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Prime twists of elliptic curves

DANIEL KRIZ AND CHAO LI

For certain elliptic curves F/Q with E(Q)[2] = Z/2Z, we prove a
criterion for prime twists of E to have analytic rank 0 or 1, based
on a mod 4 congruence of 2-adic logarithms of Heegner points. As
an application, we prove new cases of Silverman’s conjecture that
there exists a positive proposition of prime twists of E of rank zero
(resp. positive rank).

1. Introduction
1.1. Silverman’s conjecture

Let E/Q be an elliptic curve. For a square-free integer d, we denote by
E@ /Q its quadratic twist by Q(v/d). Silverman made the following conjec-
ture concerning the prime twists of E (see [10, p.653], [9, p.350]).

Conjecture 1.1 (Silverman). Let E/Q be an elliptic curve. Then there
exrists a positive proportion of primes £ such that EWY or ECY has rank
r=20 (resp. r > 0).

Remark 1.2. Conjecture is known for the congruent number curve
E:y?=2%— 2. In fact, E® has rank 7 = 0 if /=3 (mod 8) and r = 1 if
¢=15,7 (mod 8). This follows from classical 2-descent for » = 0 and Birch
[1] and Monsky [§] for r =1 (see also [12]).

Remark 1.3. Although Conjecture[L.1]is still open in general, many special
cases have been proved. For r = 0, see Ono [9] and Ono—Skinner [10, Cor. 2]
(including all elliptic curves with conductor < 100). For r = 1, see Coates-Y.
Li-Tian-Zhai [2, Thm. 1.1].

In our recent work [7, Thm. 4.3], we have proved Conjecture (for
both 7 = 0 and r = 1) for a wide class of elliptic curves with E(Q)[2] = 0.
The goal of this short note is to extend our method to certain elliptic curves
with E(Q)[2] = Z/2Z.

1187



1188 D. Kriz and C. Li

1.2. Main results

Let E/Q be an elliptic curve of conductor N. We will use K to denote an
imaginary quadratic field satisfying the Heegner hypothesis for N:

each prime factor ¢ of N is split in K.

We denote by P € E(K) the corresponding Heegner point, defined up to sign
and torsion with respect to a fixed modular parametrization 7g : Xo(N) —
E. Let

f(@) =) an(E)d" € 537 (To(N))
n=1

be the normalized newform associated to E. Let wg € Q}E/Q = H(E/Q,QY)
such that

mg(we) = f(q) - dq/q.

We denote by log,,  the formal logarithm associated to wg.
Our main result is the following criterion for prime twists of F of analytic
(and hence algebraic) rank 0 or 1.

Theorem 1.4. Let E/Q be an elliptic curve. Assume E(Q)[2] = Z/27
and E has no rational cyclic 4-isogeny. Assume there exists an imaginary
quadratic field K satisfying the Heegner hypothesis for N such that

| B ()| - log,, (P)

(%) 2 splits in K and 5

#Z0 (mod 2).
Let S be the set of primes
S:={l12N : ¢ splits in K,|FE(F;)| £ 0 mod 4}.
Let N be the set of signed primes
N ={d==+L:{€S, any odd prime q||Nsplits in Q(v/d)}.

Then for any d € N, we have the analytic rank ron(EY/K) = 1. In partic-
ular,

0, if w(EW/Q)=+1,
1, ifw(ED/Q)=—-1.

where w(E@ Q) denotes the global root number of E@ /Q.

Tan(E(d)/Q) = {
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Remark 1.5. Recall that | E*(Fy)| denotes the number of Fy-points of the
nonsingular part of the mod ¢ reduction of E, which is |E(F,)|=¢+1—
a¢(E) if £4 N, £+ 1if £||N and ¢ if *|N.

Remark 1.6. The assumption on Heegner points in Theorem forces
ran(E/Q) < 1.

As a consequence, we deduce the following cases of Silverman’s conjec-
ture.

Theorem 1.7. Let E/Q as in Theorem[1.J} Let ¢ : E — Ey := E/E(Q)|2]
be the natural 2-isogeny. Assume the fields Q(E[2], Ey[2]), Q(v—N), Q(1/q)
(where q runs over odd primes q||N) are linearly disjoint. Then Conjec-

ture holds for E/Q.
1.3. Novelty of the proof

The proof of [7, Thm. 4.3] mentioned above uses the mod 2 congruence
between 2-adic logarithms of Heegner points on F and E(?) (recalled in
below), arising from the isomorphism of Galois representations E[2] &
E([2]. For the congruence to be nontrivial on both sides, one needs the
extra factor |E(F,)| appearing in the formula to be odd for ¢|d. This is only
possible when E(Q)[2] = 0.

When E(Q)[2] # 0, we instead take advantage of the exceptional isomor-
phism between the mod 4 semisimplified Galois representations E[4]* =
E(d) [4]%, and consequently a mod 4 congruence between 2-adic logarithm
of Heegner points. When F(Q)[2] = Z/2Z and E has no rational cyclic 4-
isogeny, it is possible that the extra factor |E(Fy)| is even but nonzero mod
4. This is the key observation to prove Theorem [I.4] The application Theo-
rem [I.7) then follows by Chebotarev’s density after translating the condition
|E(Fy)| # 0 (mod 4) into an inert condition for ¢ in Q(E[2]) and Q(Ep[2])
(Lemma (4.1)).

2. Examples
Let us illustrate the main results by two explicit examples.

Example 2.1. Consider the elliptic curve (in Cremona’s labeling)

E =256b1 : y? = 2% — 2z
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with F(Q)[2] =2 Z/27Z. 1t has j-invariant 1728 and CM by Q(7). The imag-
inary quadratic field K = Q(1/—7) satisfies the Heegner hypothesis. The
associated Heegner point yx = (—1, —1) satisfies Assumption . The set
S consists of primes ¢ such that £ = 1,2,4 (mod 7) and £ =5 (mod 8):

S =1{29,37,53,109,149,197,277,317,373,389, ..., }.
By Theorem we have
Fan(EFD /K) =1, for any £ € S.
We compute the global root number w(E®4 /Q) = —1 and conclude that
ran(BEF9/Q) = 1, ran(EFT™/Q) = 0, for any £ € S.
Remark 2.2. Notice the two congruence conditions for £ € S are both
necessary for the conclusion: for example, we have ran(E(g)) =2 for ¢ =31
and 7o (E()) = 2 for £ = 5.
Example 2.3. Consider the elliptic curve
E=256al:y? =2 +2>-3z+1
with F(Q)[2] = Z/27Z. 1t has j-invariant 8000 and CM by Q(v/—2). The
imaginary quadratic field K = Q(1/—7) satisfies the Heegner hypothesis.
The associated Heegner point yx = (0,1) satisfies Assumption . The
2-isogenous curve is
Eo = 256a2 : y* = 2 4+ 2% — 13z — 21.

We have Q(F[2]) = Q(Eo[2]) = Q(v2) and Q(v—N)=Q(i). Hence
Q(E[2], Ep[2]) and Q(+/—N) are linearly disjoint. Since there is no odd prime
q||V, Theorem implies that Silverman’s conjecture holds for E.

In fact, the set S in this case consists of primes £ such that £ =1,2,4
(mod 7) and £ = 3,5 (mod 8):
S ={11,29,37,43,53,67,107,109, 149, 163, 179,197,211, 277,317,331, .. .}.

Computing the global root number gives

ran(EQ/Q) =1, ran(ECY/Q) =0, for any £ € S.
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3. Proof of Theorem [1.4]
3.1. Congruences between Heegner points
We first recall Theorem 1.16 of [7].

Theorem 3.1. Let E and E' be two elliptic curves over Q of conductors N
and N’ respectively. Suppose p is a prime such that there is an isomorphism
of semisimplified Gg = Gal(Q/Q)-representations

E[pm]SS g E/[pm]ss

for somem > 1. Let K be an imaginary quadratic field satisfying the Heegner
hypothesis for both N and N'. Let P € E(K) and P' € E'(K) be the Heegner
points. Assume p is split in K. Then we have

E"s(F
11 | ée)\ log,,, P

(pNN' /M

E/,ns Fﬂ -
+ H E()| -log,, , P' (mod p™).

UpNN' /M
Here
M = H eOI‘dg(NN/)
2] ged(N,N')
ap(E)=ay(E’) (mod p™)

3.2. Proof of Theorem [1.4]

For a prime ¢ t Nd, we have ay(E) = +a,(E@) since E? is a quadratic twist
of E. Since E(Q)[2] # 0, we know that |E(F,)| and |E@(F,)| are even since
the reduction mod ¢ map is injective on prime-to-£ torsion. Hence if ¢ # 2,
then ay(E), a¢(E@®) are also even. Since ay(E) = +a,(E@), we obtain the
following mod 4 congruence

a(E) = ag(E®)  (mod 4), for any £12Nd.
It follows that we have an isomorphism of Gg-representations

E[4]* = ED[4]*
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Now we can apply Theorem [3.1] to B/ = E@, p =2 and m = 2. By
assumption, any prime ¢|2N splits in K. By the definition of S, the prime
¢ = |d| splits in K. Notice the odd prime factors of N’ = N (E®) are exactly
the odd prime factors of Nd, thus K also satisfies the Heegner hypothesis
for N'.

Let /| gcd(N, N') be an odd prime. We have:

1) if £||N, then ay(E), a;(E@®) € {#1} is determined by their local root
numbers at £. By the definition of A, we know that ¢ splits in Q(v/d),
and hence F/Q, and E@ /Q, are isomorphic. It follows that a,(E) =
ag(E@).

2) if £2|N, then ay(E) = a,(E@) =0,

Therefore M is divisible by all the prime factors of ged(N, N'). Notice
the odd part of ged(N, N') equals to the odd part of N, so the congruence
formula in Theorem [3.1] implies

ns r(d),ns
) [N oy, p= e TTEE gy, PO (mod 4.
¢2d 7)2d

For ¢ = |d|, we have
[E(F)|#0  (mod 4)

by the definition of S. Now Assumption implies that the left-hand-side
of is nonzero mod 4. Hence the right-hand-side of is also nonzero.
In particular, the Heegner point P(¥ € E(@(K) is non-torsion, and hence
ran(E@/K) = 1 by the theorem of Gross—Zagier [3] and Kolyvagin [6], [5],
as desired.

4. Proof of Theorem

4.1. Elliptic curves with partial 2-torsion and no rational cyclic
4-isogeny

Let E be an elliptic curve of conductor N. Assume E(Q)[2] = Z/27Z. Then
Q(E[2])/Q is the quadratic extension Q(v/Ag), where Ag is the discrimi-
nant of a Weierstrass equation of E.

Let ¢ : E — Ey := E/E(Q)[2] be the natural 2-isogeny. By [4, Lem. 4.2
()], E has no rational cyclic 4-isogeny if and only if Q(Ey[2])/Q is a quadratic
extension. Assume we are in this case, then Q(Ep[2]) = Q(\/Ag,).
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Lemma 4.1. Let £{ N be a prime. Then the following are equivalent:
1) |E(F)|[ # 0 (mod 4),
9) B(F)[2] = Eo(F))[2] = 722,
3) £ is inert in both Q(E[2]) and Q(Ep[2]).

Proof. Since E and Fy are isogenous and ¢ is a prime of good reduction,
we know that |E(F)| = |Eo(Fs)|. So |E(Fy)| #0 (mod 4) if and only if
|Eo(F¢)| # 0 (mod 4). In this case, certainly (2) holds. Conversely, if (2)
holds, then E(IFy)[4] = Z/2Z (otherwise E(F,)[4] = Z /47, and thus Ey(F,)[2]
= 7./27 x 7./27 generated by ¢(E(Fy)[4]) and the kernel of the dual isogeny
¢ : Ey — E), hence |E(F;)| # 0 (mod 4). We have shown that (1) is equiv-
alent to (2).

Moreover, E(F,)[2] = Z/27 (resp. Z/27. x 7./27) if and only if Q,(E[2])/
Qy is a quadratic extension (resp. the trivial extension), if and only if ¢ is
inert (resp. split) in Q(F[2]). Similarly we know that Eo(F,)[2] = Z/2Z if
and only if ¢ is inert in Q(Ep[2]). It follows that (2) is equivalent to (3). O

4.2. Proof of Theorem

By assumption, the fields Q(E[2], Eo[2]), Q(,/q) (¢ runs all odd prime ¢||N)
are linearly disjoint. Since K satisfies the Heegner hypothesis for N and 2
splits in K, we know the discriminant dx of K is coprime to 2N, hence K
is also linearly disjoint from the fields Q(E[2], Eo[2]) and Q(,/q)’s. It follows
from Chebotarev’s density that there is a positive density set 7 of primes
£+ 2N such that

1) ¢ is split in K,
2) /¢ is inert in both Q(FE[2]) and Q(Ey[2]),
3) £ is split in Q(,/q) for any odd prime ¢||N.

By Lemma we know T CS. For £ €T, we consider d = ¢* :=
(—1)(=1/2¢. By the quadratic reciprocity law, we know that odd ¢||N is
split in Q(v/¢*) if and only if ¢ is split in Q(y/q). In particular, for any
¢ €T, we have £* € N. Now Theorem implies that ru,(E¢)/K) = 1.
Moreover,

0, w(EY)/Q)=+1,

Tan(E(e*)/Q) - {1, w(E(é*)/Q) = -1
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Since Q(v/¢*) has discriminant coprime to 2N, we have the well known
formula

w(EO/Q) = w(E/)- (L),

By the quadratic reciprocity law, we obtain

w(EO/Q) = w(E/) - ().

By assumption, Q(v/—N) is also linearly disjoint from the fields considered
above, hence the global root number w(E¢") /Q) takes both signs for a pos-
itive proportion of £ € 7 by Chebotarev’s density. Therefore r.,(E¢)/Q)
takes both values 0 and 1 for a positive proportion of £ € T, as desired.

Acknowledgements

The examples in this note are computed using Sage ([11]).

References

[1] B. J. Birch, Elliptic curves and modular functions, in: Symposia Mathe-
matica, Vol. IV (INDAM, Rome, 1968/69), pp. 27-32, Academic Press,
London (1970).

[2] J. Coates, Y. Li, Y. Tian, and S. Zhai, Quadratic twists of elliptic curves,
Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357-394.

[3] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series,
Invent. Math. 84 (1986), no. 2, 225-320.

[4] Z. Klagsbrun, Selmer ranks of quadratic twists of elliptic curves with
partial rational two-torsion, Trans. Amer. Math. Soc. 369 (2017), no. 5,
3355-3385.

[5] V. A. Kolyvagin, Finiteness of E(Q) and I (E,Q) for a subclass of
Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522540,
670-671.

[6] V. A. Kolyvagin, Euler systems, in: The Grothendieck Festschrift,
Vol. II, Vol. 87 of Progr. Math., pp. 435-483, Birkhauser Boston,
Boston, MA (1990).

[7] D. Kriz and C. Li, Goldfeld’s conjecture and congruences between Heeg-
ner points, Forum Math. Sigma 7 (2019), el5, 80pp.



Prime twists of elliptic curves 1195

[8] P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204
(1990), no. 1, 45-67.

[9] K. Ono, Twists of elliptic curves, Compositio Math. 106 (1997), no. 3,
349-360.

[10] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular
L-functions, Invent. Math. 134 (1998), no. 3, 651-660.

[11] T. Sage Developers, SageMath, the Sage Mathematics Software System
(Version 7.2) (2016). http://www.sagemath.org,.

[12] N. M. Stephens, Congruence properties of congruent numbers, Bull.
London Math. Soc. 7 (1975), 182-184.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307, USA
E-mail address: dkriz@mit.edu

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY
2990 BroaDWAY, NEW YORK, NY 10027, USA
FE-mail address: chaoli@math.columbia.edu

RECEIVED NOVEMBER 27, 2017


http://www.sagemath.org




	Introduction
	Examples
	Proof of Theorem 1.4
	Proof of Theorem 1.7
	References

