X.9,k) and if we denote the unique morphism X'.g — X.g over Xy by m.g,
then the diagram

XLy g

I
x—xyg

15 commutative.

Proof. Follows easily from the preceding lemma. O
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Definition 5.2.9. A coadmissible Gy-equivariant arithmetic 2-module on
Fx, consists of a family .# := (.#x ) of coherent .@; p-modules .Zx ., for
all (X,k) € FEx,, with the following properties:

(a) For any g € Gy with morphism p, : X — X.g (cf. [5.2.7)), there exists

an isomorphism
bg: Mx.gr — (Pg)cMx K
of sheaves of L-vector spaces, satisfying the following conditions:

(1) For all g, h € Gy we have (pg)«(¢n) 0 ¢g = Png-

(ii) For all open subsets U C X.g,all P € .@;g’k(U), and allm € Ay 41(U)
one has ¢4(P.m) = Ad(g)(P).¢4(m).

(iii) |Z| For all g € Gi41 the map ¢g : Mx ) — (pg)stx ) = Mx ) is equal
to the multiplication by 6, € HY(X, @; k)

(b) Suppose X', X € Fx, are both Gy-equivariant, and assume further
that (X', k") = (X, k), and that 7 : X’ — X is the unique morphism over X.
In this situation we require the existence of a transition morphism ¥y x :
Twxr jy — Mx ), linear relative to the canonical morphism ¥ : 7, ‘@;’,k/ —

@;k 5.2.4)) and satisfying

Mx k; Mt
(5.2.7) g oty x = (P;E)*(¢x’,x) om(dg T ")

for any g € Gy (note that m, o (p;s/)* = (pf)* o, according to cor.
and so the composition of maps on the right-hand side makes sense). The

morphism induced by ¥y x, cf

(5.2.8) Ve -@;k Q. ot Tl —> Mx

x/ykak{»l
is required to be an isomorphism of 9; p-modules. Additionally, the mor-
phisms Vx5 @ Tolxr )y — Mx 1, are required to satisfy the transitivity con-

dition s x o mi (Y x7) = Pxv x, whenever (X, k") = (X', k') = (X,k) in
Fx,- Moreover, ¥x x = id_z, .

"To make sense of this condition, we use that for k > ky the action of G4 on
X lifts to X, cf. In this case X.g = X, and elements g € G4 act trivially on
the topological space underlying X.
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A morphism .# — .4 between two such modules consists of morphisms
Mz, — N of .@; p-modules compatible with the extra structures. We

denote the resulting category by %3%’; 0.

5.2.5. We now build the bridge to the category of coadmissible D(Gyg, L)g,-
modules, cf. Given such a module M we have its associated admis-
sible locally analytic Go-representation V' = M) together with its subspace
of G(k)°-analytic vectors Vi xyo_an C V. The latter is stable under the Go-
action and its dual My := (Vi (r)o—an)’ is a finitely presented D(G(k)°, Go)g,-
module, cf. |5.1.1] In this situation Thm. [4.3.2| produces a coherent 932]6—
module

.i”oc;’k(Mk) = @;,k ®Dan(G(k)o)80 M,

for any element (X,%k) in Fy . On the other hand, let .# be an arbi-
trary coadmissible Gy-equivariant arithmetic Z-module on Fx,. The tran-
sition morphisms ¥y x : Tty gy — Mx r induce maps HO (X, My ) —
HO(X, M 1) on global sections. We let

P(#):= lm  HOX, M)
(ka)€£x0

where the projective limit is taken in the sense of abelian groups and over
the cofinal subfamily, cf. Prop. consisting of those (X,k) with Go-
equivariant X. This limit naturally carries the structure of a coadmissible
D(Gy, L)g,-module, as will follow from part (ii) of the next theorem.

Theorem 5.2.10. (i) The family
Loc® (M) := (Lock (M) xmers,

forms a coadmissible Go-equivariant arithmetic -module on Fx,, i.e., gives
an object of ‘Kgo". The formation of Loc% (M) is functorial in M.

(i) The functors Loc and T'(-) induce quasi-inverse equivalences be-
tween the category of coadmissible D(Gy, L)g,-modules and ‘53?;0.

Proof. Let M be a coadmissible D(Gyg, L)g,-module and let .# € ngGOO. Both
parts of the theorem follow from the four following assertions.

Assertion 1: One has Loc% (M) e Cégoo and Loc% (M) is functorial
m M.
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Proof. We start by verifying condition (a) for Loc“ (M) and define the
morphisms, for g € Gy,

bg: XOCGO(M)X_M — (pg)*focGO(M)x;f

satisfying the requirements (i), (ii) and (iii) in definition So consider

LocGo (M)x.gr = .i”oc;_g’k(Mk) = @;.97/&‘ Qpan(G(k)o)o, M-

90

Let <Z~>g : My, — M, denote the map dual to the map Vg ryo—an = Vo (k)o—an

given by w + g~ 'w. Let U C X.g be an open subset and P € .@;gk(U),
m € M. We define

¢g(P @ m) := Ad(g)(P) ® §y(m).

One has an isomorphism

(py)« (Locks (M) = ((0)x P ) @Diy10, M-

Indeed, (pg)« is exact and so choosing a finite presentation of M}, as
D (G(k')°)g,-module reduces to the case of My = D**(G(k')°)g, which is
trivially true. This means that the above definition extends to a map

0g: D g ODn(@(0))a, Mi — (0g)s (%k D (G(k))ay Mk) '

By construction, it satisfies the requirements (i), (ii) and (iii). We next
verify condition (b). So suppose that X', X are Gy-equivariant and we have
(X', k') = (X, k) with canonical morphism 7 : X’ — X over X(. One then has
an isomorphism

Ty <$00J§r{’,k/(Mk')) i> (ﬂ*‘@;’,k’> ®’Dan(G(k/)o)90 M.
Indeed, , is exact by and we may argue as for (p,).. Furthermore,
G(k')° C G(k)° and we denote by ¥y x : My — M}, the map dual to the

natural inclusion Vg(xyo—an € Vgk')o—an- Let U C X be an open subset and
Pe W*.@;, w(U), m € My,. We then define

Yr x(P@m) := Uy x(P) @ P x(m)
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where WUy x denotes the canonical morphism 7['*.@;, o _@; - This defini-
tion extends to a map

Yxrx T e (Zoc;,,k, (Mk/)> - .,iﬂoc;’k(Mk)

according to our above description of m, (foc;,7k,(Mk/)>. The map x x
satisfies condition and the required transitivity properties. It remains
to see that the corresponding map 5, » is an isomorphism, as required in
5.2.8. But Jasx corresponds under the isomorphism of Lem. to the

linear extension
D(G(k)°, Go) @p(e(r),Go) Mrr — My,

of &x',x via functoriality of .Z oc; - But the linear extension of T,Zae',ae is an
isomorphism by part (i) of Lem. and hence, so is Eae',ae- This shows
ZLoc% (M) € (53600 °. Given a morphism M — N of coadmissible D(Gy, L)g,-
modules, one obtains maps M} — N for any k which are compatible with
the maps QNSQ and ’(ZJxx By functoriality of £ oc;g,k, they give rise to linear
morphisms

foc;’k(Mk) — 300;,;6(]\%)

which are compatible with the maps ¢4 and ¢/ x. In other words, £ ocCo (M)
is functorial in M. O

Assertion 2: T'(MA) is a coadmissible D(Go, L)g,-module.
Proof. For given k we choose a (X,k) € Fx, and let Ny := HY(X, .#x ). By
together with Lem. [5.2.4] we then have linear isomorphisms
D(G(k)°, Go) @p(k),ao) Nir = N

whenever k&’ > k. Thus, the modules Ny, form a (D(G(k)°, Go))ren-sequence,
in the sense of [15] 1.2.8] and their projective limit is therefore a coadmissible
module. O

Assertion 3: T o Loc% (M) ~ M.
Proof. Let V = M}. We have compatible isomorphisms

HO(%azocGo(M)%,k) = (VG(k)O—an)/

for all (X, k) by and the coadmissible modules I' o Zoc%° (M) and M
have therefore isomorphic (D(G(k)°, Go))ren-sequences. O
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Assertion 4: Loc® oT(M) ~ M .

Proof. Let N :=T'(.#) and V = N; the corresponding admissible represen-
tation. Let 4 = Zoc®(N). According to part (i) in Lem. setting
Ny = D(G(k)°, Go) @p(a,,r)y N produces a (D(G(k)°, Go))ken-sequence for
the coadmissible module N which is isomorphic to its constituting sequence
HO(X, #x ) from Assertion 2. Now let (X, k) € Fx,. By what we just said
we have linear isomorphisms

Ny = ZLock | (Ny,) ~ zoc;,kw%x, M) = Mx

where the ﬁnal 1somorphlsm comes from [4.3.2] Via this isomorphism, the
action map ¢g constructed for A = f oc” ( ) along the lines of Asser-
tion 1, Corresponds to qﬁg , as follows directly from the Ad(g)-linearity of
these two maps. Slmllarly, 1f (X' K = (%,k) for Gp-equivariant X', X, then
the transition map w'gﬁ, constructed for A = Loc (N) along the lines of
Assertion 1, corresponds to wﬁx, as follows directly from the Wy x-linearity
of these two maps. Hence, A4 ~ .# in Cégo 0, O

This finishes the proof of the theorem. U

5.2.6. We indicate how coadmissible Gg-equivariant Z-modules can be ’real-
ized’ as honest (equivariant) sheaves on the topological space X, = L Fu X,

cf. [5.2.4] The induced Go-action on X is denoted by py : Xoo = Xoo “for
g € Gy. We denote the canonical projection map X., — X by spy for each
X and define the following sheaf of rings on X,,. Assume V' C X, is an open
subset of the form spa_el(U ) with an open subset U C X for a model X € Fy, .
We have that

spx (V) =77 (U)

for any morphism 7 : X' — X over X and so, in particular, spy, (V) C X’ is
an open subset for such X’. Moreover,

7 (spx (V) = spxn (V)

whenever 7 : X" — X’ is a morphism over X. In this situation, the morphism
(5.2.4) induces the ring homomorphism

(52.9) DL (2 (V) = TP 1 (52 (V) = DY 4o (5D (V)
and we form the projective limit

Doo(V) = 1im L, 1 (sp2 (V)
X' =X
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over all these maps. The open subsets of the form V form a basis for the
topology on X, and Z is a presheaf on this basis. We denote the associated
sheaf on X, by the symbol %, as well. It is a Gg-equivariant sheaf of rings
on X in the usual sense: given g € Gy, the actions Ad(g) on each individual
sheaf .@;,k, cf. , assemble to a left action

(5.2.10) Ad(9) : Doo — (pg)x Do

on Yeo.

5.2.7. Suppose # := (.Mx ) is an object of %XGOO. We have the transition
maps Yx: x : T My )y — Mx ), which are linear relative to the morphism
. In a completely analogous manner as above, we obtain a sheaf .#Z,
on X together with a family (¢g)geq, of isomorphisms

(5.2.11) by Mss — (pg)stlng

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h € G we have (pg)+«(dn) 0 ¢g = dpg.

(i) For all open subsets U C Xo, all P € Z5(U), and all m € 4, (U)
one has ¢4(P.m) = Ad(g)(P).¢4(m).

In particular, #4 is an equivariant Z.-module on the topological Gg-
space X in the usual sense. The formation of .#Z is functorial in .Z € ‘ggo 0,

Proposition 5.2.11. The functor M ~ My from the category ‘53%’:)0 to
Go-equivariant P-modules is a faithful functor.

Proof. We have spy(Xoo) = X for all X. The global sections of M, are there-
fore equal to

H°(Xoo, M) = Yim  HO(X, Mxy) =T (M)
(ka)ezxo

where we have used Prop. Now let f,h be two morphisms .# — A
in ‘5500 such that fo, = heo- By the equivalence of categories in 5.2.1O|7 it
suffices to verify I'(f) = I'(h) (as maps between sets, say). But this is clear
since H(X oo, foo) = HY(X o0, hoo)- O
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We denote by .Z0cS the composite of the functor .Zoc® with (-)oe, i.€.

0cSo
{ coadmissible D(Gy, L)g, — modules } Loe, { Go — equivariant P — modules }.

Since .Zoc® is an equivalence, the preceding proposition implies that
ZLocS0 is a faithful functor.

5.2.8. In this section we explain how the functor .# ~~ .#, on the category
‘Kg) ° becomes fully faithful if we change the target category by requiring that
objects (resp. morphisms) carry the structure of locally convex topological
PDso-modules (resp. are continuous). We start by explaining how Z,, can be
considered as a sheaf of locally convex topological algebrasﬁ

Let X € Fx, be an admissible blow-up of Xy. If U C X is an open affine
subset, then the ring @; (U) is naturally a locally convex L-algebra of com-
pact type, cf. [22, proof of 3.1.3]. If U’ C X is an arbitrary open subset, we
equip .@; (U") with the initial topology, with respect to all restriction maps

@; LU = @; x(U), where U C U’ runs through an open affine covering
of U'. Tt is a locally convex topology, cf. [35], ch. 1, §5], independent of the
covering.

If V C X4 is of the form spgel(U), with an open subset U C X for a
model X € Fx,, then we give Z (V) the initial topology with respect to
all maps Zoo (V) — @;',k’ (spx:(V)), cf. the definition of Z (V') after [5.2.9,
Finally, for an arbitrary open subset V' C X, we give Z(V’) the initia
topology with respect to all maps Zso (V') — Zuo(V'), where V C V' runs
through the open subsets of V'’ of the form considered before. This gives Zo,

the structure of a sheaf of locally convex L-algebras.

We now consider the category of Gg-equivariant locally convex Zo-
modules. The objects are sheaves 91 of locally convex L-vector spaces, en-
dowed with the structure of a topological Zu,-moduld’} and which are G-
equivariant: there is a family (¢g4)geq, of isomorphisms ¢g : M — (pg)IM
of sheaves of L-vector spaces, satisfying conditions (i) and (ii) as above (see
. Morphisms are Z.-linear maps which are continuous for the locally
convex topologies and which are compatible with the group action.

8In fact, one can show that Z,, is a sheaf of Fréchet algebras, but since we do
not need this here, we work in the larger category of locally convex vector spaces.

Le., the multiplication maps Zwo (V) x M(V) — M(V), for open subsets V C
X, are required to be continuous.
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Let .# = (Mx ) be an object of ‘53%’;0. Each sheaf .#x j, is a coherent
_@;k—module. Hence for every point x € X there is an open affine neigh-
borhood U C X such that .#x j|v is a finitely presented .@;khj-module. It
then follows from [22] 2.2.13] that .#x 1 (U) is a finitely presented @;k(U)—

module, and thus is canonically a topological .@;k(U )-module, cf. [32, Prop.
5.1.1]. For an open subset V' C X, we define on .#,, (V') a topology in the
same way as above for 2, (V). In this way .#, becomes an object of the
category of Gy-equivariant locally convex Z..-modules. With these prelim-
inaries we have the following result.

Proposition 5.2.12. The functor M ~ Mso is a fully faithful functor
from ‘ngo to the category of Go-equivariant locally convexr Poo-modules.

Proof. By it remains to see the fullness. We begin by reminding
the reader that any Gg-equivariant continuous L-linear map f: M — N
between two coadmissible D(Gyg, L)-modules M, N is in fact D(Gp, L)-linear
[36, Lemma 3.1]. After this generality, let

F: M — N

be a morphism. Consider the coadmissible D(Gy, L)g,-module M :=T'(.#)
and let V := M’ be the corresponding admissible locally analytic G-
representation. The subspace Vgryo_an C V' is naturally a nuclear locally
convex space and we let My, := (Vg(x)o—an)j, be its strong dual. Now, on the
one hand, the strong topology on M} coincides with the canonical topology
as finitely generated module over the compact type algebra D**(G(k)°)g,, cf.
[32, Prop. 5.1.1]. On the other hand, the canonical topology on the coadmis-
sible D(Gy, L)-module M = 1£1k Mj, equals the projective limit topology, cf.
This means, that the locally convex topology on the space of global
sections Moo (Xoo) = () = M (cf. the beginning of the proof of [5.2.11])
of the locally convex Z.-module .#, coincides with the canonical topology
of the coadmissible D(Go, L)p,-module M (and similarly for .45;). Hence
the morphism F' : 4., — N5 induces a Gy-equivariant continuous L-linear
map ['(#) — T'(./). By our initial reminder, this map is then necessarily
D(Gy, L)g,-linear and we may apply the functor ZLoc% to it. This results
in a morphism .# — .4 which is a preimage of F'. U

Of course, the composite functor LocS® = (.)s 0 Loc then also be-
comes a fully faithful functor into the category of Gp-equivariant locally

convex P.,-modules.
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5.3. G-equivariance and the functor .Zoc®

Let G := G(L). Denote by B the (semi-simple) Bruhat-Tits building of the
p-adic group G together with its natural G-action. In accordance with our
convention that the group G acts on the right on the flag variety, we also
consider B with a right action: B x G — B, (x, g) — xg. We reserve the letter
v for special vertices of B.

The purpose of this subsection is to extend the above results from Gp-
equivariant objects to objects equivariant for the full group G.

5.3.1. To each special vertex v € B Bruhat-Tits theory associates a con-
nected reductive group scheme G, over 0. The generic fiber of G, is canon-
ically isomorphic to G. We denote by X, o the flag scheme of G,. Is is a
smooth scheme over o whose generic fiber is canonically isomorphic to the
flag variety X of G. All constructions in Sections [3] and [4 are associated
with the group scheme Gy with vertex vy, say, but can be done canonically
for any other of the reductive group schemes G,. We distinguish the various
constructions from each other by adding the corresponding vertex v to them,
i.e., we write X, for an admissible blow-up of the smooth model X, o, G40
for the group of points G,(0), and G, for the group of points G,(k)(o).
The same conventions apply when we work with the formal completions, i.e.,
Xy,0 is the formal completion of X, o, and X, always denotes an admissible
formal blow-up of X, . We make the general convention that the blow-up
morphism X, — X, is part of the datum of X,. That is to say, even if a
blow-up X, of X, ¢ also allows for a blow-up morphism to another smooth
formal model X, o, with v' # v, we only consider it a blow-up of X, . We
denote by F, := Fx,, the set of all admissible formal blow-ups X, — X, 0
of Xy, and by F, := Fx_  the set of pairs defined analogously to By
the convention we just introduced, the sets F,, and F, are disjoint if v and
v’ are two distinct vertices. Let

F = H]:”’

where v runs over all special vertices of B, be the disjoint union of all these
models. We recall that X, equals the projective limit of all formal models of
Xrig | cf, The set F is partially ordered via X,» = X, if the projection
pry, : Xoo — X, factors through the projection pry , : Xoo — Xy In this
case, the resulting morphism X, — X, is an admissible formal blow-up of
X, [25, Thm. 8.1.24]. Finally, by the property recalled at the end of
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the ordered set (F, =) is directed in the sense that any two elements have a
common upper bound.

Definition 5.3.1. We denote by F =[], F, the disjoint union of all F,
where v runs through all special vertices of B. We define an ordering on this
set by declaring (X,, k') = (X,, k) if and only if X,» = X, and @* Lie(G,.) C
w"Lie(G,) as lattices in Lie(G).

5.3.2. For any special vertex v € B, any element g € G induces a isomor-
phism pg : Xy 0 = Xyg 0. The morphism induced by pg on the generic fibers
Xy x Spec(L) ~ X ~ X450 x Spec(L) coincides with the right translation
by g on X. Moreover, pg induces a morphism X, o — Xyg,0,which we again
denote by py or pg, and which coincides with the right translation action on
X, for g € Gy (note that vg = v in this case). Let pg 1 0x,,, = (pg)«Ox,
be the comorphism of py. If m: X, = X, is an admissible blow-up of an
ideal Z C Ox, ,, then blowing-up (pﬁ)_l((pg)*I) produces a formal scheme
X, (which, for g € G, we denoted by X,.g in , together with an
isomorphism p, = pg : Xy = Xyg. We have again kx, = kx,, in this situa-
tion. For any g,h € G and any admissible formal blow-up X, of X, we
have p,? o pl) = Pop + Xo = Xygn. This gives a right G-action on the family
F and on the projective limit space }ZOOE Finally, if X,, = X, with mor-
phism 7 : X,y — X, and g € G, then X,y = X,y with a resulting morphism
Xy g — Xyg which we denote by 7.g, as in cor.

On the level of differential operators, we have the following two key
properties as before, cf. paragraph Let g € G. The isomorphism py :
X, — X,4 induces an adjoint action

(5.3.1) Ad(g): L, = (pg)e 7L, i D= phD(p}) ™",

for k > kx, = kx,,. Secondly, we identify the global sections I'(X,, .@;v %)
with D**(G,(k)°)g, and obtain the group homomorphism

(5.3.2) Gorsr — D(X0, 7L )%, g+ 0y,

where G, 11 = G, (k)°(L) denotes the group of L-rational points.

10The existence of the G-action on X can also be deduced from the fact that
X is canonically and functorially associated to X*'® whose G-action is induced by
the G-action on X.
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Proposition 5.3.2. Suppose (X,,k') = (Xy,k) for two pairs (Xy,k'),
(X4, k) € F with morphism 7 : X,y — X,,. There exists a canonical morphism

of sheaves of ringﬁ
v 7'('*@; B @;U,k

which is G-equivariant in the sense that for every g € G the following dia-
gram is commutative:

T v T
(7(-9>*-@xv,,g,k' ‘@361,.9716

l(ﬂ-g)*(Ad(g)) lAd(g)
(py)- () )
(pg)*‘@;v,k

(w9 (DL ), = ()L,

Proof. Let pr: X, — X, and pr’ : X,, — X, ¢ be the blow-up morphisms,
and put pr = pr o w. The following diagram displays these morphisms:

Xy = X,
pr’ pr
%v’ ,0 %’U,O

Fix m € N. We show first the existence of a canonical morphism of
sheaves of o-algebras

(5.3.3) 7¢m — g

Here X, Xy 0, Xy, and X, are the schemes of finite type over o
whose completions are X,/, X, o, X,, and X, o, respectively, cf. The
morphisms between these schemes of finite type over o will be denoted by
the same letters, e.g., pr: X, = X, 0. We recall that there this a canonical
surjective morphism

gA(XI?;/’m) : Ag];;:m) — OX,U/ ®U D(m) (Gv/ (kl)) _ ‘@g//,m)’

v

cf. of sheaves on X,,. On the other hand we apply pr* to the surjection

£(k’m) - Alkm) _ Ox, , ®s DGy (k)) — 9}(?;:?)7

X’U,O Xv,O -

HTn order to alleviate notation we do not indicate that these maps depend on
(X,/, k') and (%,, k). The source and target of these maps should be clear from the
context.
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and obtain a surjection Ox , ®, D™ (G,(k)) — pr* (k m). Recall that

(X, k') = (X, k) implies that " Lie(G,/) is contained in kale(GU). The
description of the ring D™)(G,(k)) in shows that the inclusion
@ Lie(G,) C w*Lie(G,) gives rise to an injective ring homomorphism
DGy (k') < D™ (G,(k)). We now claim that the composition

Ox,, @6 DI (Gy (K)) = Ox,, ®o D™ (Gy(k)) — pr* 25"

factors through @)(f /,’m) . As all those sheaves are w-torsion free, this can be
v (k/7m) ®0 L ~

pr @(k m) ®, L is the (push-forward of the) sheaf of (algebralc) differen-
tial operators on the generic fiber of X,,. We thus get a canonical mor-
phism of sheaves [5.3.3] Passing to complet10ns induces a canonical mor-
phism .@\(k/’m) — f)f*.@xkj’m) Taking the inductive limit over all m and in-

checked after tensoring with L in which case we use that Zy

verting w gives a canonical morphism .@x N pr @; ok . Now we con-
sider the formal scheme X,  as a blow-up of Xy,0 via pr. Then 7 becomes
a morphism of formal schemes over X,(, and we can consider pr .@T ook
as the sheaf of arithmetic differential operators with congruence level k
defined on X, via pr, as introduced in Using in this setting

shows then that (ﬁf*.@;w k) = 9;7) - Then, applying 7, to the mor-
phism .@;v,?k, — ﬁ*%v,o,k gives the morphism ¥ : W*Q;v/’k, — ‘@;v,k of the

statement. Making use of the maps 5&?’7%), as above, the assertion regarding
G-equivariance can similarly be reduced to some obvious functorial proper-
ties of the rings D™ (G, (k)). O

Definition 5.3.3. A coadmissible G-equivariant arithmetic Z-module on
F consists of a family .# := (M ) x x)er of coherent @; p-modules A
with the following properties

(a) For any v and g € G with isomorphism py : X, — Xy, there exists
a isomorphism

Gy + Mx,, k. — (Pg)sMx, k

vgH vy

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, h € G we have (pg).(¢},) o ¢y = &} -

2From now on we use the notation X, instead of X to indicate that the model
is an admissible formal blow-up of X, q.
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(71) For all open subsets U C X, all P€ ‘@;quk<U)7 and all mE%xvg,k(U)
one has ¢g(P.m) = Ad(g)(P).¢y(m).

(iii) [ For all g € Gry1,0 the map ¢ : Mx, ) — (0)utlr, ) = Mz, 1 is

vy vy vy

equal to the multiplication by &, € HY(X,, 9; k)

(b) For any two pairs (X, k") = (X,,k) in F with morphism 7 : X,y —
X, there is a transition morphism vx , x, : Te.#x, — M%,, linear relative
to the canonical morphism W : 7, 9;[6 e @;U e (5.3.2) and satisfying

(5.3.4) B © V2,2, = (Pg)s(Vx,,x,) 0 (1.9)<(0] )

for any g € G. If v/ = v, and (X', k') = (X, k) in F,, and if X, X" are G, o-
equivariant, then we require additionally that the morphism induced by

Vo, of

(535) %xl,x : @;Jﬁ ®ﬂ,*@1‘ Gri1 7['*.%}:/7k/ i} %};k

x/ k!

is an isomorphism of @;k—modules. In general, the morphisms ¥x , x, :
Ty, i — Mx, ) are required to satisfy the transitivity condition ¢x , %, o
m(Vx,. x,) = ¥x,, x,, whenever (X, k") = (X, k') = (X4, k) in F. More-
over, Yx, x, = id zy -

A morphism M — AN between two coadmissible G-equivariant arith-
metic Z-modules consists of morphisms .#xj — A% of @;k—modules
which are compatible with the extra structure. We denote the resulting
category by CKJ_G .

5.3.3. We now make the link to the category of coadmissible D(G, L)g,-
modules, cf. Let M be such a module and let V' := M]. Fix a special
vertex v. Let Vg, (x)o_an be the subspace of Gy (k)°-analytic vectors and
let M, j, be its continuous dual. For any (X,,k) € F we have the coherent
.@;Hk—module

goc;,,,k(Mv,k) =% Qpan (G (k)°)o, Mo ks

vy 90

13To make sense of this condition, we use that elements g € Gly1,0 act trivially
on the topological space underlying X,,, cf.



P -affinity of formal models of flag varieties 1733

according to Thm. On the other hand, given an object .# € €<, we
may consider the projective limit

D)= lim HO(X, dxy)
(X,k)eE

with respect to the transition maps ¥y’ x. Here, the projective limit is taken
in sense of abelian groups and over the cofinal family of pairs (X,,k) € F
with G, g-equivariant X,.

Theorem 5.3.4. (i) The family
Loc® (M) := (gocgemk(Mv,k))(aev,k)ez

forms a coadmissible G-equivariant arithmetic Z-module on F, i.e., gives
an object of ‘Kf The formation of Loc® (M) is functorial in M.

(ii) The functors ZLoc and ['(+) induce quasi-inverse equivalences be-
tween the category of coadmissible D(G, L)g,-modules and €< .

Proof. The proof is an extension, taking into account the additional G-
action, of the proof for the compact subgroup Gg treated in the preceding
subsection, cf. Let M be a coadmissible D(G, L)g,-module and let
M € CKJQ . The theorem follows from the four following assertions.

Assertion 1: One has Loc® (M) € €< and ZLoc% (M) is functorial in M.
Proof. For condition (a) for .Zoc” (M) we need the maps

8y Loc%(M)x,,  — (p2)+Loc®(M)x,

satisfying the requirements (i), (ii) and (iii). Let ¢~>Z : Myg . = M, 1, denote

the map dual to the map Vg, (x)o—an — Vi,,(k)o—an given by w — g tw

(note that G,4(k)° = g7 'G,(k)°g in G"8). Let U C X,y be an open subset
and P € @;UQ,k(U)’ m € Myg 1. We define

(5.3.6) ¢V (P @ m) = Ad(g)(P) ® ¢u(m).
This definition extends to a map

Gy DLy Doy (8)2)0 Mogk — (99)e( DL, @Don(, (19910 Mok)

which satisfies the requirements (i), (ii) and (iii). We next verify condi-
tion (b). Given (X,,k') = (X,,k) in F, we have G, (k')° C G,(k)° in G"&
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and we denote by 1/;3511,73@ : My o — M, the map dual to the natural in-
clusion Vg, (1)o—an € VG, (k)o—an- Let U C X, be an open subset and P €
7 2% w(U), m € My js. We then define

(5.3.7) Vr, 2, (P@m) = Vg, x,(P) @Yz, x,(m)

where Wy , x, denotes the canonical morphism ﬂ*.@; I s .@;U % from Prop.
This definition extends to a map

wxv,7;{v : W*XOCG(M)xv,,k/ — gOCG(M)xv k

)

which satisfies all required conditions. The functoriality of Loc” is verified
entirely similar to the case of ZLoc°. O

Assertion 2: T(A) is a coadmissible D(G, L)g,-module.

Proof. We already know that I'(.#) is a coadmissible D(G, 0, L)g,-module
for any v, cf. Thm.[5.2.10} So it suffices to exhibit a compatible G-action on
I'(#). Let g € G. The isomorphism

by + Mz, — (Pg)xMx, k

vy

is compatible with transition maps according to We therefore obtain
an isomorphism

D(A) = W T(Rog, M, 1) = UmT(Xy, Mx, ) = T(A).
£, £,

9

According to (i), (ii) and (iii) in this gives indeed a G-action on
I'(.#) which is compatible with its various D(G, 0, L)-module structures.
O

Assertion 3: T'o Loc® (M) ~ M.

Proof. We already know that this hold as coadmissible D(Gy, L)g,-modules,
cf. Thm. [5.2.10] so it suffices to identify the G-action on both sides. Let v
be a special vertex. According to the action

I'o Loc”(M) = lim My — lim M, =T o Loc” (M)
k k

of an element g € G on I’ o.,iﬂocG(M) is induced by ggg : Myg i — My .
The identification M ~ lglk Myg 1 ~ yLnk M, 1, (coming from dualizing V' =
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UV, , (k)o—an = UkVGv(k)O—an) therefore gives back the original action of ¢
on M. O

Assertion 4: LocC oT( M) ~ M .

Proof. We know that Loc®(T(M))x, ) =~ Mx, 1, as .@;mk—modules for any
(X4, k) € F, cf. It now remains to check that these isomorphisms are
compatible with the maps qﬁz and vx , ¥, on both sides. This works as in
the Go-case, but let us spell out the argument for the maps ¢y in detail. The
maps ¢, on the left-hand side are induced by the maps on the right-hand
side as follows. Given

Gy + Mx,, k — (Pg)sMx, ks
the corresponding map
Gy + Lo (D(AM))x,, k0 — () (Lo (U(AM))x, 1)
equals the map
Do 1 @D Gy )0y HO Rugs M,y k) — (0)+(Ph 1 @on(a, (k)20 HO (X Mx, 1))

given locally by Ad(g)(-) ® Ho(f{vg,gi)g), cf. Let U C X, be an open
subset and P € @;mk(U), m € My = HY(Xyg, #x, 1). The isomorphisms
LocC(U(M))x, ) = Mx, 1, are induced (locally) by P @ m + P.(m|y). Us-
ing condition (ii) in[5.3.3} one then sees that these isomorphisms interchange
the maps ¢, as desired. The compatibility with transition maps ¢x , x, for
two models (X,/, k") = (X,,k) in F is deduced in an entirely similar man-
ner from and the fact that ¢y , x, is linear relative to the canonical
morphism WV : 77*@;”,7,6, — @xu,k' O

This finishes the proof of the theorem. U

As in the case of the group Gy, we now indicate how objects from CKJQ
can be 'realized’ as honest G-equivariant sheaves on the G-space X,. Recall
that we have the Gy-equivariant sheaf %, on X, cf.[5.2.6

Proposition 5.3.5. The Gg-equivariant structure on the sheaf Yo extends
to a G-equivariant structure.

Proof. This can be shown very similar to [32, Proof of Prop. 5.4.5]. O
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Recall the faithful functor .# ~~ .#, from coadmissible Gy-equivariant
arithmetic Z-modules on Fx, to Go-equivariant Z..-modules on X, cf.
If .# comes from a coadmissible G-equivariant Z-module on F, then
Moo is in fact G-equivariant. This gives the

Proposition 5.3.6. The functor # ~ M~ induces a faithful functor from
‘5]9 to G-equivariant Poo-modules on X .

Remark 5.3.7. In analogy with the Gy-equivariant case, cf. the func-
tor M ~~ Mo, becomes fully faithful in the G-equivariant setting too, if one
considers the category of G-equivariant locally convex Z.,-modules (defined

as in |b.2.8]) as target category.

Remark 5.3.8. We explain briefly how our equivariant constructions on
the flag variety relate to the (nonequivariant) theory of D-modules on smooth
rigid-analytic spaces developed by Ardakov-Wadsley [4]. First of all, there
is a nonequivariant version ng =1 of the category %ﬁ which can be con-
struced by ignoring the G-action in the definition of ‘5]9 . That is to say, by

deleting the condition (a) and by replacing of (b) by

¢x/7x : '@;,k ®7r*@; , 7'(-*%:{/ — %}:

/K

inm We then have a functor A4 ~~ # from ‘KFG:“} to Ys-modules as
in Prop. Now by the equivalence of categories between abelian sheaves
on X"8 and on X [7, Prop. 9.3.4] we may consider our sheaf of infinite order
differential operators %, to be a sheaf on X"8. One can show that this sheaf
coincides with the sheaf Dxue introduced by Ardakov-Wadsley. Given this
identification, the functor .# ~~ .#, induces then an equivalence between
‘Kg = and Ardakov-Wadsley’s category of coadmissible Dyie-modules.

Remark 5.3.9. Let L C K be a complete and discretely valued extension
field such that the topology of K induces the topology on L. If we con-
sider the K-algebras D(Go, L)®K and D(G, L)®1 K as well as the sheaf
of K-algebras .@; k@ K, then one may establish versions ’over K’ of the pre-
ceding theorems in a straightforward manner. Here, we use the completed
topological tensor products for the projective tensor product topology on the
ordinary tensor product of two locally convex L-vector spaces [35, ch. IV].
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6. Examples of localizations

In this section we compute the G-equivariant arithmetic Z-modules corre-
sponding to certain classes of admissible locally analytic G-representations.
The discussion is a generalization of the GL(2)-case treated in [32]. We keep
the notation developed in the previous section. For the rest of this section
we fix an element (X, k) € Fy, such that X is Go-equivariant.

Let g denote the Lie algebra of G and let L C K be a complete and
discretely valued extension field. To simplify notation, we make the con-
vention that, when dealing with universal enveloping algebras, distribution
algebras, differential operators etc. we write U(g), D(Go), @;e,k etc. to de-
note the corresponding objects after base change to K, i.e., what is precisely
Ugk), D(Go)®LK, @;k@)LK and so on (compare also final remark in the
preceding section).

6.1. Smooth representations

If V is a smooth G-representation (i.e. the stabilizer of each vector v € V
is an open subgroup of &), then Vg (4)o_qp, equals the space of fixed vectors
V&1 in V under the action of the compact subgroup Gy,1. If V' is admissi-
ble, then this vector space has finite dimension. In this case one finds, since
gV =0, that

(6.1.1) Lol (V1)) = Oxg @x (V)
where G acts diagonally and .@; i acts through its natural action on Ox g.
6.2. Representations attached to certain U (g)-modules

In this section, we will compute the arithmetic Z-modules for a class of
coadmissible D(G)-modules M related to the pair (g, B) where B = B(L).
This includes the case of principal series representations which will be dis-
cussed separately in the next section. Let b be the Lie algebra of B. Let
T C B be a maximal split torus, put 7' := T(L) and let t be the Lie algebra
of T.

The group G and its subgroup B act via the adjoint representation on
U(g) and we denote by

(6.2.1) D(g, B) := D(B) ®y () U(g)
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the corresponding skew-product ring. The skew-multiplication here is in-
duced by

(6b’ & :E/) . (6(, (= CE) = 0pp ® 51)—1(1‘/)%
for b,/ € Band x,2’ € U(g). A module over D(g, B) is the same as a module
over g together with a compatible locally analytic B-action [31]. Replacing

B by By = BN Gy, we obtain a skew-product ring D(g, By) with similar
properties. Given a D(g, B)-module M one has

(6.2.2) D(G) ®D(q,B) M = D(G)) ®D(g,Bo) M
as D(Gp)-modules [34, 4.2]. We consider the functor

from D(g, B)-modules to D(G)-modules [3I]. If M is finitely generated as
U(g)-module, then M is coadmissible by [34], 4.3]. From now on we assume
that M is a finitely generated U(g)-module. We let V' := M be the locally
analytic G-representation corresponding to M and denote by

(6.2.4) M = (Ve(k)o—an)’

the dual of the subspace of its G(k)°-analytic vectors. According to [32,
5.2.4] the D(G(k)°, Go)-module My, is finitely presented and has its canon-
ical topology.

Lemma 6.2.1. The canonical map
D(G(k)°,Go) ®p(g,) M —> My,
induced by dualising the inclusion Vg(gyo—an C V' is an isomorphism.

Proof. This can be proved as in [32, 6.2.4]. O

Recall the congruence subgroup Gri+1 = G(k)°(L) of Go. Put Byyq :=
Gr+1 N By. The corresponding skew-product ring D(g, Biy1) is contained
in D**(G(k)°) according to Let C(k) be a (finite) system of represen-
tatives in Gy containing 1 for the residue classes in Go/Gg+1 modulo the
subgroup By/Bjg+1. Note that for an element g € Gy and a D**(G(k)°)-
submodule N of D(Gy), the abelian group d,N is again a D**(G(k)°)-
submodule because of the formula z8, = d,Ad(g!)(z) for any =z €
D2 (G(k)°).
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Lemma 6.2.2. The natural map of (D**(G(k)°), D(g, By))-bimodules

Z : @ 8, (Dan(((}(k)o) ®D(g,Brss) D(g,BO)) = D(G(k)°, Go)
g€C(k)

is an isomorphism.

Proof. This can be proved as in [32], 6.2.5]. O

The two lemmas allow us to write
My, = Sgec(r)dg (Dan(G(k)o) ®D(g,Bes1) M) = Bgec (k) Og Mg"
as modules over D**(G(k)°). Here

Mp™ = D*™(G(k)°) @p(q,Bis1) M,

a finitely presented D**(G(k)°)-module. If M has character 6y, so has M.
As explained above, the 'twisted” module §,M7" can and will be viewed as
having the same underlying group as M but with an action of D**(G(k)°)
pulled-back by the automorphism Ad(g~!). Since G is connected, the adjoint
action of G fixes the center in U(g) and so the character of the module 64 M™

(if existing) does not depend on g.

If M has character 6y, then the @;k—module !foc;’k(égM,?n) on X can
be described as follows. For any g € G let, as before, (py)« denote the
direct image functor coming from the automorphism p4 of X. If NV denotes
a (coherent) .@;k-module, then (pg)«N is a (coherent) .@;k—module via the

isomorphism Ad(g) : @;k = (pg)*_@;k, cf.|5.2.3

Lemma 6.2.3. One has
Lock 4 (0,ME) = (pg)eLock 1 (M) = (09)- (FL , @p(e.5,.0) M ).

Proof. This can be proved as in [32), 6.2.6]. O

Since & ocgE  commutes with direct sums, we may summarize the whole
discussion in the general identity

(6.2.5) ZLock 1 (My) = Syecqp) (o) (L Enia e M)

of .@; x-modules, valid for an arbitrary D(g, B)-module M (finitely gener-
ated over U(g)) and its coadmissible module M.
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6.3. Principal series representations

We first note the general observation which follows directly from the defini-
tion of the algebra D(g,-), cf. Subsection If B’ C B is an open subgroup
and if X denotes a locally analytic character of B’, then we have a canonical
algebra isomorphism

(6.3.1) D(g,B')/D(g, B)I(\) ~U(g)/U(g)I(dA)

where I(\) and I(d)\) denote the ideals equal to the kernel of D(B’) 2K

and b 2% K respectively.

Now let A be a locally analytic character of T' viewed as a character of
B. We then have the locally analytic principal series representation

Vi=IndG(\"Y) = {f € C"(G,K) : f(gb) = A\(D)f(g) for all g € G,b € B}

with G acting by left translations. Here, C'3(-, K') denotes K-valued locally
analytic functions. We wish to compute the localization % oc;’ i of the dual
of its subspace of G(k)°-analytic vectors Vi x)o_an for any sufficienly large
k. We therefore assume in the following that k is large enough such that the
restriction of A to T'N Gy1 is T(k)°-analytic. Let d\ : t — K be the induced
character of t viewed as a character of b and let

M(X) :=U(g) @up) Kax

be the induced module. Then M (\) is naturally a D(g, B)-module and the
D(G)-module M()\) associated with M (\) by the functor equals the
coadmissible module of the representation V' [31]. In particular, M(\); =

(Vg (k)o—an)" in our notation and therefore

"goc;,k(M(/\)k) = Bgeckr) (Pg)« (@;rek ©D(g,Brs1) M()\)>

by the general formula We wish to reinterpret this formula in terms of
the classical Beilinson-Bernstein localization of the U(g)-module M () [5].

First of all,
M(X) = D(g, Bry1)/D(8, Bry1) Ie+1(N)

as a D(g, By.t1)-module where Iy 1(\) denotes the kernel of D(Bj41) 2, K,
cf. By the choice of k the character d\ extends to a character of
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D*(B(k)°) whose kernel is generated by I(d\) C U(b). It follows

(6.3.2) MA)R" = D*(G(k)°)/D*(G(k)° ) k+1(A)
= Dan(G(k?)o) ®U(g) M()\)

Now the Beilinson-Bernstein localization [5] of a finitely generated U(g)-
module M with character 6 is a coherent Zx-module Loc(M ) over the sheaf
Px of usual algebraic differential operators on the algebraic flag variety
X = B\G. Let X"8 be the associated rigid-analytic space with its canonical
morphism ¢ : X8 — X of locally ringed spaces. Let spy : X" — X denote
the specialization morphism. Then (spy).t*Loc(M) is an Ox g-module with
an action of the sheaf (spy)«t*Zx. We denote its base change along the
natural morphism

(Spx)«t* Dx — .@;k
by
Loc(M)% ,, = 2L, @ (spx)st"Loc(M),
a coherent 935 p-module. Suppose now that X is associated by the Harish-

Chandra 1som0rphlsm to the central character 6y and consider M := M ().
We then have

Loc(M(A\)k , = 2%, ®u(e) M(N) = Lock (M)
according to We may thus state

Zock 1 (Vogyo—an)) = Bgectr) (pg)sLoc(MA)k .

)

Let for example A = —2p where p denotes half the sum over the pos-
itive roots (relative to B) of G. The sheaf Loc(M(—2p)) is known to be
a skyscraper sheaf with support in the origin B € X [12, 5.1.1]. The fibre
1~1(B) is a single point in X"& and o := spy(¢~}(B)) is a closed point in X.
It follows that Loc(M (— 2p));E . 1s a skyscraper sheaf supported at the point
o. Hence if V := Ind$(2p) (an irreducible representation by [31]), then the
localization Zoch’k((VG(k) _an)") is a sum of copies of this skyscraper sheaf
placed at the finitely many points go € X for g € C(k).
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