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1. Introduction

In their seminal paper [9], Greenberg and Vatsal showed that if two elliptic
curves E1 and E2 over Q have p-torsion subgroups which are isomorphic as
GQ = Gal(Q̄/Q)-modules, then their associated Iwasawa invariants defined
over Q∞, the cyclotomic Zp-extension of Q, are deeply entangled. In par-
ticular, either both of their µ-invariants vanish, or neither does; and in the
former case, it is possible to read the λ-invariant of E1 from the λ-invariant
of the E2. (Actually, [9] deals only with p-ordinary elliptic curves, and this
result was generalized to supersingular elliptic curves by Kim [13].)

This fact about the variation of Iwasawa invariants was then general-
ized to Hida families of congruent p-ordinary modular forms by Emerton,
Pollack, and Weston [6], allowing them to prove many cases of the Iwasawa
main conjecture. As before, this work was done over Q∞, which is the only
Zp-extension of Q. In both [9] and [6], the fact that the Selmer groups as-
sociated to p-ordinary modular forms over Q∞ are Λcyc-cotorsion, where
Λcyc = Zp[[Gal(Q∞/Q)]], played a crucial role in their arguments. Indeed,
in extending this work to supersingular elliptic curves, Kim needed to use
the modified ±-Selmer groups of Kobayashi [14], since the normal Selmer
group associated to a p-supersingular elliptic curve over Q∞ is never cotor-
sion. Similar results were obtained for p-non-ordinary modular forms by the
authors [10].

In contrast to Q, number fields of degree greater than 1 can have more
than one Zp-extension. For instance, if K/Q is an imaginary quadratic field,
then the compositum of all Zp-extensions of K is a Z2

p-extension; among
these is the cyclotomic extension, which is the compositum of K and Q∞,
and the anticyclotomic extension K∞, which is pro-dihedral over Q.

Suppose N > 1 is an integer coprime to the discriminant of K/Q, and
factor N = N+N− such that all the primes dividing N+ (resp. N−) are
split (resp. inert) in K. Then the anticyclotomic Iwasawa theory for modu-
lar forms of level N is readily divided into two cases, depending on whether
the number of primes dividing N− is even or odd. When this number is
odd, the anticyclotomic Iwasawa theory for modular forms closely resembles
the cyclotomic Iwasawa theory. In particular, the Greenberg Selmer group
(or Kobayashi-type ±-Selmer groups in the case of p-supersingular elliptic
curves) of a modular form is expected to be a Λ-cotorsion module, where
Λ = Zp[[Gal(K∞/K)]], and many of the aforementioned results can be gen-
eralized to this setting (see e.g. [5, 20] for this case, or see [12] for more
general number fields).
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Anticyclotomic Selmer groups of positive coranks 1117

Throughout this paper, we will instead assume that N− = 1, and hence
it is the product of an even number of primes. Under this assumption, the
Greenberg Selmer group Sel(K∞, f) of a p-ordinary modular form f is not
Λ-cotorsion. In fact, its Pontryagin dual has rank 1 as a Λ-module (see
Theorem 3.5).

The purpose of this paper is to study the variation of Iwasawa invariants
in this positive corank setting. Thus, we achieve results in the spirit of
Greenberg and Vatsal, but we do so in the absence of a cotorsion hypothesis
for the Greenberg Selmer groups associated to our modular forms. Instead,
we study various modified Selmer groups, some of which are cotorsion, and
some of which have corank 1. See Section 3 for the definitions and basic
properties of these modified Selmer groups.

The main technical lemmas which allow us to carry out the classical pro-
gram in this positive corank setting are contained in Section 2; this section
is the heart of the paper, and the results in this section are applicable to
Λ-modules of abitrary rank, so they will surely have applications to Iwasawa
theory in other settings.

We study the vanishing of µ-invariants in Section 4, and we study the
variation of λ-invariants in Section 5. Finally, in Section 6, we explain how
our results give an algebraic analogue of recent (analytic) results of Kriz and
Li [15].

1.1. Notation and assumptions

For any field L, we let GL denote the absolute Galois group Gal(L̄/L).
Throughout this article, p denotes a fixed odd prime, and ρ̄ : GQ → GL2(k)
denotes a fixed, absolutely irreducible, p-ordinary and p-distinguished, mod-
ular mod p Galois representation. Let N̄ denote the (prime to p) Artin con-
ductor of ρ̄. We will assume that N̄ is square-free. We let H denote the
Hida family of all p-ordinary, p-stabilized newforms f whose residual mod p
Galois representations are isomorphic to ρ̄.

Given a modular form f ∈ H, let Lf denote the number field gener-
ated by its Fourier coefficients, and let O denote the ring of integers of its
completion at a prime P above p, with uniformizer $. When studying two
modular forms f, g ∈ H, we will enlarge O as necessary so that it contains
the coefficients of both of our modular forms.

Let K/Q be an imaginary quadratic extension of discriminant −DK < 0,
coprime to N̄p. Write N̄ = N̄+N̄−, where primes dividing N̄+ (resp. N̄−)
are split (resp. inert) in K. We will assume N̄− = 1 and that p = pp̄ splits
in K. The assumption that N̄− = 1 seems important to our method, as we
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1118 J. Hatley and A. Lei

use it to guarantee the global-to-local maps defining certain Selmer group
are surjective; see the discussion following Lemma 3.3 as well as the proofs
of Lemma 3.10 and Proposition 5.1. It is also present in the assumptions of
[16], which we cite in Section 3.3. It is not immediately clear to the authors
whether this assumption can be relaxed to N− having an even number of
prime divisors.

Denote by K∞ the anticyclotomic Zp-extension of K, and for n ≥ 0 we
write Kn for the subextension of K∞ such that Kn/K is of degree pn. Let
Λ = O[[Γ]] be the associated Iwasawa algebra, where Γ := Gal(K∞/K) ∼=
Zp. We write Γn = Γp

n

for all integers n ≥ 0.
If Σ is any finite set of places of K and F ⊂ K∞ is an extension of K,

we denote by FΣ the maximal extension of F unramified outside the places
above Σ. We will write H i

Σ(F, ∗) for the Galois cohomology H i(FΣ/F , ∗).
Our results will ultimately apply to modular forms f belonging to H

and satisfying a number of additional hypotheses. One suite of hypotheses,
labeled (admiss.), is introduced in Section 3.3 in order to apply results of
[16]. There is also a mild technical hypothesis (H.div) which is introduced
in Section 3.5; see Remark 3.15.

We denote by Ĥ the subset of H of modular forms satisfying all of the
above hypotheses.

2. Comparing Λ-modules of arbitrary rank

Recall that if M is any finitely generated Λ-module, there is a pseudo-
isomorphism

(2.1) M ∼ Λ⊕r ⊕
s⊕
i=1

Λ/$ai ⊕
t⊕

j=1

Λ/(Fj)

for some integers r, s, t ≥ 0, ai ≥ 1 and some distinguished polynomials Fj .
The characteristic ideal of M is defined to be

charΛ(M) =

$∑s
i=1 ai

t∏
j=1

Fj

Λ.

The µ-invariant (respectively λ-invariant) of M is defined to be
∑

i ai (re-
spectively

∑
j deg(Fj)) and will be denoted by µ(M) (respectively λ(M)).

We will also write

λ(M) = λ(M̂); µ(M) = µ(M̂),
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where M̂ is the Pontryagin dual of M .
It is well-known that if A, B and C are finitely generated Λ-torsion

modules sitting in a short exact sequence

0→ A→ B → C → 0,

then

charΛ(A)charΛ(C) = charΛ(B).

This implies that

λ(A) + λ(C) = λ(B);

µ(A) + µ(C) = µ(B).

We will need the following slightly more general result on the additivity of
Iwasawa invariants in short exact sequences.

Proposition 2.1. Given a short exact sequence of finitely-generated Λ-
modules

0→ A→ B → C → 0,

where A is a torsion module, we have

λ(A) + λ(C) = λ(B)

and

µ(A) + µ(C) = µ(B).

Proof. By the structure theorem of finitely generated Λ-modules, B is
pseudo-isomorphic to

Λr ⊕Btor

for some integer r ≥ 0. Since A is torsion, its image in B lies inside Btor.
Therefore, B/A is pseudo-isomorphic to

Λr ⊕Btor/A.

Consequently, our short exact sequence says that

Ctor ∼ Btor/A.
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Therefore,

charΛ(Btor) = charΛ(A)charΛ(Ctor),

which implies our result. �

2.1. Results on µ-invariants

If G is a finite p-group, we will write e(G) for the p-exponent of |G|. Recall
that Γn denotes Γp

n

for n ≥ 0, where Γ = Gal(K∞/K) ∼= Zp.

Lemma 2.2. Let M be a finitely generated Λ-module and let r, s, t be the
integers defined by (2.1). Then,

e ((M/$)Γn
) = (r + s)pn +O(1).

Proof. We have the pseudo-isomorphism

M/$ ∼ (Λ/$)r+s ⊕
t⊕

j=1

Λ/(Fj , $).

As O-modules, Λ/(Fj) ∼= Odeg(Fj). So, we have in fact

Λ/(Fj , $) ∼= (O/$O)deg(Fj)

as abelian groups. In particular

e
(

(Λ/(Fj , $))Γn

)
= O(1)

for all j. Therefore, for all n ≥ 0, we have

e ((M/$)Γn
) = (r + s)× e ((Λ/$)Γn

) +O(1),

which finishes the proof. �

This lemma has two immediate and useful corollaries. First, we have a
criterion for the vanishing of the µ-invariant of M .

Corollary 2.3. Let M be a finitely generated Λ-module. Then its µ-invariant
vanishes if and only if

e ((M/$)Γn
) = r × pn +O(1),

where r = rankΛM .
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This implies that µ-invariants behave well under congruences of Λ-modules.

Corollary 2.4. Let M and M ′ be two finitely generated Λ-modules such
that

rankΛM = rankΛM
′, M/$ ∼= M ′/$

as Λ-modules. Then the µ-invariant of M vanishes if and only if that of M ′

does.

2.2. Results on λ-invariants

Let us now show that we may also read off λ-invariants by considering Γn-
coinvariants of certain types of finitely generated Λ-modules.

Lemma 2.5. Let F ∈ Λ be a distinguished polynomial of degree d and con-
sider the Λ-module M = Λ/(F ). Then

e ((M/$)Γn
) = d

when pn ≥ d.

Proof. Since F is a distinguished polynomial, we have

M/$ = Λ/(Xd, $).

Let ωn = (1 +X)p
n − 1, where 1 +X is any topological generator of Γ.

Then,

(M/$)Γn
= Λ/(Xd, ωn, $).

But the binomial theorem tells us that (ωn, $) = (Xpn , $). Consequently,
when pn ≥ d, we have

(M/$)Γn
= Λ/(Xd, ωn, $) = Λ/(Xd, $) = (O/$)d

and hence we are done. �

Corollary 2.6. Let M be a Λ-module isomorphic to Λ⊕r ⊕
⊕t

j=1 Λ/(Fj)
for some distinguished polynomials Fj (so in particular, the µ-invariant van-
ishes and the pseudo-isomorphism (2.1) is an isomorphism). If λ(M) de-
notes the λ-invariant of M , then

e((M/$)Γn
) = r × pn + λ(M)

when n� 0.
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We will need to consider finitely generated Λ-modules M with vanishing
µ-invariant for which the pseudo-isomorphism (2.1) is injective, but not nec-
essarily surjective. The latter condition is the same as saying that M admits
no non-trivial finite submodule. We shall write

N = Λ⊕r ⊕
t⊕

j=1

Λ/(Fj)

for the right-hand side of (2.1) and C denotes the (finite) cokernel of M →
N . In particular, we have the short exact sequence

0→M → N → C → 0,

from which we deduce the following preliminary lemmas.

Lemma 2.7. Let M,N and C be as defined above. Then, there is an exact
sequence

0→ C[$]→M/$ → N/$ → C/$ → 0.

Proof. The snake lemma gives the exact sequence

0→M [$]→ N [$]→ C[$]→M/$ → N/$ → C/$ → 0.

But N [$] = 0 by definition, hence the result. �

In particular, we may consider C[$] as a submodule of M/$ and the
quotient (M/$)/C[$] makes sense.

Lemma 2.8. Let M,N and C be as in Lemma 2.7. Let n ≥ 1 be an integer
such that (C/$)Γn = ((M/$)/C[$])Γn = (C/C[$])Γn = 0, then

e((M/$)Γn
) = e((N/$)Γn

).

Proof. On applying the snake lemma to the short exact sequence

0→ (M/$)/C[$]→ N/$ → C/$ → 0,

our assumption that (C/$)Γn = 0 gives the short exact sequence

0→ ((M/$)/C[$])Γn
→ (N/$)Γn

→ (C/$)Γn
→ 0.
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This implies that

e((N/$)Γn
) = e((C/$)Γn

) + e
(
((M/$)/C[$])Γn

)
.

Similarly, the assumption that ((M/$)/C[$])Γn = 0 gives the following ex-
act sequence

0→ (C[$])Γn
→ (M/$)Γn

→ ((M/$)/C[$])Γn
→ 0

and hence

e((M/$)Γn
) = e((C[$])Γn

) + e
(
((M/$)/C[$])Γn

)
.

On combining these two equalities, we deduce that

e((M/$)Γn
) = e((N/$)Γn

) + e((C[$])Γn
)− e((C/$)Γn

).

It remains to show that e((C[$])Γn
) = e((C/$)Γn

).
Consider the exact sequence

0→ C[$]→ C → C → C/$ → 0.

The same argument shows us that

e(CΓn
) = e ((C/C[$])Γn

) + e((C/$)Γn
);

e(CΓn
) = e((C[$])Γn

) + e ((C/C[$])Γn
) .

Hence, e((C[$])Γn
) = e((C/$)Γn

) and we are done. �

While the hypothesis on the Γn-invariants in Lemma 2.8 may not hold
in general, we show below that it holds after twisting. Let χ be a fixed
isomorphism of abelian groups Γ

∼−→ 1 + pZp. Given a Λ-module P and
i ∈ Z, we shall write P (i) for the the Λ-module P ⊗ χi. We may identify
P (i) with P ⊗Zp

Zp · ei, where ei is some fixed element on which Γ acts
via χi.

Lemma 2.9. Let n ≥ 0 be an integer and P a finitely generated Λ-module.
For all but finitely many integers i, the twisted Λ-module P (i) satisfies
P (i)Γn = 0.
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Proof. Under the identification P (i) = P ⊗ Zp · ei, the Λ-submodule P (i)Γn

is given by {
x⊗ ei ∈ P (i) : γn · x = χ−i(γn)x

}
,

where γn = γp
n

, which is a topological generator of Γn. It then follows that
the direct sum

⊕
i∈Z P (i)Γn ⊗ e−i is isomorphic to a Λ-submodule of P .

Since P is finitely generated, our result follows. �

The following proposition on λ-invariants will play an important role in
§5, allowing us to compare non-primitive Selmer groups of positive corank.

Proposition 2.10. Let M be a finitely generated Λ-module with vanish-
ing µ-invariant. Furthermore, suppose that M admits no non-trivial finite
submodule. Then, for all but finitely many integers i and n� 0,

e((M(i)/$)Γn
) = r × pn + λ(M).

Proof. Let M,N and C be as given in Lemma 2.7 and fix n. Lemma 2.9 tells
us that for all but finitely many i, we have

(C(i)/$)Γn = ((M(i)/$)/C(i)[$])Γn = (C(i)/C(i)[$])Γn = 0.

Hence, we have

e((M(i)/$)Γn
) = e((N(i)/$)Γn

)

following Lemma 2.8.
Note that the O-linear map induced by σ ⊗ ei 7→ χ(σ)−iσ for σ ∈ Γ gives

a Λ-isomorphism from Λ(i) to Λ. Let F =
∑

n≥0 cn(γ − 1)n ∈ Λ. The image
of F ⊗ ei in Λ is given by∑

n≥0

cn(χ−i(γ)γ − 1)n =
∑
n≥0

cn
(
χ−i(γ)(γ − 1) + χ−i(γ)− 1

)n
.

Since χ−i(γ)− 1 ∈ pZp and χ(γ) ∈ Z×p , if F is a distinguished polynomial
of degree d, the image of F ⊗ ei in Λ is, up to a unit in Z×p , a distinguished
polynomial of the same degree.
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Recall that N is of the form

Λ⊕r ⊕
t⊕

j=1

Λ/(Fj)

for some distinguished polynomials Fj ∈ Λ. The discussion above tells us
that there is a Λ-isomorphism

N(i) ∼= Λ⊕r ⊕
t⊕

j=1

Λ/(Gj),

where Gj are distinguished polynomials with deg(Gj) = deg(Fj). Therefore,

e((N(i)/$)Γn
) = e((N/$)Γn

) = r × pn + λ(M)

for n� 0 thanks to Corollary 2.6 and so we are done. �

3. Anticyclotomic Selmer groups

Let f ∈ H be a modular form of weight k = 2r and tame level Γ0(N) as in
Section 1.1. Following [16], we denote by T the associated GQ-representation
constructed in [19]; it is a free rank-2 O-module. Then V = T ⊗ Lf,P is
the r-twist of the Galois representation constructed by Deligne. Finally, let
A = V/T . Our choice of normalization makes V self-dual, and after possibly
rescaling the isomorphism V ' V ∗ = HomLf,P

(V,Lf,P(1)), the lattice T ⊂
V is also self-dual.

In this section, following [4, Section 2.1] closely, we define the various
Selmer groups associated to f which we will study.

3.1. Definitions of modified Selmer groups

Since f is p-ordinary, there exist GQp
-stable filtrations

0→ V ′ → V → V ′′ → 0,(3.1)

0→ T ′ → T → T ′′ → 0,

where V ′ and V ′′ are one-dimensional over Lf,P, whereas T ′ and T ′′ are free
of rank one over O.
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Let F be any finite extension of K, and for any place v of F , define

H1
f (Fv, V ) =

{
ker
(
H1(Fv, V )→ H1(Iv, V )

)
, v - p,

ker
(
H1(Fv, V )→ H1(Fv, V

′′)
)
, v | p,

where Iv denotes the inertia group at v. For primes above p, H1
f (Fv, V ) is

defined by the filtration (3.1); we refer to this subgroup as the Greenberg
local condition. Using the tautological exact sequence

(3.2) 0→ T → V → A→ 0,

we define H1
f (Fv, T ) (resp. H1

f (Fv, A)) as the natural preimage (resp. image)

of H1
f (Fv, V ).

Recall that p = pp̄ splits in K. Following [4, Definition 2.2], we define
the following Selmer groups.

Definition 3.1. Let W ∈ {V, T,A}. For v | p and Lv ∈ {∅,Gr, 0}, set

H1
Lv

(Fv,W ) =


H1(Fv,W ) if Lv = ∅,
H1
f (Fv,W ) if Lv = Gr,

{0} if Lv = 0.

For a local condition Lv at a place v, we write

H1
/Lv

(Fv,W ) =
H1(Fv,W )

H1
Lv

(Fv,W )
.

Then for L = {Lv}v|p and Σ any finite set of places containing {v | Np∞},
we define

SelL(F,W ) = ker

H1
Σ(F,W )→

∏
v-p

H1
/f (Fv,W )×

∏
v|p

H1
/Lv

(Fv,W )


Remark 3.2. If L = {Gr,Gr}, we will omit the subscripts and just write
(for example) Sel(F,W ).

Let Ψ : Γ ↪→ Λ× denote the map sending γ ∈ Γ to the corresponding
group-like element in Λ×, and let Λ(Ψ−1) denote the free rank-1 Λ-module
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with Γ action by Ψ−1. Then we define the Λ-modules

T = T ⊗Zp
Λ(Ψ−1) and A = T⊗Λ HomZp

(Λ,Qp/Zp),

where Γ acts on T diagonally. We may now define SelL(K,T) and
SelL(K,A) in a manner similar to Definition 3.1, and as noted on [4, p. 9]
we have

SelL(K,T) ' lim←− SelL(F, T ) and SelL(K,A) ' lim−→ SelL(F,A),

where the limits are taken with respect to the corestriction and restriction
maps, respectively, over all finite extensions K ⊂ F ⊂ K∞.

Thus, for a prime w of K∞, we may explicitly describe the nontrivial
local conditions defining the Selmer group SelL(K,A). For w - p we have the
“unramified” local condition

H1
f (K∞,w, A) = ker

(
H1(K∞,w, A)→ H1(Iw, A)

)
.

To describe the Greenberg local condition for w | p, note that the tautolog-
ical exact sequence (3.2) induces a GQp

-stable filtration

(3.3) 0→ A′ → A→ A′′ → 0,

and then the Greenberg condition is

H1
f (K∞,w, A) = H1(K∞,w, A

′).

We will use this explicit description in the proof of Proposition 3.14.

3.2. Local Galois cohomology subgroups

Following Kidwell [12], for any place v of K, we define

Hv = lim−→
∏
w|v

H1
/f (Fw, A),

where F runs over the finite extensions of K. A careful study of these groups
is made in [12, Propositions 4.2 and 4.3], which we summarize below. For
the definitions of µ- and λ-invariants, see the beginning of Section 2.

Lemma 3.3. Let v ∈ Σ be a place of K.
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(i) If v - p is finitely decomposed in K∞, then

Hv '
∏
w|v

H1(K∞,w, A)

as Λ-modules, and Hv is a cofinitely generated, cotorsion Λ-module
with µ-invariant zero and λ-invariant∑

w|v

corankO(H1(K∞,w, A)).

(ii) If v | p, then Hv is a cofinitely generated Λ-module with Λ-corank 1
and µ-invariant zero.

(iii) If v - p splits completely in K∞, then H1(K∞,w, A) ' H1(Kv, A) and
H1
/f (Kv, A) are cofinitely generated O-modules, with

corankO(H1
/f (Kv, A)) = rankO(H0(Kv, A

∗)).

If we have an isomorphism of O-modules

H1
/f (Kv, A) ' (Lf,P/O)r ⊕

t∑
i=1

O/$mi

for some r ≥ 0 and mi ≥ 0, then

Hv ' Λ̂r ⊕
t∑
i=1

̂Λ/$miΛ,

where ̂ denotes Pontryagin duality. Thus Hv is a cofinitely-generated
Λ-module with Λ-corank given by rankO(H0(Kv, A

∗)), µ-invariant∑t
i=1mi, and λ-invariant zero.

Proof. See [12, Propositions 4.2 and 4.3]. �

For many applications in Iwasawa theory, it is important to show that
the global-to-local maps defining the various Selmer groups are surjective.
One consequence of Lemma 3.3 is that primes v which split completely in
K∞ pose an obstruction to such surjectivity.

However, by [2, Corollary 1], our hypothesis that N− = 1 implies that,
if we take Σ as small as possible, then case (iii) never occurs for any v ∈ Σ,
and so every Hv which occurs in the definitions of our Selmer groups is
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cofinitely-generated with µ-invariant zero, and that Hv is cotorsion except
when v | p.

3.3. Some structure theorems for modified Selmer groups

We now collect some properties of the modified Selmer groups which we
will need in the rest of our paper. Recall that our modular form f has a
residual Galois representation ρ̄f isomorphic to some fixed representation ρ̄.
Write XL(K,A) for the Pontryagin dual of SelL(K,A), and for any torsion
Λ-module M , write charΛ(M) for the characteristic ideal of M . Finally, let
ι : Λ→ Λ denote the involution induced by inversion in Γ∞.

We first recall a structure theorem for (the dual of) the full Selmer group
Sel(K,A). (Recall that when L = {Gr,Gr}, we omit the subscript in SelL.)
In order to do so, we will impose some an additional hypotheses for the rest
of the paper. Let hK denote the class number of K, and let φ denote the
Euler totient function. Following [16], we assume

(admiss.)


• The modular form f is of even weight k = 2r

and squarefree level N .

• p does not ramify in Lf .

• p - 6N(k − 1)!φ(N)hK

Remark 3.4. We make this assumption in order to apply the results of
[16], where it is built into [16, Definition 2.1] as part of the condition for a
modular form f (and corresponding imaginary quadratic field K and prime
p) to be admissible. In particular, the hypothesis that p does not ramify in
Lf is mostly to simplify some of the calculations carried out and does not
seem to be a crucial assumption.

Theorem 3.5. There exists a finitely-generated torsion Λ-module M such
that charΛ(M) = charΛ(M)ι and

X (K,A) ∼ Λ⊕M ⊕M.

Proof. Recall that f has even weight k = 2r. When r = 1, this is [11, The-
orem B(b,c)], and when r > 1, this is [16, Theorem 1.1]. �

We now collect properties of the modified Selmer groups.

Lemma 3.6. If ρ̄f |Gal(Q̄/K) is absolutely irreducible, then
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(i) rankΛSel(K,T) = rankΛX (K,A) = 1.

(ii) rankΛXGr,∅(K,A) = 1 + rankΛXGr,0(K,A).

(iii) char(XGr,∅(K,A)tors) = char(XGr,0(K,A)tors) up to powers of pΛ.

Proof. (i) When r = 1, this is [11, Corollary 3.3.4], and when r > 1 this
is [16, Theorem 3.5]. For the latter, a similar result is proved in [3,
Theorem 1.1].

(ii) and (iii) These are proven in [4, Lemma 2.3] in the case where f cor-
responds to an elliptic curve, but the argument relies purely on formal
Galois cohomological results from [18] and extends to higher weights
without change. �

Although Sel(K,A) is not Λ-cotorsion, the next lemma shows that some
of the modified Selmer groups are more amenable to classical arguments.

Lemma 3.7. We have an equality of Selmer groups

Sel(K,T) = SelGr,∅(K,T).

In addition, the modules XGr,0(K,A) and X∅,0(K,A) are Λ-torsion.

Proof. First note that by Theorem 3.5 and Lemma 3.6 we have

rankΛSel(K,T) = 1.

The result now follows from the proofs of Lemmas A.2 and A.4 of [4]. �

Let us summarize the statements on the coranks of the various Selmer groups
we study.

Corollary 3.8. We have the following formula:

rankΛXL(K,A) =

{
0 if L = {∅, 0}, {Gr, 0},
1 if L = {Gr,Gr}, {Gr, ∅}.

3.4. Finite index submodules of modified Selmer groups

When comparing Iwasawa invariants of isomorphic Λ-modules (whose struc-
tures are only known, a priori, up to pseudo-isomorphism), it is important
to know whether these modules have any non-trivial finite Λ-submodules.
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For example, the reader is suggested to see [6, Theorem 4.1.1] in the cyclo-
tomic case and the proof of [20, Proposition 3.6] in the anticyclotomic case
where N− is the product of an even number of primes.

To obtain similar results in our present setting, we will need to apply a
result of Greenberg. Before stating the relevant result, let us recall some of
the notation used in [8]. First, to bring our notation in line with that of loc
cit, we have D = A and T = T, and write T ∗ = Hom(D, µp∞). Let m denote
the maximal ideal of Λ. Greenberg also writes QL(K,D) for the target of
the map defining SelL(K,A). That is, we define

QL(K,D) :=
∏
w

Hw ×
∏
w|p

H1
/Lw

(K∞,w, A)

so that

SelL(K,A) = ker
(
H1

Σ(K∞, A)→ QL(K,D)
)
.

Greenberg introduces the following hypotheses:

• RFX(D): The module T is reflexive as a Λ-module.

• LOC
(1)
v (D): (T ∗)GKv = 0 for v ∈ Σ.

• LOC
(2)
v (D): The Λ-module T ∗/(T ∗)GKv is reflexive for v ∈ Σ.

• LEO(D): The discrete, co-finitely generated Λ-module

X(K,Σ,D) = ker

(
H2(KΣ/K,D)→

∏
v∈Σ

H2(Kv,D)

)

is cotorsion.

• CRK(D,L): We have an equality of coranks

corankΛ

(
H1(KΣ/K,D)

)
= corankΛ (SelL(K,D)) + corankΛ (QL(K,D)) .

Greenberg calls a Λ-module M almost divisible if PM = M for almost
all height one prime ideals P in Spec(Λ). In particular, an almost divisible
Λ-module has no proper finite-index Λ-submodules. Greenberg also intro-
duces the notion of a set of local conditions L = {Lv} being almost-divisible;
this just means that the corresponding local cohomology quotient group
H1
/Lv

(Kv,D) is an almost divisible Λ-module for each place v.
Since they will be useful again in Section 5, let us establish the following

two lemmas. Recall that D = A and T = T.



i
i

“7-Hatley” — 2019/10/15 — 0:47 — page 1132 — #18 i
i

i
i

i
i

1132 J. Hatley and A. Lei

Lemma 3.9. The module D[m] has no subquotient isomorphic to µp for the
action of GK .

Proof. By the discussion in [8, Section 4.3.3.], this follows from our assump-
tion that the residual representation is irreducible. �

Lemma 3.10. The modified Selmer groups SelGr,∅(K,A) and Sel∅,0(K,A)
satisfy LEO(D) and CRK(D,L).

Proof. In light of Corollary 3.8 and Lemma 3.3, the fact that LEO(D) holds
follows from the discussion in [8, Section 4.3.2]. Finally, to verify CRK(D,L)
we must check that

2 = corankΛH
1(KΣ/K,A) = corankΛSelL(K,A) + corankΛQL(K,A).

We use Lemma 3.3. In the case of L = {∅, 0} we have

corankΛSelL(K,A) = 0, corankΛQL(K,A) = 2 + 0.

Whereas for L = {Gr, ∅} we have

corankΛSelL(K,A) = 1, corankΛQL(K,A) = 1 + 0.

This completes the proof. �

The main proposition that we need is the following specialization of [8,
Proposition 4.1.1]:

Proposition 3.11. Suppose that RFX(D) and LEO(D) are both satis-

fied, that LOC
(2)
v (D) is satisfied for all v ∈ Σ, and that there exists a non-

archimedean prime v ∈ Σ such that LOC
(1)
v (D) is satisfied. Suppose also that

the set of local conditions L is almost divisible, that CRK(D,L) is satisfied,
and that D[m] has no subquotients isomorphic to µp for the action of GK .

Then SelL(K,D) is an almost divisible Λ-module.

We may now apply Greenberg’s proposition to obtain the following
result.

Proposition 3.12. The modified Selmer groups SelGr,∅(K,A) and
Sel∅,0(K,A) have no proper finite-index Λ-submodules.
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Proof. This follows upon checking that these Selmer groups satisfy the hy-
potheses of Proposition 3.11. Recall that D = A and T = T. The hypothesis
RFX(D) is satisfied since T is free of rank 2 over Λ. That the local conditions
under consideration are almost divisible is clear from Lemma 3.3. We veri-
fied LEO(D) and CRK(D,L) for these choices of local conditions in Lemma
3.10. The hypothesis on D[m] was verified in Lemma 3.9.

The hypothesis LOC
(1)
v (D) is satisfied by at least one v ∈ {p, p̄} ⊂ Σ by

[7, Lemma 5.2.2]. The same lemma shows that LOC
(1)
v holds for any prime

v ∈ Σ which does not split completely in K∞, and LOC
(1)
v implies LOC

(2)
v .

Thus, if Σ is as small as possible, then the discussion in Section 3.2 shows
that this handles all v ∈ Σ, and this completes the proof. �

3.5. Residual and non-primitive Selmer groups

Our eventual goal is to compare Selmer groups for modular forms whose
residual Galois representations A[$] are isomorphic. We begin by introduc-
ing auxiliary Selmer groups which were first defined by Greenberg and Vatsal
[9]; they are formed by relaxing the local conditions at some finite primes
away from p.

Let T̄ = T/$T denote the two-dimensional k-vector space on which GQ
acts via the absolutely irreducible Galois representation ρ̄ underlying our
fixed Hida family H; thus, in the notation of the previous section, A[$] ' T̄ .

Definition 3.13. Let Σ0 ⊂ Σ be a subset of Σ not containing the archi-
medean primes or the primes above p, and let L be a set of local conditions.
For any finite extension F/K and for a representation W ∈ {T,A}, we define
the non-primitive Selmer groups

SelΣ0

L (F,W ) = ker

H1
Σ(F,W )→

∏
v∈Σ\Σ0

H1
/Lv

(Fv,W )

 ,

and as before we may define

SelΣ0

L (K,A) ' lim−→ SelΣ0(F,A).

In the obvious way, we also define the associated residual non-primitive
Selmer groups

SelΣ0

L (F, T̄ ) = ker

H1
Σ(F, T̄ )→

∏
v∈Σ\Σ0

H1
/Lv

(Fv, T̄ )





i
i

“7-Hatley” — 2019/10/15 — 0:47 — page 1134 — #20 i
i

i
i

i
i

1134 J. Hatley and A. Lei

and

SelΣ0

L (K,A[$]) ' lim−→ SelΣ0(F, T̄ ).

The non-primitive Selmer groups are compatible with taking $-torsion
under some divisibility hypothesis in the following way. Recall the filtra-
tion (3.3)

0→ A′ → A→ A′′ → 0.

We make the following hypothesis.

(H.div) For all primes w of K∞ above p, both AGK∞,w and (A′)GK∞,w are
divisible.

Proposition 3.14. If Σ0 contains all the primes at which A is ramified,
then we have an injection of Λ-modules

SelΣ0

L (K,A[$]) ↪→ SelΣ0

L (K,A)[$]

where the image is of finite index. Suppose that (H.div) holds, then we have
an isomorphism.

Proof. By the absolute irreducibility of T̄ , the short exact sequence

(3.4) 0→ T̄ → A
$−→ A→ 0

induces an isomorphism

H1
Σ(K∞, T̄ ) ' H1

Σ(K∞, A)[$].

So, we must check compatibility of the local conditions defining the relevant
Selmer groups.

For a prime w of K∞ dividing ` ∈ Σ \ Σ0 with ` 6= p, since A is not
ramified at w, the corresponding inertia group Iw acts trivially on A. The
long exact sequence coming from (3.4) yields the exact sequence

0→ A/$A→ H1(Iw, T̄ )→ H1(Iw, A)[$]→ 0.

Since A is divisible, the first term in this sequence is zero, so we have an
isomorphism

H1(Iw, T̄ ) ' H1(Iw, A)[$],

as desired.



i
i

“7-Hatley” — 2019/10/15 — 0:47 — page 1135 — #21 i
i

i
i

i
i

Anticyclotomic Selmer groups of positive coranks 1135

For the Greenberg condition, we have the exact sequence

0→ (A′)GK∞,w/$(A′)GK∞,w → H1
f (K∞,w, T̄ )→ H1

f (K∞,w, A)[$]→ 0.

Since (A′)GK∞,w is cofinitely generated over O, the quotient

(A′)GK∞,w/$(A′)GK∞,w

is finite. Similarly, we have

0→ AGK∞,w/$AGK∞,w → H1(K∞,w, T̄ )→ H1(K∞,w, A)[$]→ 0.

This gives an exact sequence

0→ SelΣ0

L (K,A[$])→ SelΣ0

L (K,A)[$]→
∏
w|p

Qw,

where Qw is either (A′)GK∞,w/$(A′)GK∞,w , AGK∞,w/$AGK∞,w or 0 depend-
ing on the choice of L. See [20, proof of Lemma 3.5] for a similar calculation.
The last term in the exact sequence is finite and is zero when (H.div) holds,
hence the result. �

Remark 3.15. We remark that if T̄GKv = 0, then T̄GK∞,w = 0 for w|v since
K∞,w/Kv is a pro-p extension. This in turn implies that AGK∞,w = 0 and
in particular (H.div) holds. In the case where f corresponds to an elliptic
curve, it is the same as saying that it has no p-torsion defined over Kv.

If we are only interested in a particular choice of L, we may weaken
(H.div) and only impose the relevant divisibility condition for the local
conditions we consider. For example, if L = {Gr,Gr}, we only need to as-
sume that (A′)GK∞,w is divisible for all w|p. If L = {∅, 0}, then we only need
to assume that AGK∞,w is divisible for all w dividing the prime above p where
we impose the ∅ condition.

From now on, we assume that all the modular forms we consider satisfy
(H.div). The main utility of the residual non-primitive Selmer groups is
given by the following proposition.

Proposition 3.16. Let f and g be modular forms whose associated residual
Galois representations T̄f and T̄g are isomorphic. If Σ0 contains all primes
for which Tf or Tg is ramified, then there is an isomorphism of Λ-modules

SelΣ0

L (K,Af [$]) ' SelΣ0

L (K,Ag[$]).
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Proof. It suffices to show that the local conditions defining SelΣ0

L (K,Af [$])
depend only on the isomorphism class of T̄f . This is clear from our proof of
Proposition 3.14. �

4. The vanishing of µ-invariants

In this section, we study the vanishing of µ-invariants of the various Selmer
groups we defined in §3. Recall the modified and non-primitive Selmer groups
which we defined in Section 3, which depend on a choice L among the four
local conditions {∅, 0}, {Gr, 0}, {Gr,Gr}, {Gr, ∅}.

Lemma 4.1. Let L be any choice of local conditions and Σ0 ⊂ Σ be a subset
of Σ not containing the archimedean primes or the primes above p, then

µ(SelL(K,A)) = µ(SelΣ0

L (K,A));

corankΛSelL(K,A) = corankΛSelΣ0

L (K,A).

Proof. We have the exact sequence

(4.1) 0→ SelL(K,A)→ SelΣ0

L (K,A)→
∏
v∈Σ0

Hv

by definitions. Lemma 3.3(i) tells us that for all v ∈ Σ0, the Λ-module Hv is
cotorsion with µ-invariant equal to zero. Hence the result follows on taking
duals in (4.1) and applying Proposition 2.1. �

Let us introduce some additional notation to be used throughout the
remainder of the paper. Given a modular form f and a choice L of local con-
ditions, write µL(f) and λL(f) for the µ- and λ-invariants of SelL(K,Af ),
respectively. Given two modular forms f and g, let SL(f) and SL(g) denote
the non-primitive Selmer groups SelΣ0

L (K,Af ) and SelΣ0

L (K,Ag), respec-
tively, where Σ0 ⊂ Σ is a finite set of primes containing all primes for which
Tf or Tg is ramified.

Proposition 4.2. Let f and g be modular forms satisfying the hypotheses
of Section 1.1 whose associated residual Galois representations T̄f and T̄g
are isomorphic. Then the µ-invariant of SL(f) vanishes if and only if that
of SL(g) does.
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Proof. Since T̄f ' T̄g, Propositions 3.14 and 3.16 give the following Λ-module
isomorphisms

SL(f)[$] ' SelΣ0

L (K,Af [$]) ' SelΣ0

L (K,Ag[$]) ' SL(g)[$].

Furthermore, SL(f) and SL(g) have the same Λ-corank on combining Corol-
lary 3.8 and the second half of Lemma 4.1. Therefore, our result follows from
Corollary 2.4. �

The following anticyclotomic analogue of [6, Theorem 4.3.3] is an imme-
diate corollary.

Theorem 4.3. If L is one of the conditions {∅, 0}, {Gr, 0}, {Gr,Gr}, {Gr, ∅},
then the following are equivalent.

1) µL(f) = 0 for some f ∈ Ĥ.

2) µL(f) = 0 for every f ∈ Ĥ.

Proof. This follows from Proposition 4.2 and the first half of Lemma 4.1. �

Suppose that fE ∈ Ĥ is a modular form of weight k = 2 correspond-
ing to an elliptic curve E/Q. The following theorem is due to Matar [17,
Theorem 3.4].

Theorem 4.4. In addition to the hypotheses already present in this paper,
assume that

1) Gal(Q(E[p])/Q) = GL2(Fp)

2) p - #E(Fp)

3) ap 6= 2 mod p

Then µ(fE) = 0.

Thus, if Ĥ contains a weight 2 modular form fE which is associated to an
elliptic curve E/Q satisfying the hypotheses of Theorem 4.4, then µ(f) = 0
for every f ∈ Ĥ by Theorem 4.3. It would be interesting to try to adapt the
arguments of [17] to more general modular forms, which would enlarge the
number of immediate applications of the main results of the present paper.
The authors hope to pursue this line of inquiry in future work.
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5. Comparing λ-invariants for congruent modular forms

In this section, we compare the λ-invariants of several Selmer groups for
congruent modular forms under the assumption that the corresponding µ-
invariants vanish. As in §4, we do so on utilizing non-primitive Selmer groups.
It is clear from the definitions that we have exact sequences

(5.1) 0→ SelΣ0

Gr,∅(K,A)→ H1
Σ(K,A)→

∏
v∈Σ\Σ0

v-p

Hv ×Hp

and

(5.2) 0→ SelΣ0

∅,0(K,A)→ H1
Σ(K,A)→

 ∏
v∈Σ\Σ0

v-p

Hv

×H1(Kp̄,A).

In fact, the sequences (5.1) and (5.2) as well as (4.1) are all exact on the
right for L = {Gr, ∅} or {0, ∅}.

Proposition 5.1. The sequences

0→ SelΣ0

Gr,∅(K,A)→ H1
Σ(K,A)

γ1−→

 ∏
v∈Σ\Σ0

v-p

Hv

×Hp → 0,

0→ SelΣ0

∅,0(K,A)→ H1
Σ(K,A)

γ2−→

 ∏
v∈Σ\Σ0

v-p

Hv

×H1(Kp̄,A)→ 0,

and

0→ SelL(K,A)→ SelΣ0

L (K,A)→
∏
v∈Σ0

Hv → 0,

for L = {Gr, ∅} or {∅, 0}, are all exact.

Proof. As in [20, Proposition A.2], this comes down to showing that the
global-to-local maps γ1 and γ2 are surjective. But this follows from [7, Propo-
sition 3.2.1], the hypotheses of which we verified in Lemmas 3.9 and 3.10. �

We will need the following two lemmas.
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Lemma 5.2. For L = {Gr, ∅} or {∅, 0}, the non-primitive modified Selmer
group SelΣ0

L (K,A) has no proper finite-index Λ-submodules.

Proof. This follows from the proof of Proposition 3.12 and [8, Proposi-
tion 4.2.1]. �

Lemma 5.3. We have an equality of λ-invariants

λ(SelGr,0(K,A)) = λ(SelGr,∅(K,A)).

Proof. This follows from Lemma 3.6(iii). �

The following result has been proved in many other contexts under the
assumption that SelΣ0

L (K,A) is Λ-cotorsion (cf [6, 9, 12]). Using the results
from Section 2, we may dispense of that hypothesis, allowing us to include
the case L = {Gr, ∅} in our analysis.

Proposition 5.4. Let f and g be modular forms as given in Proposition 4.2
and let L = {Gr, ∅} or {∅, 0}. If µ(SL(f)) = µ(SL(g)) = 0, then λ(SL(f)) =
λ(SL(g)).

Proof. As in the proof of Proposition 4.2, we have the isomorphism

SL(f)[$] ' SL(g)[$]

and that SL(f) and SL(g) have the same Λ-corank. By Lemma 5.2, neither
SL(f) nor SL(g) has any finite-index submodules. Thus, the hypotheses of
Proposition 2.10 are satisfied, hence the λ-invariant of SL(f) can be read
from the Γn-coinvariants of Tate twists of SL(f)[$], and similarly for SL(g).
It follows that

λ(SL(f)) = λ(SL(g))

as desired. �

With this lemma, we may now prove a comparison theorem for λ-invariants
of the modified Selmer groups in the spirit of Greenberg-Vatsal. For a set of
primes Σ0, we write

δ(Σ0, f) :=
∑
v∈Σ0

λ(Hv(Af )).

Note that this quantity is independent of any local conditions L.
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Theorem 5.5. Let f and g be modular forms satisfying the hypotheses of
Proposition 5.4. For L = {Gr, ∅} or {∅, 0}, suppose that µL(f) = µL(g) = 0.
Then,

(5.3) λL(f)− λL(g) = δ(Σ0, f)− δ(Σ0, g).

Proof. Let A denote either Af or Ag. By Proposition 5.1, we have an exact
sequence

0→ SelL(K,A)→ SelΣ0

L (K,A)→
∏
v∈Σ0

Hv → 0.

Since
∏
v∈Σ0

Hv is Λ-cotorsion by Lemma 3.3, we deduce from Proposi-
tion 2.1 that

λL(f) + δ(Σ0, f) = λ(SL(f))

and

λL(g) + δ(Σ0, g) = λ(SL(g)).

The result now follows from Proposition 5.4. �

Remark 5.6. Note that by Lemma 5.3, it is an additional corollary that
(5.3) also holds for L = {Gr, 0}, though the proof given above does not apply
directly to these local conditions.

Remark 5.7. For any specific example, Lemma 3.3 can be used to compute
δ(Σ0, f) and δ(Σ0, g).

As a corollary to Theorem 5.5, we can obtain a theorem on the variation
of λ-invariants for the Greenberg Selmer group. First, note that we have a
natural restriction map

locp : Sel(K,T)→ H1
f (Kp,T),

and let us write ck(T) for the cokernel of this map; that is,

ck(T) :=
H1
f (Kp,T)

locpSel(K,T)
.

As shown in the proof of [4, Lemma A.3], locp is actually an injection, and
ck(Tf ) is Λ-cotorsion.

Theorem 5.8. Retain the same hypotheses as in Theorem 5.5. Write µ(f)
and λ(f) for the µ- and λ-invariants of the Greenberg Selmer group



i
i

“7-Hatley” — 2019/10/15 — 0:47 — page 1141 — #27 i
i

i
i

i
i

Anticyclotomic Selmer groups of positive coranks 1141

Sel(K,Af ), respectively, and similarly for g. Assume that µ∅,Gr(f) = 0. Then
µ(f) = µ(g) = 0, and in this case we have

(5.4) λ(f)− λ(g) = [δ(Σ0, f)− λ (ck(Tf ))]− [δ(Σ0, g)− λ (ck(Tg))] .

Proof. By global duality, we have an exact sequence

(5.5) 0→ ck(Tf )→ X∅,Gr(K,Af )→ X (K,Af )→ 0.

Since the first term is torsion, we have by Proposition 2.1

µ∅,Gr(f) = µ(f) + µ(ck(Tf )),

and since µ-invariants are non-negative, we have µ(f) = µ(ck(Tf )) = 0. By
Theorem 4.3, µ(g) = 0 as well. For the rest of the proof, assume µ(f) =
µ(g) = 0. Upon applying Proposition 2.1 again, we have the equalities

λ∅,Gr(f) = λ(f) + λ (ck(Tf ))

and

λ∅,Gr(g) = λ(g) + λ (ck(Tg)) .

Since λ∅,Gr(f)− λ∅,Gr(g) = δ(Σ0, f)− δ(Σ0, g) by Theorem 5.5, the result
follows. �

6. Relation to work of Kriz-Li

Let f1 and f2 in Ĥ be modular forms associated to elliptic curves E1 and
E2 over Q with conductors N1 and N2, respectively. Thus, we are assuming
that E1[p] ' E2[p] as GQ-modules. For i = 1, 2, fix modular paramateriza-
tions πi : X0(Ni)→ Ei, and define ωEi

∈ H0(Ei/Q,Ω1) to be the invariant
differential defined by

π∗i (ωEi
) = fEi

dq

q
.

Associated to each ωEi
is a formal logarithm logωEi

. Under the hypotheses
we have placed on our imaginary quadratic field K/Q, there exist Heegner
points Pi ∈ Ei(K) for i = 1, 2. The following is a recent theorem of Kriz and
Li [15].
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Theorem 6.1. If p splits in K, then ∏
`|pN1N2/M

|Ẽns1 (F`)|
`

 · logωE1
P1

≡ ±

 ∏
`|pN1N2/M

|Ẽns2 (F`)|
`

 · logωE2
P2 mod pO,

where

M =
∏

`|(N1,N2)
a`(E1)≡a`(E2) mod p

`ord`(N1N2)

Here Ẽns denotes the non-singular part of the mod ` reduction of E.

In fact, as mentioned in [15, Remark 1.3], their methods show that a
similar type of congruence is satisfied for more general modular forms of
weights k ≥ 2 upon replacing the p-adic logarithms of Heegner points with
the p-adic Abel-Jacobi images of the generalized Heegner cycles of [1]. In
Section 3 of [4], Castella shows that, under some additional hypotheses (in-
cluding N− > 1, which removes us from the setting of the present paper),
we have

charΛ(X∅,0(K,AfE)) = (Lp(fE/K)),

where Lp(fE/K) is the p-adic L-function constructed in [1] (c.f. [4, Theo-
rem 3.4]). Given that the p-adic logarithms of Heegner points give special
values of Lp(fE/K), our Theorem 5.5 for the choice of local conditions {∅, 0}
can therefore be viewed as an algebraic analogue of Theorem 6.1.
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