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In the 80’s Aschbacher classified the maximal subgroups of almost
all of the finite almost simple classical groups. Essentially, this clas-
sification divide these subgroups into two types. The first of these
consist roughly of subgroups that preserve some kind of geomet-
ric structure, so they are commonly called subgroups of geometric
type. In this paper we will prove the existence of infinitely many
compatible systems {ρ`}` of n-dimensional Galois representations
associated to regular algebraic, essentially self-dual, cuspidal au-
tomorphic representations of GLn(AQ) (n even) such that, for al-
most all primes `, the image of ρ` (the semi-simplification of the
reduction of ρ`) cannot be contained in a maximal subgroup of ge-
ometric type of an n-dimensional symplectic or orthogonal group.
Then, we apply this result to some 12-dimensional representations
to give heuristic evidence towards the inverse Galois problem for
even-dimensional orthogonal groups.

1. Introduction

A strategy to address the inverse Galois problem over Q consists of stud-
ding the image of continuous representations of the absolute Galois group
GQ := Gal(Q/Q). More precisely, let ρ : GQ → GLn(F`s) be a continuous
representation. As ker ρ ⊆ GQ is an open subgroup, there exists a finite Ga-
lois extension K/Q such that ker ρ = GK := Gal(K/K). Therefore

Imρ ' GQ/ ker ρ ' GQ/GK ' Gal(K/Q).

This reasoning shows that, whenever we are given a Galois representation
of GQ over a finite field F`s , we obtain a realization of Imρ ⊆ GLn(F`s) as a
Galois group of Q.
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922 Adrián Zenteno

By using this strategy and the notion of good-dihedral representations
(or some generalization), introduced by Khare and Wintenberger in their
proof of Serre’s modularity conjecture [15], several cases of the inverse Galois
problem for projective symplectic groups and odd-dimensional orthogonal
groups have been proved. We refer the reder to [1] and [24] for a discussion on
previous results towards the inverse Galois problem that have been proved
by using this method and its variants.

Following this idea, in this paper we show that there exist compatible sys-
tems R = {ρ`}` of n-dimensional Galois representations ρ` : GQ → GLn(Q`)
(n even) such that the image of ρ` (the semi-simplification of the reduction
of ρ`) cannot be contained in a maximal subgroup of “geometric type” of
an n-dimensional symplectic or orthogonal group for almost all `.

More precisely, we start by introducing the notion of maximally induced
representations of S-type and O-type (see Definiton 5.3), which are a gen-
eralization of the good-dihedral representations of Khare and Wintenberger
[15]. With this tool and the classification of the maximal subgroups of the
finite almost simple classical groups (due to Aschbacher [7]) we prove a
representation-theoretic result which gives us a set of local conditions needed
to construct compatible systems R = {ρ`}` of n-dimensional Galois repre-
sentations such that, for almost all `, the image of ρ` is not contained in a
maximal subgroup of geometric type (see Definition 6.2) of an n-dimensional
symplectic or orthogonal group.

A well known fact in arithmetic geometry is that, given a RAESDC (reg-
ular algebraic, essentially self-dual, cuspidal) automorphic representation of
GLn(AQ), there exist a compatible system associated to it. Then, in order to
prove the existence of compatible systems as mentioned above, we prove the
existence of RAESDC automorphic representations of GLn(AQ) with certain
appropriate local types (see Section 7). To do this we use Arthur’s work [5]
on endoscopic classification of automorphic representations for symplectic
and orthogonal groups combined with some slightly modified results of Shin
[23].

Finally, by using the classification of the maximal almost simple groups
contained in the symplectic and orthogonal groups of small dimension (at
most 12) we give a refinement of our main result. More precisely, we prove
that if ρ` is a maximally induced representation of S-type and 6 ≤ n ≤ 12,
the image of ρproj

` (the projectivization of ρ, i.e., ρ composed with the natural
projection GL(F`s)� PGLn(F`s), where PGLn(F`s) := GLn(F`s)/(F×`s · Id))
is either PSpn(F`s) or PGSpn(F`s) and if ρ` is a maximally induced rep-
resentation of O-type and n = 12, the image of ρproj

` is either PΩ+
12(F`s),
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PSO+
12(F`s), PO+

12(F`s) or PGO+
12(F`s), for some integer s > 0. Here, when-

ever G is a subgroup of a linear group GLn(F`s), PG will denote the projec-
tivization of G which is defined as the image of G in PGLn(F`s).

An immediate consequence of this results is that the previous groups
occurs as a Galois group over Q for infinitely many primes ` and infinitely
many positive integers s. To the best of our knowledge, the orthogonal groups
mentioned above are not previously known to be Galois over Q, except for
s = 1 which was studied in [25]. The symplectic case was previously studied
in [2], [3], [4] and [14].

Notation

Here we list some notation to be used throughout the article. If K is a perfect
field, we denote by K an algebraic closure of K and by GK the absolute
Galois group Gal(K/K). Let χ` denote the `-adic cyclotomic character and
χ` its reduction modulo `. If K is a number field or a finite extension of
Qp, we denote by OK its ring of integers. For a maximal ideal p of OK ,
we let Dp and Ip be the corresponding decomposition and inertia group
at p respectively, and we denote by Frobp the geometric Frobenius. Finally,
WD(ρ)F−ss will denote the Frobenius semisimplification of the Weil-Deligne
representation attached to a representation ρ of GQp

and rec is the notation
for the Local Langlands Correspondence which attaches to an irreducible
admissible representation of GLn(Qp) a Weil-Deligne representation of the
Weil group WQp

as in [13]. Finally if G is a finite group we denote by G(i)

the i-th derived subgroup of G and we use G∞ to denote
⋂
i≥0 G

(i).

2. Preliminaries on classical groups

It is well known that there is a lack of consistency in the literature for the
notation used for the classical groups. Hence, we include this section in order
to fix the notation for orthogonal and symplectic groups that we will use
through this paper. Our main references are [10] and [16].

Let n be a positive integer, K a field of characteristic different from
2 and V an n-dimensional K-vector space with a non-degenerate bilinear
pairing 〈·, ·〉. We define the similitude group ∆(V ) of 〈·, ·〉 as

{g ∈ GL(V ) : 〈gv, gw〉 = m(g)〈v, w〉, with m(g) ∈ K∗, for all v, w ∈ V }.

The character m : ∆(V )→ K∗ is called the multiplier (or similitude factor).
The isometry group of 〈·, ·〉 is the subgroup I(V ) of ∆(V ) of elements with



i
i

“11-Zenteno” — 2019/9/5 — 22:00 — page 924 — #4 i
i

i
i

i
i

924 Adrián Zenteno

multiplier 1 and the special group of 〈·, ·〉 is the subgroup S(V ) of ∆(V )
consisting of all matrices with determinant 1.

Let B = {e1, . . . , en} be a basis of V . We define the matrix of the pairing
〈·, ·〉 with respect to B as J = (bij)n×n, where bij = 〈ei, ej〉 for all i and j.
In particular, if 〈·, ·〉 is alternating, it can be shown that n is even and that
we can choose a basis such that the matrix of 〈·, ·〉 has the standard form

J :=

(
0 S
−S 0

)
with S :=

(
0 1

. .
.

1 0

)
∈ Mn

2
.

Then we can define the symplectic similitude group of the alternating pairing
〈·, ·〉 as GSpn(K) := ∆(V ) and the symplectic group of 〈·, ·〉 as Spn(K) :=
I(V ). Note that in this case all elements of Spn(K) have determinant one,
then Spn(K) = S(V ) too.

On the other hand, if 〈·, ·〉 is a symmetric pairing, we define the orthog-
onal similitude group of 〈·, ·〉 as GO(V ) := ∆(V ) and the orthogonal group
of 〈·, ·〉 as O(V ) := I(V ), whose elements have determinant ±1. Finally, we
define the special orthogonal group of 〈·, ·〉 as SO(V ) = S(V ). Since K is a
field of characteristic different from 2, it can be shown that for each sym-
metric pairing there exists a basis such that its matrix is diagonal. If K is
an algebraically closed field, it can be shown that all symmetric pairings are
equivalent. Then in this case we take the identity matrix In as the matrix of
the standard symmetric form. For such form, we will write GOn(K), On(K)
and SOn(K) instead GO(V ), O(V ) and SO(V ).

Let ` be an odd prime and r be a positive integer. If K is a finite field
of order `r and n is even, there are precisely two symmetric pairings on V
(up to equivalence), corresponding to the cases when the determinant of the
matrix of the form is a square or non square of K×. We say that a symmetric
pairing 〈·, ·〉 has plus type if its matrix is equivalent to

J+ :=

0 1

. .
.

1 0

 ∈ Mn,

otherwise it has minus type. As expected, J+ will be the matrix of our
standard symmetric pairing of plus type. For the minus type we will use the
matrix In when it is not equivalent to J+ (this occurs if and only if n ≡ 2
mod 4 and `r ≡ 3 mod 4). Otherwise, our standard symmetric pairing of
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minus type will have matrix

J− :=


ω

1
. . .

1

 ∈ Mn,

where ω is a fixed primitive element of K×. Then for our standard symmetric
pairing of plus type (resp. minus type) we will write GO+

n (K), O+
n (K) and

SO+
n (K) (resp. GO−n (K), O−n (K) and SO−n (K)) instead GO(V ), O(V ) and

SO(V ).
In contrast with the symplectic case where the projectivization PSpn(K)

of Spn(K) (with n ≥ 4 and K a finite field of odd characteristic) is a simple
group, in the orthogonal case this does not happen. Then we need to define
the quasisimple classical group of the symmetric form 〈·, ·〉 as Ω(V ) := I ′(V ),
the derived subgroup of I(V ). In particular, if K is a finite field of odd
characteristic, we denote by Ω+

n (K) and Ω−n (K) the quasisimple orthogonal
group of plus type and minus type respectively. In particular, if V is a vector
space with a symmetric pairing over a finite field of odd characteristic and
n ≥ 8, it can be proved that PΩ(V ) is a simple group (see Theorem 2.1.3 of
[16]).

A useful tool, through this paper, will be to know the indices between
the projectivizations of the symplectic and orthogonal groups defined above
when K is a finite field of odd characteristic. These indices are: [PGSpn(K) :
PSpn(K)] = 2, [PGO±n (K) : PO±n (K)] = 2, [PO±n (K) : PSO±n (K)] = 2 and
[PSO±n (K) : PΩ±n (K)] = a±, where the values of a+ and a− are defined by
the following conditions: a± ∈ {1, 2}, a+a− = 2, and a+ = 2 if and only if
n(`r − 1)/4 is even.

3. Polarized representations

In this section we will review some facts about regular algebraic, essentially
self-dual, cuspidal automorphic representations of GLn(AQ) and the Galois
representations associated to them. Our main reference is [8, §2.1]. We refer
the reader to loc. cit. for more details and references.

Let ` be a prime and ι : Q`
∼= C be a fixed isomorphism. By a polarized

Galois representation of GQ we will mean a pair (ρ, ϑ), where

ρ : GQ −→ GLn(Q`) and ϑ : GQ −→ Q×`
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are continuous homomorphisms such that there is ε ∈ {±1} and a non-
degenerate pairing 〈·, ·〉 on Qn

` such that

〈x, y〉 = ε〈y, x〉 and 〈ρ(σ)x, ρ(cσc)y〉 = ϑ(σ)〈x, y〉

for a complex conjugation c and for all x, y ∈ Qn
` and all σ ∈ GQ. Note that

(ρ, ϑ) is polarized Galois representation if and only if either ϑ(c) = −ε and
ρ factors through GSpn(Q`) with multiplier ϑ or ϑ(c) = ε and ρ factors
through GOn(Q`) with multiplier ϑ. Finally, we say that (ρ, ϑ) is totally odd
if ε = 1.

On the other hand, by a RAESDC (regular algebraic, essentially self-
dual, cuspidal) automorphic representation of GLn(AQ) we mean a pair
(π, µ) consisting of a cuspidal automorphic representation π = π∞ ⊗ πf of
GLn(AQ) and a continuous character µ : A×Q/Q× → C× such that:

i) (regular algebraic) π∞ has the same infinitesimal character as an irre-
ducible algebraic representation of GLn.

ii) (essentially self-dual) π ∼= π∨ ⊗ (µ ◦ det).

Note that µ is necessarily algebraic, i.e., there exist an integer α such
that µ|(K×∞)0 : x 7→ xα. Then, for a fixed prime `, we can attach to µ a unique
continuous character

ρ`,ι(µ) : GQ −→ Q×`
such that for all p 6= `, we have ι ◦ ρ`,ι(µ)|WQp

◦ArtQp
= µp, where ArtQp

:

Q×p →W ab
Qp

is the Artin map normalized to send uniformizers to geometric
Frobenius elements.

Let a = (ai) ∈ Zn such that a1 ≥ . . . ≥ an and let Ξa denotes the irre-
ducible algebraic representation of GLn with highest weight a. We say that
a RAESDC automorphic representation (π, µ) of GLn(AQ) has weight a if
π∞ has the same infinitesimal character as Ξ∨a .

Thanks to the work of Caraiani, Chenevier, Clozel, Harris, Kottwitz,
Shin, Taylor and several others, we can associate compatible systems of Ga-
lois representations to RAESDC automorphic representations of GLn(AQ)
as follows.

Theorem 3.1. Let (π, µ) be a RAESDC automorphic representation of
GLn(AQ) and S be the finite set of primes p such that πp is ramified. Then
there is a compatible system of semi-simple Galois representations

ρ`,ι(π) : GQ −→ GLn(Q`)
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unramified outside S ∪ {`} and such that the following properties are satis-
fied.

i) (ρ`,ι(π), χ1−n
` ρ`,ι(µ)) is a totally odd polarized Galois representation,

where χ` denotes the `-adic cyclotomic character.

ii) ρ`,ι(π), restricted to a decomposition group at `, is de Rham and if ` /∈ S,
it is crystalline.

iii) The set of Hodge-Tate weights HT(ρ`,ι(π)) of ρ`,ι(π) is equal to

{a1 + (n− 1), a2 + (n− 2), . . . , an}.

In particular, they are n different numbers and they are independent
of `.

iv) Whether p - ` or p|`, we have:

ιWD(ρ`,ι(π)|Qp
)F−ss ∼= recp(πp ⊗ | det |(1−n)/2

p ).

We will say that a compatible system R = {ρ`}` of Galois representa-
tions ρ` : GQ → GLn(Q`) is totally odd polarizable if there is a compatible
system Θ = {ϑ`}` of characters ϑ` : GQ → Q` such that (ρ`, ϑ`) is a totally
odd polarized Galois representation for all `. In particular, the compatible
system R(π) = {ρ`,ι(π)}` associated to a RAESDC automorphic representa-
tion (π, µ) of GLn(AQ) as in the previous theorem is totally odd polarizable
with ϑ` = χ1−n

` ρ`,ι(µ).

4. Regular representations

Let ρ : GQ → GLn(F`) be a mod ` Galois representations. Recall that ρ
is regular, in the sense of [3], if there exist an integer s between 1 and
n, and for each i = 1, . . . , s a set Ai = {ai,1, . . . , ai,ri} of natural numbers
0 ≤ ai,j ≤ `− 1 of cardinality ri, with r1 + · · ·+ rs = n (i.e., all the ai,j are
distinct) such that if we denote by Bi the matrix

Bi ∼


ψbiri 0

ψbi`ri
. . .

0 ψbi`
ri−1

ri


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with ψri a fixed choice of a fundamental character of niveau ri and bi =
ai,1 + ai,2`+ · · ·+ ai,ri`

ri−1, then

ρ|I` ∼

 B1 ∗
. . .

0 Bs

 .

The elements of A := A1 ∪ · · · ∪As are called tame inertia weights of ρ. We
say that ρ has tame inertia weights at most k if A ⊆ {0, 1, . . . , k}.

Under the assumption of regularity and boundedness of tame inertia
weights, we have the following useful result which was proved in Section 3
of [3].

Lemma 4.1. Let n, k ∈ N, with n even, and ρ : GQ → GLn(F`) be a Galois
representation which is regular with tame inertia weights at most k. Assume
that ` > kn! + 1. Then all n!-th powers of the characters on the diagonal of
ρ|I` are distinct.

Let K/Q be a finite extension of degree d and ρ0 : GK → GLm(F`) be
a Galois representation. Let V0 be the F`-vector space underlying ρ0. The

induced representation Ind
GQ
GK

ρ0 of ρ0 from GK to GQ is by definition the

F`-vector space HomGK
(GQ, V0) defined as

{φ : GQ → V0 : φ(στ) = ρ0(τ−1)φ(σ) for all τ ∈ GK and σ ∈ GQ},

where σ ∈ GQ acts on φ ∈ HomGK
(GQ, V0) by σ · φ(·) = φ(σ−1 · ). Let

{γ1, . . . , γd} be a full set of representatives in GQ of the left cosets in GQ/GK .
The map φ 7→ ⊕di=1φ(γi) gives an isomorphism between HomGK

(GQ, V0) and

the direct sum
⊕d

i=1 Vi (where each Vi is isomorphic to V0). Via this iden-

tification the action of GQ on
⊕d

i=1 Vi is given by(
Ind

GQ
GK

ρ0

)
(σ)

(
d
⊕
i=1

vi

)
=

d
⊕
i=1

ρ0(γ−1
i σγσ(i))(vσ(i)),

where σ−1γi ∈ γσ(i)GK . Indeed,

d
⊕
i=1

φ(γi)
σ7→

d
⊕
i=1

φ(σ−1γi) =
d
⊕
i=1

ρ0(γ−1
i σγσ(i))(φ(γσ(i))).

Then by using the previous lemma we can prove the following result about
the ramification of induced representations.
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Corollary 4.2. Let n,m, k ∈ N, a ∈ Z and ` > kn! + 1 be a prime. Let
K/Q be a finite extension of degree d such that dm = n, ρ0 : GK → GLm(F`)
be a Galois representation and ρ = Ind

GQ
GK

ρ0. If χa` ⊗ ρ is regular with tame
inertia weights at most k, then K/Q does not ramify at `.

Proof. The proof of this result is given in [3, Proposition 3.4]. �

Keeping the same notation as in the previous paragraphs we define the
tensor induced representation ⊗-Ind

GQ
GK

ρ0 : GQ 7→ GL(
⊗d

i=1 Vi) as:

(⊗-Ind
GQ
GK

ρ0)(σ)

(
d
⊗
i=1

vi

)
=

d
⊗
i=1

ρ0(γ−1
i σγσ(i))(vσ(i)).

Note that for all σ ∈ GQ the map γi 7→ γσ(i) is a permutation of {1, . . . d}
which is trivial if and only if σ ∈ GK̃ , where K̃ denotes the Galois closure
of K/Q. Then for each σ ∈ GK̃ we have that(

⊗-Ind
GQ
GK

ρ0

)
(σ) =

d
⊗
i=1

ρ0(γ−1
i σγi).

Corollary 4.3. Let n,m, k ∈ N, a ∈ Z and ` > kn! + 1 be a prime. Let
K/Q be a finite extension of degree d such that md = n, ρ0 : GK → GLm(F`)
be a Galois representation and ρ = ⊗-Ind

GQ
GK

ρ0. If χa` ⊗ ρ is regular with
tame inertia weights at most k, then K/Q does not ramify at `.

Proof. The proof is adapted from [3, Proposition 3.4]. Then we start by
assuming that K/Q ramifies at ` and we arrive to a contradiction.

Let V0 be the F`-vector space underlying ρ0. For all γ ∈ GQ, we define

γρ0 : Gγ(K) −→ GL(V0)

by γρ0(σ) = ρ0(γ−1σγ). Let Λ be a fixed prime of the Galois closure K̃
of Q above `, IΛ ⊆ GK̃ be the inertia group at the prime Λ and P` ⊆
I` be the wild inertia group at `. Let σ ∈ I` and τ ∈ IΛ. Since I`/P` is
pro-cyclic, we have that the commutator σ−1τστ−1 belongs to P`, then
γρ0(σ−1τστ−1) ∈ γρ0(P`). Moreover, since IΛ ⊆ I` is normal, we have that
σ−1τσ ∈ IΛ ⊆ GK̃ ⊆ Gγ(K), so γρ0(σ−1τσ) and γρ0(τ−1) belong to γρ0(IΛ).
Now, choose a basis such that the image of IΛ is contained in the upper
triangular matrices. Then, γρ0(σ−1τσ) and γρ0(τ−1) are upper triangular
matrices and their product γρ0(σ−1τσ)γρ0(τ−1) = γρ0(σ−1τστ−1), which is
contained in the image of the wild inertia, is a upper triangular matrix such
that the entries on its main diagonal are all 1. Thus, the elements on the
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main diagonal of γρ0(σ−1τσ) and γρ0(τ−1) are reciprocal, so γρ0(σ−1τσ)
and γρ0(τ) have exactly the same eigenvalues.

As we are assuming that K̃/Q ramifies at `, we can pick σ ∈ I` \GK̃ ,

and as K̃ =
∏
γ∈GQ

γ(K), there exists some γ ∈ GQ such that σ /∈ Gγ(K).
This implies that ρ0(σγ)(V0) ∩ ρ0(γ)(V0) = 0. Let {γ1, . . . , γd} be a full set
of left-coset representatives of GK in GQ with γ1 = γ and γ2 = σγ. As τ ∈
IΛ ⊆ GK̃ , we have that

ρ(τ) =
d
⊗
i=1

γiρ0(τ),

where one factor is γρ0(τ) and another factor is σγρ0(τ) = γρ0(σ−1τσ).
Let µ1, . . . , µm be the eigenvalues of γρ0(τ) and µ′1, . . . , µ

′
m be those of

γρ0(σ−1τσ). Then the eigenvalues of γρ0(τ)⊗ γρ0(σ−1τσ) are {µiµ′j : i, j =
1, . . . ,m}. On the other hand, by Lemma 4.1 we have that the n!-powers of
the characters on the diagonal of χa` ⊗ ρ|I` are all different, which implies
that the characters on the diagonal of ρ|IΛ are all different. Thus γρ0(τ) and
γρ0(σ−1τσ) cannot have the same eigenvalues for all τ ∈ IΛ. Then we have
a contradiction. �

5. Maximally induced representations

Let n = 2m be an even integer and p, q > n be distinct odd primes such that
the order of q mod p is n. Denote by Qqn the unique unramified extension
of Qq of degree n and recall that Q×qn ' µqn−1 × U1 × qZ, where µqn−1 is the
group of (qn − 1)-th roots of unity and U1 is the group of 1-units.

Definition 5.1. Let p, q be primes as above and ` be a prime distinct from
p and q. A character

χq : Q×qn −→ Q×`

is of S-type (resp. of O-type) and order p if satisfies the following conditions:

i) χq has order 2p (resp. p),

ii) χq|µqn−1×U1
has order p, and

iii) χq(q) = −1 (resp. χq(q) = 1).

Note that a character of S-type or O-type and order p is tame. Recall
that a character of Q×qn is tame if it is trivial on U1. By local class field
theory we can regard χq as a character (which by abuse of notation we call
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also χq) of GQqn
or of WQqn

. Then we can define the Galois representation

ρq := Ind
GQq

GQqn
(χq).

Lemma 5.2. Let χq be a character of S-type (resp. of O-type) and order p.
Then the representation ρq is irreducible and symplectic (resp. orthogonal) in
the sense that it can be conjugated to take values in Spn(Q`) (resp. SOn(Q`)).

Moreover, if α : GQq
→ Q×` is an unramified character, then the residual

representation ρq ⊗ α is also irreducible.

Proof. As the order of χq restricted to the inertia group at q is p and the

order of q mod p is n, the characters χq, χ
q
q, . . . , χ

qn−1

q are all distinct. Then
ρq is irreducible. Moreover, since χq is tame and χq|qZ is of order 2 or trivial
(according to whether χq is of S-type or O-type and order p), Theorem 1 of
[21] implies that ρq is symplectic or orthogonal.

Let χq (resp. α) be the composite of χq (resp. α) with the projec-

tion Z` � F`. Note that the image of the reduction of ρq in GLn(F`) is

Ind
GQq

GQqn
(χq), which is an irreducible representation. Since α is unramified,

the order of the restriction of χq ⊗ (α|Qqn
) to the inertia group at q is p.

Then as the order of q mod p is n, the n characters (χq ⊗ (α|Qqn
)), (χq ⊗

(α|Qqn
))q, . . . , (χq ⊗ (α|Qqn

))q
n−1

are different which implies the irreducibil-

ity of ρq ⊗ α = Ind
GQq

GQ
q2

(χq ⊗ α|GQqn
). �

Definition 5.3. Let p, q and ` be primes as above. We say that a Galois
representation

ρ : GQ −→ GLn(Q`)

is maximally induced of S-type (resp. of O-type) at q of order p if the

restriction of ρ to a decomposition group at q is equivalent to Ind
GQq

GQqn
(χq)⊗

α, where χq is a character of S-type (resp. of O-type) and order p and

α : GQq
→ Q×` is an unramified character.

Note that if χq is a character of S-type (resp. of O-type) and order p,
then the image Gq of ρq is homomorphic to a non-abelian extension of Z/nZ
by Z/2pZ (resp. by Z/pZ) such that Z/nZ acts faithfully on Z/pZ ⊆ Z/2pZ.
Then we have the following result.

Lemma 5.4. Let ` be a prime different from p and q. Then every irreducible
representation of Gq over F` has dimension 1 or dimension at least n.
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Proof. The proof is adapted from Lemma 2.1 of [14] where the case χq of
S-type and order p is dealt. Then we can assume that χq is of O-type and
order p. In this case we have the following exact sequence

0 −→ Z/pZ −→ Gq −→ Z/nZ −→ 0

with Z/nZ acting on Z/pZ faithfully. Note that the restriction of any irre-
ducible representation of Gq to Z/pZ is a direct sum of characters because
` is different from p. If every character is trivial, then the original represen-
tation factors through Z/nZ which is abelian, so 1-dimensional.

Otherwise, a non-trivial character χ of Z/pZ appears. Then, every char-
acter obtained by composing χ with an automorphism of Z/pZ coming from
the action of Z/nZ likewise appears. As there are n such characters, the
original representation must have degree at least n. �

Lemma 5.5. Let ` be a prime different from p and q. Then every faithful
n-dimensional representation of Gq over F` is tensor-indecomposable.

Proof. Assume that there exists a faithful n-dimensional representation of
Gq which is tensor-decomposable. Then it can be written as a tensor product
ρ1 ⊗ · · · ⊗ ρh of irreducible representations ofGq over F` of dimension greater
than 1 but smaller than n. So by Lemma 5.4 we obtain a contradiction. �

6. Study of the images I (geometric cases)

In this section we will give a criterion to know when a totally odd polariz-
able compatible system R = {ρ`}` of n-dimensional Galois representations,
which are maximally induced of S-type or O-type at q of order p for an
“appropriate” couple of primes (p, q), is such that the image of ρ` cannot be
contained in a maximal subgroup of “geometric type” of an n-dimensional
symplectic or orthogonal group for almost all `.

In order to be more precise we need to explain what we mean by a
maximal subgroup of geometric type of a finite almost simple classical group.
Recall that an almost simple group is a group H such that S �H 6 Aut(S)
for some non-abelian simple group S. Note that as the Galois representations
ρ` in R are totally odd polarized, we can ensure that the image of ρ` lies
in an orthogonal or symplectic group, then it is enough for our purposes to
study the maximal subgroups of GSpn(F`r) and GO±n (F`r). Such subgroups
were classified essentially by Aschbacher in [7], but see also Main Theorem
in Chapter 3 of [16] and Main Theorem 2.1.1 of [10] for a more precise
formulation of such classification.
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Let ` be an odd prime and n, r ∈ N with n even. Let G be a maximal
subgroup of GSpn(F`r) (resp. of GO±n (F`r)) which does not contain Spn(F`r)
(resp. Ω±n (F`r)). If n ≥ 6 (resp. n ≥ 10), at least one of the following holds:

i) G stabilizes a totally singular or a non-singular subspace;

ii) G stabilizes a decomposition V = ⊕ti=1Vi, dim(Vi) = n/t;

iii) G stabilizes an extension field of F`r of prime index dividing n;

iv) G stabilizes a tensor product decomposition V = V1 ⊗ V2;

v) G stabilizes a decomposition V = ⊗ti=1Vi, dim(Vi) = a, n = at;

vi) G normalizes an extraspecial or a symplectic type group;

vii) G stabilizes a subfield of F`r of prime index; or

viii) G is of class S.

Recall that a maximal subgroup G of GSpn(F`r) (resp. of GO±n (F`r)) is
called of of class S if all of the following holds:

i) PG is almost simple;

ii) G∞ acts absolutely irreducible;

iii) G∞ is not conjugated to a group defined over a proper subfield of F`r ;

iv) G does not contain Spn(F`r) (resp. Ω±n (F`r)).

We refer the reader to the subsection of Notation, in the Introduction
of this paper, for the definition of G∞.

Remark 6.1. Note that the definition of a group of class S is slightly
weaker that the classical definition (see Definition 2.1.3 of [10] and §1.2 of
[16]). However, as we assume ` odd, according to Table 4.8.A of [16], both
definitions are equivalent.

Definition 6.2. We will say that a maximal subgroup G of GSpn(F`r) or
GO±n (F`r) is of geometric type if this lies in one of the first six cases of
Aschbacher’s classification.

We remark that this definition is weaker than the classical definition
which also considers the maximal subgroups lying in case vii) (of the previous
classification) as of geometric type. However, it is enough for our purposes
because, as we will see in Section 8, we are not interested in excluding these
kinds of groups.



i
i

“11-Zenteno” — 2019/9/5 — 22:00 — page 934 — #14 i
i

i
i

i
i

934 Adrián Zenteno

We refer the reader to §2.2 of [10] and Chapter 4 of [16] for the rest of
relevant definitions concerning to Aschbacher’s classification. In order to be
able to use the previous classification of maximal subgroups of GSpn(F`r)
(resp. of GO±n (F`r)), henceforth, we will assume that ` is a odd prime and
n ≥ 6 (resp. n ≥ 10).

Finally, before to state our main result, we give a basic lemma which
explains what we mean by an appropriate couple of primes.

Lemma 6.3. Let k, n,N ∈ N with n even and M be an integer greater
than 17, n, N , kn! + 1, and all primes dividing 2

∏m
i=1(22i − 1) if n = 2m

for some m ∈ N. Let L0 be the compositum of all number fields of degree
smaller that or equal to n! which are ramified at most at the primes smaller
than or equal to M . Then we can choose two different primes p and q such
that:

i) p ≡ 1 mod n,

ii) p and q are greater than M ,

iii) q splits completely in L0, and

iv) qn/2 ≡ −1 mod p.

Proof. First, choose a prime p greater than M and such that p ≡ 1 mod n.
Then Chevotarev’s Density Theorem allows us to choose a prime q > M
(from a set of positive density) which splits completely in L0 and such that
qn/2 ≡ −1 mod p. �

The main result of this paper is the following:

Theorem 6.4. Let k, n, N , M , p, q and L0 as in Lemma 6.3. Let R =
{ρ`}` be a totally odd polarizable compatible system of Galois representa-
tions ρ` : GQ → GLn(Q`) such that for every prime `, ρ` ramifies only at
the primes dividing Nq`. Assume that for every ` > kn! + 1 a twist of ρ` by
some power of the cyclotomic character is regular with tame inertia weights
at most k and that for all ` 6= p, q, ρ` is maximally induced of S-type (resp.
of O-type) at q of order p. Then for all primes ` different from 2, p and q,
the image of ρ` cannot be contained in a maximal subgroup of GSpn(F`r)
(resp. of GO±n (F`r)) of geometric type.
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Remark 6.5. In the orthogonal case we assume n ≥ 10 because:

Ω±2 (F`r) ∼= Z(`r∓1)/(2,`r−1), Ω+
4 (F`r) ∼= SL2(F`r) ◦ SL2(F`r),

Ω−4 (F`r) ∼= PSL2(F`2r), Ω+
6 (F`r) ∼= SL4(F`r)/〈I4〉,

Ω−6 (F`r) ∼= SU4(F`r)/〈I4〉

(see Proposition 2.9.1 of [16] and §1.10 of [10]) and Aut(PΩ+
8 (F`r)) 6=

PΓO+
8 (F`r), where ΓO+

8 (F`r) denotes the group of all semi-isometries of F8
`r

with the standard symmetric pairing of positive type (see the remarks after
Theorem 1.2.1 of [16] and Tables 8.50 and 8.51 of [10]). Then Aschbacher’s
classification does not apply in these cases. In the symplectic case we assume
n ≥ 6 because the cases PGL2(F`r) and PGSp4(F`r) have been studied in
[11] and [12] respectively.

Now, we are ready to give the proof of Theorem 6.4, which will be given
by showing that G` = Im(ρ`) is not contained in any subgroup lying in cases
i)-vi) of Aschbacher’s classification. In the rest of this section Γq will denote
the image of ρ`|Dq

.

6.1. Reducible cases

Let V be the space underlying ρ`. Suppose that G` is a subgroup of a max-
imal subgroup in case i) of Aschbacher’s classification, then G` stabilizes a
proper non-zero totally singular or a non-degenerate subspace of V . There-
fore G` does not act irreducibly on V . But, according to Lemma 5.2, if
` 6= p, q, G` acts irreducibly on V . Hence, if we assume ` different from p
and q, ρ` cannot be reducible.

6.2. Imprimitive and field extension cases

If G` is an irreducible subgroup of a maximal subgroup in cases ii) and iii) of
Aschbacher’s classification, then there exists a normal subgroup H` of index
at most n! of G` such that

1 −→ H` −→ G` −→ U` −→ 1,

where U` is isomorphic to a subgroup of St, the symmetric group of t ele-
ments (1 < t ≤ n), and H` is reducible (not necessarily over F`r). See §2.2.2
and §2.2.3 of [10].
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Let L be the Galois extension of Q corresponding to H`. Note that
as ρ`(Iq) has order p and (p, n!) = 1, L/Q is unramified at q. Then from
the ramification of ρ` we have that L is unramified outside {`, p1, . . . , pw},
where p1, . . . , pw are the primes smaller than or equal to the bound M . If
` > kn! + 1 and different from p and q, it follows from Corollary 4.2 that L
is unramified at ` and if ` ≤ kn! + 1, then ` ∈ {p1, . . . , pw}. Then in both
cases L is contained in L0. This implies that q splits completely in L and
therefore Γq is contained in H` for all primes ` different from p and q, and
according to Lemma 5.2, H` should be absolutely irreducible. Then we have
a contradiction.

6.3. Tensor product cases

Now assume that G` is a subgroup of a maximal subgroup in the case iv)
of Aschbacher’s classification, then the representation ρ` can be written as
a tensor product ρ1 ⊗ ρ2 of two representations ρ1 and ρ2 with dim(ρi) < n
for i = 1, 2. Then as G` contain Γq for all primes ` different from p and q,
we have that the restriction of ρ` to Dq arises from the tensor product of
two representations over F` of dimension greater than 1 and smaller than n.
But, by Lemma 5.5 we have that this restriction is tensor-indecomposable.
Then we have a contradiction.

6.4. Tensor induced cases

Similarly to § 6.2, if G` is an irreducible subgroup of a maximal subgroup in
case v) of Aschbacher’s classification, then there exists a normal subgroup
T` of index at most n! of G` such that

1 −→ T` −→ G` −→ U` −→ 1,

where U` is isomorphic to a subgroup of St, 1 < t ≤ n, and T` is tensor-
decomposable. See §2.2.7 of [10].

Let L be the Galois extension of Q corresponding to T`. From the ram-
ification of ρ` we have that L is unramified outside {`, q, p1, . . . , pw}, where
p1, . . . , pw are the primes smaller than or equal to the bound M . Note that,
since ρ`(Iq) has order p and (p, n!) = 1, L/Q is unramified at q. Moreover,
if ` > kn! + 1 and different from p and q, it follows from Corollary 4.3 that
L is unramified at ` and if ` ≤ kn! + 1, then ` ∈ {p1, . . . , pw}. Thus L is
contained in L0 which implies that q splits completely in L and therefore
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Γq is contained in T` for all primes ` different from p and q. So Lemma 5.5
implies that T` is tensor-indescomposable, so we have a contradiction.

6.5. Extraspecial cases

Recall that a 2-group R is called extraspecial if its center Z(R) is cyclic of
order 2 and the quotient R/Z(R) is a non-trivial elementary abelian 2-group.
For any integer m > 0 there are two types of extraspecial groups of order
21+2m. We write 21+2m

+ for the extraspecial group of order 21+2m which is
isomorphic to a central product of m copies of D8 and we write 21+2m

− for
the extraspecial group of the same order but that is isomorphic to a central
product of m− 1 copies of D8 and one of Q8.

Now suppose that G` is a subgroup of a maximal subgroup in case
vi) of Aschbacher’s classification. First, observe that according to Table
3.5.F of [16] there are no subgroups of GO−n (F`r) belonging to this case,
then we can assume that G` is either a subgroup of GO+

n (F`r) or a sub-
group of GSpn(F`r). Moreover, according to Table 3.5.E of loc. cit., G`
lies in this case only if n = 2m, r = 1, ` ≥ 3; and G` ⊆ NGO+

n (F`r )(R) or
G` ⊆ NGSpn(F`r )(R), where R is an absolutely irreducible 2-group of type

21+2m
− or of type 21+2m

+ . From (4.6.1) of [16] we have that the projective
image PG` of G` in PGO+

n (F`r) or in PGSpn(F`r) is isomorphic to a sub-
group of CAut(R)(Z(R)). Then from Table 4.6.A of loc. cit., we have that

PG` ⊆ 22m.O+
2m(F2) (of order 2m

2+m+1(2m − 1)
∏m−1
i=1 (22i − 1)) or PG` ⊆

22m.O−2m(F2) (of order 2m
2+m+1(2m + 1)

∏m−1
i=1 (22i − 1)). Then G` cannot

be a subgroup of a maximal subgroup in case vi) of Aschbacher’s classifica-
tion because we have chosen p not dividing 2

∏m
i=1(22i − 1).

6.6. Conclusion

Having gone through the cases i)-vi) of Aschbacher’s classification, we can
conclude that, for all odd primes ` different from p and q, the image of ρ`
cannot be contained in a maximal subgroup of geometric type.

7. Existence of compatible systems with prescribed local
conditions

The goal of this section is to prove the existence of totally odd polarized
compatible systems of Galois representations satisfying Theorem 6.4 via
automorphic representations. We closely follow the arguments in [2].
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We start with an existence theorem of automorphic representations for
split classical groups over Q which are based on the principle that the local
components of automorphic representations at a fixed prime are equidis-
tributed in the unitary dual of a reductive group according to an appropriate
measure. More precisely:

Theorem 7.1. Let G be a split classical group over Q such that G(R) has
discrete series. Let S be a finite set of primes and Ûp be a prescribable subset
for each p ∈ S. Then there exist cuspidal automorphic representations τ of
G(AQ) such that

i) τp ∈ Ûp for all p ∈ S,

ii) τ is unramified at all finite places away from S, and

iii) τ∞ is a discrete series whose infinitesimal character is sufficiently reg-
ular.

For the definiton of prescribable subsets and suficiently regular charac-
ters we refer to §3.1 and §3.2 of [2] respectively.

Proof. This result is the analogue of Theorem 5.8 of [23] except that here
we are not assuming that the center of G is trivial. However, in this case we
can fix a central character and apply the trace formula with fixed central
character as in Section 3 of [9] to deduce the exact analogue of Theorem
4.11 and Corolary 4.12 of [23]. Then our result can be deduced in the same
way as in [23, Theorem 5.8]. �

On the other hand, Arthur has recently classified local and global au-
tomorphic representations of symplectic and special orthogonal groups via
twisted endoscopy relative to general linear groups [5]. For our purpose it
suffices to consider the split special orthogonal groups:

• SO2m+1 with the natural embedding ξ : Sp2m(C)→ GL2m(C), m ∈ N,
and

• SO2m with the natural embedding ξ′ : SO2m(C)→ GL2m(C), m ∈ N
even1.

Recall that if v is a finite (resp. archimedean) place, W ′Qv
= WQv

×
SL2(C) (resp. W ′Qv

= WQv
) denotes the Weil-Deligne group of Qv. We will

say that an L-parameter φv : W ′Fv
→ GL2m(C) is of symplectic type (resp.

1This last restriction is because SO2m(R) has no discrete series if m is odd.
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orthogonal type) if it preserves a suitable alternating (resp. symmetric)
form on the 2m-dimensional space, or equivalently, if φv factors through ξ
(resp. ξ′) possibly after conjugation by an element of GL2m(C). For each
local L-parameter φv : W ′Qv

→ Sp2m(C) (resp. φ′v : W ′Qv
→ SO2m(C)),

Arthur [5, Theorem 1.5.1] associates an L-packet Πφv
(SO2m+1(Qv)) (resp.

Πφ′v(SO2m(Qv))) consisting of finitely many irreducible representations of
SO2m+1(Qv) (resp. SO2m(Qv)). Moreover, each irreducible representation
belongs to the L-packet for a unique parameter up to equivalence. If φv
(resp. φ′v) has finite centralizer group in Sp2m(C) (resp. SO2m(C)) so that
it is a discrete parameter, then Πφv

(SO2m+1(Qv)) (resp. Πφ′v(SO2m(Qv)))
consists only of discrete series.

Let τ (resp. τ ′) be a discrete automorphic representation of SO2m+1(AQ)
(resp. SO2m(AQ)). Arthur [6, Theorem 6.1] shows the existence of a self-dual
isobaric automorphic representation π (resp. π′) of GL2m(AQ) which is a
functorial lift of τ (resp. τ ′) along the embedding ξ : Sp2m(C)→ GL2m(C)
(resp. ξ′ : SO2m(C)→ GL2m(C)). In the generic case in the sense of Arthur
(i.e., when the SL2-factor in the global A-parameter for τ (resp. τ ′) has
trivial image) this means that for the unique τv (resp. τ ′v) such that τv ∈
Πφv

(SO2m+1(Qv)) (resp. τ ′v ∈ Πφv
(SO2m(Qv))), we have that recv(πv) ' ξ ◦

φv (resp. recv(π
′
v) ' ξ′ ◦ φ′v) for all places v of Q.

Let ρq (resp. ρ′q) be a representation induced from a character of S-
type (resp. of O-type) and order p as in Section 5, and WD(ρq) (resp.
WD(ρ′q)) the associated Weil-Deligne representation which gives rise to a
local L-parameter φq (resp. φ′q) for GL2m(Qq). Since ρq (resp. ρ′q) is irre-
ducible and symplectic (resp. orthogonal) the parameter φq (resp. φ′q) fac-
tors through Sp2m(C) ⊆ GL2m(C) (resp. SO2m(C) ⊆ GL2m(C)), possibly af-
ter conjugation, and defines a discrete L-parameter of SO2m+1(Qq) (resp.
SO2m(Qq)). Then the L-packet Πφq

(SO2m+1(Qq)) (resp. Πφ′q(SO2m(Qq)))
consists of finitely many discrete series of SO2m+1(Qq) (resp. SO2m(Qq)).

Remark 7.2. The proof of Arthur’s results is still conditional on the sta-
bilization of the twisted trace formula and a few expected technical results
in harmonic analysis. However, recently Moeglin and Waldspurger have an-
nounced that the proof of Arthur’s results is now unconditional (see [19] and
[20]).

Theorem 7.3. There exist self-dual cuspidal automorphic representations
π of GLn(AQ) with trivial central character such that

i) π is unramified outside q,
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ii) recq(πq) 'WD(ρq) (resp. recq(πq) 'WD(ρ′q)), and

iii) π∞ is of symplectic (resp. orthogonal) type and regular algebraic.

Proof. The proof of this theorem is analogous to the proof of Theorem 3.4 of
[2], i.e., by applying Theorem 7.1 with S = {q} and Ûq = Πφq

(SO2m+1(Qq))

(resp. Ûq = Πφ′q(SO2m(Qq))). �

Corollary 7.4. There exist compatible systems as in Theorem 6.4.

Proof. Let π be an automorphic representation as in Theorem 7.3 and µtriv

the trivial character of A×Q/Q×. Then (π, µtriv) is a RAESDC automorphic
representation of GLn(AQ) and the compatible system R(π) = {ρ`,ι(π)}`
associated to (π, µtriv) as in Theorem 3.1 is totally odd polarizable for the
compatible system of characters {χ1−n

` ρ`,ι(µtriv)}` = {χ1−n
` }`.

Note that R(π) is Hodge-Tate regular and for every ` 6= q, ρ`,ι(π) is crys-
talline. Let a ∈ Z be the smallest Hodge-Tate weight and let k be the great-
est difference between any two Hodge-Tate numbers. By Fontaine-Laffaille
theory, we have that for every prime ` such that ` > k + 2 and ` 6= q, the
representation χa` ⊗ ρ`,ι(π) is regular and the tame inertia weights of this
representation are bounded by k.

Finally, taking p and q as in Lemma 6.3 with N = 1 and by part ii) of
Theorem 7.3, we have that ρ`,ι(π) is maximally induced of S-type or O-type
at q of order p for all prime ` different from 2, p and q. �

Remark 7.5. From the local global compatibility, we have that the Frobe-
nius semisimplification of ρ`,ι(π)|GQp

is isomorphic to recp(πp)⊗ | |(1−n)/2 for
all p 6= `. By the self-duality of π and Chevotarev’s Density Theorem, we
have that ρ∨`,ι(π) = ρ`,ι(π)| |n−1 and then ρ`,ι(π) acts by either orthogonal

or symplectic similitudes on Q×` with similitude factor | |n−1. Although it is
possible for an irreducible representation to act by both orthogonal and sym-
plectic similitudes, this is not possible if the factor of similitude are the same.
Since ρq (resp. ρ′q) as above is irreducible, then WD(ρq) (resp. WD(ρ′q)) and
WD(ρ`,ι)(π)|GQq

are already Frobenius semisimple. Thus, WD(ρ`,ι(π)|GQq
) '

WD(ρq)⊗ | |(1−n)/2 (resp. WD(ρ`,ι(π)|GQq
) 'WD(ρ′q)⊗ | |(1−n)/2), which

implies that ρ`,ι(π)|GQq
' ρq ⊗ | |(1−n)/2 (resp. ρ`,ι(π)|GQq

' ρ′q ⊗ | |(1−n)/2).
Finally, as ρq (resp. ρ′q) is an irreducible symplectic (resp. orthogonal) repre-
sentation, it follows that ρ`,ι(π) is irreducible and symplectic (resp. orthog-
onal) with similitude factor | |n−1. Therefore the image of ρ`,ι(π) may be
conjugate in GSpn(Q`) (resp. GOn(Q`)) to a subgroup of GSpn(Z`) (resp.
GOn(Z`)).
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8. Study of the images II (non geometric cases)

In this section we will give some refinements of Theorem 6.4 for some low-
dimensional symplectic and orthogonal groups. More precisely we will prove
the following result.

Theorem 8.1. Let R = {ρ`}` be a totally odd polarizable compatible system
of Galois representations ρ` : GQ → GLn(Q`) as in Theorem 6.4. Then for
almost all primes ` we have that:

i) If the image of ρ` is contained in GSpn(Q`) and 6 ≤ n ≤ 12, then the
image of ρproj

` is equal to PSpn(F`s) or PGSpn(F`s) for some integer
s > 0.

ii) If the image of ρ` is contained in GO12(Q`), then the image of ρproj
`

is equal to PΩ+
12(F`s), PSO+

12(F`s), PO+
12(F`s) or PGO+

12(F`s) for some
integer s > 0.

In order to prove this theorem we need a more precise description of the
maximal subgroups which are not of geometric type.

Lemma 8.2. Let G be a subgroup of GSpn(F`r) (resp. GO±n (F`r)) such that
it is not contained in a maximal subgroup lying in cases i)-vi) of Aschbacher’s
classification, then one of the following holds:

i) G is contained in a maximal subgroup of class S of GSpn(F`s) (resp.
GO±(F`s)) for some integer s > 0 dividing r, or

ii) PG is conjugate to PSpn(F`s) or PGSpn(F`s) (resp. to PΩ±n (F`s),
PSO±n (F`s), PO±n (F`s) or PGO±(F`s)) for some integer s > 0 dividing r.

Proof. If G contains Spn(F`r) (resp. Ω±n (F`r)), then G lies in case ii). On the
other hand, if G does not contain Spn(F`r) (resp. Ω±n (F`r)), it is contained in
a maximal subgroup lying in cases vii) and viii) of Aschbscher’s classification.

If we assume that G is contained in a maximal subgroup in case viii) of
Aschbacher’s classification, then G lies in case i).

Now, if we assume that G is a subgroup of a maximal subgroup in case
vii) of Aschbacher’s classification, then there exists a minimal integer s > 0,
dividing r, such that G is contained in GSpn(F`s) (resp. in GO±(F`s)). See
§2.2.5 of [10]. According to Aschbacher’s classification we have the following
three possibilities for G:
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• G is contained in a maximal subgroup of GSpn(F`s) (resp. of GO±n (F`s))
of geometric type. This possibility can be excluded by applying the same
arguments as in Section 6.

• G is contained in a maximal subgroup of class S of GSpn(F`s) (resp. of
GO±n (F`s)). So G lies in case i).

• G contains Spn(F`s) (resp. Ω±n (F`s)), so G lies in ii). �

Then to prove Theorem 8.1 we just need to show that the image of ρ`
is not contained in a maximal subgroup of class S of GSpn(F`s) (resp. of
GO+

n (F`s)) for some s dividing r. According to Chapter 4 and 5 of [10], at
least in dimension smaller than or equal to 12, the groups of class S are
divided in two classes as follows. We say that a group G of class S lies
in the class of defining characteristic, denoted by S2, if G∞ is isomorphic
to a group of Lie type in characteristic `, and G lies in the class of cross
characteristic, denoted by S1, otherwise. For a fixed dimension the set of
orders of the cross characteristic groups is bounded above independently of
`. In contrast, the groups in defining characteristic have unbounded order
as ` varies.

Now we are ready to give the proof of Theorem 8.1, which will be given
by considering the following two cases:

8.1. Symplectic case

Throughout this section we will assume that ` ≥ 7. Suppose that G` is a
subgroup of a maximal subgroup lying in S1. Then according to Proposi-
tions 6.3.17, 6.3.19, 6.3.21 and 6.3.23 of [10], PG` must be contained in an
extension of degree at most 2 of one of the following groups (see [16] and
[10] for the notation):

• PSL2(F7) (of order 24 · 3 · 7), PSL2(F7).2,

• PSL2(F11) (of order 23 · 3 · 5 · 11), PSL2(F11).2,

• PSL2(F13) (of order 23 · 3 · 7 · 13), PSL2(F13).2,

• PSL2(F17) (of order 24 · 32 · 17),

• PSL2(F25) (of order 24 · 3 · 52 · 13),

• PSp4(F5) (of order 27 · 32 · 54 · 13),

• PSU3(F3) (of order 25 · 33 · 7), PSU3(F3).2,
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• PSU5(F2) (of order 211 · 35 · 5 · 11), PSU5(F2).2,

• G2(F4) (of order 213 · 33 · 52 · 7 · 13), G2(F4).2,

• J2 (of order 28 · 33 · 52 · 7),

• A5, S5, A6 or A6.22.

But as we have chosen p > 17, we have that the image of ρproj cannot be
contained in these subgroups.

On the other hand, let G be an algebraic group over Z admitting an ab-
solutely irreducible symplectic representation of dimension n. Then we can
consider the corresponding map σ : G → GSpn,Z and the subgroup σ(G(F`r))
of GSpn(F`r). There is a general philosophy which states that, for ` suffi-
ciently large, all the maximal subgroups in class S2 should arise from this
construction for suitable G and σ (see Section 1 of [17] and [22]).

For example, if G = SL2 and n is an even positive integer greater than
2, this group admits an absolutely irreducible symplectic representation of
dimension n given by the (n− 1)-th symmetric power of SL2. Then it gives
rise to an embedding SL2 ↪→ Spn. This representation extends to a represen-
tation GL2 → GSpn and the F`r -points of the image of this representation
gives rise to an element of S2 (see Proposition 5.3.6.i of [10]). In fact, ac-
cording to Tables 8.29, 8.49, 8.65 and 8.81 of loc. cit., this is the only kind
of subgroups lying in the class of defining characteristic if 6 ≤ n ≤ 12.

In order to deal with this case we will use Dickson’s well known classi-
fication of maximal subgroups of PGL2(F`r) which states that they can be
either isomorphic to a group of upper triangular matrices, a dihedral group
D2d (for some integer d not divisible by `), PSL2(F`s), PGL2(F`s) (for some
integer s > 0 dividing r), A4, S4 or A5.

Let PGq be the projective image of Ind
GQq

GQqn
(χq) which is contained in

PG`. If PGq is contained in a group of upper triangular matrices, it is con-
tained in fact in the subset of diagonal matrices because ` and 2p are co-
prime. But we know that PGq is non-abelian, then it cannot be contained in
a group of upper triangular matrices. Moreover, PGq cannot be contained
in A4, S4 or A5 because we have chosen p greater than 7.

Now assume that PGq is contained in a dihedral group. As any subgroup
of a dihedral group is either cyclic or dihedral and as PGq is non-abelian, we
can assume that it is in fact a dihedral group of order np. This implies that
PGq contains an element of order mp (with m ∈ N such that n = 2m), but
we know that the elements of PGq have order at most p. Then PGq cannot
be contained in a dihedral group. Therefore PGq should be isomorphic to
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PSL2(F`s) or PGL2(F`s) for some integer s > 0. As we are assuming ` ≥ 7,
PSL2(F`s) is an index 2 simple subgroup of PGL2(F`s). But PGq contains
a normal subgroup of order p, thus of index greater than 2 (because we
are assuming n > 6). Therefore, we have shown that the image of ρ` cannot
be contained in a maximal subgroup of class S2. Then the first part of
Theorem 8.1 is proved.

8.2. Orthogonal case

According to Remark 6.5 and the construction in Section 7, the first case
where we can apply our results to orthogonal groups is when n is equal to
12. In this case, as n ≡ 0 mod 4, it follows from Section 1 that the image
PG` of ρproj

` lies in PGO+(F`r).
From Table 8.83 of [10] we have that S2 is empty. Then by Proposi-

tion 6.3.23 of loc. cit. PG` must be contained in an extension of degree 2a

(with a at most 3) of one of the following groups (see [16] and [10] for the
notation):

• PSL2(F11) (of order 22 · 3 · 5 · 11),

• PSL2(F13) (of order 22 · 3 · 7 · 13),

• PSL3(F3) (of order 24 · 33 · 13), PSL3(F3).2,

• M12 (of order 26 · 33 · 5 · 11), M12.2 or A13.

Then from the choice of p, we can conclude that the image of ρproj cannot
be contained in these subgroups. Therefore the second part of Theorem 8.1
is proved.

Finally, from Corollary 7.4 there exist compatible systems satisfying the
conditions of Theorem 8.1 then we have the following result.

Corollary 8.3. At least one of the following orthogonal groups: PΩ+
12(F`s),

PSO+
12(F`s), PO+

12(F`s) and PGO+
12(F`s), are Galois groups of Q for infinitely

many primes ` and infinitely many integers s > 0.

Remark 8.4. As we saw through this section, our main tool to prove The-
orem 8.1 was the classification of the maximal subgroups of class S of di-
mension at most 12. Unfortunately, to the best of our knowledge, it is a
feature of the subgroups in class S that they are not susceptible to a uni-
form description across all dimensions. So this is one the main obstacles to
extending our results to higher dimensions. However, inspired by a recent
work of Lombardo [18, Section 9], we believe that it is possible to extend
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Theorem 8.1 by applying some results from representation theory of alge-
braic and finite groups, or at least to be able to say more about the possible
images of ρ` in Theorem 6.4.
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