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Lower bounds on the growth of Sobolev

norms in some linear time dependent

Schrödinger equations

Alberto Maspero

In this paper we consider linear, time dependent Schrödinger equa-
tions of the form i∂tψ = K0ψ + V (t)ψ, where K0 is a positive self-
adjoint operator with discrete spectrum and whose spectral gaps
are asymptotically constant.

We give a strategy to construct bounded perturbations V (t)
such that the Hamiltonian K0 + V (t) generates unbounded orbits.
We apply our abstract construction to three cases: (i) the Har-
monic oscillator on R, (ii) the half-wave equation on T and (iii)
the Dirac-Schrödinger equation on Zoll manifolds. In each case,
V (t) is a smooth and periodic in time pseudodifferential operator
and the Schrödinger equation has solutions fulfilling the optimal
lower bound estimate ‖ψ(t)‖r & |t|r as |t| � 1.

1. Introduction

In this paper we study linear Schrödinger equations of the form

(1) i∂tψ = K0ψ + V (t)ψ

on a scale of Hilbert spaces Hr. Here K0 is a positive, selfadjoint operator
with purely discrete spectrum, V (t) is a time dependent self-adjoint pertur-
bation, and the scale Hr is the one defined spectrally by K0.

We develop an abstract technique to construct bounded operators V (t)
which are smooth and periodic in time, for which (1) has unbounded orbits.
In particular we show that the norms of the solutions of (1) grow polyno-
mially in time, despite every orbit of the unperturbed flow being bounded.
The procedure that we develop is quite general, and it applies in case K0

has constant spectral gaps.
In particular, we apply it successfully to three different models: (i) the Har-
monic oscillator on R, (ii) the half-wave equation on T and (iii) the Dirac-
Schrödinger equation on Zoll manifolds. In each case, we construct V (t) as
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1198 Alberto Maspero

a pseudodifferential operator of order 0, smooth and 2π-periodic in time, so
that the Hamiltonian K0 + V (t) has solutions ψ(t) fulfilling

(2) ‖ψ(t)‖r ≥ Cr tr, for t� 1,

which display, therefore, growth of Sobolev norms with optimal lower bounds.
Note that case (iii) differs from (i) and (ii), since the Dirac-Schrödinger
operator on Zoll manifolds has only asymptotically constant spectral gaps;
however, such operator is a smoothing perturbation of a K0 with constant
spectral gaps, and our method applies with just a minor modification. In
particular, the difference between cases (i)-(ii) and (iii) is that in the former
ones the perturbations V (t) can be arbitrary small in size; on the contrary, in
case (iii) V (t) has to contain a not perturbative term to correct the spectral
gaps.

The problem of constructing unbounded solutions in Schrödinger equa-
tions has recently attracted a lot of attention. However, even in the simpler
case of linear time dependent equations there are not many results in the
literature. Up to our knowledge, the only examples were given by Bourgain
for a Klein-Gordon and Schrödinger equation on T [Bou99], by Delort for
the Harmonic oscillator on R [Del14], and by Bambusi, Grébert, Robert and
the author for the Harmonic oscillators on Rd, d ≥ 1 [BGMR18]. Strictly
speaking, our result on the Harmonic oscillator is not new, but the proof is
new, general, and so simple that we think it is of some interest.
Our construction is based on the idea of “reversing” a mechanism exploited
by Graffi and Yajima [GY00] to prove existence of absolutely continuous
spectrum, and it goes as follows. First it is enough to look for a time depen-
dent perturbation V (t) of the form

(3) VA(t) := e−itK0 AeitK0

where A is a time independent operator whose flow e−itA generates un-
bounded orbits. By this very definition, if ψ(t) is a solution of (1) with
V (t) ≡ VA(t), the change of coordinates ψ(t) = e−itK0ϕ(t) preserves each
spectral norm and conjugates (1) to iϕ̇ = Aϕ, which, by assumptions, has
unbounded orbits. Secondly, in order to guarantee that t 7→ VA(t) is smooth
and periodic in time, it is enough to ask that A and K0 have pseudodiffer-
ential properties and that an Egorov-type theorem holds; it is here that we
use (indirectly) that K0 has constant spectral gaps, see Remark 2.1.

Therefore, all is left to do in applications is to find a time independent
operator A whose propagator generates unbounded orbits. This is a much
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simpler task, and the general philosophy is to look for pseudodifferential op-
erators with absolutely continuous spectrum. While in the case of compact
manifold this is trivial (any multiplication operator will work), in the case of
the Harmonic oscillator it is less obvious how to proceed, since the only mul-
tiplication operators which are pseudodifferential are the polynomials (see
Remark 3.4). So the strategy is the following: we define an operator with
absolutely continuous spectrum by its action on the Hermite basis, and then
we use Chodosh characterization [Cho11] to verify that it is pseudodifferen-
tial (Chodosh characterization allows to read pseudodifferential properties of
an operator from its matrix representation). Actually it is enough to choose
the discrete laplacian on the Hermite basis to complete this program.

The reason to look for operators with absolutely continuous spectrum is
due to the Guarneri-Combes theorem [Gua89, Com93], which guarantees, for
these operators, the existence of initial data ψ for which the time-averaged
Sobolev norms 1

T

∫ T
0 ‖e

−itAψ‖r dt grow in T . This is a slightly weaker state-
ment than (2); however, in applications, one can typically prove the stronger
estimate ‖e−itAψ‖r ≥ Cr,ψ tr as t→∞.

As a further comment, it is interesting to compare the rate of growth (2)
with the upper bounds proved in [MR17, BGMR17] for equations of the form
(1). In particular, the results of [MR17] imply that for any V (t) continuous
in time (but otherwise arbitrary depending) and pseudodifferential of order
ρ ≤ 1, each solution of (1) fulfills

(4) ‖ψ(t)‖r ≤ Cr,ρ 〈t〉
r

1−ρ , ∀t ∈ R.

In this paper we will have ρ = 0, thus the solutions that we construct provide
optimal lower bounds on the speed of growth.

The upper bound (4) can be improved adding the assumption that
V (t) ≡ V (ωt) is quasiperiodic in time with a nonresonant frequency vector
ω ∈ Rn. Indeed, in [BGMR17] it is proved that if ω fulfills the nonresonance
condition

∃γ, τ > 0 s.t.
∣∣`+ ω · k

∣∣ ≥ γ

(1 + |k|+ |`|)τ
,(5)

∀` ∈ Z \ {0}, ∀k ∈ Zn \ {0},

then for any r ≥ 0, any ε > 0 arbitrary small, (4) improves to

(6) ‖ψ(t)‖r ≤ Cr,ε 〈t〉ε , ∀t ∈ R ;
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the last estimate means that the growth of norms, if happens, is subpolyno-
mial in time. Note that (6) is not in contrast with the faster growth of the
norms (2); indeed the spectral condition that we impose on K0 (see (10))
implies that VA(t) defined in (3) is periodic in time with frequency ω = 1,
which is clearly resonant.

Finally, in some cases one can prove that the Sobolev norms of the solu-
tion stay uniformly bounded in time. This requires typically nonresonance
conditions stronger than (5) and a smallness assumption on the size of the
perturbation. In this case, one might try to prove a reducibility KAM theo-
rem, conjugating K0 + V (t) to a new Hamiltonian which is time independent
and commutes with K0; as a consequence, one gets the upper bound

(7) sup
t∈R
‖ψ(t)‖r ≤ Cr.

Concerning the systems that we treat here, the reducibility scheme has
been successfully implemented for the Harmonic oscillators on Rd [Com87,
Wan08, GT11, GP16b, Bam18, BGMR18], wave equations on the torus
[CY00, FHW14, Mon17] (these methods can be used to prove reducibil-
ity for the half-wave equation on T), and Klein-Gordon equation on the
sphere [GP16a]. In all cases the frequency ω must be chosen in a Cantor
set of nonresonant vectors and the perturbation must be sufficiently small
in size. We recall that also the perturbations constructed here (and which
provoke growth of norms) can be arbitrary small in size; therefore the sta-
bility/instability of the system depends only on the resonance property of
the frequency ω.

Before closing this introduction, let us mention that, in case of non-
linear Schrödinger equations, the problem of constructing solutions with
unbounded orbits is extremely difficult. A first breakthrough was achieved
in [CKSTT], which constructs solutions of the cubic nonlinear Schrödinger
equation on T2 whose Sobolev norms become arbitrary large (see also [Han14,
Gua14, HP15, GHP16] for generalizations of this result); however the exis-
tence of unbounded orbits for this model is still open.
At the moment, existence of unbounded orbits has only been proved by
Gérard and Grellier [GG17] for the cubic Szegő equation on T, and by Hani,
Pausader, Tzvetkov and Visciglia [HPTV15] for the cubic NLS on R× T2.
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2. The abstract framework

We start with a Hilbert space (H, 〈·, ·〉) and a reference operator K0, which
we assume to be selfadjoint and positive, namely such that

〈ψ;K0ψ〉 ≥ cK0
‖ψ‖20, ∀ψ ∈ Dom(K

1/2
0 ), cK0

> 0,

and define as usual a scale of Hilbert spaces by Hr = Dom(Kr
0) (the domain

of the operator Kr
0) if r ≥ 0, and Hr = (H−r)′ (the dual space) if r < 0. We

endow Hr with the norm

‖ψ‖r := ‖Kr
0ψ‖0,

where ‖ · ‖0 is the norm of H0 ≡ H.
By the very definition of Hr, the unperturbed flow e−itK0 preserves each

norm, ‖e−itK0ψ‖r = ‖ψ‖r ∀t ∈ R. Consequently, every orbit of the unper-
turbed equation is bounded.

For X ,Y Banach spaces, we denote by L(X ,Y) the set of bounded op-
erators from X to Y; if X = Y, we simply write L(X ).

We state now the abstract assumptions that we will verify in each model.
The principal one regards the existence of a bounded, time independent op-
erator with unbounded orbits in the scale Hr:

Assumption A: There exists an operator A ∈ L(Hr), an initial datum
ψ0 ∈ Hr and a real µ > 0 such that the Schrödinger equation

(8) iψ̇ = Aψ, ψ(0) = ψ0

has a solution ψ(t) ∈ Hr fulfilling, for some Cr > 0, the estimate

(9) ‖ψ(t)‖r ≥ Cr tµr, t� 1.

In Lemma 2.3 below we give sufficient conditions on the operator A to
obtain (9).

The second assumption is smoothness in time of the map t 7→e−itK0AeitK0 :

Assumption B: The map t 7→ e−itK0 A eitK0 ∈ C∞ (R;L(Hr)).

Here C∞ (R;L(Hr)) is the class of smooth maps from R to L(Hr).
In applications, Assumption B can be verified by requiring A and K0 to

be pseudodifferential operators and K0 to fulfill an Egorov-like theorem.
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The last assumption concerns a spectral property of K0:

Assumption C: K0 has an entire discrete spectrum such that

(10) spec(K0) ⊆ N + λ

for some λ ≥ 0.

Assumption C guarantees that ei2πK0 = ei2πλ. As a consequence, for any
operator V , the map t 7→ eitK0V e−itK0 is 2π-periodic.

Remark 2.1. We do not require explicitly K0 to have constant spectral
gaps; however, in applications, the only operators that we could find that
verify both Assumption B and C have constant spectral gaps.

It follows immediately this result.

Theorem 2.2. Assume A, B, C. There exists VA(t) ∈ C∞(T,L(Hr)) s.t.
K0 + VA(t) generates unbounded orbits. More precisely there exists a smooth
solution ψ(t) of (1) with V (t) = VA(t), such that ψ(t) belongs to Hr ∀t and
fulfills (9).

Proof. The proof is trivial. Define VA(t) as in (3). By Assumption B and C, it
belongs to C∞(T,L(Hr)). The change of coordinates ψ = e−itK0ϕ conjugates
iψ̇ = (K0 + VA(t))ψ to (8) and preserves the norm ‖ · ‖r for any time t. Then
Assumption A implies the claim. �

The main contribution of our paper is to show how to verify Assump-
tion A in different settings and for many initial datum. Indeed, while on a
compact manifold any A multiplication operator will work (see Example 2.5
below for the case of the torus), for the Harmonic oscillator it is less trivial
how to proceed. In the latter case the idea, that we already anticipated, is to
define the operator by its action on the Hermite basis in such a way that it
is easier to prove growth of the solution’s norms, and then to use Chodosh
characterization to verify its pseudodifferential properties. We stress that
pseudodifferential properties are needed to verify Assumption B by invok-
ing an Egorov-like theorem, and allow to obtain smoothness in time of the
operator VA(t).

In order to verify that the flow of A has unbounded paths in Hr, r > 0,
the following result might be useful. First remark that a necessary condition
for (9) to be fulfilled is that [K0, A] 6= 0. Then a sufficient condition is that
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only a finite number of iterated commutators of A and K0 are not zero. We
define adA(B) := [A,B].

Lemma 2.3. Assume that for some N ∈ N one has

(11) adjA(K0) 6= 0, ∀1 ≤ j ≤ N, adN+1
A (K0) = 0.

Fix r ∈ N and choose ψ0 ∈ Hr such that

(12)
[
adNA (K0)

]r
ψ0 6= 0.

Then there exists C(r,N, ψ0) > 0 such that the solution ψ(t) of (9) with
initial datum ψ0 fulfills

(13) ‖ψ(t)‖r ≥ C(r,N, ψ0) 〈t〉rN , t� 1.

The proof of the Lemma is postponed in Appendix A.

Remark 2.4. Condition (11) can be replaced by adNA (K ′0) 6=0, adN+1
A (K ′0)=

0 where K ′0 is any operator defining norms equivalent to ‖ · ‖r.

We conclude this section with an example of an operator A with abso-
lutely continuous spectrum which has unbounded orbits; such example will
guide us in the applications:

Example 2.5. Let Hr(T) = Dom((1− ∂xx)r/2) be the classical Sobolev
space on the one dimensional torus T. Define A = v(x) (multiplication op-
erator), with v(x) ∈ C∞(T,R) and ∇v 6≡ 0. Then the equation

iϕ̇ = v(x)ϕ, with ϕ(0) ∈ Hr(T) and (∇v) · ϕ(0) 6≡ 0

has a solution ϕ(t) ∈ Hr(T) fulfilling (9) with µ = 1. This follows applying
Lemma 2.3 and Remark 2.4 with K ′0 = ∂x and noting that [v(x), ∂x] 6= 0,
[v(x), [v(x), ∂x]] = 0.

More generally, any multiplication operator on a compact manifold will
work as well.

3. Applications

In this section we show how to check the abstract assumptions in three
different setups. In each case we construct a periodic in time perturbation
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which induces growth of norms. While Assumption B and C will be rather
easy to check, the verification of Assumption A depends on the setup.

For Ω ⊂ Rd and F a Fréchet space, we will denote by Cmb (Ω,F) the space
of Cm maps f : Ω 3 x 7→ f(x) ∈ F , such that, for every seminorm ‖ · ‖j of
F one has

(14) sup
x∈Ω
‖∂αx f(x)‖j < +∞, ∀α ∈ Nd : |α| ≤ m.

If (14) is true ∀m, we say f ∈ C∞b (Ω,F).

3.1. Harmonic oscillator on R

Consider the Schrödinger equation

(15) iψ̇ =
1

2

(
−∂2

x + x2
)
ψ + V (t, x,Dx)ψ, x ∈ R.

Here K0 := 1
2

(
−∂2

x + x2
)

is the Harmonic oscillator, the scale of Hilbert
spaces is defined as usual by Hr = Dom (Kr

0), and the base space (H0, 〈·, ·〉)
is L2(R,C) with its standard scalar product. The perturbation V is chosen
as the Weyl quantization of a symbol belonging to the following class:

Definition 3.1. A function f is a symbol of order ρ ∈ R if f ∈ C∞(Rx ×
Rξ,R) and ∀α, β ∈ N, there exists Cα,β > 0 such that

|∂αx ∂
β
ξ f(x, ξ)| ≤ Cα,β (1 + |x|2 + |ξ|2)ρ−

|β|+|α|
2 .

We will write f ∈ Sρho.

We endow Sρho with the family of seminorms

℘ρj (f) :=
∑

|α|+|β|≤j

sup
(x,ξ)∈R2

∣∣∣∂αx ∂βξ f(x, ξ)
∣∣∣

[1 + |x|2 + |ξ|2]ρ−
β+α

2

, j ∈ N ∪ {0}.

Such seminorms turn Sρho into a Fréchet space. If a symbol f depends on
additional parameters (e.g. it is time dependent), we ask that all the semi-
norms are uniform w.r.t. such parameters.
To a symbol f ∈ Sρho we associate the operator f(x,Dx) by standard Weyl
quantization
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(
f(x,Dx)ψ

)
(x) :=

1

2π

∫∫
y,ξ∈R

ei(x−y)ξ f

(
x+ y

2
, ξ

)
ψ(y) dydξ.

Definition 3.2. We say that F ∈ Aρ if it is a pseudodifferential operator
with symbol of class Sρho, i.e., if there exists f ∈ Sρho such that F = f(x,Dx).

Remark 3.3. The harmonic oscillator K0 has symbol given by x2 + ξ2; by
our definition K0 ∈ A1.

Remark 3.4. It follows from Definition 3.1 that symbols depending only
on one variable are polynomials. Therefore the only multiplication operators
which are pseudodifferential are the quantizations of polynomial functions
in x.

As usual we give Aρ a Fréchet structure by endowing it with the semi-
norms of the symbols.

Our first application is to construct a time dependent pseudodifferential
operator of order 0 which provokes growth of Sobolev norms. In such a way
we obtain an alternative, simpler construction of the result of Delort [Del14].

The main problem is to verify Assumption A. We do this by defining A
by its action on the Hermite functions (en)n∈N0

(which are eigenvectors of
the Harmonic oscillator and form a basis of L2(R)). We take δ 6= 0 arbitrary
and define

(16) Ae0 := δe1, Aen := δ (en+1 + en−1) for n ≥ 1.

The action of A is extended on all Hr by linearity, giving

Aψ = δ
∑
n≥0

(ψn−1 + ψn+1)en,

where we defined ψn = 〈ψ, en〉 for n ≥ 0 and ψ−1 = 0. Clearly A ∈ L(Hr)
∀r ≥ 0.

Remark 3.5. In the basis of Hermite functions, the operator A is the
discrete Laplacian on the half line `2(N0) with Dirichlet boundary conditions,
hence it has absolutely continuous spectrum.

Remark 3.6. The Fourier transform (ψn)n∈N0
7→
∑

n≥0 ψn sin ((n+ 1)y)
maps Hr in Hr(T) and conjugates A to the multiplication operator by
δ cos(x); therefore we are in the framework of Example 2.5.
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We prove now that A fulfills Assumption A and it is a pseudodifferential
operator of order 0. First we show that its propagator has unbounded paths
in Hr, r > 0.

Lemma 3.7. Let A be defined in (16) and consider the equation iψ̇ = Aψ.
For any r ∈ N, any nonzero ψ0 ∈ Hr, there exists a constant Cr,ψ0

> 0 such
that ‖e−itAψ0‖r ≥ Cr,ψ0

〈t〉r for t� 1.

Proof. Remark 3.6 gives essentially a proof of the statement. Alternatively,
one can also apply Lemma 2.3 as follows. Let en be the nth Hermite function;
then a direct computation using (16) and K0en = (n+ 1

2)en shows that

[A,K0]en = δ(en−1 − en+1), [A, [A,K0]]en = 0, ∀n ∈ N0.

Then we apply Lemma 2.3 with N = 1. Condition (12) is fulfilled for any
nontrivial ψ0 ∈ Hr. �

To prove that A ∈ A0 we use Chodosh characterization [Cho11], which
allows to read the pseudodifferential properties of an operator by its matrix
coefficients on the basis of Hermite functions. Any linear self-adjoint operator
A : Hr → Hr′ is completely determined by its matrix

(17) M (A) : N0 × N0 → R, (m,n)→ 〈Aem, en〉 .

Define the discrete difference operator 4 on a function M : N0 × N0 → R by

(4M)(m,n) := M(m+ 1, n+ 1)−M(m,n),

and its powers 4γ by 4 applied γ-times.

Definition 3.8. A symmetric function M : N0 × N0 → R will be said to be
a symbol matrix of order ρ if for any γ,N ∈ N, there exists Cγ,N > 0 such
that ∣∣(4γM)(m,n)

∣∣ ≤ Cγ,N (1 +m+ n)ρ−|γ|

(1 + |m− n|)N
.

The connection between pseudodifferential operators of order ρ and sym-
bol matrices of order ρ is given by Chodosh’s characterization [Cho11]:

Theorem 3.9 (Chodosh’s characterization). A selfadjoint operator A
belongs to Aρ if and only if its matrix M (A) (as defined in (17)) is a symbol
matrix of order ρ.
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We can now prove:

Lemma 3.10. The operator A defined in (16) belongs to A0.

Proof. By formula (16), the matrix of A is given by

M (A)(m,n) := 〈Aem, en〉 = δn+1,m + δn−1,m, n,m ∈ N0.

It is a trivial computation to verify that M (A) is a symbol matrix of order
0, hence by Theorem 3.9 it is a pseudodifferential operator in A0. �

We are now able to recover Delort theorem [Del14], for any initial datum.

Theorem 3.11. There exists a time periodic pseudodifferential operator of
order 0, V ∈ C∞b (T,A0), such that the following holds true. For any r ∈ N,
for any initial datum ψ0 ∈ Hr, there exists a constant Cr,ψ0

> 0 such that
the solution ψ(t) of (15) with initial datum ψ0 belongs to Hr for any t ≥ 0
and fulfills ‖ψ(t)‖r ≥ Cr,ψ0

〈t〉r for any t > 0 large enough.

Proof. We verify that Assumptions A, B, and C are met.
Assumption A: It follows by Lemma 3.7 with µ = 1 and any initial datum.
Assumption B: By Lemma 3.10 one has A ∈ A0. By Egorov theorem for
the Harmonic oscillator [Hör79] (and using the periodicity of the flow of
K0) the map t 7→ e−itK0AeitK0 ≡ VA(t) ∈ C∞b (T,A0). This can be seen e.g.
by remarking that the symbol of VA(t) is a ◦ φtho, where a ∈ S0

ho is the symbol
of A and φtho is the time t flow of the harmonic oscillator; explicitly(

a ◦ φtho
)

(x, ξ) = a(x cos t+ ξ sin t,−x sin t+ ξ cos t).(18)

Assumption C: It follows from σ(K0) = {n+ 1
2}n≥0.

�

We conclude with a list of remarks.

Remark 3.12. The parameter δ in (16) can be arbitrary small; therefore,
also the perturbation VA(t) can be arbitrary small in size.

Remark 3.13. Consider (15) with VA(ωt, x,Dx), ω ∈ R, so that the pertur-
bation is now periodic in time with frequency ω. Then it is proved in [Bam18]
that for any δ sufficiently small, there exists a Cantor set Oδ ⊂ [0, 1] such
that if ω ∈ Oδ, each solution of (15) fulfills (7). It is clear therefore that
the growth of Sobolev norms depends on resonance properties of the fre-
quency ω.
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Remark 3.14. One has VA ∈ C∞(T,L(Hr)) for any r ≥ 0. Indeed by
Calderon-Vaillancourt theorem for the class Aρ (see e.g. [Rob87]), for any
r ∈ N, there exists N ∈ N and Cr,N > 0 such that

sup
t∈T
‖∂`tVA(t)‖L(Hr) ≤ Cr,N ℘

ρ
N

(
∂`ta(t, x, ξ)

)
<∞, ∀` ∈ N0,

where a(t, x, ξ) ≡ (a ◦ φtho)(x, ξ) is the symbol of VA(t), see (18), and belongs
to C∞b (R, S0

ho).

3.2. Half-wave equation on T

The half-wave equation on T is given by

(19) iψ̇ = |Dx|ψ + V (t, x,Dx)ψ, x ∈ T.

Here |Dx|ψ is the Fourier multiplier defined by

|Dx|ψ :=
∑
j∈Z
|j|ψj eijx,

where ψj :=
∫
T ψ(x)e−ijxdx is the jth Fourier coefficient.

We recall now the class of global pseudodifferential operators on T (see
e.g. [SW87] or the monograph [SV02]). For a function f : T× Z→ R, define
the difference operator 4f(x, j) := f(x, j + 1)− f(x, j). We define the class
of symbols as follows.

Definition 3.15. A function f : T× Z→ R, will be called a symbol of
order ρ ∈ R if x 7→ f(x, j) is smooth for any j ∈ Z and ∀α, β ∈ N, there
exists Cα,β > 0 s.t. ∣∣∂αx4βf(x, j)

∣∣ ≤ Cα,β 〈j〉ρ−β .
We will write f ∈ Sρto.

Again we endow Sρto with the family of seminorms

℘ρ` (f) :=
∑

α+β≤`
sup

(x,j)∈T×Z
〈j〉−ρ+β

∣∣∣∂αx 4β
ξ f(x, j)

∣∣∣ , ` ∈ N0.

If a symbol f depends on additional parameters (e.g. it is time dependent),
we ask that the constants Cα,β are uniform w.r.t. such parameters.
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To a symbol f ∈ Sρto we associate the operator f(x,Dx) by standard
quantization: (

f(x,Dx)ψ
)

(x) :=
∑
j∈Z

f(x, j)ψj e
ijx.

Then we have the following definition.

Definition 3.16. We say that F ∈ Aρ if it is a pseudodifferential operator
with symbol of class Sρto, i.e., if there exist f ∈ Sρto such that F = f(x,Dx).

Remark 3.17. The operator |Dx| has symbol given by |j|; therefore |Dx| ∈
A1.

Remark 3.18. The class of pseudodifferential operators defined globally
on the torus through Fourier analysis coincides with the usual definition
of pseudodifferential operators on a compact manifold, see e.g. [SV02] or
[SW87] for a proof.

As usual we give Aρ a Fréchet structure by endowing it with the semi-
norms of the symbols. In this case we have:

Theorem 3.19. Consider the half-wave equation (19). There exist a pseu-
dodifferential operator of order 0, V ∈ C∞(T,A0), and for any r ∈ N a con-
stant Cr > 0 and a solution ψ(t) of (19) such that, for any t ≥ 0, ψ(t) ∈
Hr(T) and satisfies ‖ψ(t)‖Hr(T) ≥ Cr tr for t large enough.

Proof. First we show how to put ourselves in the setting of the abstract
problem. Define

K0 := |Dx|+ λ, λ > 0.

The space Hr := Dom(Kr
0) coincides with Hr(T), with equivalent norms.

We take perturbations of the form V (t, x,Dx) = λ
(
1 + e−itK0AeitK0

)
, so

that (19) becomes

iψ̇ = K0ψ + VA(t, x,Dx)ψ, VA(t, x,Dx) := λ e−itK0AeitK0 ,

and we are back to the abstract setting. We need only to verity Assumptions
A, B, C.

Assumption A: Take A and the initial datum ψ0 as in Example 2.5.
Assumption B: One has A ∈ A0 and K0 ∈ A1. By a classical result of

Hörmander [Hör85] (see also [DG75]), t 7→ e−itK0AeitK0 ∈ C∞(R,A0); actu-
ally, being periodic in time, it belongs to C∞(T,A0).

Assumption C: Trivial, since σ(K0) = {j + λ}j∈N0
. �
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Remark 3.20. The parameter λ can be arbitrary small; therefore also in
this case V (t, x,Dx) can be arbitrary small in size.

Remark 3.21. By Calderon-Vaillancourt theorem,

V (t, x,Dx) ∈ C∞(T,L(Hr)) ∀r ∈ N.

3.3. Schrödinger-Dirac equation on Zoll manifolds

Consider the Schrödinger-Dirac equation on a Zoll manifold M (e.g., M can
be a n-dimensional sphere)

(20) iψ̇ =
√
−∆g +m2 ψ + V (t, x,Dx)ψ, x ∈M ;

here m 6= 0 is a real number and −∆g is the positive Laplace-Beltrami op-
erator on M . Let Hr(M) = Dom

(
(1−∆g)

r/2
)
, r ≥ 0, the usual scale of

Sobolev spaces on M . Finally we denote by Sρcl the space of classical real
valued symbols of order ρ ∈ R on the cotangent T ∗(M) of M (see Hörmander
[Hör85] for more details).

Definition 3.22. We say that F ∈ Aρ if it is a pseudodifferential operator
(in the sense of Hörmander [Hör85]) with symbol of class Sρcl.

Remark 3.23. The operator
√
−∆g +m2 belongs to A1 [Hör85].

Remark 3.24. By [CdV79], there exist c0, c1 > 0 such that

σ

(√
−∆g +m2

)
⊆
⋃
j≥0

[
j + c0 −

c1

j
, j + c0 +

c1

j

]
,

so in this case the spectral gaps are only asymptotically constant.

We have the following

Theorem 3.25. Consider the Schrödinger-Dirac equation (20). There ex-
ists a pseudodifferential operator of order 0, V ∈ C∞(T,A0), and for any
r ∈ N a constant Cr > 0 and a solution ψ(t) of (20) fulfilling ψ(t) ∈ Hr(M)
for any time t, and

‖ψ(t)‖Hr(M) ≥ Cr tr, t� 1.
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Proof. To begin with we show how to put ourselves in the abstract setup. So
first we define the operator K0. This is achieved by exploiting the spectral
properties of the operator −∆g. Applying Theorem 1 of Colin de Verdière
[CdV79], there exists a pseudodifferential operator Q of order −1, commut-
ing with −∆g, such that Spec[

√
−∆g +m2 +Q] ⊆ N + λ with some λ > 0.

So we define

(21) K0 :=
√
−∆g +m2 +Q ∈ A1.

SinceQ ∈ A−1, the spaceHr := Dom(Kr
0), r ≥ 0, coincides with the classical

Sobolev space Hr(M) and one has the equivalence of norms

cr ‖ψ‖Hr(M) ≤ ‖ψ‖r ≤ c̃r ‖ψ‖Hr(M), ∀r ∈ R.

We take the perturbation of the form V (t, x,Dx) = Q+ e−itK0AeitK0 , so
that (20) becomes

iψ̇ = K0ψ + VA(t, x,Dx), VA(t, x,Dx) = e−itK0AeitK0

and we are back to the abstract setting. We need only to verify Assumptions
A, B, C.

Assumption A: It follows by a trivial variant of Example 2.5. Choose
any non-constant v(x) ∈ C∞(M,R), define A as the multiplication opera-
tor by v(x), and take an initial datum ψ0 ∈ Hr fulfilling (∇gv(x))ψ0 6≡ 0.
For example, v(x) can be any non-costant eigenfunction of −∆g. Then the
Schrödinger equation (8) has orbits fulfilling (9) with µ = 1 (it is enough to
apply Lemma 2.3 and Remark 2.4 using [∇g, v(x)] 6= 0, [[∇g, v(x)], v(x)] =
0).

Assumption B: One has A ∈ A0 and K0 ∈ A1. Then e−itK0AeitK0 ∈
C∞(R,A0) by a classical result of Hörmander [Hör85].

Assumption C: True by construction. �

Remark 3.26. In this case, the perturbation V (t, x,Dx) cannot be chosen
arbitrary small in size, since we have to add the smoothing operator Q to
correct the spectral gaps.

Remark 3.27. One could also choose V (t, x,Dx) as

e−it
√
−∆g+m2

εA eit
√
−∆g+m2

;

in such a way the perturbation is arbitrary small in size and fulfills Assump-
tion C (again by [Hör85]), but it is not periodic in time.
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Appendix A. Proof of Lemma 2.3

Since the linear operator adA fulfills Leibniz rule, for any M, r ∈ N one has
the identity
(A.1)

adMA (K2r
0 ) =

∑
k1+...+k2r=M

(
M

k1 · · · k2r

)
adk1A (K0) adk2A (K0) · · · adk2rA (K0)

If M ≥ 2rN + 1 then in (A.1) at least one index kj is greater equal N + 1,
so by assumption (11) the whole expression is zero. By the same argument,
if M = 2rN then the only term not null in (A.1) is the one with kj = N ∀j,
which is

[
adNA (K0)

]2r
.

Consider now the solution ψ(t) ≡ e−itAψ0 of equation (8). Since A is
self-adjoint,

‖ψ(t)‖2r ≡
〈
eitAK2r

0 e−itAψ0, ψ0

〉
,

where we used ‖ψ‖2r ≡
〈
K2r

0 ψ,ψ
〉
. Now we use the Lie formula eitAB e−itA ≡∑

j≥0
(it)j

j! adjA(B), assumption (11) and our previous considerations to ob-
tain

eitAK2r
0 e−itA =

2rN∑
M=0

(it)M

M !
adMA (K2r

0 ) ≡ (it)2rN

(2rN)!

[
adNA (K0)

]2r
+O(t2rN−1) ;

provided
[
adNA (K0)

]r
ψ0 6= 0, it follows that

(A.2) lim inf
t→+∞

‖ψ(t)‖2r
|t2rN |

≥ 1

(2rN)!

∣∣ 〈[adNA (K0)
]2r

ψ0, ψ0

〉 ∣∣ > 0.

In particular there exists a constant C(r,N, ψ0) > 0 such that (13) holds
true.
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operators, Astérisque (2017), no. 389, vi+112.

[GHP16] M. Guardia, E. Haus, and M. Procesi, Growth of Sobolev norms
for the analytic NLS on T2, Adv. Math. (2016), no. 301, 615–
692.
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