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On the characterising slopes of

hyperbolic knots

Duncan McCoy

A slope p/q is a characterising slope for a knot K in S3 if the
oriented homeomorphism type of p/q-surgery on K determines
K uniquely. We show that when K is a hyperbolic knot its set
of characterising slopes contains all but finitely many slopes p/q
with q ≥ 3. We prove stronger results for hyperbolic L-space knots,
showing that all but finitely many non-integer slopes are character-
ising. The proof is obtained by combining Lackenby’s proof that for
a hyperbolic knot any slope p/q with q sufficiently large is charac-
terising with genus bounds derived from Heegaard Floer homology.

1. Introduction

Given a knot K ⊆ S3, we say that p/q ∈ Q is a characterising slope for
K if the oriented homeomorphism type of the manifold obtained by p/q-
surgery on K determines K uniquely. That is p/q is characterising for K
if S3

K(p/q) ∼= S3
K′(p/q) for some K ′ ⊆ S3 implies that K = K ′1. In general

determining the set of characterising slopes for a given knot is challenging. It
was a long-standing conjecture of Gordon, eventually proven by Kronheimer,
Mrowka, Ozsváth and Szabó, that every slope is a characterising slope for
the unknot [10]. Ozsváth and Szabó have also shown that every slope is a
characterising slope for the trefoil and the figure-eight knot [16]. Since then,
Ni and Zhang — who introduced the characterising slope terminology —
studied characterising slopes for torus knots, showing that amongst slopes
which are not negative integers all but finitely many are characterizing for
T5,2 and exhibiting infinitely many characterising slopes for each torus knot
[15]. It was later shown that for a torus knot the set of non-integer non-
characterizing slopes is finite [13]. More recently, Lackenby showed that every
knot in S3 has infinitely many characterising slopes [12].

1Throughout the paper, we use Y ′ ∼= Y to denote the existence of a orientation-
preserving homeomorphism between Y and Y ′.
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Ni and Zhang asked whether a hyperbolic knot can have infinitely many
non-characterising slopes. This question was resolved by Baker and Motegi
who produced examples of knots (including hyperbolic knots) with infinitely
many non-characterising slopes [2]. As their examples included only integer
slopes as non-characterising slopes, one might wonder about the possibility
of non-integer non-characterising slopes.

Question 1 (cf. Question 4.4 of [2]). Does every hyperbolic knot have
only finitely many non-integer non-characterising slopes?

As evidence for a positive answer to this question Lackenby showed that
for a hyperbolic knot p/q is characterising for K whenever q is sufficiently
large [12, Theorem 1.2]. The purpose of this paper is to strengthen this
result.

Theorem 2. Let K be a hyperbolic knot in S3. Then p/q is a characterizing
slope for K provided that |p|+ |q| is sufficiently large and q ≥ 3.

If we add the condition that K is an L-space knot2, then we can obtain
stronger results, answering Question 1 affirmatively, as well as showing many
integer slopes are characterising.

Theorem 3. Let K be a hyperbolic L-space knot. Then p/q is a character-
izing slope for K provided that |p|+ |q| is sufficiently large and p/q is not a
negative integer.

As far as the author is aware, this provides the only known examples
of hyperbolic knots with integer characterising slopes other than the figure-
eight knot. Since positive torus knots are known to have only finitely many
non-characterising slopes amongst slopes which are not negative integers,
this immediately yields the following corollary.

Corollary 4. Let K be a non-satellite L-space knot. Then p/q is a char-
acterizing slope for K provided that |p|+ |q| is sufficiently large and p/q is
not a negative integer.

In order to show that p/q is characterising for a hyperbolic knot K
whenever q is sufficiently large, Lackenby shows that for any other hyper-
bolic knot K ′ with S3

K′(p/q) ∼= S3
K(p/q) the geometry of K ′ is sufficiently

2We say that K is an L-space knot if it admits positive L-space surgeries.
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constrained to ensure that K = K ′ for large q. Key to his argument is that
the length of the slope of p/q (as measured on the boundary of a horoball
neighbourhood of the cusp in the complement of K ′) is bounded below by an
increasing function of |q| which does not depend on K ′. So in order to adapt
Lackenby’s approach to find characterising slopes for small q and large p,
we need to bound the length of p/q below by an increasing function of |p|
which does not depend on K ′. Such a lower bound is obtained by combin-
ing a result of Agol which allows us to bound the length of the longitude
of a knot in terms of its genus [1, Theorem 5.1] with results derived from
Heegaard Floer homology which constrain the genera of two knots with a
common surgery. For Theorem 2 the Heegaard Floer input is hidden in the
following theorem.

Theorem 5. [13, Theorem 1.7] Let K,K ′ ⊆ S3 be knots such that S3
K(p/q)

∼= S3
K′(p/q). If

|p| ≥ 12 + 4q2 + 4qg(K) and q ≥ 3,

then g(K) = g(K ′).

The stronger conclusions of Theorem 3 comes from a corresponding re-
sult for L-space knots.

Theorem 6. [13, Theorem 1.8] Suppose that K is an L-space knot. If
S3
K(p/q) ∼= S3

K′(p/q) for some K ′ ⊆ S3 and either

(i) p ≥ 12 + 4q2 + 4qg(K) or

(ii) p ≤ −(12 + 4q2 + 2qg(K)) and q ≥ 2

holds, then g(K) = g(K ′) and K ′ is fibred.

If one wishes to prove that hyperbolic knots have only finitely many
non-integer non-characterising slopes, then it suffices to prove an analogue
of Theorem 5 that applies to half-integer surgeries. Theorem 5 is proven by
calculating the Heegaard Floer homology of S3

K(p/q) and S3
K′(p/q) using

the mapping cone formula and comparing the absolute gradings. Just as
Theorem 5 can be extended to Theorem 6 for L-space knots, it is probable
that this approach can yield results in the half-integer case for other knots
with simple knot Floer homology. However, it seems unlikely to the author
that an unconditional statement for half-integer surgeries can be achieved
by this approach alone.
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2. The proof

Given a 3-manifold M with a toroidal boundary component and a slope σ
on this boundary component, we will use M(σ) to denote the Dehn filling
along σ. If K is a knot in S3 we will use S3

K to denote the knot exterior
S3 \ int(N(K)). So p/q-surgery on K will be denoted by S3

K(p/q). A 3-
manifold M is hyperbolic if its interior admits a complete finite-volume
hyperbolic structure. A knot K ⊆ S3 is hyperbolic when S3

K is hyperbolic.
Recall that Mostow rigidity guarantees that if two hyperbolic 3-manifolds are
homeomorphic, then they are isometric. So we may assume that geometric
features of a hyperbolic 3-manifold, such as the volume or the shortest closed
geodesic, are preserved by homeomorpisms.

Given a slope σ on the boundary of a compact hyperbolic 3-manifold
one can assign a length to σ by choosing a horoball neighbourhood N of the
cusps of M . There is a natural Euclidean metric on ∂N and we say the length
of σ is the length of the shortest curve on ∂N with the slope of σ. In general,
the length of σ depends on the choice of horoball neighbourhood. However, if
M has only a single cusp, then there is a unique choice of maximal horoball.
Given a slope p/q for S3

K , we will use `K(p/q) to denote the length of p/q
with respect this maximal horoball neighbourhood.

2.1. Slope lengths

The first step is to verify the following proposition, which is a mild refor-
mulation of [12, Theorem 3.1].

Lemma 7. Let K ⊆ S3 be a hyperbolic knot. There are constants C1 and C2

such that if K ′ is a hyperbolic knot with S3
K(p/q) ∼= S3

K′(p/q′) for `K′(p/q′) >
C1 and |p|+ |q| > C2, then K = K ′ and q = q′.

Although a proof is provided for completeness, the reader should note
that our proof is essentially the same as Lackenby’s except with minor
changes to emphasise the role of slope length. Three theorems from hyper-
bolic geometry are needed in the proof. They are taken largely unchanged
from Section 2 of [12], where further discussion can be found. First, a precise
version of Thurston’s hyperbolic Dehn surgery theorem is required.

Theorem 8. [12, Theorem 2.1]. Let M be a compact orientable hyperbolic
3-manifold with toroidal boundary components T1, . . . , Tn. Let (σi1, . . . , σ

i
n)

be a sequence of slopes, where σij lies on Tj and σij 6= σi
′

j if i 6= i′. Then
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for all sufficiently large i, M(σi1, . . . , σ
i
n) is hyperbolic and the cores of the

filling solid tori are geodesics with lengths tending to zero as i→∞. More-
over there is ε > 0 independent of i such that all other primitive geodesics
in M(σi1, . . . , σ

i
n) have length at least ε. For any horoball neighbourhood N

of the cusps of M , there is a horoball neighbourhood Ni of the cusps of
M(σi1, . . . , σ

i
n) such that the inclusion

M \N →M(σi1, . . . , σ
i
n) \Ni

is bilipschitz with constant tending to one as i→∞.

Secondly, we need to know that for an infinite collection of hyperbolic
3-manifolds of bounded volume, some subsequence of them can be obtained
by Dehn filling on another hyperbolic manifold with more cusps. See [19] or
[3, Theorem E.4.8].

Theorem 9. [12, Theorem 2.2]. Let Mi be a sequence of distinct oriented
hyperbolic 3-manifolds with volume bounded above by V . Then there is a hy-
perbolic 3-manifold M with volume at most V and toroidal boundary compo-
nents T1, . . . , Tn such that there is a subsequence of the Mi and a sequence
of slopes (σi1, . . . , σ

i
n) such that

Mi = M(σi1, . . . , σ
i
n)

and σij 6= σi
′

j for i 6= i′ in the subsequence.

Finally we need explicit bounds on the volume of hyperbolic 3-manifolds
in terms of the length of filling curves. The upper bound is due to Thurston
[19] and the lower bound is due to Futer, Kalfagianni and Purcell [5, Theo-
rem 1.1].

Theorem 10. [12, Theorem 2.4] Let S3
K be the complement of a hyperbolic

knot in S3. If the slope p/q has length ` = `K(p/q) > 2π, then S3
K(p/q) is

hyperbolic with volume satisfying(
1−

(
2π

`

)2
)3/2

vol(S3
K) ≤ vol(S3

K(p/q)) < vol(S3
K).

We are ready to proceed with the proof of Lemma 7.

Proof of Lemma 7. If the constants C1 and C2 do not exist, then there is a
sequence of hyperbolic knots Ki with slopes pi/qi and pi/q

′
i such that
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(a) S3
K(pi/qi) ∼= S3

Ki
(pi/q

′
i) for all i,

(b) `Ki
(p′i/q

′
i)→∞ and |pi|+ |qi| → ∞ as i→∞, but

(c) for all i we have Ki 6= K or q′i 6= qi.

We will show that such a sequence results in a contradiction.
First assume the sequence S3

Ki
includes infinitely many distinct man-

ifolds. By passing to a subsequence, we may assume that the S3
Ki

are all
distinct. Since `Ki

(pi/q
′
i) will exceed 4π for i large enough, Theorem 10

shows that
(
3
4

)3/2
vol(S3

Ki
) ≤ vol(S3

Ki
(pi/q

′
i)) for i sufficiently large. How-

ever vol(S3
Ki

(pi/q
′
i)) = vol(S3

K(pi/qi)) is bounded above by vol(S3
K). This

gives the upper bound vol(S3
Ki

) ≤ (34)3/2 vol(S3
K) for all sufficiently large i.

Thus we see that there is some V such that vol(S3
Ki

) < V for all i.
By Theorem 9 we can pass to a further subsequence and assume that

there is a hyperbolic M of finite volume with toroidal boundary components
T1, . . . , Tn, Tn+1 and a sequence of slopes (σi1, . . . , σ

i
n) on T1, . . . , Tn such that

σij 6= σi
′

j for i 6= i′ and S3
Ki

∼= M(σi1, . . . , σ
i
n, ?), where ? denotes that we are

leaving Tn+1 unfilled. As the knot complements S3
Ki

are distinct manifolds,
we have n ≥ 1. We may consider the slope pi/q

′
i as slope a σi on Tn+1. Thus,

we get a sequence of slopes σi such that S3
Ki

(pi/q
′
i)
∼= M(σi1, . . . , σ

i
n, σ

i) for
all i.

Let N be a horoball neighbourhood of the cusps of M . By Theorem 8,
in each S3

Ki
there is a horoball neighbourhood Ni of the cusp such that the

inclusion M \N → S3
Ki
\Ni is bilipschitz with constant approaching one.

Thus since `Ki
(pi/q

′
i)→∞ the length of σi as measured in ∂N must also

tend to infinity. In particular, by taking a further subsequence we can assume
the slopes σi are distinct.

Thus Theorem 8 shows that the cores of the filling solid tori in
M(σi1, . . . , σ

i
n, σ

i) are geodesics of length tending to zero. Thus for any ε > 0,
M(σi1, . . . , σ

i
n, σ

i) contains at least n+ 1 ≥ 2 closed geodesics of length less
than ε when i sufficiently large. However, Theorem 8 also shows that there
is δ > 0, such that for i sufficiently large the core of S3

K(pi/qi) is the only
geodesic of length less than δ. This is clearly a contradiction.

Thus we can assume that S3
Ki

include only finitely many distinct mani-
folds. By passing to a subsequence if necessary, we can further assume that
there is some K ′ ⊆ S3 such that S3

Ki

∼= S3
K′ for all i.

We may assume that the homemorphisms S3
K(pi/qi)→ S3

K′(pi/q
′
i) map

the shortest closed geodesic in S3
K(pi/qi) to shortest geodesic in S3

K′(pi/q
′
i).

However for i sufficiently large Theorem 8 shows this shortest geodesic is
the core of the filling solid tori in both manifolds. Thus the homeomorphism
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restricts to give a homeomorphism of knot complements S3
K′
∼= S3

K . By the
knot complement theorem this shows that K = K ′ and that the meridian of
K is mapped to the meridian of K ′ [8]. Since the homeomorphism must also
map null-homologous curves to null-homologous curves it must also preserve
longitudes, showing that we also have pi/q

′
i = pi/qi. This contradicts the

initial assumptions on the pi/q
′
i and Ki. �

The following lemma provides the slope length bounds required to apply
Lemma 7.

Lemma 11. Let K ⊆ S3 be a hyperbolic knot of genus g. Then

`K(p/q) ≥
√

3 |q|
6

and `K(p/q) ≥
√

3 |p|
6(2g − 1)

.

Proof. By using bounds on the area of a cusp, Cooper and Lackenby show
that [4, Lemma 2.1]

`K(α) ≥
√

3 ∆(α, β)

`K(β)
,

where α and β are any two slopes on the boundary of K and ∆(α, β) denotes
their distance (cf. [1, Lemma 8.1]). Since ∆(1/0, p/q) = |q| and `K(1/0) ≤ 6
by the 6-theorem [1, 11], this gives the bound on `K(p/q) in terms of |q|.
Since ∆(0/1, p/q) = |p| and `K(0/1) ≤ 6(2g − 1) by [1, Theorem 5.1], this
also gives the bound on `K(p/q) in terms of |p|. �

2.2. Hyperbolic surgeries on satellite knots

We also need to understand when non-hyperbolic knots can have hyperbolic
surgeries.

Lemma 12. Suppose that K ′ is a satellite knot with S3
K′(p/q) hyperbolic.

Then there is a hyperbolic knot K ′′ with S3
K′(p/q) ∼= S3

K′′(p/q′) for some
q′ > q. Moreover if q ≥ 2 or K ′ is fibred, then g(K ′′) ≤ g(K ′).

Proof. Let T be an incompressible torus in S3 \K ′. We can consider K ′ as
a knot in the solid torus V bounded by T . Thus we can consider K ′ as a
satellite with companion given by the core K ′′ of V . By choosing T to ensure
that S3 \K ′′ contains no further incompressible tori, we can assume that
K ′′ is not a satellite knot. Hence by the work of Thurston K ′′ is a torus knot
or a hyperbolic knot [18]. Since S3

K′(p/q) is hyperbolic, it is atoroidal and
irreducible. Consequently the Dehn filling when considered as a surgery on
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V must produce a S1 ×D2. However, Gabai has classified knots in S1 ×D2

with non-trivial S1 ×D2 surgeries, showing that K ′ is either a torus knot or
a 1-bridge braid in V [6]. Moreover since S1 ×D2 fillings on 1-bridge braids
only occur for integer surgery slopes, K ′ is a cable of K ′′ unless q = 1. In
either event, we have that

S3
K′(p/q) ∼= S3

K′′(p/q′),

for some q′. However, it is known that q′ = qw2, where w > 1 is the wind-
ing number of K ′ in V [7, Lemma 3.3]. Surgery on a torus knot results in
either a Seifert fibered space or a reducible manifold [14]. Since neither a
Seifert fibered space nor a reducible manifold can be a hyperbolic manifold,
it follows that K ′′ cannot be a torus knot. Therefore K ′′ is hyperbolic as
required.

If K ′ is fibred, then K ′′ must also be fibred [9], thus the inequality
g(K ′′) ≤ g(K ′), follows by considering the degrees of their Alexander poly-
nomials. If q ≥ 2, then K ′ is a cable of K ′′. It is known that g(K ′) ≥ g(K ′′)
in this case [17]. �

2.3. Proof of Theorem 2 and Theorem 3

Let K be a hyperbolic knot. Suppose that S3
K(p/q) ∼= S3

K′(p/q) for some K ′

and some p/q and that one of the following two conditions hold:

1) q ≥ 3 or

2) either K is an L-space knot and q ≥ 2 or q = 1 and p > 0.

Assume also that |p|+ |q| is large enough to guarantee S3
p/q(K) is hyperbolic.

Since torus knots have no hyperbolic surgeries, Thurston’s work shows that
K ′ is either a hyperbolic knot or a satellite knot [18]. If K ′ is a satellite, then
Lemma 12 shows there is a hyperbolic knot K ′′ with S3

K′′(p/q′) ∼= S3
K(p/q)

for some q′ > q and g(K ′′) ≤ g(K ′). In either event, there is a hyperbolic
knot L with g(L) ≤ g(K ′) such that S3

L(p/q′) ∼= S3
K(p/q) for q′ ≥ q. Thus to

show that p/q is a characterising slope for K it suffices to show that the
only possibility is q = q′ and L = K.

Lemma 11 shows that `L(p/q′) ≥
√
3 |q|
6 . So Lemma 7 shows that there

is C such that q > C implies that K = L and q′ = q. This implies that
p/q is a characterising slope if q > C. Thus we assume from now on that
q ≤ C. However by Theorem 5 and Theorem 6, if we assume further that
|p| ≥ 12 + 4C2 + 4Cg(K), then g(K) = g(K ′) ≥ g(L). Therefore for |p| large
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enough Lemma 11 shows that `L(p/q′) ≥
√
3 |p|

6(2g(K)−1) . Hence by taking |p| even

larger if necessary, Lemma 7 applies again to show that q = q′ and K = L,
as required. This concludes the proof and the paper.
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