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Let C be an odd degree hyperelliptic curve over a number field K
and J be its Jacobian. Let Jχ be the quadratic twist of J by a
quadratic character χ ∈ Hom(GK , {±1}). For every non-negative
integer r, we show the probability that dimF2(Sel2(Jχ/K)) = r for
a certain family of quadratic twists can be given explicitly condi-
tional on some heuristic hypothesis.
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1218 Myungjun Yu

1. Introduction

Let E be an elliptic curve over a number field K. Let Sel2(E/K) denote the
2-Selmer group of E over K. We write Eχ for the quadratic twist of E by a
quadratic character χ ∈ Hom(GK , {±1}). Define

d2(E/K) := dimF2
(Sel2(E/K))− dimF2

(E(K)[2]),

where E(K)[2] is the group of K-rational 2-torsion elements of E. Let
Prob(?) denote the probability of an event ?. Let E1 denote the elliptic
curve y2 = x3 − x. Heath-Brown [5] proved that

(1) Prob(d2(Eχ1 /Q)) = d) =
fd
2

:=
1

2

∏
j≥1

(1 + 2−j)−1
d∏
j=1

2

2j − 1
.

Swinnerton-Dyer [13] and Kane [6] generalized this by obtaining the same
distribution for the family of quadratic twists of any E over Q with E[2] ⊂
E(Q) with no rational cyclic 4-isogeny.

Remark 1.1. There are infinitely many quadratic characters. Therefore,
in order for the notation Prob(d2(Eχ/Q)) = d) to make sense, we need to
fix an ordering of quadratic characters χ. We may order χ by the conductor
or by the discriminant. We could also order χ by the largest prime at which
χ is ramified. In this case, if χ1, χ2, . . . , χn have the same largest ramified
prime, we order them arbitrarily. This ordering is first studied by Klagsbrun,
Mazur and Rubin [7]. It seems to be believed that the distribution in (1)
holds for an arbitrary elliptic curve E over Q with “any reasonable ordering”
of quadratic characters.

Poonen and Rains [12] noticed that the 2-Selmer groups (in fact the p-
Selmer groups) can be viewed as an intersection of two maximal isotropic
subspaces (or Lagrangian subspaces) A and B in a (infinite dimensional)
metabolic space and showed that the probability of two maximal isotropic
subspaces having the intersection of dimension r is equal to fd/2. In other
words, if one believes that A and B appear randomly in the set of maximal
isotropic subspaces, one will get the same distribution as in (1) for the family
of all elliptic curves over a general number fieldK. In a similar fashion to this,
Bhargava, Kane, Lenstra, Poonen, and Rains [3] found plausible models for
Mordell-Weil groups, Selmer groups, and Shafarevich-Tate groups of elliptic
curves in terms of random maximal isotropic subspaces.
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The distribution of Selmer ranks 1219

When we restrict the family of all elliptic curves over K to the family
of quadratic twists however, it requires a little bit more care. For an elliptic
curve E over K, there could be a bias in the parity of Selmer ranks in the
family of quadratic twists. For example, Dokchitser-Dokchitser [4] showed
that d2(Eχ/K) has a constant parity for any quadratic twists Eχ if and only
if K has no real embedding and E acquires everywhere good reduction over
an abelian extension of K. Klagsbrun, Mazur and Rubin [7] were able to
quantify this bias and called it the disparity. Yu [14] generalized this to the
case of Jacobians of odd degree hyperelliptic curves over K.

Theorem 1.2 (Klagsbrun-Mazur-Rubin, Yu). Let C be an odd degree
hyperelliptic curve and J be its Jacobian. Then we have

Prob (dimF2
(Sel2(Jχ/K)) is even) =

1

2
+ δ(J/K),

where δ(J/K) is defined in Definition 8.11.

Remark 1.3. In [7] and [14], the disparity constant is defined by 2δ(J/K);
we follow the definition in [8].

Remark 1.4. Theorem 1.2 has been recently generalized further to the
case of principally polarised abelian varieties by Morgan [10].

It seems that 2-Selmer groups of Jacobians of (odd degree) hyperelliptic
curves of fixed genus g ≥ 2 behave (statistically) similarly to those of elliptic
curves. For example, Bhargava and Gross [2] showed that when odd degree
hyperelliptic curves of fixed genus g ≥ 1 (elliptic curves if g = 1) over Q are
ordered by height, the average size of the 2-Selmer groups of their Jacobians
is 3. As a corollary, it follows that the average of the 2-Selmer ranks of
Jacobians of odd degree hyperelliptic curves of genus g is bounded above
by 3/2. For the Jacobians of odd degree hyperelliptic curves, there is a
conjecture ([12, Conjecture 1.7]) that predicts the same distribution as in (1).
For the Jacobians of even degree hyperelliptic curves, due to the presence of
a nontrivial torsor, which contributes systematically on the 2-Selmer groups,
we have a conjecture with different numbers. See [12, Conjecture 1.8] and
[12, Example 4.20].

For the distribution of 2-Selmer ranks of elliptic curves in the family of
quadratic twists, Klagsbrun-Mazur-Rubin showed the following [8]:
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1220 Myungjun Yu

Theorem 1.5 (Klagsbrun-Mazur-Rubin). Let E be elliptic curve over
a number field K with

Gal(K(E[2])/K) ∼= S3

For every m≥0 and X>0 let m 7→ Bm(X)=∪kBm,k,X be the ‘fan-structure’
of collections of quadratic characters of K. Then for every n ≥ 0,

lim
m→∞

lim
X→∞

|{χ ∈ Bm(X) : dimF2
Sel2(Eχ/K) = n}|

|Bm(X)|

=

{
(1

2 + δ(E/K))fn if n is even,

(1
2 − δ(E/K))fn if n is odd,

where δ(E/K) is given by Definition 8.11.

Remark 1.6. In the statement of [8, Theorem A], there is a misprint. The
words “even” and “odd” should be switched as in the equality of Theo-
rem 1.5.

They proved Theorem 1.5 by finding a certain Markov model for 2-
Selmer ranks of elliptic curves in the family of quadratic twists and showing
the density of 2-Selmer ranks is given by the equilibrium distribution.

The main goal of this paper is to give an evidence that the distribution
of 2-Selmer ranks of Jacobians of (odd degree) hyperelliptic curves in the
family of quadratic twists should be the same as that of elliptic curves in the
family of quadratic twists. In fact, assuming an “equidistribution” condition
(see Definition 5.8) on certain families of Lagrangian subspaces, we prove
Theorem 1.5 holds for Jacobians of odd degree hyperelliptic curves. Namely,
we prove

Theorem 1.7. Let C : y2 = f(x) be an hyperelliptic curve of degree 2g + 1
over a number field K and let J be the Jacobian of C. Suppose that

Gal(K(J [2])/K) ∼= S2g+1.

Suppose that C has UDRL (see Definition 5.8). For every m ≥ 0 and X > 0
let m 7→ Bm(X) = ∪kBm,k,X be the ‘fan-structure’ of collections of quadratic
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The distribution of Selmer ranks 1221

characters of K as in Definition 8.9. Then for every n ≥ 0,

lim
m→∞

lim
X→∞

|{χ ∈ Bm(X) : dimF2
(Sel2(Jχ/K)) = n}|

|Bm(X)|

=

{
(1

2 + δ(J/K))fn if n is even,

(1
2 − δ(J/K))fn if n is odd,

where δ(J/K) is given by Definition 8.11.

Since an elliptic curve satisfying Gal(K(E[2])/K) ∼= S3 has UDRL (see
Remark 5.11), this theorem can be regarded as a generalization of Theo-
rem 1.5. As in [8] for elliptic curves, a direct application of Theorem 1.7
is

Corollary 1.8. Suppose that all conditions of Theorem 1.7 hold. With no-
tation as in Theorem 1.7, the average Mordell-Weil rank of the quadratic
twists of J satisfies

lim
m→∞

lim
X→∞

∑
χ∈Bm(X) rk(Jχ(K))

|Bm(X)|
< 1.2646 + 0.1211 · δ(J/K) < 1.3252,

where rk(Jχ(K)) denotes the Mordell-Weil rank of Jχ over K.

We rely heavily on the theory built in [8], so we keep notation consistent
with [8] for the convenience of the reader.

2. Metabolic spaces and Lagrangian subspaces

For this section, fix a finite dimensional Fp-vector space V .

Definition 2.1. A quadratic form on V is a function Q : V → Fp such that

• Q(av) = a2Q(v) for every a ∈ Fp and v ∈ V ,

• the map (v, w)Q := Q(v + w)−Q(v)−Q(w) is a bilinear form.

We say that X is a Lagrangian subspace or maximal isotropic subspace of V
if Q(X) = 0 and X = X⊥, where X⊥ denotes the orthogonal complement
of X in the bilinear form (, )Q.

A metabolic space (V,Q) is a vector space such that (, )Q is nondegen-
erate and V contains a Lagrangian subspace. When Q is understood or not
important, we just call V a metabolic space. Note that if X is a Lagrangian
subspace of a metabolic space V , then dimFp

(V ) = 2 dimFp
(X).
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Lemma 2.2. Suppose that (V,Q) is a metabolic space, and let X,Y, Z are
Lagrangian subspaces of V . Then the following statements are true.

(i) Suppose that W is contained in a Lagrangian subspace of V . Then W +
W⊥ ∩X is a Lagrangian subspace of V . In particular, (W +W⊥ ∩
X)/W is a Lagrangian subspace of the metabolic space W⊥/W with
the quadratic form induced by Q.

(ii) dimFp
((X + Y ) ∩ Z) ≡ dimFp

(X ∩ Z + Y ∩ Z) (mod 2),

(iii) dimFp
(X/(X∩Y )) ≡ dimFp

(Y/(Y ∩Z))+dimFp
(Z/(Z∩X)) (mod 2).

Proof. (i) already appeared in [12, Remark 2.4(b)] and is not difficult to
prove. See [7, Lemma 2.3] and [7, Corollary 2.5] for (ii) and (iii), respectively.

�

Fix a finite dimensional Fp-vector space T with a continuous action of
GK such that there exists a bilinear, alternating, nondegenerate and GK-
equivariant pairing

T × T → µp,

where µp is the multiplicative group of p-th roots of unity. For every place
v of K, the cup product induces a pairing

H1(Kv, T )×H1(Kv, T )
∪−→ H2(Kv, T ⊗ T ) −→ H2(Kv,µp).

For every v, there is a canonical inclusion H2(Kv,µp) ↪→ Fp that is an iso-
morphism if v is nonarchimedean. The local Tate pairing is the
composition

(2) 〈 , 〉v : H1(Kv, T )×H1(Kv, T ) −→ Fp.

Definition 2.3. Suppose v is a place of K. We say that Q is a Tate
quadratic form on H1(Kv, T ) if the bilinear form induced by Q (see Def-
inition 2.1) is 〈 , 〉v in (2).

For the rest of the paper, we fix a hyperelliptic curve C : y2 = f(x) with
deg(f) = 2g + 1 and Gal(f) ∼= S2g+1. Let J be the Jacobian of C. Our main
interest is when T = J [2], the group of 2-torsion elements of J . In such a
case, there is a canonical way to construct a Tate quadratic form qv on
H1(Kv, J [2]) for every place v of K. This quadratic form qv is induced by
the Heisenberg group (see [14, Definition 5.5]).
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The distribution of Selmer ranks 1223

We recall for every abelian variety A/Kv and ψ ∈ Hom(GKv
, {±1}),

there is a canonical isomorphism Aψ[2] ∼= A[2] and the Kummer map

A(Kv)/2A(Kv) ↪→ H1(Kv, A[2]).

Lemma 2.4. For every place v and ψ ∈ C(Kv), the space

Im(Jψ(Kv)/2J
ψ(Kv)→ H1(Kv, J

ψ[2]) ∼= H1(Kv, J [2]))

is a Lagrangian subspace of (H1(Kv, J [2]), qv).

Proof. The lemma follows from [12, Proposition 4.11] and [14, Theorem 5.10].
�

3. Counting Lagrangian subspaces

In this section, we count the number of Lagrangian subspaces of a metabolic
space under various conditions, which will turn out to be crucial in our
heuristic model. For this section, we fix a metabolic space V of dimension
2n over Fp.

Definition 3.1. Define

LV := {Lagrangian subspaces of V }.

Definition 3.2. Let A and B be Lagrangian subspaces of V such that
dimFp

(A ∩B) = i. Let

bn,i(j) := #{C ∈ LV : dimFp
(C ∩B) = 0 and dimFp

(C ∩A) = j}.

Remark 3.3. By Definition 3.2, if i+ j > n, then bn,i(j) = 0.

Remark 3.4. Suppose Y is contained in a Lagrangian subspace of V . Then
Y ⊥/Y is a metabolic space (with quadratic form induced by that attached
to V ). Note that there is a map (Lemma 2.2(i))

ΦY : LV −→ LY ⊥/Y

by sending W to (W ∩ Y ⊥ + Y )/Y. The following lemma compute bn,i(j)
by investigating the map ΦY .

Lemma 3.5. We have
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(i) If i ≥ 1, bn,i(j) = pn−1bn−1,i−1(j).

(ii) If i ≥ 1, bn,i(j) = pni−
i(i+1)

2 bn−i,0(j).

(iii) If j ≥ 1, bn,0(j) = bn−j,0(0)
∏j
k=1

pn−k+1−1
pk−1 = bn−j,0(0)

∏n−j
k=1

pn−k+1−1
pk−1 .

(iv)
∑n

k=0 bn,0(k) = pn(n−1)/2.

(v) If n 6≡ i+ j (mod 2), then bn,i(j) = 0.

(vi) b2n,0(0) = p(2n)(2n−1)/2 −
∑n

k=1(b2n−2k,0(0)
∏2k
i=1

p2n+1−i−1
p2k+1−i−1 ).

(vii) b2n,0(0) =
∏n
k=1 (p2k−1 − 1)p2k−2.

Proof. Choose two Lagrangian subspaces A and B of V so that dimFp
(A ∩

B) = i. Suppose that

A has a basis {a1, a2, · · · , ai, ai+1, · · · , an},
B has a basis {a1, a2, · · · , ai, an+1, · · · , a2n−i}.

Let (a1) denote the subspace generated by a1. Consider the map (Remark 3.4)

Φ(a1) : LV −→ L(a1)⊥/(a1).

Put A′ = A/(a1) and B′ = B/(a1). Note that dimFp
(A′ ∩B′) = i− 1. If

D ∈ {C ∈ LV | dimFp
(C ∩B) = 0 and dimFp

(C ∩A) = j},

then Φ(a1)(D) is a Lagrangian subspace of (a1)⊥/(a1), dimFp
(Φ(a1)(D) ∩

B′) = 0, and dimFp
(Φ(a1)(D) ∩A′) = j. Conversely, for C ′ ∈ L(a1)⊥/(a1) such

that

dimFp
(C ′ ∩B′) = 0 and dimFp

(C ′ ∩A′) = j,

there are pn−1 + 1 elements in the fiber of C ′ in the map

Φ(a1) : LV −→ L(a1)⊥/(a1)

by [12, Proposition 2.6(a)]. Every Lagrangian subspace F in the fiber satisfies
dimFp

(F ∩B) = 0 and dimFp
(F ∩A) = j except only one that contains a1.

In other words, there is a pn−1-to-one correspondence between the following
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The distribution of Selmer ranks 1225

two sets:

{C ∈ LV : dimFp
(C ∩B) = 0 and dimFp

(C ∩A) = j}, and

{C ′ ∈ L(a1)⊥/(a1) : dimFp
(C ′ ∩B′) = 0 and dimFp

(C ′ ∩A′) = j}.

Therefore, (i) follows. (ii) follows easily from (i).
Now we show (iii). We suppose A and B are Lagrangian subspaces of V

such that A ∩B = {0}. Note that

∣∣{M ⊆ Fn
p : dimFp

(M) = j}
∣∣ =

j∏
k=1

pn−k+1 − 1

pk − 1
.

Fix a dimension j subspace D of A. Put A′′ = A/D and B′′ = (B ∩D⊥ +
D)/D. The map

ΦD : LV −→ LD⊥/D

takes a Lagrangian subspace C (of V ) such that C ∩B = {0} and C ∩A = D
to a Lagrangian subspace ΦD(C) of D⊥/D such that ΦD(C) ∩B′′ = {0} and
ΦD(C) ∩A′′ = {0}. Conversely, it is easy to see that a Lagrangian space W
of D⊥/D such that W ∩A′′ = {0} and W ∩B′′ = {0} has a unique element
CW in the fiber of W satisfying CW ∩B = {0} and CW ∩A = D. In other
words, there is an one-to-one correspondence between the following two sets:

{C ∈ LV : C ∩A = D and C ∩B = {0}}, and

{C ′′ ∈ LD⊥/D : C ′′ ∩A′′ = {0} and C ′′ ∩B′′ = {0}}.

Therefore (iii) follows. To see (iv), combine Proposition 2.6 (b) and (e) in
[12]. (v) follows from Lemma 2.2(ii). We obtain (vi) by combining (iii), (iv),
and (v). Finally Lemma 3.8 implies (vii). �

To prove Lemma 3.8, we recall some equalities from q-binomial coefficients.

Definition 3.6. Define (a)n := (a; q)n := (1− a)(1− aq) · · · (1− aqn−1),[
n

m

]
:=

{
(q)n(q)−1

m (q)−1
n−m if 0 5 m 5 n

0 otherwise.

Lemma 3.7. We have

(i)
m∑
j=0

(−1)j
[
m

j

]
=

{
(q; q2)n if m = 2n

0 if m is odd.
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(ii)
[
2n−j
k

][
2n
j

]
=
[
j+k
j

][
2n
j+k

]
.

(iii) (1)N = 0 if N > 0 and (1)0 = 1.

(iv) (z)N =
∑N

j=0

[
N
j

]
(−1)jzjqj(j−1)/2.

Proof. (ii) and (iii) are easy to prove by the definition. (i) follows from [1,
Theorem 2.3.4] and (iv) follows from [1, Theorem 2.3.3]. �

Lemma 3.8. Let d0 = 0. Then d2n =
∏n
k=1(p2k−1 − 1)p2k−2 for all n ≥ 1

if and only if

d2n = p2n(2n−1)/2 −
n∑
k=1

(
d2n−2k

2k∏
i=1

p2n+1−i − 1

p2k+1−i − 1

)
for all n ≥ 1.

Proof. This proof was suggested by Dennis Eichhorn. In the proof, we take
q = 1/p. Assuming d2n =

∏n
k=1(p2k−1 − 1)p2k−2, we show that

d2n = p
2n(2n−1)

2 −
n∑
k=1

d2n−2k
(p2n − 1)(p2n−1 − 1) · · · (p2n−2k+1 − 1)

(p2k − 1)(p2k−1 − 1) · · · (p1 − 1)
,

and the converse follows by induction. If we put e2n = d2n/p
2n(2n−1)/2, it is

equivalent to proving

e2n = 1−
n∑
k=1

e2n−2k

[
2n

2k

]
(1/p)2k(2k−1)/2.

Note that e2k = (1/p; 1/p2)k. Letting e2k−1 = 0, it is equivalent to proving

1 =

2n∑
j=0

e2n−j

[
2n

j

]
(1/p)j(j−1)/2 =

2n∑
j=0

2n−j∑
k=0

(−1)k
[
2n− j
k

][
2n

j

]
(1/p)j(j−1)/2

=

2n∑
j=0

2n−j∑
k=0

(−1)k
[
j + k

j

][
2n

j + k

]
(1/p)j(j−1)/2.

Let the last summation be [D]. The second equality comes from (i)
of Lemma 3.7. The third equlity follows from (ii) of Lemma 3.7. Putting
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m = j + k, we re-index the double sum so that

[D] =

2n∑
m=0

(−1)m
[
2n

m

] m∑
j=0

(−1)j
[
m

j

]
(1/p)j(j−1)/2.

Thus, by (iii) and (iv) of Lemma 3.7, the inner sum of [D] vanishes unless
m = 0, in which case the inner sum = 1. Therefore [D] = 1. �

4. Local conditions induced by local characters and
Selmer groups

Let C : y2 = f(x) be a hyperelliptic curve over a number field K of degree
2g + 1 and let J be its Jacobian. We write ∞ for the point at infinity of the
affine model y2 = f(x). Let α1, α2, . . . , α2g+1 be the roots of f(x). Then the
2-torsion group J [2] has a basis {(α1, 0)−∞, (α2, 0)−∞, . . . , (α2g, 0)−∞},
and (α2g+1, 0)−∞ =

∑2g
i=1((αi, 0)−∞) in J . The action of Gal(K/K) on

the roots of f induces that on J [2]. Then we can identify Gal(K(J [2])/K)
with Gal(f).

We fix a finite set Σ of places of K containing all primes where J has
bad reduction, all primes above 2, and all archimedean places. For the rest
of the paper, we assume that Gal(K(J [2])/K) ∼= S2g+1, where S2g+1 denotes
the symmetric group with 2g + 1 letters. By Hilbert’s irreducibility theorem,
most hyperelliptic curves of degree 2g + 1 satisfy this assumption.

Definition 4.1. Let L be either a local field or a global field. Define

C(L) := Hom(GL, {±1}),

where GL denotes the absolute Galois group of L. If L is a local field, we
often identify C(L) with Hom(L×, {±1}) via the local reciprocity map. We
let Cram(L) denote the set of ramified quadratic characters.

Definition 4.2. Let q denote a prime of K. We write N(q) for the norm
of q. Define

Pn := {q : q /∈ Σ and dimF2
(J(Kq)[2]) = n} for 0 ≤ n ≤ 2g,

P := P0
∐
P1
∐
P2
∐
· · ·
∐
P2g = {q : q /∈ Σ},

Pn(X) := {q : q ∈ Pn and N(q) < X}.

Define the width function w : P → {0, 1, 2, · · · , 2g} by w(q) := n if q ∈ Pn.
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Remark 4.3. In the definition of Pn, the condition dimF2
(J(Kq)[2]) = n

is equivalent to dimF2
(J(Kq)/2J(Kq)) = n by [14, Lemma 2.11(i)].

Let v be a place of K. Recall that we attach a canonical Tate quadratic
form qv to H1(Kv, J [2]). See the paragraph after Definition 2.3.

Definition 4.4. Let v be a place of K. Let Kur
v denote the maximal un-

ramified extension of Kv. Define

H(qv) := {Lagrangian subspaces of (H1(Kv, J [2]), qv)},

and if v /∈ Σ, let

H1
ur(Kv, J [2]) := ker(H1(Kv, J [2])→ H1(Kur

v , J [2])),

and

Hram(qv) := {X ∈ H(qv) : X ∩H1
ur(Kv, J [2]) = {0}}.

Definition 4.5. For every place v of K, define

αv : C(Kv) −→ H(qv)

sending ψ ∈ C(Kv) to

Im(Jψ(Kv)/2J
ψ(Kv)→ H1(Kv, J

ψ[2]) ∼= H1(Kv, J [2])),

where the last isomorphism is induced by the canonical isomorphism Jψ[2] ∼=
J [2]. The map αv is well-defined by Lemma 2.4.

Lemma 4.6. Suppose J has good reduction at v and ψ ∈ C(Kv). If ψ ∈
C(Kv) is unramified, then αv(ψ) = H1

ur(Kv, J [2]). If ψ ∈ Cram(Kv), then
αv(ψ) ∈ Hram(qv).

Proof. It is well known that if J has good reduction at v, then we have
αv(1v) = H1

ur(Kv, J [2]). The first assertion follows from [14, Lemma 2.15].
The second assertion follows from [14, Lemma 2.16]. �

Remark 4.7. If v ∈ P1, then |Hram(qv)| = 1 by Lemma 3.5(iv). Therefore
if v ∈ P1, the map αv sends every element in Cram(Kv) to the single element
in Hram(qv). If C is an elliptic curve and v ∈ P2, then the map αv gives a
bijection Cram(Kv)→ Hram(qv) by [7, Proposition 5.8].
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Definition 4.8. Let

D := {squarefree products of primes q ∈ P1 ∪ P2 ∪ · · · ∪ P2g},

and if d ∈ D let di be the product of all primes dividing d that lie in Pi, so
d = d1d2 · · · d2g. For every d ∈ D, define

• w(d) :=
∑

q|dw(q) =
∑2g

n=1 n|{q : q | dn}|, the width of d,

• Σ(d) := Σ ∪ {q : q | d} ⊂ Σ ∪ P1 ∪ · · · ∪ P2g,

• Ωd :=
∏
v∈Σ C(Kv) ×

∏
q|d Cram(Kq),

• ΩS
d := S ×

∏
q|d Cram(Kq) for every subset S ⊂ Ω1 =

∏
v∈Σ C(Kv),

• ηd,q : ΩS
dq → ΩS

d the projection map, if dq ∈ D.

Definition 4.9. For every d ∈ D and ω = (ωv)v ∈ Ωd, we define the Selmer
group Sel2(J, ω) as follows. Let αv is as in Definition 4.5. Define

Sel2(J, ω) := {x ∈ H1(K,J [2]) : resv(x) ∈ αv(ωv) if v ∈ Σ(d), and

resv(x) ∈ H1
ur(Kv, J [2]) otherwise},

where resv : H1(K,J [2])→ H1(Kv, J [2]) is the restriction map. We also de-
fine

rk(ω) := dimF2
(Sel2(J, ω)).

Definition 4.10. Define

Sel2(J, ω)(q) := ker

H1(K,J [2])
⊕resv−−−→

⊕
v 6=q

H1(Kv, J [2])/αv(ωv)

 ,

Sel2(J, ω)(q) := ker
(

Sel2(J, ω)
resq−−→ H1(Kq, J [2])

)
.

Lemma 4.11. Let q ∈ Pn. Then we have

dimF2
(Sel2(J, ω)(q))− dimF2

(Sel2(J, ω)(q)) = n.

Proof. The assertion follows from the Poitou-Tate duality. For example, see
[9, Theorem 2.3.4]. �
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It follows from Lemma 4.11 that if ω′ ∈ η−1
d,q(ω) for q ∈ Pn and ω ∈ Ωd,

then |rk(ω)− rk(ω′)| ≤ n. If we let η1 : Ωd → Ω1 be the projection, we have

rk(ω) ≤ rk(η1(ω)) + w(d)

by induction. Therefore we have

Proposition 4.12. Let d ∈ D and ω ∈ Ωd. Then

rk(ω) ≤ w(d) + max{rk(ω̄) : ω̄ ∈ Ω1}.

5. The heuristic assumption

We continue to assume that Gal(K(J [2])/K) ∼= S2g+1. The goal of this sec-
tion is to explain our heuristic assumption stated in Definition 5.8.

Definition 5.1. Fix d ∈ D and ω ∈ Ωd. For every prime q 6∈ Σ(d), define

• Vq(ω) := Im(Sel2(J, ω)(q) −→ H1(Kq, J [2])),

• Vq,ur := H1
ur(Kq, J [2]),

• Pn,i := {q ∈ Pn : dimF2
(Vq(ω) ∩ Vq,ur) = i},

• Pn,i(X) := Pn,i ∩ Pn(X).

Then it follows that Vq,ur and Vq(ω) are Lagrangian subspaces of the
metabolic space H1(Kq, J [2]) from Definition 4.5, Lemma 4.6 and the
following lemma.

Lemma 5.2. For every prime q and ω∈Ωd, the space Vq(ω) is a Lagrangian
subspace of H1(Kq, J [2]).

Proof. Let x ∈ Sel2(J, ω)(q). Recall that for every place v, qv is a Tate
quadratic form on H1(Kv, J [2]). We have qv(x) = 0 for v 6= q by Lemma
2.4 and the definition of Lagrangian spaces. Together with this fact, [14,
Lemma 5.8] implies resq(x) = 0. Lemma 4.11 shows Vq(ω) is of dimension
dimF2

(H1(Kq, J [2]))/2, so the lemma follows from Definition 2.1. �

Remark 5.3. Let V be a metabolic space of dimension 2n over F2. Let A
and B be Lagrangian subspaces of V (so dimF2

(A) = dimF2
(B) = n) such

that dim(A ∩B) = i. Now suppose a Lagrangian subspace X is randomly
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chosen in the set

{X ∈ LV : X ∩B = {0}}.

Then the probability that dimF2
(X ∩A) = j is given by

dn,i(j) :=
bn,i(j)∑n−i

m=0 bn,i(m)
,

where the integers bn,i(j) are defined by taking p = 2 in Definition 3.2. Here
we explain our heuristic model. Suppose ω ∈ Ωd is fixed. If q ∈ Pn,i, we have
dimF2

(Vq(ω) ∩ Vq,ur) = i. For ψ ∈ Cram(Kq), we have αq(ψ) ∩ Vq,ur = {0} by
Lemma 4.6. Now suppose that q ∈ Pn,i and ψ ∈ Cram(Kq) are chosen at
random. Our heuristic model for αq(ψ), since there is no other systematic
restriction on αq(ψ), is then a random Lagrangian subspace in the set

{X ∈ LH1(Kq,J [2]) : X ∩ Vq,ur = {0}}.

An easy consequence of this is that

Prob(dimF2
(αq(ψ) ∩ Vq(ω)) = j) = dn,i(j).

Although this is just a heuristic assumption, we give a name for C satisfying
this assumption (Definition 5.8) to ease the statement of our results. We also
remark here that the randomness of Lagrangian subspaces was used to model
Selmer groups in [12] and [3].

Remark 5.4. Let ω ∈ Ωd and q - d. Let q ∈ Pn,i. For ω′ ∈ η−1
d,q(ω), noting

that dimF2
(Vq(ω) ∩ Vq,ur) = i since q ∈ Pn,i, we have by Lemma 5.5(i) that

(3) rk(ω′) = rk(ω) + dimF2
(αq(ω′q) ∩ Vq(ω))− i,

where ω′q ∈ Cram(Kq) is the q-component of ω′. Therefore, knowing the dis-
tribution of dimF2

(αq(ω′q) ∩ Vq(ω)) is equivalent to knowing that of rk(ω′).

Lemma 5.5. Let ω ∈ Ωd and q - d. Let q ∈ Pn and ω′ ∈ η−1
d,q(ω). Then

(i) rk(ω′) = rk(ω) + dimF2
(αq(ω′q) ∩ Vq(ω))− dimF2

(Vq(ω) ∩ Vq,ur),

(ii) if n is odd, rk(ω′) 6≡ rk(ω) (mod 2).
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Proof. Note that the following restriction (at q) maps are surjective by def-
inition.

Sel2(J, ω) −→ Vq(ω) ∩ Vq,ur,

Sel2(J, ω′) −→ Vq(ω) ∩ αq(ω′q).

Both maps have the same kernel Sel2(J, ω)(q). Therefore (i) follows from com-
paring the dimensions over F2. For (ii), recall that Vq(ω), Vq,ur and αq(ω′q)
are Lagrangian subspaces of H1(Kq, J [2]) by Definition 4.5, Lemma 4.6 and
Lemma 5.2. It follows from (i) and Lemma 2.2(iii) that

rk(ω′)− rk(ω) ≡ n− dimF2
(Vq,ur ∩ αq(ω′q)) (mod 2).

Now (ii) follows from Lemma 4.6. �

We record here some properties of dn,i(j), which will be used in the proof
of Theorem 6.9.

Lemma 5.6. We have

(i) If n 6≡ i+ j (mod 2), then dn,i(j) = 0.

(ii) dn,i(j) = dn−i,0(j).

(iii) dk+i,0(k − i) =
c2i
∏2i
h=1

2k+i−h+1−1
2h−1

2(k+i)(k+i−1)/2
, where c2i = b2i,0(0) for p = 2.

(iv) dk+i−1,0(k − i− 1) =
c2i
∏2i
h=1

2k+i−h−1
2h−1

2(k+i−1)(k+i−2)/2

= dk+i,0(k − i)(2k−i − 1)2k+i−1

2k+i − 1
.

(v) dk+i+1,0(k − i− 1) = dk+i,0(k − i)(2k+i+1 − 1)(2k−i − 1)

2k−i(22i+2 − 1)
.

Proof. (i) follows from Lemma 3.5(v). (ii) follows from Lemma 3.5(ii). Lemma
3.5(iii) and Lemma 3.5(iv) imply (iii) and the first equality of (iv), so the
second equality of (iv) follows. (v) is a consequence of (iii) and Lemma
3.5(vii). �

Definition 5.7. We fix ω = (ωv)v ∈ Ωd. For every q 6∈ Σ(d), let

t(q) := dimF2

(
Im
(

Sel2(J, ω)
resq−−→ H1

ur(Kq, J [2])
))

.

In particular, q ∈ Pn,i if and only if q ∈ Pn and t(q) = i.
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Definition 5.8. We say that a hyperelliptic curve C has UDRL1 if there
exists a function L̃ : [1,∞)→ [1,∞) such that if X > L̃(Y ), then∣∣∣∣∣∣∣∣∣

∑
q∈Pn(X),q-d,t(q)=i

| {ψ ∈ Cram(Kq) | dimF2
(αq(ψ) ∩ Vq(ω)) = j} |

∑
q∈Pn,q-d,t(q)=i

| Cram(Kq) |
− dn,i(j)

∣∣∣∣∣∣∣∣∣
<

1

9gY

for each ω ∈ Ωd, 0 ≤ n ≤ 2g and 0 ≤ j ≤ n− i.

Remark 5.9. When j < 0 or j > n− i, the inequality in Definition 5.8 is
clearly true since both terms between the absolute value bars become zero.

Remark 5.10. The constant 1
9g in Definition 5.8 is not very crucial, which

could have been chosen to be any other constant less than 1
9g (see the proof

of Theorem 6.9 and Lemma 6.8).

Remark 5.11. One can check that elliptic curves E with Gal(K(E[2])/K)
∼= S3 have UDRL. This follows from Remark 4.7, Lemma 5.2, and Lemma
5.6(i). However, in the hyperelliptic curve of g ≥ 2 case, if v ∈ Pn for n ≥ 3,
it follows from Lemma 3.5(iv) that there are 2n(n−1)/2 (> 2) Lagrangian
subspaces in Hram(qv), whereas Cram(Kv) has only two elements. Because of
this, it seems not easy to check whether or not C has UDRL.

We nevertheless expect the following statement is true.

Conjecture 5.12. Let C be a hyperellipitc curve over a number field K of
genus g ≥ 2. Suppose that Gal(K(J [2])/K) ∼= S2g+1. Then C has UDRL.

6. Selmer ranks controlled by primes in P1

The main goal of this section is to prove Theorem 6.9. Roughly speaking,
Theorem 6.9 means the 2-Selmer ranks in the family of local quadratic twists
are controlled by the primes in P1 (see Remark 6.10). We start this section
by recalling the effective version of Chebotarev density theorem.

Theorem 6.1. There is a nondecreasing function L : [1,∞)→ [1,∞) such
that for

1UDRL stands for uniformly distributed ramified Lagrangians.
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• every Y ≥ 1,

• every d ∈ D with N(d) < Y ,

• every Galois extension F of K that is abelian of exponent 2 over
K(J [2]), and unramified outside Σ(d),

• every pair of subsets S, S′ ⊂ Gal(F/K) stable under conjugation, with
S nonempty, and

• every X > L(Y ),

we have∣∣∣∣ |{q /∈ Σ(d) : N(q) ≤ X,Frobq(F/K) ∈ S′}|
|{q /∈ Σ(d) : N(q) ≤ X,Frobq(F/K) ∈ S}|

− |S
′|
|S|

∣∣∣∣ ≤ 1

9gY
.

In particular, {q /∈ Σ(d) : N(q) ≤ X,Frobq(F/K) ∈ S} is nonempty.

Proof. Let ϕ : [1,∞)→ [1,∞) be the function sending Y to 9gY . Let L be
as in [8, Theorem 8.1]. Letting L be the composition of L and ϕ, the theorem
follows from [8, Theorem 8.1]. �

Definition 6.2. Supppse that d ∈ D and ω ∈ Ωd. Let ResK(J [2]) denote the
restriction map

H1(K,J [2])→ Hom(GK(J [2]), J [2])Gal(K(J [2])/K).

Let Fd,ω be the fixed field of ∩c∈Sel2(J,ω) ker(ResK(J [2])(c)). Then Fd,ω is a
Galois extension over K.

The following proposition is proved for elliptic curves E with

Gal(K(E[2])/K) ∼= S3

in [8, Proposition 9.3]. Recall that we assume Gal(K(J [2])/K) ∼= S2g+1.

Proposition 6.3. For every d ∈ D and ω ∈ Ωd, we have

(i) there is a Gal(K(J [2])/K)-module isomorphism Gal(Fd,ω/K(J [2])) ∼=
J [2]rk(ω).
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(ii) the map

ResK(J [2]) : Sel2(J, ω)→ Hom(GK(J [2]), J [2])

induces isomorphisms

Sel2(J, ω) ∼= Hom(Gal(Fd,ω/K(J [2])), J [2])Gal(K(J [2])/K),

Gal(Fd,ω/K(J [2])) ∼= Hom(Sel2(J, ω), J [2]).

(iii) Fd,ω/K is unramified outside Σ(d).

Proof. Note that the following statements are true:

(1) J [2] is a simple Gal(K(J [2])/K)-module.

(2) dimF2
(HomGal(K(J [2])/K)(J [2], J [2])) = 1.

(3) H1(Gal(K(J [2])/K), J [2]) = 0.

(1) and (2) are easy to check and left to the reader. For (3), see [14,
Lemma 3.2]. Now the proposition follows exactly as in the proof of [8, Propo-
sition 9.3]. �

Proposition 6.4. Fix d ∈ D and ω ∈ Ωd. Let rk(ω) = r and define

En,i,r := (2−r)n−i
i−1∏
h=0

(1− 2−r+h)

n−i∏
m=1

2i+m − 1

2m − 1
.

If L is a function as in Theorem 6.1, then for every Y > N(d) and every
X > L(Y ), we have∣∣∣∣ | {q ∈ Pn(X) : q - d, t(q) = i} |

| {q ∈ Pn(X) : q - d} |
− En,i,r

∣∣∣∣ < 1

9gY
.

Proof. Let locτ denote the evaluation map at τ ∈ Gal(K/K):

locτ : Sel2(J, ω) ⊂ H1(K,J [2])→ J [2]/(τ − 1)J [2].

Define

S := {τ ∈ Gal(Fd,ω/K) | dimF2
(J [2]/(τ − 1)J [2]) = n},

S′ := {τ ∈ S | dimF2
(Im(locτ : Sel2(J, ω) −→ J [2]/(τ − 1)J [2]) = i},

S′′ := {σ ∈ Gal(K(J [2])/K) | dimF2
(J [2]/(σ − 1)J [2]) = n}.
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By Theorem 6.1, it is enough to show that

|S′|
|S|

= En,i,r.

Clearly |S| = |Gal(Fd,ω/K(J [2]))||S′′| = 22gr|S′′| by Proposition 6.3(i). For
τ ∈ Gal(Fd,ω/K), if ξ ∈ Gal(Fd,ω/K(J [2])), then

J [2]/(τ − 1)J [2] = J [2]/(τξ − 1)J [2].

We define

λτ : Sel2(J, ω) −→ J [2]/(τ − 1)J [2],

λτξ : Sel2(J, ω) −→ J [2]/(τξ − 1)J [2] = J [2]/(τ − 1)J [2],

given by evaluations at τ and τξ, respectively. For c ∈ Sel2(J, ω), we have

λτξ(c) = c(τξ) = c(τ) + τc(ξ) = λτ (c) + c(ξ).

By Proposition 6.3(ii), We also have

Gal(Fd,ω/K(J [2])) ∼= Hom(Sel2(J, ω), J [2])

� Hom(Sel2(J, ω), J [2]/(τ − 1)J [2]).

ξ 7→ (c 7→ c(ξ))

Therefore, for any τ |K(J [2]) ∈ S′′, there are

2(2g−n)r|{φ ∈ HomF2
(Fr

2 −→ Fn
2 )|dimF2

(Im(φ)) = i}|

embeddings ξ ∈ Gal(Fd,ω/K(J [2])) such that dimF2
(Im(λτξ)) = i. Therefore

|S′| = 2(2g−n)r|S′′||{φ ∈ HomF2
(Fr

2 −→ Fn
2 )|dimF2

(Im(φ)) = i}|.

It is easy to prove that

|{φ ∈ HomF2
(Fr

2 −→ Fn
2 )|dimF2

(Im(φ)) = i}| =
i−1∏
h=0

(2r − 2h)

n−i∏
m=1

2i+m − 1

2m − 1
,

which completes the proof. �

Remark 6.5. Let rk(ω) = r and ω ∈ Ωd. Suppose that q ∈ P1, q - d, and
ω′ ∈ η−1

d,q(ω). Let rk(ω′) = s. Recall that
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(i) b1,0(0) + b1,0(1) = 1,

(ii) αq(ω′q) ∩ Vq,ur = {0},

(iii) dimF2
(αq(ω′q) ∩ Vq(ω)) 6≡ dimF2

(Vq(ω) ∩ Vq,ur) (mod 2),

which follow from Lemmas 3.5(iv),4.6, and 3.5(v), respectively. Then by (3)
in Remark 5.4 one can check that

s =

{
r − 1 if t(q) = 1,

r + 1 if t(q) = 0.

In virtue of Proposition 6.4, this means (as q is chosen randomly in P1)

Prob(s = r − 1) = 1− 2−r and Prob(s = r + 1) = 2−r.

Definition 6.6. For r, s ≥ 0, we define a matrix ML = [mr,s] by

mr,s =


1− 2−r if s = r − 1,

2−r if s = r + 1,

0 otherwise.

Define m
(n)
r,s ≥ 0 so that Mn

L = [m
(n)
r,s ]. In other words, m

(n)
r,s is the entry of

Mn
L at its r-th row and j-th column.

Definition 6.7. Suppose C has UDRL. Define the function L from [1,∞)
to itself

L(Y ) := max(L(Y ), L̃(Y )).

Lemma 6.8. For 0 ≤ n ≤ 2g, 0 ≤ e ≤ n, and 0 < ε < 1, let 0 ≤ ae, be,
ce, de ≤ 1 be such that |ae − ce| < ε and |be − de| < ε. Then

∑n
k=0 |aebe −

cede| < 9εg.

Proof. It is easy to prove and left to the reader. �

Theorem 6.9. Fix ω ∈ Ωd. If C has UDRL and Gal(K(J [2])/K) ∼= S2g+1,
then for X > L(Y ) with Y > N(d), we have∣∣∣∣∣
∑

q∈Pn(X),q-d | {ω′ ∈ η
−1
d,q(ω) : dimF2

(Sel2(J, ω′) = s)} |∑
q∈Pn(X),q-d | η

−1
d,q(ω) |

−m(n)
rk(ω),s

∣∣∣∣∣ < 1

Y
.
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Proof. Recall from Lemma 5.5(i) that for ω′ ∈ η−1
d,q(ω), we have

rk(ω′) = rk(ω) + dimF2
(Vq(ω) ∩ αq(ω′q))− dimF2

(Vq(ω) ∩ Vq,ur).

Let e = dimF2
(Vq(ω) ∩ Vq,ur), r = rk(ω), and s = rk(ω′). Then we have

0 ≤ e ≤ n,
0 ≤ s+ e− r ≤ n,
0 ≤ s+ 2e− r ≤ n.

Define

ae =
| {q ∈ Pn(X) : q - d, t(q) = e} |
| {q ∈ Pn(X) : q - d} |

,

be =

∑
q∈Pn(X),q-d,t(q)=e

| {ψ ∈ Cram(Kq) | dimF2
(αq(ψ) ∩ Vq(ω)) = s+ e− r} |∑

q∈Pn,q-d,t(q)=e

| Cram(Kq) |
,

ce = En,e,r,

de = dn,e(s+ e− r).

Then by (3) we have

n∑
e=0

aebe =

∑
q∈Pn(X),q-d | {ω′ ∈ η

−1
d,q(ω) : dimF2

(Sel2(J, ω′) = s)} |∑
q∈Pn(X),q-d | η

−1
d,q(ω) |

.

It follows from Proposition 6.4 that |ae − ce| < 1
9gY . Since C has UDRL, we

have |be − de| < 1
9gY , that is Definition 5.8. Therefore, by Lemma 6.8, we

only need to show that

(4) Fn,r(s) :=

n∑
e=0

dn,e(s+ e− r)En,e,r = m(n)
r,s .

If r + s+ n is odd then m
(n)
r,s = 0, and Fn,r(s) is also equal to zero by

Lemma 5.6(ii). Moreover, if |r − s| > n, both m
(n)
r,s = 0, and Fn,r(s) = 0.

Hence it remains to show (4) when n+ r + s is even and |r − s| ≤ n. We will
show (4) by induction on n. When n = 1, it is clear (see Remark 6.5). For
0 ≤ k ≤ n, it follows from Lemma 5.6(ii) (and the fact that En,n−k−i,r = 0
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if n− k − i < 0) that

Fn,r(r − n+ 2k) =

k∑
i=0

dk+i,0(k − i)En,n−k−i,r.

We want to show that

m
(n)
r,r−n+2k =

k∑
i=0

dk+i,0(k − i)En,n−k−i,r.

By induction hypothesis for n− 1, we have

m
(n)
r,r−n+2k = (1− 2−r)m

(n−1)
r−1,(r−1)−(n−1)+2k + 2−rm

(n−1)
r+1,(r+1)−(n−1)+2(k−1)

= (1− 2−r)

k∑
i=0

dk+i,0(k − i)En−1,n−k−i−1,r−1

+ 2−r
k∑
i=1

dk+i−2,0(k − i)En−1,n−k−i+1,r+1.

Let

• S1 =
∑k

i=0 dk+i,0(k − i)En,n−k−i,r,

• S2 = (1− 2−r)
∑k

i=0 dk+i,0(k − i)En−1,n−k−i−1,r−1,

• S3 = 2−r
∑k

i=1 dk+i−2,0(k − i)En−1,n−k−i+1,r+1.

We want to show that S1 = S2 + S3. We have

S1 − S2 =

k∑
i=0

dk+i,0(k − i)
(
En,n−k−i,r − (1− 2−r)En−1,n−k−i−1,r−1

)
=

k∑
i=0

dk+i,0(k − i)(2−r)k+i
n−k−i−1∏
h=0

(1− 2−r+h)

k+i−1∏
m=1

2n−k−i+m − 1

2m − 1
,

S3 = 2−r
k∑
i=1

dk+i−2,0(k − i)En−1,n−k−i+1,r+1

=

k∑
i=1

2−rdk+i−2,0(k − i)(2−r−1)k+i−2

×
n−k−i∏
h=0

(1− 2−r−1+h)

k+i−2∏
m=1

2n−k−i+1+m − 1

2m − 1
.
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Let

• dk+i,0(k − i)Ui := i-th summand of S1 − S2,

• Vi := i-th summand of S3,

• gi := dk+i,0(k − i)2k−i−1
2k+i−1 , and

• hi := dk+i,0(k − i)− gi = dk+i,0(k − i)2k+i−2k−i

2k+i−1 .

Now it is enough to show that

(5) giUi + hi+1Ui+1 = Vi+1.

One can show hi+1 = dk+i,0(k − i)2k−i−1
2 by Lemma 5.6(v). Using this and

Lemma 5.6(iv) for Vi+1, it is straightforward to check (5) and left to the
reader. �

Remark 6.10. Let d ∈ D and ω ∈ Ωd. Let S = Sel2(J, ω) for convenience.

By Remark 6.5,m
(1)
rk(ω),s = mrk(ω),s (an entry ofML in Definition 6.6) denotes

the probability that s is the Selmer rank of a “local twist” of S by a ramified

character at a random prime in P1. Therefore m
(n)
rk(ω),s means the probability

that s is the Selmer rank of a “local twist” of S by n ramified characters
at randomly chosen n primes in P1. In the statement of Theorem 6.9, the
fraction ∑

q∈Pn(X),q-d | {ω′ ∈ η
−1
d,q(ω) : dimF2

(Sel2(J, ω′) = s)} |∑
q∈Pn(X),q-d | η

−1
d,q(ω) |

(as X →∞) is the probability that s is the Selmer rank of a “local twist” of
S by a ramified character at a random prime in Pn. Hence Theorem 6.9 can
be phrased as “the Selmer ranks of local quadratic twists are (statistically)
controlled by the twisting data at primes in P1.”

7. Local and global twists

Many results in this section and the next section are already done in the
elliptic curve case in Section 10 and Section 11 of [8]. We will explain how
their results can be applied to the hyperelliptic curve case as well when it is
necessary. We continue to assume Gal(K(J [2])/K) ∼= S2g+1. For the rest of
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this paper we assume that the set Σ satisfies (enlarge Σ if necessary)

(6) Pic(OK,Σ) = 0,

where OK,Σ is the ring of Σ-integers of K. By [14, Lemma 4.9], we have

(7) O×K,Σ/(O
×
K,Σ)2 −→

∏
v∈P0

K×v /(K
×
v )2 is injective.

Recall that C is given by an affine model y2 = f(x) of degree 2g + 1. Let

∆ := ∆f := the discriminant of f.

Lemma 7.1. Define the subgroup A ⊂ K×/(K×)2 by

A := ker(K×/(K×)2 → K(J [2])×/(K(J [2])×)2).

Then A ∼= Z/2Z, generated by ∆ ∈ O×K,Σ.

Proof. If b ∈ A, then there exists x ∈ K(J [2])× such that x2 = b. Note that
K(
√

∆) is the only nontrivial quadratic subextension ofK(J [2]) overK since
S2g+1 has only one normal subgroup of index 2, so the lemma follows. �

Lemma 7.2. Let q ∈ Pn.

(i) If n is even and χ ∈ C(Kq), then χ(∆) = 1.

(ii) If n is odd and χ ∈ C(Kq), then χ(∆) = 1 if and only if χ is unramified.

Proof. This is [14, Lemma 6.1]. �

Definition 7.3. If χ ∈ C(K) and v is a place of K, we let χv ∈ C(Kv)
denote the restriction of χ to GKv

. For d ∈ D, define

C(d) := {χ ∈ C(K) : χ is ramified at all q dividing d

and unramified outside Σ(d) ∪ P0}.

For X > 0 define

• C(X) = {χ ∈ C(K) : χ is unramified outside Σ ∪ {q : N(q) < X}},

• C(d, X) := C(d) ∩ C(X).

Let ηd : C(d)→ Ωd be the natural map χ→ (. . . , χv, . . .)v∈Σ(d), where χv ∈
C(Kv) is the restriction of χ to GKv

.
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Recall the definition of L in Theorem 6.1.

Lemma 7.4. Suppose d ∈ D, α ∈ O×K,Σ(d)/(O
×
K,Σ(d))

2, and α 6= 1. If α 6=
∆, then there exists a prime q ∈ P0 with N(q) ≤ L(N(d)) such that α /∈
(O×q )2.

Proof. Note that

K(
√
α) ∩K(J [2]) = K.

Choose τ ∈ Gal(K(J [2],
√
α)/K) such that

τ |K(J [2]) ∈ Gal(K(J [2])/K) ∼= S2g+1

is a single orbit of length 2g + 1, and τ |K(
√
α) 6= 1. By Theorem 6.1 ap-

plied with F = K(J [2],
√
α) and S equal to the conjugacy class of τ , we see

that there exists q /∈ Σ(d) with N(q) ≤ L(N(d)) whose Frobenius in
Gal(K(J [2],

√
α)/K) is in the conjugacy class of τ . We have α /∈ (O×q )2 and

it follows from [14, Lemma 2.12] that q ∈ P0. �

Definition 7.5. Define sign∆ : Ω1 → {±1} by

sign∆(. . . , ωv, . . .) :=
∏
v∈Σ

ωv(∆).

Define

S+ := {ω ∈ Ω1 : sign∆(ω) = 1}, S− := {ω ∈ Ω1 : sign∆(ω) = −1}.

We will often write Ω1
d := Ω+

d := ΩS+

d and Ω−1
d := Ω−d := ΩS−

d .

Proposition 7.6. Suppose that d ∈ D and X > L(N(d)).

(i) ηd(C(d, X)) =

{
Ω+

d if w(d) is even

Ω−d if w(d) is odd.

(ii) For every ω ∈ ηd(C(d, X)) we have

|{χ ∈ C(d, X) : ηd(χ) = ω}|
|C(d, X)|

= 1/|Ω(−1)w(d)

d |.
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Proof. The proof is analogous to that of [8, Proposition 10.7]. By (6), we
have Pic(OK,Σ(d)) = 0. Therefore by global class field theory, we have

C(K) ∼= Hom(A×K/K
×,±1)

∼= Hom((
∏
v∈Σ(d)K

×
v ×

∏
q/∈Σ(d)O×q )/O×K,Σ(d),±1).

Let

Q1 := {q : q ∈ P0,N(q) ≤ X},
Q2 := {q : q ∈ P1 ∪ P2 ∪ · · · ∪ P2g, q - d} ∪ {q : q ∈ P0,N(q) ≥ X}.

Let

G :=
∏

q∈Q1
O×q , H :=

∏
v∈Σ(d)K

×
v ×

∏
q∈Q2

O×q , J := O×K,Σ(d).

Lemma 7.4 shows that ker(J/J2 → G/G2) is generated by ∆, so by [8,
Lemma 10.4(i)], the image of the restriction map

C(K) −→ Hom(
∏
v∈Σ(d)K

×
v ×

∏
q∈Q2

O×q ,±1)

is exactly

Hom((
∏

v∈Σ(d)

K×v ×
∏
q∈Q2

O×q )/〈∆〉, {±1}).

Note also that for χ ∈ C(K), we have

χ ∈ C(d, X) ⇐⇒ χq(O×q ) = 1 for q ∈ Q2 and χq(O×q ) 6= 1 if q | d.

By Lemma 7.2, for q ∈ Pn we have

∆ ∈ (K×q )2 ⇐⇒ n is even,

∆ generates O×q /(O×q )2 ∼= Z/2Z ⇐⇒ n is odd.

Then it follows that for ω ∈ Ωd (noting ωq is ramified for q|d by definition),
we have

ω ∈ ηd(C(d, X)) ⇐⇒ (−1)w(d)
∏
v∈Σ

ωv(∆) = 1 ⇐⇒ sign∆(ω) = (−1)w(d),

which proves (i). For the second assertion, note that for χ1, χ2 ∈ C(d, X), we
have

ηd(χ1) = ηd(χ2) ⇐⇒ χ1χ
−1
2 ∈ ker(η1) (⊆ C(1, X)).
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It follows that all nonempty fibers of ηd : C(d, X)→ Ωd have the same order
| ker(η1)|. Now (ii) follows from (i). �

8. The distribution of 2-Selmer ranks

A large part of this section follows the exposition of [8] as mentioned before.
We include proofs of many results already in [8] here for the convenience of
the reader.

Let D denote the set of probability distributions on Z≥0.

D :=

{
h : Z≥0 → R≥0 |

∞∑
n=0

h(n) = 1

}
.

Definition 8.1. A matrix M = [mi,j ]i,j∈Z≥0
is called a Markov operator on

D if the following conditions hold.

(i) mi,j ≥ 0 for all i, j ∈ Z≥0,

(ii)
∑

j≥0mi,j = 1 for every i.

A Markov operator M acts on D so that for h ∈ D,

M(h)(j) =
∑
i≥0

mi,jh(i).

Define

Deven :={h ∈ D : h(n) = 0 if n is odd},
Dodd :={h ∈ D : h(n) = 0 if n is even}.

Example 8.2. Recall that ML = [mi,j ]i,j∈Z≥0
given by

mi,j =


1− 2−i if j = i− 1,

2−i if j = i+ 1,

0 otherwise.

Then ML is a Markov operator on D.

Definition 8.3. Let h be a probability distribution on Z≥0. We define the
parity ρ(h) of h by

ρ(h) :=
∑
n odd

h(n).
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Recall

fn =

∞∏
j=1

(1 + 2−j)−1
n∏
j=1

2

2j − 1
.

Definition 8.4. Define E+ ∈ Deven and E− ∈ Dodd by

E+(n) :=

{
fn if n is even

0 if n is odd,
E−(n) :=

{
0 if n is even

fn if n is odd.

It follows from [12, Proposition 2.6(f)] for p = 2 that E+ and E− are indeed
elements of D.

Proposition 8.5. For every h ∈ D,

lim
k→∞

M2k
L (h) = (1− ρ(h))E+ + ρ(h)E−,

lim
k→∞

M2k+1
L (h) = ρ(h)E+ + (1− ρ(h))E−.

Proof. For terminology, we refer the reader to [11]. SinceM2
L(Deven) ∈ Deven,

we may regard M2
L as a Markov process on Z≥0,even. It is not difficult to check

ML(E+) = E− and ML(E−) = E+, so M2
L(E+) = E+ (and M2

L(E−) = E−).
Hence E+ is an equilibrium state for the Markov process M2

L on Deven.
By [11, Theorem 1.8.3], the equilibrium state for M2

L on Deven is unique.
Therefore for every h ∈ Deven, we have

lim
k→∞

M2k
L (h) = E+.

Similarly, E− is the unique equilibrium state for M2
L on Dodd, so for every

h ∈ Dodd we have

lim
k→∞

M2k
L (h) = E−.

For every h ∈ D, there exist h+ ∈ Deven and h− ∈ Dodd such that

h = (1− ρ(h))h+ + ρ(h)h−,

from which the proposition follows. �
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For ω ∈ Ωd, recall that

rk(ω) = dimF2
(Sel2(J, ω)).

If χ ∈ C(K) then χ ∈ C(d) for a (unique) d ∈ D, and we define

Sel2(J, χ) := Sel2(J, ηd(χ)) and rk(χ) := rk(ηd(χ)),

where ηd : C(d)→ Ωd is as in Definition 7.3. Then Sel2(J, χ) is the classical
2-Selmer group of Jχ/K, so rk(χ) = dimF2

(Sel2(Jχ/K)).

Definition 8.6. Suppose d ∈ D. Let Ω+
d and Ω−d be the sets given by Def-

inition 7.5. Let E±d be the probability distribution corresponding to Ω±d so
that

E+
d (n) :=

|{ω ∈ Ω+
d : rk(ω) = n}|
|Ω+

d |
,

E−d (n) :=
|{ω ∈ Ω−d : rk(ω) = n}|

|Ω−d |
.

We generalize here several lemmas in [8] due to Klagsbrun, Mazur, and
Rubin.

Lemma 8.7. Suppose d ∈ D and X > L(N(d)). Then

(i)
|{χ ∈ C(d, X) : rk(χ) = n}|

|C(d, X)|
=

{
E+

d (n) if w(d) is even

E−d (n) if w(d) is odd.

(ii) |C(d, X)| = |C(1, X)|.

Proof. For (i), suppose that w(d) is even as it follows similarly when w(d)
is odd. By Proposition 7.6, we have ηd : C(d, X)→ Ω+

d is surjective, and
all fibers have the same size. Note also that if ηd(χ) = ω, we have rk(χ) =
rk(ω) by definition. Therefore (i) follows. For (ii), note first that C(d, X) is
nonempty by Proposition 7.6, so one can choose ϕ ∈ C(d, X). Then the map
C(1, X)→ C(d, X) defined by multiplication by ϕ is a bijection (its inverse
is also multiplication by ϕ), so (ii) follows. �

For the rest of the paper, we assume that C has UDRL. Recall the
definition of L in Definition 6.7.
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Definition 8.8. Define a sequence of real valued functions {Ln(Y )}n≥1 by

L1(Y ) := L(Y ),

Ln+1(Y ) := max{L(
∏
j≤n Lj(Y )), Y Ln(Y )} for n ≥ 1.

If m, k ∈ Z≥0 and X ∈ R>0, define the “fan”

Dm,k,X := {d ∈ D : w(d) = k and

d = q1q2 · · · qm with N(qj) < Lj(X) for all j}.

Definition 8.9. For m, k ≥ 0, define

Bm,k,X :=
∐

d∈Dm,k,X

C(d,L(Lm+1(X))) ⊂ C(K).

We call Bm,k,X a fan structure on C(K).

Lemma 8.10. Suppose that C has UDRL and Gal(K(J [2])/K) ∼= S2g+1.
Suppose that m, k, n ≥ 0 and ∪XDm,k,X is nonempty, then

(i) limX→∞
1

|Dm,k,X |
∑

d∈Dm,k,X
E

(−1)k

d = Mk
L(E

(−1)k

1 )

(ii) limX→∞
|{χ ∈ Bm,k,X : rk(χ) = n}|

|Bm,k,X |
=

{
Mk
L(E+

1 )(n) if k is even

Mk
L(E−1 )(n) if k is odd.

Proof. (i) follows from [8, Theorem 4.3]. Note that the assumption of [8,
Theorem 4.3] holds by Proposition 4.12. Note also that the “convergence
rates” ([8, Section 3.7]) condition is assumed implicitly in the theorem. This
condition is satisfied by Theorem 6.9, which assumes that C has UDRL and
Gal(K(J [2])/K) ∼= S2g+1. This is why the UDRL condition (and also the
Galois condition) is necessary in our case. For (ii), we first note that

|{χ ∈ Bm,k,X : rk(χ) = n}|
|Bm,k,X |

=

∑
d∈Dm,k,X

|{χ ∈ C(d,L(Lm+1(X))) : rk(χ) = n}|∑
d∈Dm,k,X

C(d,L(Lm+1(X)))
.

Assume that X is large enough (e.g. X > N(d)). Then C(d,L(Lm+1(X))) is
the same for all d ∈ Dm,k,X by Lemma 8.7(ii), and the right hand side of
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this equality is equal to

1

|Dm,k,X |
∑

d∈Dm,k,X

E
(−1)k

d (n)

by Lemma 8.7(i). Now (ii) is an immediate consequence of (i). �

Definition 8.11. If ψ,ψ′ ∈ C(Kv), let

h(ψ,ψ′) := dimF2
(αv(ψ)/(αv(ψ) ∩ αv(ψ′)))

where αv : C(Kv)→ H(qv) is given in Definition 4.5, and define

γv(ψ) := (−1)h(1v,ψ)ψ(∆) ∈ {±1},

δv =
1

|C(Kv)|
∑

ψ∈C(Kv)

γv(ψ), and δ(J/K) :=
(−1)rk(1)

2

∏
v∈Σ

δv.

Lemma 8.12. Suppose that Gal(K(J [2])/K) ∼= S2g+1. We enlarge Σ if
necessary to contains a prime q - 2 for which J has good reduction and
dimF2

(J(Kq)[2]) is odd. Then

ρ(E+
1 ) = 1

2 − δ(J/K) and ρ(E−1 ) = 1
2 + δ(J/K).

Proof. Let ϕ ∈ Ω1 so that

ϕq ∈ Cram(Kq),

ϕv = 1v if v 6= q and v ∈ Σ.

In particular, ϕq(∆) = −1 by Lemma 7.2(ii). Let ω ∈ Ω1. Combining Re-
mark 4.3, Lemma 4.6 and Lemma 7.2(ii), we get

(−1)h(1q,ωq) = ωq(∆), (−1)h(1q,ωqϕq) = ωqϕq(∆) = −ωq(∆).

We also have

rk(ω′) 6≡ rk(ω) (mod 2)

by Lemma 5.5(ii). Then the lemma follows as in the proof of [8, Lemma
11.10]. �

Theorem 8.13. Suppose C over K has UDRL and Gal(K(J [2])/K) ∼=
S2g+1. We enlarge Σ if necessary to contain a prime q - 2 where J has good
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reduction and dimF2
(J(Kq)[2]) is odd. Let Bm(X) := ∪kBm,k,X . Then for

every n ≥ 0 we have

lim
m→∞

lim
X→∞

|{χ ∈ Bm(X) | rk(χ) = n}|
|Bm(X)|

=

(
1

2
+ δ(J/K)

)
E+(n) +

(
1

2
− δ(J/K)

)
E−(n).

Proof. The theorem follows from Lemma 8.10(ii), Lemma 8.12, and Propo-
sition 8.5. �

If we assume Conjecture 5.12, we obtain the following.

Conjecture 8.14. Theorem 8.13 holds without the UDRL condition.
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