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Critical Kähler toric metrics for the

invariant first eigenvalue

Rosa Sena-Dias

In [LS] it is shown that the first eigenvalue of the Laplacian re-
stricted to the space of invariant functions on a toric Kähler man-
ifold (i.e. λT1 , the invariant first eigenvalue) is an unbounded func-
tion of the toric Kähler metric. In this note we show that, seen
as a function on the space of toric Kähler metrics on a fixed toric
manifold, λT1 admits no analytic critical points. We also show that
on S2, the first eigenvalue of the Laplacian restricted to the space
of S1-equivariant functions of any given integer weight admits no
critical points.

1. Introduction

Let (M, g) be a Riemannian manifold and let λ1 denote the first eigenvalue
of the Beltrami-Laplace operator on M . If we assume that M is of dimension
2 and has volume 1 it is well known by a theorem of Yang-Yau (see [YY])
that λ1 is a bounded function of the metric g on M . One can ask if there is
a Riemannian metric which achieves

Sup{λ1(g)| g is a Riemannian metric, vol(g) = 1}.

For S2, this metric is known to be the Fubini-Study metric. In [N], Nadi-
rashvili studies the same problem for T2. He defines the notion of λ1-critical
metric which is roughly speaking a critical point for the function λ1(g). Note
that λ1 is not a differentiable function of g in general so this definition re-
quires some care. We will say more on this ahead. In higher dimensional
Riemannian manifolds El Soufi-Ilias, generalising a result of Nadirashvili,
prove the following characterisation of λ1-critical metrics

Theorem 1.1 (El Soufi-Ilias, Nadirashvili). A Riemannian metric g on
M is critical for λ1 iff g admits a set of eigenfunctions {fa, a = 0, . . . , N}
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for λ1(g) such that F = (f0, . . . , fN ) embeds M into SN , with g = F ∗gFS
and F (M) minimal in SN .

Therefore λ1-critical metrics yield minimal submanifolds of spheres.
We are interested in the more symmetric case when (M, g) admits an

isometric group action by a group G. In [CDE], Colbois-Dryden-El Soufi in-
troduce the notion of λG1 -critical invariant metrics where λG1 is the smallest
positive eigenvalue of the Laplacian restricted to G-invariant eigenfunctions.
Again this notion is subtle as λG1 is not in general a differentiable function
of the invariant metric but it is analogous to the notion introduced by Nadi-
rashvili. They prove the following theorem

Theorem 1.2 (Colbois-Dryden-El Soufi). If G has dimension greater
than 1 then M admits no G-invariant metric which is critical for λG1 .

Given a group character χ it is easy to generalize the above notions
to the setting of χ-equivariant functions. These are functions f : M → C

that satisfy f(h · x) = χ(h)f(x), for all x ∈M , h ∈ G. We have a notion of
equivariant first eigenvalue λχ1 and λχ1 -critical metric.

More specifically we are interested in the case of toric manifolds. These
are symplectic manifolds (M2n, ω) admitting a Hamiltonian Tn-action. Sym-
plectic toric manifolds always admit a large family of compatible integrable
Tn-invariant complex structures thus they carry several Kähler structures
(see [G] , [A]). In fact for a fixed ω, toric Kähler structures in the class [ω]
are very well understood and are parametrised by a subset of the set of con-
tinuous functions on the moment polytope of (M,ω,Tn) which we denote
by Spot(M,ω,Tn) and which we will describe carefully in the next section.
We want to think of λT1 as a function on Spot. That is, we want to consider
only toric Kähler metrics in the class [ω]. Because we are not considering
all Tn invariant functions the results in [CDE] do not apply to our setting
(except in dimension 2).

There has recently been an interest in considering spectral problems
in the realm of Kähler geometry. In [AJK] the authors define λ1-extremal
Kähler metric on a Kähler manifold as being those which are critical for λ1

restricted to the space of Kähler metrics in a given class. In [PP] the authors
study metrics which are λ1-extremal among invariant Kähler metrics for
generalized flag manifolds. Because we are considering λT1 , these results also
do not apply to our problem.

We will define an analogous notion of criticality in our setting. More
specifically given a toric Kähler manifold we are looking for torus invariant
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Kähler metrics which are critical for λT1 . In this note our goal is prove the
following theorems

Theorem 1.3. Let (M,ω, g,Tn) be a toric Kähler manifold. Then, there
are no analytic toric Kähler structures compatible with ω and in the class
[ω] which are critical for λT1 .

Given k ∈ Z, k corresponds to an S1-character. We will prove the fol-
lowing

Theorem 1.4. Let k be an integer. There are no λk1 critical S1-invariant
metrics on S2.

When k = 1 this is a consequence of the Colbois-Dryden-El Soufi theo-
rem from above.

We would like be able to remove the analyticity assumption. It is know
due to results of Morrey (see [Mo]) that solutions to elliptic systems of
PDE’s whose coefficients are analytic have analytic solution if any. We will
see that critical toric Kähler metrics and their eigenfunctions for the smallest
eigenvalue are solutions to a system of PDE’s whose coefficients are analytic.
Unfortunately the system is not elliptic.

This paper is organised in the following way: in Section 2 we give some
background on λ1-critical metrics and on toric Kähler geometry, in Section 3
we use the techniques developed to deal with criticality in the Riemannian
case and adapt them to our setting so as to extract a useful characterisation
of λT1 -critical metrics. We then use this characterisation to derive our main
theorems in Section 4. The last section is somewhat independent of the rest
of the paper. There, we show that there is an obvious system of PDEs that is
satisfied the pair toric Kähler metric/corresponding eigenfunctions but the
system is nowhere elliptic.

2. Background

2.1. λ1-critical metrics

Let (M, g) be a Riemannian manifold. To fix conventions our Laplacian is
given by ∆ = d∗d and has positive eigenvalues. In coordinates xi on M write
g = gijdxi ⊗ dxj . The Laplacian of a function f on M is given by

(1) ∆f = − 1√
d$

∂

∂xi

(√
d$gij

∂f

∂xj

)
,
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where gij denote the entries of the inverse of the matrix {gij} and d$ =
det gij . The smallest eigenvalue of the Laplacian is called first eigenvalue
and is denoted by λ1(M, g). If we fix M , then λ1 can be seen as a function
on the space of all Riemannian metrics on M . Its is not a differentiable
function of g but it is Lipschitz. In fact given a one-parameter family of
Riemannian metrics on M , gt with g0 = g and analytic in t, if λ1(g) is a
multiple eigenvalue, then λ1 may become non-differentiable at g. Despite
this, there is an integer N no larger than the multiplicity of λ1(g), real
valued functions Λ0,t, . . . ,ΛN,t and one parameters families of functions on
M f0,t, . . . , fN,t satisfying

∆fl,t = Λl,tfl,t, l = 0, . . . , N

and such that λ1(gt) = min{Λl,t, l = 1, . . . , N} so that the function λ1(gt)
has a right and left derivative

dλ1(gt)

dt
(0+) = min

{
dΛl,t
dt

(0), l = 0, . . . , N

}
dλ1(gt)

dt
(0−) = max

{
dΛl,t
dt

(0), l = 0, . . . , N

}
Definition 2.1. The metric g is λ1-critical if for any 1-parameter family
of metrics gt analytic in t

dλ1(gt)

dt
(0−) · dλ1(gt)

dt
(0+) < 0.

(see [N] and [AI] for more details).

2.2. Toric Geometry

We will try to be brief and assume some familiarity with the subject. For
more details see [G] and [A].

Definition 2.2. A Kähler manifold (M,ω, g) where ω is a symplectic form
and g is a Riemannian metric is said to be toric if it admits an isometric,
Hamiltonian Tn-action.

In this case there is a moment map associated to the action φ : M →
(Lie(Tn))∗ ' Rn and the moment map image P is a convex polytope of a
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Critical Kähler toric metrics 855

special type (a Delzant polytope). In particular it can be written in the form

P = {x ∈ Rn : x · νk − ck > 0, k = 1, . . . , d}

and at every vertex, there is an SL(n,Z) transformation taking a neigh-
bourhood of that vertex into a neighbourhood of 0 in

{x ∈ Rn : xk > 0, k = 1, . . . , n} .

There is an open dense set in M which we denote by M0 where Tn acts freely
and there is an equivariant symplectomorphism ψ : M0 → P ×Rn whose
first factor is given by the moment map φ. Here the Tn-action on P ×Rn
is given by the usual Tn-action on the second factor. Said differently, there
are Tn-equivariant Darboux coordinates (x, θ) on M0. We refer to these as
action-angle coordinates.

Given a polytope in Rn of Delzant type one can construct from it a
toric Kähler manifold MP in a canonical manner (see [G]). It was shown by
Delzant that in fact P determines (M,ω) up to symplectomorphism. Abreu
showed there is an effective way to parametrize all compatible Tn-invariant
Kähler metrics.

Definition 2.3. Let P be a Delzant polytope. A function s ∈ C∞(P ) is
called a symplectic potential if

• Hess s is positive definite,

• s−
∑d

k=1 (x · νk − ck) log(x · νk − ck) is smooth on P̄ ,

• Hess s when restricted to each face of P is positive definite.

We denote the set of all such functions by Spot(P ).

One can associate to each s ∈ Spot(P ) a Kähler structure gs whose cor-
responding Kähler metric in action-angle coordinates can be written as

(s)ijdxi ⊗ dxj + (s)ijdθi ⊗ dθj .

In fact it can be shown that all toric Kähler structures arise this way. The
Kähler structure constructed in [G] is called the Guillemin Kähler structure.
Its symplectic potential is

sG =

d∑
k=1

(x · νk − ck) log(x · νk − ck)− (x · νk − ck) .
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We make use of the following very elementary fact:

Fact 1. Smooth Tn-invariant functions on a toric Kähler manifold M are
in 1 to 1 correspondence with smooth functions on the closure of the moment
polytope, P̄ of M .

Proof. We denote the space of smooth Tn-invariant functions by C∞T (M).
Denote the moment map for the Tn-action by φ. Given an invariant function
F on M , set f to be f(x) = F (φ−1(x)). This is well defined because φ(p) =
φ(q) implies p and q are in the same Tn-orbit and F is invariant. Conversely
given f ∈ C∞(P ), we define F = f ◦ φ. �

Similarly we have:

Fact 2. Continuous Tn-equivariant complex functions on a toric Kähler
manifold M are in 1 to 1 correspondence with continuous complex functions
on the closure of the moment polytope P̄ of M that vanish on ∂P

Proof. Characters in Tn can be identified with elements in Zn. Given k ∈ Zn
we denote the space of continuous k-equivariant functions by Ck(M).

We start by noting that if F : M → C is k-equivariant for k 6= 0 then F
vanishes on points with non trivial isotropy. Let F be equivariant. If p is a
point where Tn does not act freely i.e. if φ(p) ∈ ∂P then for eiθ non-trivial
in the stabiliser group of p, F (eiθp) = F (p) = eiθ·F (p) so that F (p) = 0.

Let ψ : M0 → P ×Rn denote the action-angle coordinates map. If f
is a function on P , we define a k-equivariant function on M0 by setting
F ◦ ψ−1(x, θ) = f(x)eik·θ. If f vanishes on ∂P we can extend F by continuity
to M to be zero on M \M0. Conversely, given F k-equivariant, define f on
P by f(x) = F ◦ ψ−1(x, 0) and extend by 0 to the boundary. As we have
seen F vanishes on M \M0 and φ(M \M0) = ∂P so that f is continuous
on ∂P . �

2.3. Equivariant spectrum on toric manifolds

Let (M, g) be a Riemannian manifold with an isometric G-action. Let χ be
a group character and let Cχ(M) denote the set of continuous χ-equivariant
functions.

Cχ(M) = {F ∈ C(M,C) : F (h · p) = χ(h)F (p), ∀h ∈ G}.
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The Laplacian induced from g commutes with the G-action because G acts
by isometries hence it restricts to Cχ(M) ∩ C∞(M) for any given character
of the group G.

Definition 2.4. Let (M, g) be a Riemannian manifold with an isometric
G-action. The χ-equivariant first eigenvalue is the smallest eigenvalue of
∆|Cχ(M)∩C∞(M) i.e.

λχ1 (M, g,G) = Inf

{∫
M |dF |

2d$g∫
M |F |2d$g

, F ∈ Cχ(M) ∩ C∞(M),

∫
M
F = 0

}
.

When χ is the trivial character we often write λχ1 = λG1 .
We will be using these notions in the setting of Toric Kähler manifolds

and we will think of λk1 as a function of the symplectic potential inducing the
Kähler metric i.e. given (M,ω,Tn) symplectic toric with moment polytope
P and given k ∈ Zn, we consider

λk1 : Spot(P )→ R+

and its variations.
Given k ∈ Zn, if F is k-equivariant, it can be written in action-angle

coordinates as f(x)eik·θ so that from equation (1) we have

(2) ∆F = −eik·θ
(
∂

∂xi

(
sij

∂f

∂xj

)
− fkikjsij .

)
Note that because (x, θ) are Darboux coordinates d$ = 1. The space of k-
equivariant eigenfunctions for λk1, which we denote by Ek1 , (or ET1 if k = 0
in the invariant case) can be identified with a subset of C∞(P ). Namely, if
k 6= 0

Ek1 '
{
f ∈ C∞(P ) :

∂

∂xi

(
sij

∂f

∂xj

)
− fktHess (s)k = −λk1f, f = 0 in ∂P

}
and

ET1 '
{
f ∈ C∞(P ) :

∂

∂xi

(
sij

∂f

∂xj

)
= −λT1 f

}
.

In the invariant case, we often identify f ∈ C(P ) with the associated eigen-
function on M i.e. we confuse f with f ◦ φ and we write ∆f to mean

− ∂
∂xi

(
sij ∂f∂xj

)
.
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3. Critical λT1 , λk
1 metrics

In this section we fix a toric symplectic manifold (M,ω,Tn) with moment
polytope P . The first goal is to define critical metrics for the invariant/
equivariant first eigenvalue. This is almost exactly a repetition of Subsec-
tion 2.1. To avoid the repetition and give a more unified treatment of the
equivariant extremization problem and the classical extremization problem,
we could have used the framework developed by Macbeth in [Ma]. This would
involve showing that the measure described in the main theorem there is of
a special type because the spaces Ek1 and ET1 are finite dimensional.

Instead we will go through the argument in Subsection 2.1 again. We
want to define critical values for λk1 : Spot(P )→ R+ but as in the Rieman-
nian case discussed in Subsection 2.1 λk1 : Spot(P )→ R+ is not a differen-
tiable function at all points. Given a one parameter family in Spot(P ) with
s0 = s and analytic in t, there are real valued functions Λ0,t, . . . ,ΛN,t and
one parameters families of functions on P , f0,t, . . . , fN,t satisfying

∆fl,t + fl,tk
tHess (s)k = Λl,tfl,t, k = 0, . . . , N.

and such that λk1(st) = min{Λl,t, l = 1, . . . , N} so that the function λk1 has
a right and left derivative

dλk1(st)

dt
(0+) = min

{
dΛl,t
dt

(0), l = 0, . . . , N

}
dλk1(st)

dt
(0−) = max

{
dΛl,t
dt

(0), l = 0, . . . , N

}
Definition 3.1. The symplectic potential s is λk1-critical if for any 1-
parameter family of symplectic potentials st, analytic in t,

dλk1(st)

dt
(0−) · dλ

k
1(st)

dt
(0+) < 0.

Setting δs to be ds
dt (0), we write dλk1(fl, δs) = dΛl,t

dt (0). In fact, we can
define dλk1(f, δs) for any f ∈ Ek1 as follows. Consider the Riemannian metrics
corresponding to st = s+ tδs for t sufficiently small. For each such t, Ek1 (st)
is the first k-equivariant eigenspace. We extend f to a one parameter family
ft such that ft ∈ Ek1 (st) and let Λt be the eigenvalue corresponding to ft.

dλk1(f, δs) =
dΛt
dt

(0).
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As we will see ahead this does not actually depend on ft but only on f . In fact
the same phenomenon occurs in the non equivariant case of Subsection 2.1
and is a manifestation of something more general that is explained and
exploited in [Ma].

We now use the toric framework to calculate dλk1(f, δs).

Lemma 3.2. Let (M,ω,Tn) be toric with moment polytope P . Let s ∈
Spot(P ). Given δs ∈ C∞(P ) such that δs and dδs vanish on ∂P and f ∈
C∞(P ) corresponding to an eigenfunction of the Laplacian associated to s,

dλT1 (f, δs) = −
∫
P

∂2
(
silfls

jrfr
)

∂xi∂xj
δsdx,

where we write fr for ∂f
∂xr

. If furthermore f = 0 on ∂P then

dλk1(f, δs) =

∫
P

(
−
∂2 Re

(
silfls

jrf̄r
)

∂xi∂xj
+ ktHess |f |2k

)
δsdx.

Proof. Consider the path st = s+ tδs in Spot(P ), the corresponding path
of Riemannian metrics on M which we denote by gt and a path ft in C(P )
corresponding to a path of eigenfunctions in ET1 (gt), the eigenspace for the
smallest invariant eigenfunction for the Laplacian associated with gt, such
that f0 = f. We have ∆tft = λT1 tft. We want to calculate

d

dt |t=0
λT1 (ft, gt).

We may assume that
∫
P f

2
t dx = 1 for all t and taking derivatives this implies∫

P fḟdx = 0 where ḟ = dft
dt . The quantity d

dt |t=0
λT1 (ft, gt) is given by

d

dt |t=0

∫
P
|dft|2gtdx =

d

dt |t=0

∫
P

(∂ft)
tHess−1(st)∂ftdx

= −
∫
P

(∂f)tHess−1(s)
dHess (st)

dt |t=0
Hess−1(s)∂fdx

+ 2

∫
P

(∂ḟ)tHess−1(s)∂fdx
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= −
∫
P

(∂f)tHess−1(s)Hess (δs)Hess−1(s)∂ftdx

+ 2

∫
M
〈d(̇f ◦ φ), d(f ◦ φ)〉dx

= −
∫
P

(∂f)tHess−1(s)Hess (δs)Hess−1(s)∂ftdx

+ 2

∫
M
ḟ ◦ φ∆(f ◦ φ)dx

= −
∫
P

(∂f)tHess−1(s)Hess (δs)Hess−1(s)∂ftdx+ 2λT1

∫
P
ḟfdx

= −
∫
P

(∂f)tHess−1(s)Hess (δs)Hess−1(s)∂ftdx

= −
∫
P

(
silfls

jrfr

)
(δs)ijdx,

where we have used φ to mean the moment map for the torus action on M .
The conditions that s and ds vanish on ∂P ensure that we can integrate the
above by parts without picking up boundary terms and hence

d

dt |t=0
λT1 (ft, gt) = −

∫
P

∂2
(
silfls

jrfr
)

∂xi∂xj
(δs)dx,

as claimed. The k-equivariant case is similar.

d

dt |t=0
λk1(ft, gt)

=
d

dt |t=0

∫
P
|d(eik·θft)|2gtdx

=
d

dt |t=0

∫
P

(
Re
(
(∂ft)

tHess−1(st)∂f̄t
)

+ |ft|2ktHess (st)k
)
dx

=

∫
P

(
−Re(silfls

jrf̄r) + |f |2kikj
)

(δs)ijdx.

Integrating by parts we get

d

dt |t=0
λT1 (ft, gt) =

∫
P

(
−
∂2 Re

(
silfls

jrf̄r
)

∂xi∂xj
+ ktHess |f |2k

)
δsdx.

�

We are now ready to prove our main characterisation of λT1 -critical metrics
in this section.



i
i

“8-Sena-Dias” — 2019/8/29 — 17:11 — page 861 — #11 i
i

i
i

i
i

Critical Kähler toric metrics 861

Proposition 3.3. In the same setting as above, the symplectic potential s
is λk1-critical iff for all δs ∈ C∞(P̄ ) there are functions on P , {f0, . . . , fN},
corresponding to k-equivariant eigenfunctions in Ek1 (s) and α0, . . . , αN ∈
[0, 1] satisfying

N∑
a=1

αa

((
∂2 Re

(
silfa,ls

jrf̄a,r
)

∂xi∂xj

)
− ktHess |fa|2k

)
= 0.

Again this lemma has an analogous counterpart in the classical critical
first eigenvalue problem and it is a manifestation of a more general phe-
nomenon which is treated in [Ma]. To use Macbeth’s results in our setting,
we would need to prove that the measure described in the main theorem
there is of a special type (the relevant fact being that Ek1 (s) is finite dimen-
sional). We have chosen to derive the results so as to be self-contained.

Proof. The condition that s is critical can be rewritten as

s is critical ⇐⇒ ∀δs∈C∞(P̄ ), ∃ f, h∈Ek1 (s) : dλk1(f, δs) < 0 < dλk1(h, δs).

Now fix δs ∈ C∞(P̄ ) and consider dλk1(., δs) as a function on the finite di-
mensional vector space Ek1 (s). By restriction to the sphere in Ek1 (s) with
respect to the L2 norm we see that

s is critical =⇒ ∀δs ∈ C∞(P̄ ), ∃ f ∈ Ek1 (s),

∫
P
|f |2dx = 1 : dλk1(f, δs) = 0.

The relevant thing to note is that multiplying f by a fixed constant changes
dλk1(f, δs) by multiplication by a positive constant. Now assume that δs and
its derivatives vanish along ∂P so that from the previous lemma

dλk1(f, δs) =

∫
P

(
−Re

(
∂2
(
silfls

jrf̄r
)

∂xi∂xj

)
+ ktHess |f |2k

)
δsdx.

We set

Qs(f) = −Re

(
∂2
(
silfls

jrf̄r
)

∂xi∂xj

)
+ ktHess |f |2k,

so that

dλk1(f, δs) =

∫
P
Qs(f)δsdx.

If s is critical

∀δs ∈ C∞(P̄ ), δs, d(δs) = 0 on ∂P, ∃ f ∈ Ek1 (s) :

∫
P
|f |2 = 1,

∫
P
Qs(f)δs = 0.
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We want to prove that 0 is the convex hull generated by {Qs(f), f ∈ Ek1 (s)}.
Let K be this convex hull. Suppose 0 /∈ K. By the Hahn-Banach separation
theorem applied in L2

k(M) (the L2 completion of the space of k-equivariant
functions on M which we are identifying with a subspace of L2(P )) there
is µ, a linear bounded functional on L2

k(M) such that µ|K > 0. By Riesz’s
representation theorem there is β ∈ L2(P ) such that

µ(h) =

∫
P
βhdx > 0, ∀h ∈ K.

Suppose that β and its first order derivatives vanish on ∂P . Then because
s is critical there is f ∈ Ek1 (s) with L2-norm equal to 1 such that∫

P
Qs(f)β = 0,

but by assumption
∫
P Qs(f)β = µ(Qs(f)) > 0 because Qs(f) ∈ K and we

get a contradiction. But since β (or its first order derivatives) may not vanish
on ∂P , we need a slight modification of the above argument. Consider the
smooth bump function ρε which is identically equal to 1 on P \ Vε(∂P ) where
Vε(∂P ) denotes a tubular neighbourhood of radius ε of ∂P . Let βε denote
ρεβ. Then because s is critical, there is fε ∈ Ek1 (s) with L2-norm equal to 1
such that ∫

P
Qs(fε)βε = 0,

and
∫
P |fε|

2 = 1. Now {fε} is bounded and contained in a finite dimensional
space so that it admits a convergent subsequence. Let f ∈ Ek1 (s) be the
limit. Because the subsequence converges in that finite dimensional subspace,
Qs(fε) converges to Qs(f) in the same subsequence. The sequence βε also
converges a.e. to β so that Qs(fε)βε has a subsequence that converges a.e.
to Qs(f)β. On the other hand for that subsequence |Qs(fε)βε| ≤ Cβ for
some constant C. This is because in the subsequence there is bound on the
L∞-norm of Qs(fε). By the bounded convergence theorem∫

P
Qs(fε)βε →

∫
P
Qs(f)β = 0.

But
∫
P Qs(f)β = µ(Qs(f)) > 0 because Qs(f) ∈ K and we get a contradic-

tion. We conclude that 0 ∈ K and the proposition follows. �
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4. Proof the of main Theorems 1.4, 1.3

The idea is to exploit the characterisation given in Proposition 3.3 for critical
toric Kähler metrics to conclude that such metrics do not exist.

4.1. The proof of theorem 1.4

Proof. Let k ∈ Z be fixed. Under the right normalisation, (S2, ωFS , S
1) is a

toric symplectic manifold with moment polytope ]− 1, 1[. Any S1-invariant
metric on S2 is described by a symplectic potencial s ∈ Spot(]− 1, 1[). From
Proposition 3.3 if it is critical for λk1 then there are function {f0, . . . , fN}
and α0, . . . , aN ∈ [0, 1] satisfying

(3)

(
f ′a
s′′

)′
=
(
−λ+ k2s′′

)
fa

and
N∑
a=0

αa

(∣∣∣∣f ′as′′
∣∣∣∣2 − k2|fa|2

)′′
= 0.

As the αa are all positive (and smaller than 1) they can be absorbed into
the fa’s at the cost of loosing the normalisation for

∫
P |fa|

2dx’s. We write

N∑
a=0

(∣∣∣∣f ′as′′
∣∣∣∣2 − k2|fa|2

)′′
= 0.

Now
N∑
a=0

(∣∣∣∣f ′as′′
∣∣∣∣2 − k2|f |2

)′
= 2 Re

((
f ′a
s′′

)′ f̄ ′a
s′′
− k2f ′af̄a

)
and replacing in Equality (3) we see that

N∑
a=0

(∣∣∣∣f ′as′′
∣∣∣∣2 − k2|f |2

)′
= 2

N∑
a=0

Re

((
−λ+ k2s′′

)
fa
f̄ ′a
s′′
− k2f ′af̄a

)
N∑
a=0

(∣∣∣∣f ′as′′
∣∣∣∣2 − k2|f |2

)′
= −2λ

N∑
a=0

Re(faf̄
′
a)

s′′
.

This then implies that
N∑
a=0

Re(faf̄
′
a)

s′′
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is constant. Because 1
s′′ vanishes at 1 and −1, this is actually zero and∑N

a=0 Re(faf̄
′
a) = 0 so that

∑N
a=0 |fa|2 is constant. We look at two cases

separately:

• In the case where k 6= 0, the fa all vanish at 1 and −1 and so
∑N

a=0 |fa|2
= 0 so that fa = 0 for all a; a contradiction.

• In the case when k = 0 we may assume that the fa are real. We have

N∑
a=0

((
f ′a
s′′

)2
)′′

= 2

N∑
a=0

((
f ′a
s′′

)′′ f ′a
s′′

+

((
f ′a
s′′

)′)2
)

= 0

and replacing Equality (3) for k = 0 again we find that

0 = 2

N∑
a=0

(
(−λfa)′

f ′a
s′′

+

((
f ′a
s′′

)′)2
)

(4)

= 2

N∑
a=0

−λ(f ′a)
2

s′′
+ λ2f2

a ,

and
∑N

a=0
(f ′
a)2

s′′ = λ
∑N

a=0 f
2
a and hence it is constant. But, because

1
s′′ vanishes at 0,

∑N
a=0

(f ′
a)2

s′′ = 0 and each f ′a vanishes which is also a
contradiction. �

4.2. Proof of theorem 1.3

We start with a useful calculation.

Lemma 4.1. In the same context as above, let f be an invariant eigen-
function for the eigenvalue λ of the Laplacian on toric Kähler manifold with
symplectic potential s then

∂2
(
silfls

jrfr
)

∂xi∂xj
= λ2f2 + 2λ∂f t(Hess s)−1∂f(5)

+ Tr (D((Hess s)−1∂f))2
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Proof.

∂2
(
silfls

jrfr
)

∂xi∂xj
=
∂
(
silfl

)
∂xi

∂
(
sjrfr

)
∂xj

+ 2
∂2
(
silfl

)
∂xi∂xj

sjrfr

+
∂(silfl)

∂xj

∂
(
sjrfr

)
∂xi

= (λf)(λf) + 2
∂(−λf)

∂xj
sjrfr +

∂
(
silfl

)
∂xj

∂
(
sjrfr

)
∂xi

= λ2f2−2λ∂f t(Hess s)−1∂f +
∂
(
silfl

)
∂xj

∂
(
sjrfr

)
∂xi

.

Where we have used the fact that

∂(silfl)

∂xj
= −λf.

Now

∂
(
silfl

)
∂xj

=
[
D
(
(Hess s)−1∂f

)]
ij

and the result follows. �

As a result of this calculation and of Proposition 3.3 it follows that the sym-
plectic potential s is λT1 -critical iff for all δs ∈ C∞(P̄ ) there are functions on
P {f0, . . . , fN} corresponding to invariant eigenfunctions in ET1 (s) satisfying

N∑
a=1

(
λ2f2

a−2λ∂fa(Hess s)−1∂fa + Tr (D(Hess s)−1∂fa)
2)
)

= 0.

We are now ready to prove our main theorem.

Proof. Suppose that there exists a λT1 -critical metric on a toric Kähler man-
ifold. We are going to derive a contradiction from this assumption. Let P
denote the moment polytope of our toric Kähler manifold. Assume without
loss of generality that 0 is a vertex of P and that P is standard at 0. We can
alway achieve this applying an SL(n,Z) transformation which will lift to
an equivariant diffeomorphism taking critical symplectic potentials for λT1
to taking critical symplectic potentials for λT1 .
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We start by showing that

(6)

N∑
a=1

(
λ2f2

a−2λ∂fa(Hess s)−1∂fa + Tr (D((Hess s)−1∂fa)
2)
)

= 0

implies that fa(0) = 0, ∀a = 0, . . . , N. The above relation holds at x = 0.
Now (Hess s)−1(0) = 0 and we are going to show that

Tr (D(Hess s)−1∂fa)
2)(0) =

N∑
a=1

|∂fa|2(0).

It will then follows that fa(0), ∂fa(0) = 0, ∀a = 0, . . . , N. Because s ∈
Spot(P ), there is v ∈ C∞(P̄ ) such that

s = sG + v and

sG =

d∑
k=1

(x · νk − ck) log(x · νk − ck)− (x · νk − ck)

where

P = {x ∈ Rn : x · νl − cl > 0, l = 1, . . . , d} .

It is not hard to see that

Hess sG =

d∑
l=1

νlν
t
l

x · νl − cl
.

Because P is standard at zero {ν1, . . . , νn} is the canonical basis of Rn so
that

Hess sG =


1
x1

0 · · · 0
. . .

0 · · · 0 1
xm

+A

where A is smooth on a neighbourhood of 0. Hence, on a neighbourhood of
0, there is a smooth B such that

Hess s =


1
x1

0 · · · 0
. . .

0 · · · 0 1
xn

+B.
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So

(Hess s)−1 = Diag(x1, . . . , xn)(7)

−Diag(x1, . . . , xn)BDiag(x1, . . . , xn) + · · ·

and therefore writing ∂lf = fl, l = 1, . . . , n

(Hess s)−1∂f =

 x1f1
...

xnfn

+O(2)

where for any positive integer l, O(l) denotes a function which vanishes to
order at least l at zero i.e. a function which is bounded by c||x||l on some
neighbourhood of zero for some constant C. Hence

D((Hess s)−1∂f) =

 ∂1(x1f1) · · · x1f1n

. . .

xnf1n · · · ∂n(xnfn)

+O(1)

where fij = ∂2f
∂xi∂xj

for all i, j = 1, . . . , n and

Tr (D((Hess s)−1∂f))2 =

n∑
l=1

(fl + xlfll)
2 +

n∑
l,r=1,l 6=r

xlxrf
2
lr +O(1).

In particular Tr (D((Hess s)−1∂f))2(0) =
∑n

l=1(fl)
2(0) = |∂f |2(0) as claimed.

Next we want to prove that if we assume that fa = O(l) for all a =
0, . . . , N and some integer l > 1 then in fact fa = O(l + 1). Consider the
equality

N∑
a=0

(
λ2f2

a−2λ∂fa(Hess s)−1∂fa + Tr (D(Hess s)−1∂fa)
2)
)

= 0.

• Because fa = O(l) it follows that λ2
∑N

a=0 f
2
a = O(2l).

• It follows from Equation (7) that (Hess s)−1 = O(1) and since ∂fa =
O(l − 1), λ

∑N
a=0 ∂fa(Hess s)−1∂fa = O(2l − 1).

• As for
∑N

a=0 Tr (D(Hess s)−1∂fa)
2), to study its asymptotic behaviour

near 0 we essentially need to retrace the steps in the above analysis



i
i

“8-Sena-Dias” — 2019/8/29 — 17:11 — page 868 — #18 i
i

i
i

i
i

868 Rosa Sena-Dias

taking into account that fa = O(l). If f = O(l) then

(Hess s)−1∂f =

 x1f1
...

xnfn

+O(l + 1)

D((Hess s)−1∂f) =

 ∂1(x1f1) · · · x1f1n

. . .

xnf1n · · · ∂n(xnfn)

+O(l),

and  ∂1(x1f1) · · · x1f1n

. . .

xnf1n · · · ∂n(xnfn)

 = O(l − 1),

so that

Tr (D((Hess s)−1∂f))2 =

n∑
l=1

(fl + xlfll)
2 +

n∑
l,r=1,l 6=r

xlxrf
2
lr +O(2l − 1).

hence

N∑
a=0

(fa,l + xlfa,ll)
2 +

n∑
l,r=1

xlxrf
2
a,lr


= −

N∑
a=0

Tr (D((Hess s)−1∂fa))
2 +O(2l − 1),

It follows from Equation (6) that

N∑
a=0

Tr (D((Hess s)−1∂fa))
2 =

N∑
a=0

−λ2f2
a+2λ∂fa(Hess s)−1∂fa

= O(2l) +O(2l − 1)

= O(2l − 1),

so

N∑
a=0

(fa,l + xlfa,ll)
2 +

n∑
l,r=1

xlxrf
2
a,lr

 = O(2l − 1),
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when in fact, a priori, this expression only needs to be O(2l − 2). Con-
sider the analytic expansion of fa around 0. We have fa = Pa +O(l +
1) where Pa is a homogeneous polynomial of order l. Therefore

N∑
a=0

(∂l(xlPa,l))
2 +

n∑
l,r=1

xlxrP
2
a,lr


must be a polynomial of order 2l − 1. Let v = (x1, . . . , xn) be a generic
vector in {x = (x1, . . . , xn) ∈ Rn : x1, . . . , xn > 0} then

t2l−2
N∑
a=0

(∂l(xlPa,l))
2(v) +

n∑
l,r=1

xlxrP
2
a,lr(v)


must be of order at least 2l − 1 in t so that

N∑
a=0

(∂l(xlPa,l))
2(v) +

n∑
l,r=1

xlxrP
2
a,lr(v)

 = 0

and so because all terms in the sum are non negative they must van-
ish. We conclude that ∂l(xlPa,l) ≡ 0 and Pa,lr ≡ 0 so that Pa must be
constant for all a = 0, . . . , N . Because Pa is of degree greater than 1
then it actually must vanish so that fa = O(l + 1) as claimed.

Since we have proved that fa = O(1) and fa = O(k) =⇒ fa = O(k + 1) it
follows that all derivatives of fa vanish at zero for all a = 0, . . . , N . At this
point we use the analyticity hypothesis. Because our Riemannian metric is
analytic, the eigenfunctions for its Laplace operator are analytic as well.
This follows from elliptic regularity. We may then conclude that all fa ≡ 0
which is impossible. No critical metric exists. �

5. Concluding remarks

We would like to be able to use the equations that we derived from the λT1 -
criticality on the metric and the corresponding eigenfunctions to conclude
that both metric and eigenfunctions are analytic. The symplectic potential
of a λT1 -critical metric and its eigenfunction satisfy the following system of
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PDE’s for function on P

(8)

 ∂
∂xi

(
sij ∂fa∂xj

)
= λT1 fa, ∀a = 0, . . . , N∑N

a=0
∂2(silfa,lsjrfa,r)

∂xi∂xj
= 0.

This can be written in the form F (x, s, f, ∂s, ∂f, . . . ) = 0 for an analytic
function F (here we write f = (f0, . . . , fN )). It would follow from a result of
Morrey (see [Mo]) that if this system is elliptic in some suitable sense then
its solutions are analytic. In fact the system is not elliptic. We will prove
this here for the sake of completeness.

Lemma 5.1. The system (8) is nowhere elliptic.

Proof. This is essentially a matter of chasing through the definition of ellip-
ticity. See [Mo] for more details. Writing F = (F0, . . . , FN , FN+1) withFa = ∂

xi

(
sij ∂fa∂xj

)
− λT1 fa, ∀a = 0, . . . , N

FN+1 =
∑N

a=0
∂2(silfa,lsjrfa,r)

∂xi∂xj
,

we essentially want to calculate detDF . We start by calculating each partial
derivative. We set fN+1 = s and below we will omit the dependence of F on
variables that are fixed.

1) Given a = 0, . . . , N

d

dt |t=0
Fa(fa + tv) =

∂

xi

(
sij

∂v

∂xj

)
− λT1 v,

so that

Laa(x,D) = Dis
ijDj = Dt(Hess s)−1D,

where we have used the notation in [Mo].

2) Also given a, b < N + 1 distinct

d

dt |t=0
Fa(fb + tv) = 0, a 6= b,

so that

Lab(x,D) = 0, a 6= b.
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3) Now given a < N + 1 the derivative of Fa with respect to s is given by

d

dt |t=0
Fa(s+ tv) = − ∂

∂xi

(
silvlrs

rj ∂fa
∂xj

)
,

and

LaN+1(x,D) = −Dis
ilDlDrs

rj ∂fa
∂xj

= −Dt(Hess s)−1DDt(Hess s)−1∂fa.

4) As for the derivative of FN+1 with respect to fa for a < N + 1

d

dt |t=0
FN+1(fa + tv) = 2

∂2
(
silfa,ls

jrvr
)

∂xi∂xj
,

and

LN+1,a(x,D) = 2DiDjs
ilfa,ls

jrDr

= 2Dt(Hess s)−1DDt(Hess s)−1∂fa.

5) Last, we calculate the derivative of FN+1 with respect to s

d

dt |t=0
FN+1(s+ tv) = −2

N∑
a=1

∂2
(
siqvqps

plfa,ls
jrfa,r

)
∂xi∂xj

,

and

LN+1N+1(x,D) = −2

N∑
a=0

DiDjs
iqDqDps

plfa,ls
jrfa,r

= −2Dt(Hess s)−1D

N∑
a=0

(Dt(Hess s)−1∂fa)
2.

To sum up

d
dt |t=0

Fa(fb + tv) Lab(x,D)

a = b < N + 1 ∂
xi

(
sij ∂v∂xj

)
− λT1 v Dt(Hess s)−1D

a, b < N + 1, a 6= b 0 0

a < N + 1, b = N + 1 −2
∑N

a=1
∂2(silfa,lsjrvr)

∂xi∂xj
−2Dt(Hess s)−1DDt(Hess s)−1∂fa

a = b = N + 1 −2
∑N

a=1
∂2(siqvqpsplfa,lsjrfa,r)

∂xi∂xj
−2Dt(Hess s)−1D

∑N
a=0(Dt(Hess s)−1∂fa)

2
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The system is elliptic iff

detDF := det(Lij(x,D))N+1
i,j=0 6= 0, ∀D 6= 0

Now DF is given by Dt(Hess s)−1D times
1 0 · · · −Dt(Hess s)−1∂f0

. . .

0 · · · 1 −Dt(Hess s)−1∂fN
2Dt(Hess s)−1∂f0 · · · 2Dt(Hess s)−1∂fN −2

∑N
a=0(Dt(Hess s)−1∂fa)

2


The matrix above is clearly singular at all points as its last line is a linear
combination of the previous N lines. �
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