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Local convexity of renormalized volume

for rank-1 cusped manifolds

Franco Vargas Pallete

We study the critical points of the renormalized volume for acylin-
drical geometrically finite hyperbolic 3-manifolds that include rank-
1 cusps, and show that the renormalized volume is locally convex
around these critical points. We give a modified definition of the
renormalized volume that is additive under gluing, and study some
local properties.

1. Introduction

Renormalized volume is a quantity that gives a notion of volume for hyper-
bolic manifolds which have infinite volume under the classical definition. Its
study for convex co-compact hyperbolic 3-manifolds can be found in [KS08],
while the geometrically finite case which includes rank 1-cusps has been
developed in [GMR17].

The article is organized as follows: Sections (2) and (3) give a review of
parametrization of hyperbolic metrics and renormalized volume for convex
co-compact manifolds. Section (4) gives a way to complete a result of [KS08]
using Ricci flow. Section (5) gives a proof for the convex co-compact case
by showing that the Hessian of the renormalized volume is positive definite,
while Section (6) shows how to extend this proof when rank-1 cusps are taken
into account. Finally, in Section (7) we define the corrected renormalized
volume, which is additive under gluing, and we prove convexity at one of its
critical points.

Moroianu [Mor17] has proved independently that the Hessian is positive
definite at the critical points for the convex co-compact case, by the use of
minimal surfaces. Our method relies on computing the Hessian for quasi-
Fuchsian manifolds, and then using the skinning map to compute it for
acylindrical manifolds.
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2. Local parametrization of hyperbolic metrics

Let R be a Riemann surface of genus g with n punctures, T its Teichmuller
space, B its space of Beltrami differentials and Q its space of quadratic
holomorphic differentials. There is a nice description of these two last spaces
in terms of complex-valued functions in the following way (it can be found,
for example, in [Gar87]):

Take the covering map H2 → R and denote by Γ ⊆ PSL(2,R) the group
of deck transformations. Then elements of B are represented in H2 by mea-
surable L∞ functions µ such that

(1) µ(A(z))A′(z) = µ(z)A′(z),∀A ∈ Γ.

Similarly, elements of Q are represented in H2 by holomorphic functions φ
such that

(2) φ(A(z))A′(z)2 = φ(z),∀A ∈ Γ

and
∫∫
R(Γ) |φ(z)|dx ∧ dy <∞, where R(Γ) is any fundamental domain for

Γ in H2. Observe that the hyperbolic metric on H2, 1
y2dzdz, corresponds to

ρ(z) = 1
y2 which has the property

(3) ρ(A(z))A′(z)A′(z) = ρ(z), ∀A ∈ PSL(2,R),

and hence φ
2ρ satisfies (1). Because

∫∫
R(Γ) |φ(z)|dx ∧ dy <∞, φ

2ρ is in L∞,

and then we have a map Q→ B, φ 7→ φ
2ρ .

Thanks to the theory of the Beltrami equation ([Ahl66], [AB60], [LV65]),
we can find a solution of fz(z) = µ(z)fz(z) for ‖µ‖∞ < 1 by a unique qua-
siconformal self-mapping fµ of H2 which extends continuously to ∂H2, fixes
0, 1,∞ and depends analytically on µ (f solves the Beltrami equation in
the distributional sense). With this we have a map from the unit ball of

B to T , and by Teichmüller theory, the correspondence that sends φ 7→ φ
2ρ
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Local convexity of renormalized volume for cusped manifolds 905

and then to the solution of the Beltrami equation for φ
2ρ defines a local

homeomorphism between a neighbourhood of 0 in Q to a neighbourhood
of T .

Now, the solution to the Beltrami equation for µ = φ
2ρ , (fµ)∗(ρdzdz) is

a local parametrization of hyperbolic metrics defined on the same space. We
would like to compute the variation of this family of metrics at the origin.
Because f tµ satisfies the Beltrami equation for tµ, we have

(4) (f tµ)∗(ρdzdz)(z) = ρ(f tµ(z))|f tµz |2|dz + tµ(z)dz|2.

Hence (here is implicit the analytic dependence of fµ with respect to µ)

(5)
∂

∂t

∣∣∣∣
t=0

(f tµ)∗(ρdzdz)(z) = ρ(z)µ(z)dz2 + ρµ(z)dz2 + Edzdz,

where E groups the terms of the derivative that go together with dzdz. We

can then replace µ = φ
2ρ to obtain

(6)
∂

∂t

∣∣∣∣
t=0

(f tµ)∗(ρdzdz)(z) = Re(φdz2) + Edzdz.

Define RQ as the space of real parts of quadratic holomorphic differen-
tials. Since taking the real part defines an isomorphism Q→ RQ, we have a
local homeomorphism from a neighbourhood of 0 in RQ to a neighbourhood
of T . Moreover, if we define Iv to be the hyperbolic metric (fµ)∗(ρdzdz),

where µ = φ
2ρ and Re(φdz2) = v, then (6) implies that at 0

(7) DIv = v + Edzdz.

Using the hyperbolic metric of R to define an inner product for tensors,
DIv projects orthogonally to v (because dz2, dz2 are pointwise orthogonal
to dzdz). In particular, for v, w ∈ RQc we have

(8) 〈DIc(v), w〉 = 〈v, w〉.

Observe finally that if we had chosen R with the same hyperbolic metric
but with opposite orientation, the space RQ coincides with the one defined
for the original Riemann surface structure.
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3. Review of renormalized volume

Given a convex co-compact hyperbolic 3-manifold (M, g), Krasnov and
Schlenker [KS08] defined its renormalized volume and calculated its first
variation from the W -volume of a compact submanifold N ([KS08] Defini-
tion 3.1) as

(9) W (M,N) = V (N)− 1

4

∫
∂N

Hda,

where da is the area form of the induced metric.
Expanding on the notation used in [KS08], denote by I the metric in-

duced on ∂N , II its second fundamental form (so II(x, y) = I(x,By), where B
is the shape operator) and III(x, y) = I(Bx,By) its third fundamental form.

If we further assume that N has convex boundary and that the normal
exponential map (pointing towards the exterior of ∂N) defines a family of
equidistant surfaces {Sr} that exhaust the complement of N (S0 = ∂N),
then the W -volume of Nr (points on the interior of Sr) satisfies ([Sch13]
Lemma 3.6)

(10) W (Nr) = W (N)− πrχ(∂N).

Also, as observed in ([Sch13] Definition 3.2, Proposition 3.3), I∗=4 lim
r→∞

e−2rIr

(where Ir is the metric induced on Sr, which is identified with S by the nor-
mal exponential map) exists and lies in the conformal class of the boundary.
The analogous re-scaled limits for II, III, B also exist and are denoted by
II∗, III∗, B∗. The reason to multiply by 4 is so I∗ = g|N in the case when N is
a totally geodesic surface.

For the case of convex co-compact manifolds, any metric at infinity that
belongs to the conformal class given by the hyperbolic structure can be ob-
tained as the rescaled limit of the induced metrics of some family of equidis-
tant surfaces. Theorem 5.8 of [KS08] describes this by the use of Epstein
surfaces (as stablished in [Eps84]), which in turn allows us to define

(11) W (M,h) = W (M,Nr) + πrχ(∂M),

where {Nr} corresponds to the equidistant surfaces given by the Epstein
surfaces of h (in other words, h = I∗). Then W (M,h) is well-defined as a
consequence of (10).
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We can finally define the renormalized volume of M as

(12) VR(M) = W (M,h),

where h is the metric in the conformal class at infinity that has constant
curvature −1.

Krasnov-Schlenker [KS08] derived the variation formula of theW -volume
in terms of the input at infinity (observe that because of the description by
Epstein surfaces, I∗ determines II∗ and III∗) from the volume variation of
Rivin-Schlenker [RS99]. Since for the rest of the paper we are going to write
everything in terms of these limit tensors, let us omit the superscript ∗.

As we did in the previous section, let us fix c ∈ T (∂M) and some metric
Ic that represents it, so we can parametrize T (∂M) by RQc. Then for v ∈
RQc we have the variation of VR at Ic ([KS08] Corollary 6.2, Lemma 8.5)

(13) DVR(v) = −1

4

∫
∂M
〈DIc(v), II0〉da,

where the metric between tensors and the area form da are defined from
Ic and II0 = II− 1

2 I is the traceless second fundamental form. This 2-form is
(at each component of ∂M , after taking quotient by the action of π1(M))
the negative of the real part of the Schwarzian derivative of the holomor-
phic map between one component of the region of discontinuity and a disk
([KS08] Lemma 8.3). In particular (as we stated in (8)) 〈DIc(v), II0〉 = 〈v, II0〉
pointwise. Then if we take c to be a critical point (i.e. DVR(v) = 0 at Ic for
every v ∈ RQc) II0 must vanish at every point. This in turn implies that the
holomorphic map between a component of the region of discontinuity and a
disk has Schwarzian derivative identically zero, which means that the com-
ponents are disks and the boundary of the convex core is totally geodesic.

4. On the maximality of the W -volume among metrics of
constant area

In Section 7 of [KS08], Krasnov and Schlenker study the variation of the
W -volume among metrics of the same conformal class while keeping the
area constant. One way of showing this is by observing that the Ricci flow
is a gradient-like flow for the W -Volume. We include this argument due to
the connection to Ricci flow, since earlier proofs of this fact appeared in
[GMR17] (Proposition 7.1, which includes the cusped case) and previously
in [GMS] (Proposition 3.11, convex co-compact case).
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From [KS08] Corollary 6.2 we know that

(14) δW = −1

4

∫
∂M

δH + 〈δI, II0〉da,

where we omit the superscript ∗ and H denotes the mean curvature at
infinity.

Now, since we are taking a conformal variation, δI = uI for some function
u : ∂M → R. Moreover, since the volume is preserved,

∫
∂M uda = 0.

Remember that II0 is the traceless part of the second fundamental form,
so 〈uI, II0〉 vanishes pointwise. Also ([KS08] Remark 5.4) H = −K and hence
we have

(15) δW =
1

4

∫
∂M

δKda.

But by the Gauss-Bonnet formula
∫
∂M δKda+

∫
∂M Kδ(da) = 0 and the

equality δ(da) = 1
2〈δI, I〉da = uda, we can reduce it to

(16) δW = −1

4

∫
∂M

Kuda,

from where we can recover that K = const. is the unique critical point. If
two points had different values of K, we can take u supported around those
points such that

∫
∂M uda = 0, but −

∫
∂M Kuda > 0.

Note that

u = −K +
2πχ(∂M)

vol(∂M)

has integral equal to 0 (
∫
∂M Kda = 2πχ(∂M)), and by Hölder inequality

(17)

(∫
∂M

K2da

)
. (vol(∂M)) ≥

(∫
∂M

Kda

)2

,

giving −1
4

∫
∂M Kuda ≥ 0. Hence the W -volume is no decreasing under the

Ricci flow in two dimensions. It is known (see, for example, [IMS11]) that
this flow converges to the metric of constant curvature, proving that this
metric is a global maximum. Since K = const. is the only critical point,
the W -volume increases strictly under the flow, making this metric a strict
global maximum.
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5. Local convexity at the geodesic class

In order to study local behavior around the critical points we want to com-
pute the Hessian of VR at these points. Let c be a critical point (i.e. II0 ≡ 0)
and Ic a metric representing this class. For v, w ∈ RQc, we vary (6) with
respect to w to obtain

HessVR(v, w) = −1

4

∫
∂M
〈DI(v), DII0(w)〉da(18)

+ (terms obtained by varying the other tensors w.r.t. w),

and since II0 vanishes identically, all the terms in parenthesis get canceled,
so

(19) HessVR(v, w) = −1

4

∫
∂M
〈DI(v), DII0(w)〉da.

Let us first understand the quasi-Fuchsian case (here we are referring to
hyperbolic structures on the product S × R, where S is a closed orientable
surface of genus g > 1). In order to differentiate the two ends let us label
them (as well as the tensors defined on each one) with + and −.

Theorem 1. Let M be a Fuchsian manifold (i.e. the conformal classes at
infinty c+, c− both equal to say a conformal class c). Then the Hessian at M
of the renormalized volume is positive definite in the orthogonal complement
of the diagonal of RQc ×RQc ≈ TcT (∂M) = Tc+T (∂M+)× Tc−T (∂M−)
(where we are using the parametrization by real parts of holomorphic qua-
dratic differentials w.r.t. (c, c) and that the real parts of holomorphic qua-
dratic differentials are the same for both orientations). Moreover, the Hes-
sian agrees with the metric induced by I with a 1

8 factor.

Proof. Recall by (19) that since M is a critical point, then for v = (v+, v−),
w = (w+, w−) tangent vectors at (c, c)

4HessVR(v, w) = −
∫
∂+M
〈DI+(v), DII+

0 (w)〉da(20)

−
∫
∂−M
〈DI−(v), DII−0 (w)〉da.

As mentioned in [KS08](Lemma 8.3) we know that

(21) II+
0 (c+, c) = −Re(q+(c+, c)),
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where q+(c+, .) : T− → Qc+ is the Bers embedding. In particular DII+
0 (v, 0)

lands in RQc, and because DII+
0 (v, v) = 0, then the whole image of DII+

0

lands in RQc. Since an analogous argument works for DII−0 , we can then
reduce to

4HessVR(v, w) = −
∫
∂+M
〈v+, DII+

0 (w)〉da−
∫
∂−M
〈v−, DII−0 (w)〉da(22)

= −〈v,DII0(w)〉L2 ,

where 〈·, ·〉 on forms denotes the L2 scalar product defined by Ic.
Now DII0 is diagonalizable with orthogonal eigenvectors (is the expres-

sion of the Hessian in terms of the metric induced by I(c, c)). We can exploit
this fact in the following lemma.

Lemma 1. DII0(v,−v) = −1
2(v,−v)

Proof. We prove first the following claim.
Claim: Let M be a Fuchsian manifold with associated conformal class

c. Then DIII+(v, 0) is orthogonal to RQc for all v ∈ RQc.
Recall from [KS08] (as stated in the comments of Definition 5.3) that

almost-Fuchsian manifolds are quasi-Fuchsian manifolds with the principal
curvatures at infinity between −1, 1, and for those manifolds III is conformal
to I− , so DIII+(v, 0) is I(c, c) multiplied by some function (III stays conformal
to I(c, c) when we only varied c+). To see that those tensors are orthogonal
to RQc (note that for every tensor space we are taking the inner product
induced by Ic and integration), recall that if we take conformal coordinates,
elements of RQc are expressed in terms of dz2 and dz2, where the metric is
in terms of dzdz, meaning that DIII+(v, 0) is even pointwise orthogonal to
any element of RQc.

Going back to the proof of the lemma, it follows from [KS08] (Defini-
tion 5.3) that the first variations at M satisfy

δII0 = δII− 1

2
δI = I(δB·, ·)(23)

δIII =
1

4
δI + I(δB·, ·),(24)

hence

(25) DIII = DII0 +
1

4
DI.
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In particular, by the claim, DII0(v, 0) = −1
4v, and so

(26) DII+
0 (v,−v) = DII+

0 (2v, 0) +DII+
0 (−v,−v) = −1

4
DI+(2v, 0) = −1

2
v.

The lemma follows since DII0 is diagonalizable in the orthogonal complement
of the diagonal (the diagonal is part of the 0-eigenspace). �

This lemma implies that the orthogonal complement is the −1
2 -eigenspace

for DII0, concluding the last part of the theorem. �

Now we will use this local behavior for quasi-Fuchsian manifolds to con-
clude our main result for acylindrical manifolds.

Theorem 2. Let M be a compact acylindrical 3-manifold with hyperbolic
interior such that ∂M 6= ∅. Then there is a unique critical point c for the
renormalized volume of M , where c is the unique conformal class at the
boundary that makes every component of the region of discontinuity a disk
(a.k.a. the geodesic class). The Hessian at this critical point is positive def-
inite.

Proof. Since DVR(v) = −1
4〈DIc(v), II0〉 = −1

4〈v, II0〉 we have

(27) DVR = 0⇔ II0 ≡ 0.

Now, II0 ≡ 0 at each boundary component corresponds to the nullity of the
Schwarzian derivative between every component of the domain of discon-
tinuity and a disk. This implies as we stated that every component of the
region of discontinuity is a disk, and since our manifold is acylindrical, there
is a unique such point in the Teichmüller space of the boundary. We can also
observe that for this point the boundary of the convex core is completely
geodesic.

To prove that it is a strict local minimum, it is sufficient to prove that the
Hessian is positive definite at this point. Let ∂M = S1 ∪ . . . ∪ Sn, and c =
(c1, . . . , cn) denote the geodesic class. To show that the Hessian is positive
definite, take parametrization RQ for Si based at ci and use the same metric
to compute variations of VR for M and for both ends of quasi-Fuchsian
manifolds Si × R.

Recall that, since M is hyperbolic acylindrical, the subgroups associated
to the components of ∂M are quasifuchsian. Hence we have a map from
T (∂M) (corresponding to hyperbolic metrics in M) to T (∂M)× T (∂M)
(corresponding to the quasifuchsian subgroups). The first coordinate of this
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map is the identity on T (∂M), while the second coordinate σ : T (∂M)→
T (∂M) is Thurston’s skinning map. Observe then that I at Si coincides with
I+(ci, σi(c)), where σi is the image of the skinning map σ corresponding to
Si. From the dependence of II in terms of I (Remark 5.9 of [KS08]) we see
that II0 at Si coincides with II+

0 (ci, σi(c)), and hence DI(v), DII0(w) are equal
to DI+(vi, dσi(v)), DII+

0 (wi, dσi(w)) at Si (note that here dσ is written in
terms of our charts given by RQc, so it is essentially the conjugation of the
derivative of the skinning map, given our remark on how our charts behave
with an orientation change). Hence

4HessVR(v, w) = −
n∑
i=1

〈vi, DII+
0 (wi, dσi(w))〉(28)

=
1

4

n∑
i=1

〈vi, wi − dσi(w)〉,

which is greater than zero for v 6= 0 according to the following result:

Theorem 3 (McMullen [McM90]). Under the conditions above, ‖dσ‖ <
1, where the norm ‖dσ‖ is calculated in terms of the Teichmüller metric.

Indeed, (28) tells us that dσc is diagonalizable, which together with Mc-
Mullen’s theorem implies that all eigenvalues are less than 1. Then HessVR
is also diagonalizable with all eigenvalues positive. �

McMullen’s result can be sketched as follows. The skinning map is
holomorphic between Teichmüller spaces, in particular sending holomorphic
disks to holomorphic disks. This implies that ‖dσ‖ ≤ 1 with respect to the
Kobayashi metric, which coincides with the Teichmüller metric. If ‖dσ‖ = 1
at a point, then σ would be an isometry on the extremal holomorphic disk,
but an earlier result of Thurston states that σ is a strict contraction for the
acylindrical case.

Corollary 1. Let c ∈ T (∂M) be as in the previous theorem. Then dσ ad-
mits an orthonormal eigenbasis with respect to the L2-norm on RQc, with
all eigenvalues less than 1 in absolute value.

Observe that if we take holomorphic quadratic differentials for the tan-
gent space, we have the conclusion for dσ after taking a complex conjugation.

This result was somehow expected thanks to a parallel between the skin-
ning map and the Thurston map for postcritically finite rational maps, since
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the Thurston map is contracting for non-Lattè maps. Moreover, if f is a
postcritically finite quadratic polynomial, there is a uniform spectral gap
for the derivative at its unique critical point (more precisely, all eigenvalues
are greater than 1/8 in norm. For this refer to [BEK]). It is unknown to the
author if there is an analog for hyperbolic 3-manifolds, namely a family of
manifolds for which there is some uniform espectral gap.

It is worth mentioning that it is still open that the geodesic class is the
absolute minimum of VR (for acylindrical manifolds). It is also open that VR
is strictly positive for quasi-Fuchsian manifolds outside the Fuchsian locus,
although this is known for almost-Fuchsian manifolds [CM].

6. Remarks for hyperbolic 3-manifolds with rank-1 cusps

Consider a quasi-Fuchsian manifold M with rank-1 cusps and a compact
subset K of ∂M+ (the top boundary component as we denoted in (5)).
For a quasi-Fuchsian manifold sufficiently close to the Fuchsian locus, the
equidistant foliation over K extends up to the 0-leaf and has principal cur-
vatures between −1 and 1. As stated in the comments of [KS08] Definition
5.3, this foliation extends to the other end of M and III+ is a metric confor-
mal to I− (all of this over K). Hence, at a Fuchsian manifold, DIII+(v, 0) is
a multiple of I+ at any such compact K, and hence over all of ∂M+.

On the other hand, all the formulas of [KS08] Theorem 5.8 apply for the
rank 1-cusps case, so in particular we also have that II0 is (at each component
of ∂M after taking quotient by the action of π1(M)) the negative of the
real part of the Schwarzian derivative of the holomorphic map between one
component of the region of discontinuity and a disk.

As we mentioned, the variation formula of the renormalized volume was
proved in [GMR17]. The second variation at a critical point is well defined
since for the quasi-Fuchsian case it is the inner product of quadratic holo-
morphic differentials, which are in L2 with respect to the metric. The other
terms that get canceled with II0 in (18) do not overcome the exponential
decay of the metric since each of them have at most polynomial growth.
The general case will then be well defined since it is also an inner product of
quadratic holomorphic differentials, thanks to the skinning map argument.

Finally, McMullen’s result still applies for surfaces with punctures, so the
proof of our theorem extends to the case of geometrically finite hyperbolic
acylindrical manifolds with rank 1 cusps. We summarize this as follows.
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Theorem 4. Let M be a Fuchsian manifold (i.e. the conformal classes at
infinty c+, c− coincide, say to a conformal class c) with possibly rank 1-
cusps.Then the Hessian at M of the renormalized volume is positive definite
in the orthogonal complement of the diagonal of RQc ×RQc ≈ TcT (∂M) =
Tc+T (∂M+)× Tc−T (∂M−) (where we are using the parametrization by real
parts of holomorphic quadratic differentials w.r.t. (c, c) and that the real parts
of holomorphic quadratic differentials are the same for both orientations).
Moreover, the Hessian agrees with the metric induced by I with a 1

8 factor.

Theorem 5. Let M be a geometrically finite manifold with rank 1-cusps.
Then there is a unique critical point c for the renormalized volume of M ,
where c is the unique conformal class at the boundary that makes every
component of the region of discontinuity a disk(a.k.a. the geodesic class).
The Hessian at this critical point is positive definite.

We can also extend the Ricci flow argument for the maximality of the
W -volume. We use the existence and convergence properties of the Ricci
flow from the conditions stated in [JMS09]. In the language of [GMR17], let
a cusp be parametrized as (v, w) ∈

[
0, 1

R

[
× R/1

2Z, which under the notation
of [JMS09] corresponds to (s, w), where v = e−s.

We need to show that ψ ∈ C∞r (∂M)⇒ e2φ ∈ R+ s−µC2,α (where the
first term describes the family of conformal factors for which the renor-
malized volume is defined in [GMR17], and the second term the sufficient
conditions for running Ricci flow in the lines of [JMS09]) for some constants
µ > 0, R; where v = e−s, ψ(v, w) = φ(s, w). C∞r (∂M) denotes ([GMR17] 2.7)
functions whose w-derivative vanishes with infinite order at v = 0. C2,α de-
notes the usual Hölder space with respect to the hyperbolic metric on the
cusp.

Since ψ ∈ C∞r (M), limv→0 ψ(v, w) exists and does not depend on w,
which we denote by R. Then we need to show that a(s, w) = e2φ(s,w) −R
belongs to s−µC2,α. We will show that belongs to s−µC3 for 0 < µ < 1.

First observe that b(v, w) = a(s, w) extends to v = 0 in C∞ because ψ
does. In particular,

(29) bv(v, w) = 2ψv(v, w)e2ψ(v,w)

also extends to v = 0, and bv(0, w) does not depend on w. There is a constant
K such that |b(v, w)| ≤ Kvµ, so |a(s, w)| ≤ Ke−sµ ≤ K ′s−µ, which gives a ∈
s−µC0.



i
i

“10-VargasPallete” — 2019/9/5 — 22:15 — page 915 — #13 i
i

i
i

i
i

Local convexity of renormalized volume for cusped manifolds 915

Now as(s, w) = 2φs(s, w)e2φ(s,w), and we need to show that |as(s, w)| ≤
Ks−µ. This follows from

(30) 2φs(s, w)e2φ(s,w) = −2e−sψv(v, w)e2ψ(v,w)

and the fact that ψv(v, w)e2ψ(v,w) extends to v = 0 not depending on w.
Now the pattern appears for higher y-derivatives of a. When we express

the derivatives in v coordinates, the expressions gain a v = e−s, so the decay
follows since ψ extends C∞ to v = 0 without w dependence.

For the case of taking a w-derivative, its norm in C1 is e2saw (the metric
to define Ck,α is ds2 + e−2sdw2). We have

(31) e2s2φw(s, w)e2φ(s,w) = v−2ψw(v, w)e2ψ(v,w),

which is bounded by some power of v because ψw has infinite order 0 at v =
0. Similarly, we extend our argument to further w-derivatives. This shows
that we can run Ricci flow with initial condition any metric considered by
[GMR17].

Finally, to observe that the logarithm of the conformal factors along
the Ricci flow still belong to C∞r (M), note that the curvature e−2ψ(−1 +
∆ψ) is in C∞r (M). This makes the flow to preserve the set of metrics with
such conformal factors, which in turn allows the argument to extend to this
generality.

7. Corrected renormalized volume

Let M be a closed compact hyperbolic 3-manifold with an oriented incom-
pressible surface Σ (g > 2) which divides M into two components M1,M2.
We can consider now hyperbolic structures N1, N2 on the interiors of M1,M2

such that we have the inclusions M1 ⊂ N1,M2 ⊂ N2 by taking coverings
with respect to π1(M1), π1(M2), respectively. The fact that they glue along
Σ tells us that the conformal classes at infinity of the open manifolds are
each others skinning maps.

Now, for r sufficiently large, M1 lives inside N r
1 , the r-leaf of the foliation

defined by the renormalized volume, and hence

(32) vol(M1) = VR(M1, c1) + rπχ(Σ)− vol((intN r
1 ) \M1) +

1

4

∫
Nr

1

Hda,

where c1 is the conformal class at infinity for int(M1).
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We can take r even larger so that we have a similar statement for M2.
Observe that the regions (intN r

1 ) \M1, (intN r
2 ) \M2 glue along Σ and live

inside the quasi-Fuchsian manifold obtained by gluing N1 \M1, N2 \M2

along Σ. In particular the quasi-Fuchsian manifold (N1 \M1) ∪ (N2 \M2)
has (c1, c2) as a conformal class at infinity and N r

1 , N
r
2 as the r-leaves for

the renormalized volume, from where we conclude

vol((intN r
1 ) \M1 ∪ (intN r

2 ) \M2)(33)

= VR(Σ× [0, 1] , c1, c2) +
1

4

∫
Nr

1

Hda

+
1

4

∫
Nr

2

Hda+ 2rπχ(Σ).

This gives the following proposition.

Proposition 1. For M as above,

vol(M) = VR(M1, c1) + VR(M2, c2)− VR(Σ× [0, 1] , c1, c2).

In order to use this proposition to find a lower bound for the volume of
M (and since c1, c2 are related by the skinning map), we want to show that
the minimum of the corrected renormalized volume (defined as follows) is
attained at the geodesic class.

Definition 1. Let M be a compact acylindrical 3-manifold with hyperbolic
interior, connected boundary of genus g > 1, and let c ∈ T (∂M) the element
that defines the conformal boundary at infinity. Then the corrected renor-
malized volume is defined as

(34) V R(M) = VR(M, c)− 1

2
VR(∂M × [0, 1] , (c, σ(c))).

Observe that proposition (1) implies that, under cutting, the volume of
M is equal to the sum of the corrected renormalized volumes of its parts.
It is straightforward to extend this to the case when Σ has multiple compo-
nents, and if M is open without cusps, we can replace vol(M) by V R(M) in
Proposition (1). Then if we consider the corrected renormalized volume to
be an extension of the volume for closed hyperbolic manifolds, we obtain as
a corollary of proposition 1:

Corollary 2. V R is additive under cutting.
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Now, from the first variation of VR at I = I+, we have

8DV R(v) = −
∫
∂M+

〈DI+(v, dσ(v)), II+
0 (c, σ(c))〉da+(35)

+

∫
∂M−
〈DI−(v, dσ(v)), II−0 (c, σ(c))〉da−,

where da+, da− are the volume forms for I+, I−, respectively.
Observe that if we take c to be the geodesic class, II+

0 , II
−
0 are both zero,

and hence c is also a critical point for the corrected renormalized volume.
Moreover, the Hessian is expressed as

8HessV R(v, w) = −〈DI+(v, dσ(v)), DII+
0 (w, σ(w))〉〉(36)

+ 〈DI−(v, dσ(v)), DII−0 (w, σ(w))〉,

which by Lemma 1 is equal to

8HessV R(v, w) = −
〈
v,−1

4
(w − dσ(w))

〉
(37)

+

〈
dσ(v),

1

4
(w − dσ(w))

〉
.

Then

(38) 32HessV R(v, w) = 〈v + dσ(v), w − dσ(w)〉,

and since all eigenvalues of dσ are between −1 and 1, we obtain the following
result.

Theorem 6. Let M be a compact acylindrical 3-manifold with hyperbolic
interior, ∂M 6= ∅ without cusps, and c ∈ T (∂M) be the geodesic class. Then
c is a local minimum for the corrected renormalized volume of M .
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