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Coherent quantization using coloured

surfaces

David Li-Bland and Pavol Ševera

In this note, we revisit the quantization of Lie bialgebras described
by the second author in [28], placing it in the more general frame-
work of quantizing moduli spaces developed in [29]. In particular,
we show that embeddings of quilted surfaces (which are compatible
with the choice of skeleton) induce morphisms between the corre-
sponding quantized moduli spaces of flat connections. As an appli-
cation, we describe quantizations of both the variety of Lagrangian
subalgebras and the de-Cocini Procesi wonderful compactification,
which are compatible with the action of the (quantized) Poisson
Lie group.
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1. Introduction

1.1. Coloured surfaces, and moduli spaces

Suppose that Σ is a compact oriented surface with boundary and Walls :=
{wi}i∈I ⊂ ∂Σ is a finite collection of disjoint segments in the boundary,

P.Š. was upported by the grant MODFLAT of the European Research Council
and the NCCR SwissMAP of the Swiss National Science Foundation.
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806 D. Li-Bland and P. Ševera

which we call domain walls. We require that every connected component of
Σ contains a domain wall.

Figure 1. The domain walls on this surface are indicated by thickened seg-
ments.

Now suppose that g is a (finite dimensional) Lie algebra over a field K
of characteristic zero, and t ∈ (S2g)g is a chosen ad-invariant element. We
observe that t defines a g-invariant bilinear form on the dual space g∗; and
we say that a subalgebra c ⊆ g is coisotropic if the restriction of this bilinear
form to the annihilator ann(c) ⊆ g∗ of c vanishes.1 Similarly, suppose that G
is an algebraic group2 with Lie algebra g and that t ∈ (S2g) is G-invariant,
we say that an algebraic subgroup C ⊆ G is coisotropic if the corresponding
Lie subalgebra of g is coisotropic.

A colouring of the domain walls is an assignment w 7→ Cw of a coisotropic
subgroup of G to each domain wall. We call the data (Σ,Walls, C·) a
coloured surface. A typical example will be depicted as follows:

Domain walls
C+ ⊆ G
C− ⊆ G

We define a morphism between coloured surfaces

(Σ,Walls, C·)→ (Σ′,Walls′, C ′·)

to be an orientation preserving embedding of surfaces Σ→ Σ′ which maps
domain walls coloured by a given coisotropic subgroup of G into domain
walls coloured by the same coisotropic subgroup.

In [23, 24], we studied the moduli space which classifies flat G-bundles on
Σ with reductions of structure along the domain walls dictated by the cor-
responding coisotropic subgroups. We showed that the moduli space carries
a natural Poisson structure generalizing the Atiyah-Bott Poisson structure

1Equivalently, the image of t under the projection S2g→ S2(g/c) is zero.
2By an algebraic group we mean an affine group scheme of finite type over K; in

particular, since K is of characteristic zero, an algebraic group over K is smooth.
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Coherent quantization using coloured surfaces 807

on moduli spaces (cf. [1, 18]). In particular, we constructed a functor from
the category of coloured surfaces to the category of Poisson algebras.

Subsequently, we described a deformation-quantization procedure for the
Poisson algebras arising from coloured surfaces [29]. That deformation quan-
tization procedure depends upon a choice of combinatorial decomposition
of the surface (which we call a skeleton for the surface see § 3.1). The main
result in the current paper is to show that this deformation-quantization pro-
cedure is functorial with respect to embeddings of coloured surfaces which
are compatible with the chosen skeleta. We apply this result to

• deform finite dimensional Poisson algebraic/Lie groups to quantum
groups (following ideas of [28]),

• to equivariantly quantize various classical phase spaces such as the va-
riety of Lagrangian subalgebras [6, 14, 15] and the de Concini-Procesi
wonderful compactification of a Poisson algebraic group [4, 14, 15, 21],
and

• to show that (formally) any Poisson homogeneous space M for a fi-
nite dimensional Poisson algebraic group H can be canonically H-
equivariantly embedded as a Poisson submanifold of a larger Poisson
H-space M̃ , which can be equivariantly quantized (this builds on the
ideas of Enriquez and Kosmann-Schwarzbach [7]).

To our knowledge, this procedure provides the first equivariant quanti-
zations of the variety of Lagrangian subalgebras and the de Concini-Procesi
wonderful compactification of a Poisson Lie group. While Poisson Lie groups
have been quantized by Etingof and Kazhdan in a celebrated series of pa-
pers [8–13], our approach to this problem provides a different perspective
which is closely related to topological field theories. Moreover, it describes
the geometric picture underlying Ševera’s quantization of Lie bialgebras [28].

Allow us to sketch our deformation quantization of Poisson Lie/algebraic
groups to Hopf algebras in some more detail. Suppose H is a Poisson Lie
group, G is the Drinfeld double, and H∗ is the dual Poisson Lie group. For
simplicity we will assume that the product map

H∗ ×H h,h′ 7→h·h′−−−−−−→ G

is a diffeomorphism. LetMΣ denote the moduli space of flat G bundles over
the following coloured surface
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808 D. Li-Bland and P. Ševera

H ⊂ G
H∗ ⊂ G

Domain walls

Σ =

with the indicated reductions along the coloured domain walls. Then MΣ

is canonically isomorphic to the Poisson manifold H (cf. [23]). However, the
identification of the moduli spaceMΣG,H,H∗ with a Poisson Lie group is more
than coincidental: the following cobordism (from the top horizontal slice to
the bottom horizontal slice)

t t = 1

t = 0

corresponds to a group product on the moduli space,

(1.1) MΣG,H,H∗ ×MΣG,H,H∗ →MΣG,H,H∗ ,

and further cobordisms correspond to the group unit and the various struc-
tural axioms for a group. To define (1.1) rigourously, we need to be careful:
although we are unable to handle these cobordisms directly, we reinterpret
them as sequences of embeddings (essentially by slicing them along the crit-
ical values for a Morse function):

t
t = 1

t = 1
2

t = 0
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Coherent quantization using coloured surfaces 809

This results in the following sequence of embeddings:

=

Σ(2) Σ(2) ΣΣ t Σ

Finally, using the fact that our deformation quantization ofMΣ is functorial
with respect to embeddings (Theorem 4.1) yields a compatible coproduct
on the deformation quantization of MΣ, i.e. it deforms H ∼=MΣ to a Hopf
algebra.

In future work we hope to show that a variation of our deformation
quantization procedure doesn’t depend upon the choice of skeleta for our
coloured surfaces. The close resemblence of our deformation quantization
procedure with the quantization developed by Ben-Zvi, Brochier, and Jor-
dan [3], provides evidence that this should be possible. Moreover, we hope
the resulting functor will extend naturally to cobordisms between coloured
surfaces and not just embeddings.
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2. Preliminaries

2.1. Combinatorics

An ordered morphism p : I → J between two finite sets I and J is a map
p : I → J of the underlying sets equipped with a linear order on every fibre
p−1(j). To compose two ordered morphisms, one first composes the underly-
ing maps of sets, and then equips the resulting fibres with the lexicographic
composite of the linear orders.
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A convenient way to picture an ordered morphism p : I → J is to use
a polygonal representation: for each i ∈ I one draws a planar polygon with
|p−1(i)|+ 1 edges (we allow ‘polygons’ with one, two, or more edges), and
one labels the bottom edge with i, and the remaining edges with the elements
of p−1(i) in the counter-clockwise order. For example, the ordered morphism

(2.1a) p : {1a, 2a, 1b, 2b, 3b, 1c}
iα 7→α−−−→ {a, b, c}

(with the obvious linear order on the fibres) can be pictured as follows:

(2.1b)
a

1a2a

b

1b

2b

3b

c

1c

Composition then corresponds to gluing along the indicated edges. For ex-
ample the composite of p with

q : {a, b, c} a,c 7→x−−−−→
b7→y

{x, y}

x

ac

y

b

is pictured as

x

1a

2a

1c
a

c

y

b
1b

2b

3b

where we have glued along the dotted lines.
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We let FSet< denote the category consisting of finite sets and ordered
morphisms. There is an obvious forgetful functor FSet< → FSet to the cat-
egory of finite sets.

Extending the concept somewhat, a parenthesized ordered morphism
p : I → J between two finite sets I and J is an ordered morphism p : I → J ,
together with a parenthesization of the ordered set p−1(j) for each j ∈
J . For example, the ordered morphism {1, 2, 3} → {x} (with 1 < 2 < 3),
can be equipped with two different parenthesizations: either (1 2) 3 or
1 (2 3). Equivalently, equipping an ordered morphism with a parenthe-
sization is equivalent to triangulating the corresponding polygonal represen-
tation. For example, the two possible parentesizations of {1, 2, 3} → {x} are:

(2.2a)

x

1

2

3

(1 2) 3

x

1

2

3

1 (2 3)

Similarly, the five possible parenthesizations of {1, 2, 3, 4} → {y} (with 1 <
2 < 3 < 4) are:

(2.2b)

x

1

23

4

(1 2) (3 4)

x

1

23

4

1 (2 (3 4))

x

1

23

4

((1 2) 3) 4

x

1

23

4

1 ((2 3) 4)

x

1

23

4

(1 (2 3)) 4
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As before, triangulated polygonal representations of parenthesized or-
dered morphisms are composed by gluing.

While the choice of parenthesization which one equips an ordered mor-
phism with will be important, any two parenthesizations should be equiva-
lent in a unique way. To encode this, we define a 2-category FSet(<):

• whose objects are finite sets,

• whose 1-morphisms p : I → J between finite sets I and J are paren-
thesized ordered morphisms,

• with a unique 2-morphism α : p→ p′ between any two 1-morphisms
p, p′ : I → J which both have the same underlying ordered morphism.

Note that FSet(<) and FSet< are naturally biequivalent as 2-categories. In-
deed, all 2-morphisms are invertible, and for any two finite sets I and J , the
groupoid3 HomFSet(<)(I, J) of 1-morphisms between I and J is equivalent to
the set HomFSet<(I, J) of ordered morphisms between I and J . In particular,
the forgetful functor FSet(<) → FSet< which is the identity on objects, sends
any parenthesized ordered morphism to the underlying ordered morphism,
and any 2-morphism to the identity, defines a biequivalence of 2-categories.

Finally, we note that there is a canonical ‘order reversal’ endofunctor on
FSet< (and FSet(<)) which fixes the objects but reverses the linear orders
for every ordered morphism; we denote this order reversal by p→ p̄ for
any ordered morphism p : I → J (in terms of their (triangulated) polygonal
representations, this corresponds to reversing the orientation of the polygons
- i.e. flipping them over).

2.2. The Drinfeld category

Let g be a Lie algebra over a field K of characteristic zero, and suppose that
t ∈ (S2g)g is a chosen ad-invariant element.

Let Φ ∈ K〈〈x, y〉〉 be a Drinfěld associator. The element t ∈ (S2g)G and
the associator Φ may be used to deform the symmetric monoidal structure
on the category U(g)−Mod to a braided monoidal structure: More precisely,
let U(g)−ModΦ

~ be the category with the same objects as U(g)−Mod, and
with

HomU(g)−ModΦ
~
(X,Y ) = HomU(g)−Mod(X,Y )[[~]].

The tensor product of objects and morphisms are the same in both cat-
egories, but the braiding in U(g)−ModΦ

~ is the symmetry in U(g)−Mod

3Recall that a groupoid is a category all of whose morphisms are invertible
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Coherent quantization using coloured surfaces 813

composed with the action of exp(~t1,2/2) ∈ U(g⊕ g)[[~]], and the associativ-
ity constraint is given by the action of Φ(~t1,2, ~t2,3) ∈ U(g⊕ g⊕ g)[[~]]. See
[5] for details.

2.3. Quantum fusion

Suppose that g and h are Lie algebras with chosen elements tg ∈ (S2g)g,
th ∈ (S2h)h.

Given a finite set J , we use the shorthand gJ :=
⊕

j∈J g
∼= Maps(J, g),

and given a map p : I → J between finite sets, we let

p! : gJ ∼= Maps(J, g)
(ξ·:J→g) 7→(ξp(·):I→g)
−−−−−−−−−−−−−−→ Maps(I, g) ∼= gI

denote the corresponding pullback. Since p! : gJ → gI is a morphism of Lie
algebras, we get a corresponding functor

(2.3a) F p : U(gI ⊕ h)−ModΦ
~ → U(gJ ⊕ h)−ModΦ

~

between the (deformed) categories of modules.
If p : I → J is a parenthesized ordered morphism, then (2.3a) can be

upgraded to a monoidal functor (cf. [29, Theorem 2]) as follows: For each
j ∈ J , let Ij = p−1(j); we choose an order preserving identification Ij =
(1j , 2j , . . . , nj), where nj = |Ij |. We may construct a new parenthesized or-
dered set

I
(a)(b)
j := (1aj · · · naj )(1

b
j · · · nbj),

where the terms in each half are parenthesized as in Ij , and a second paren-
thesized ordered set

I
(ab)
j := ((1aj 1bj) · · · (naj nbj)),

where the pairs are parenthesized as in Ij . We let Bj denote the parenthe-

sized braid from I
(a)(b)
j to I

(ab)
j which identifies the corresponding elements,

all the strands connecting elements of the form iaj move strictly to the right,

the strands connected elements of the form ibj move strictly to the left, and
the rightward moving strands pass over the leftward moving strands. For
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814 D. Li-Bland and P. Ševera

example, if Ij = (1 2), then Bj is the parenthesized braid

(1a 2a) (1b 2b)

(1a 1b) (2a 2b)

if Ij = ((1 2) 3), then Bj is the parenthesized braid

((1a 2a) 3a) ((1b 2b) 3b)

((1a 1b) (2a 2b)) (3a 3b)

We let Kj ∈
(
U(g)⊗Ij

)⊗2
[[~]] ∼= U(gIj )⊗2[[~]] denote the element corre-

sponding to the parenthesized braid Bj . Then the functor (2.3a) can be
equipped with a monoidal structure via the coherence map

(2.3b) F p(Xa)⊗ F p(Xb)
νp·−−→ F p(Xa ⊗Xb), Xa, Xb ∈ U(gI ⊕ h)−ModΦ

~

given by the action of

(2.3c) νp :=
∏
j∈J

Kj ∈ U(gI)⊗2[[~]]

(cf. [29, Theorem 2]). The unit coherence map is the identity, as before.
We call the corresponding monoidal functor the (quantum) fusion functor
associated to the parenthesized ordered morphism p : I → J .

Theorem 2.1. There is a strict 2-functor (called (quantum) fusion)

(2.4) F (−) : FSet(<) → MonCat

from the 2-category of parenthesized ordered morphisms betweeen finite sets
to the 2-category of monoidal categories, monoidal functors, and monoidal
natural transformations, which sets any finite set I to U(gI ⊕ h)−ModΦ

~ ,
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and any parenthesized ordered morphism p : I → J to the quantum fusion
functor (2.3) described above.

Proof. The fact that the natural transformation (2.3b) satisfies the axioms
for a monoidal structure on (2.3a) follows from [29, Theorem 2] by iter-
ated fusion using the given parenthesization.4 Moreover, it is clear that
the underlying functor (2.3a) depends naturally on the underlying map of
sets, p : I → J , while the parenthesized braid (and hence the coherence map
(2.3b)) depends naturally on the parenthesized ordered morphism p : I → J .
Thus, (2.4) certainly restricts to an ordinary functor between the underlying
categories.

It remains to define (2.4) on the 2-morphisms, and to show that it is
compatible with both horizontal and vertical composition of 2-morphisms.
We begin by considering the two basic parenthesized ordered morphisms pic-
tured in (2.2a), which we denote by ((··)·) and (·(··)), respectively. Since the
underlying maps of sets coincide, the underlying functors (2.3a) are identical
F ((··)·) = D(3) = F (·(··)), and only the coherence maps (2.3b) differ. However,
we claim that there is a natural monoidal isomorphism (D(3), ν((··)·)) 99K
(D(3), ν(·(··))) between the two functors,

(2.5) D(3)(X)
(Φ1,2,3·)−−−−−→ D(3)(X),

given by the natural action of the associator Φ1,2,3 ∈ U(g⊕ g⊕ g)[[~]] on X ∈
U(g⊕ g⊕ g⊕ h)−ModΦ

~ . More precisely, (2.5) makes the following diagrams
commute:

(2.6)

D(3)(Xa)⊗D(3)(Xb) D(3)(Xa)⊗D(3)(Xb)

D(3)(Xa ⊗Xb) D(3)(Xa ⊗Xb)

(Φ1a,2a,3aΦ1b,2b,3b·)

ν
((··)·)
X,Y ν

(·(··))
X,Y

(Φ1a1b,2a2b,3a3b·)

4Of course, the parenthesization doesn’t give a canonical order in which to per-
form the iterated fusion, but the final result doesn’t depend on the various choices.
Indeed, quantum fusion along disjoint ordered pairs commutes: see [2, Lemma 3.5],
for example, where this fact is expressed as ‘locality in space’.
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Indeed, both composites in this diagram correspond to the parenthesized
braid

((1a 2a) 3a) ((1b 2b) 3b)

(1a 1b) ((2a 2b) (3a 3b))

Next, we consider the five parenthesized ordered morphisms pictured
in (2.2b). In each case, the underlying map of sets is the same, and hence
the underlying functors (2.3a) D(4) : U(g4 ⊕ h)−ModΦ

~ → U(g⊕ h)−ModΦ
~

coincide. Also notice that any two adjacent parenthesizations differ by a
‘basic reparenthesization’ of the form ((··)·)↔ (·(··)),5 and we claim that
the following diagram commutes

(2.7)

(
D(4), ν(((··)·)·)) (

D(4), ν((·(··))·)) (
D(4), ν(·((··)·)))

(
D(4), ν((··)(··))) (

D(4), ν(·(·(··))))
(Φ1,2,3·) (Φ1,23,4·)

(Φ12,3,4·) (Φ1,23,4·)
(Φ1,2,34·)

(the pentagon identity). In fact, this is the case since on the level of objects
(2.7) is just the usual pentagon identity for the Drinfeld associator Φ.

Therefore, by Mac Lane’s Coherence theorem, it follows that for any two
parenthesizations of the same underlying ordered morphism p, p′ : I → J ,
there is a canonical ‘higher associator’ Φp,p′ (which can be written as an
iterated composite of the Drinfeld associator, see [27] for details) defining a
natural isomorphism

(F p, νp)
Φp,p

′ ·−−−→ (F p
′
, νp

′
),

5In terms of triangulations of the corresponding polyonal representation, a ‘basic
reparenthesization’ corresponds to a type 2-2 pachner move.
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such that for any three parenthesizations of the same underlying ordered
morphism p, p′, p′′ : I → J , the following diagram commutes:

(F p, νp)

(F p
′
, νp

′
) (F p

′′
, νp

′′
)

Φp,p′ Φp,p′′

Φp′,p′′

In particular, this defines (2.4) on the 2-morphisms and shows that it is
compatible with vertical composition.

The horizontal composition of monoidal natural transformations is just
their Godement product, and the higher associators Φp,p′ are compatible
with the Godement product (see [2, Lemma 3.5], for example, where this
fact is expressed as ‘locality in scale’). �

2.4. Reduction

Suppose that g and h are Lie algebras with chosen elements tg ∈ (S2g)g,
th ∈ (S2h)h, and c ⊆ g is a coisotropic Lie subalgebra. As shown in [29,
Proposition 2], the functor

c⊕ c-invariants : U(g⊕ g⊕ h)−ModΦ
~ → U(h)−ModΦ

~ ,

is monoidal, where the coherence map is the natural inclusion, and the unit
coherence map is the identity. As shown in [29, Proposition 2,Theorem 2]
there is a second monoidal functor

c-invariants ◦ F : U(g⊕ g⊕ h)−ModΦ
~ → U(h)−ModΦ

~ ,

where F : U(g⊕ g⊕ h)−ModΦ
~ → U(g⊕ h)−ModΦ

~ is the (quantum) fusion
functor induced by the diagonal inclusion g⊕ h→ g⊕ g⊕ h (cf. [29, The-
orem 2]), and the coherence map is given by the action of the universal

element J ∈
(
U(g⊕ g)

)⊗2
[[~]], followed by the natural inclusion. (The unit

coherence map is the identity, as before.)
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Theorem 2.2. The natural inclusion

Xc⊕c → Xc∆ = F (X)c

(here c∆ ⊆ c⊕ c denotes the diagonal), defines a monoidal natural transfor-
mation

c⊕ c-invariants 99K c-invariants ◦ F.

Proof. Recall that the monoidal products on

U(g⊕ g⊕ h)−ModΦ
~ and U(h)−ModΦ

~

are the usual ones (only the braiding and associativity are deformed). First,
we must show that, for any objects X,Y ∈ U(g⊕ g⊕ h)−ModΦ

~ , the mono-
idal product coherence diagram

Xc⊕c ⊗ Y c⊕c Xc∆ ⊗Xc∆

(X ⊗ Y )c⊕c (X ⊗ Y )c∆

(J ·)

commutes, where the undecorated arrows are just the natural inclusions, and
the rightmost arrow denotes the action of J ∈ (Ug)⊗4[[~]] =

(
U(g⊕ g)

)⊗2
[[~]],

followed by the natural inclusion.
Recall that J = J(~t1,2g , ~t1,3g , ~t1,4g , ~t2,3g , ~t2,4g , ~t3,4g ) is given by a formal

series in the variables ~ti,jg (where i, j ∈ {1, 2, 3, 4} range over distinct pairs).
Since c is coisotropic, the image of tg ∈ g⊗ g in (g/c)⊗ (g/c) is trivial. Thus,

each of ~ti,jg (where i, j ∈ {1, 2, 3, 4} denote any distinct pair of elements) acts
trivially on Xc⊕c ⊗ Y c⊕c, which implies the commutativity of the diagram
above.

The fact that the monoidal unit coherence diagram,

K

K K

(J ·)

(here the unlabelled arrows denote the identity map) commutes is obvious,
since J acts trivially on K. �
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3. Coloured surfaces

3.1. (Geometric) coloured surfaces and skeleta

It will be useful to have a more combinatorial description of the coloured
surfaces described in § 1.1. In order to do this, suppose that the set of domain
walls has been partitioned Walls = Walls− tWalls+ into ‘positive’ and
‘negative’ domain walls. A bone for the coloured surface (Σ,Walls, C·) is
an embedded oriented 1-dimensional connected manifold with non-empty
boundary ∂γ = γ− t γ+ whose source γ− lies on a negative domain wall,
whose target γ+ lies on a positive domain wall, and whose interior is mapped
into the interior of Σ. A skeleton of the coloured surface (Σ,Walls, C·) is

Domain walls
C+ ⊆ G
C− ⊆ G

(a) An example of a (geometric) coloured surface.

+ −

(b) A skeleton.

Figure 2.

a collection, Bones, of mutually disjoint bones such that the surface Σ
deformation retracts onto the union⋃

γ∈Bones∪Walls

γ

of bones and domain walls.

Remark 3.1. If each component of Σ contains both a positive and nega-
tive domain wall, then a skeleton for Σ can always be chosen. If each com-
ponent of Σ has a non-trivial boundary, then one can always add extra
positive/negative domain walls (coloured by C = G) without changing the
moduli spaces associated to the coloured surface in [24]. In this way, skeletons
can always be chosen for any component of Σ with a non-trivial boundary.

A skeleton for a coloured surface (Σ,Walls, C·) naturally defines a bipar-
tite graph Γ whose edges are the bones, EΓ := Bones, and whose vertices
are the domain walls, VΓ := Walls, with the incidence maps defined in the
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+

−

+ +

+ +

Domain walls
A ⊆ G
B ⊆ G
C ⊆ G

Cisotropic

Figure 3. Another example of a (geometric) coloured surface.

−+

(a) The graph corresponding to Figure 2.

+

+

+

−

+

+

(b) The graph corresponding to Figure 3.

Figure 4.

obvious way. For example, in Figure 4 we have drawn the graphs correspond-
ing to the skeleta pictured in Figures 2 and 3.

While the graph constructed in this way describes the homotopy type
of the surface, we cannot fully recover the surface from the bare graph. For
example, notice that each domain wall w ∈Walls inherits the boundary
orientation from ∂Σ ⊂ Σ, so the bones incident to w inherit a linear ordering;
i.e. the set of edges incident to any vertex in the graph are linearly ordered.
As it turns out, in order to recover the surface from the graph it suffices to
remember these linear orders (cf. [16]).
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3.2. Bipartite graphs with half-edges

Let W denote the category with the following objects and (non-identity)
morphisms:

V− V+

H− H+

E

i−

h−

i+

h+

A bipartite graph with half edges is a functor Γ :W → FSet which sends
h± to injective maps and i± to surjective maps, i.e. it consists of two finite
sets of negative (resp. positive) vertices, which we denote with the following
shorthand:

V−Γ := Γ(V−), V+
Γ := Γ(V+),

two finite sets of negative (resp. positive) half edges, denoted with analogous
shorthand:

H−Γ := Γ(H−), H+
Γ := Γ(H+),

one finite set of edges:

EΓ := Γ(E),

surjective incidence maps:

i± : H±Γ → V±Γ ,

and injective maps:

h± : EΓ → H±Γ ,

sending a given edge to its initial and final half (one can think of h+ ◦ h−1
−

as pairing the subset h−(E) of negative half edges with the subset h+(E) of
positive half edges). We call the complement H±,wΓ := H±Γ \ h±

(
EΓ

)
the set

of (positive/negative) widowed half edges.
A morphism Γ→ Γ′ between bipartite graphs with half edges is a natural

transformation between the respective functors.
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A lift of the functor Γ :W → FSet through the category of ordered mor-
phisms,

FSet<

W FSet

Γ<

Γ

is said to equip Γ with a linear ordering on the incidence sets, and we call
any functor Γ< :W → FSet< over a bipartite graph with half edges a cili-
ated graph (note that this terminology differs somewhat from that of [16]).
Morphisms between ciliated graphs are just natural transformations between
the respective functors.

3.3. (Combinatorial) skeletized coloured surfaces

Throughout this section we let g be a Lie algebra with a chosen invariant
element t ∈ (S2g)g. By an algebraic group over K, we mean an affine group
scheme of finite type over K; in particular, since K is of characteristic zero,
an algebraic group over K is smooth.

An algebraic group C over K, equipped with an inclusion of its Lie
algebra c ↪→ g is called g-coisotropic if t ∈ S2(g) is C-invariant and the re-
striction of t to ann(c) ⊆ g∗ vanishes. Note that this implies that C is also
ḡ-coisotropic.

Suppose that an algebraic group H comes equipped with a map of Lie
algebras h→ g, we say that a K-scheme, X carries an (H, g)-action if both
H and g act on X, and the infinitesimal h action on X factors through the
g action. We say that the action has coisotropic stabilizers if the composite
map

ΩX/K
ρ∗−→ g∗ ⊗OX

t]⊗id−−−→ g⊗OX
ρ−→ ΘX

is zero, where ΩX/K is the cotangent sheaf, ΘX = HomOX (ΩX/K,OX) is the
tangent sheaf, and ρ : g⊗OX → ΘX is the action map.

As in [29], we say that a commutative associative algebra A ∈ U(g)−Mod
is g-quasi-Poisson commutative if m ◦ (t1,2·) = 0, where m : A⊗A→ A is
the multiplication. Notice that A is g-quasi-Poisson-commutative only if
it is ḡ-quasi-Poisson-commutative. Moreover, [29, Proposition 1] implies
that A with its original product is a commutative associative algebra in
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U(g)−ModΦ
~ . It follows from [29, Proposition 1] that if g acts on a K-

scheme, X, with coisotropic stabilizers, then the structure ring OX(U) is
g-quasi-Poisson-commutative for any open set U ⊆ X.

Definition 3.1. A skeletized coloured surface is a triple (Γ<, C·, X·), con-
sisting of

• a ciliated graph Γ< :W → FSet<

• an assignment of a g-coisotropic algebraic group over K, Cv, to every
vertex v ∈ VΓ = V+

Γ tV−Γ ,

• an assignment of a scheme Xe to each edge e ∈ EΓ on which
(Ci+◦h+(e) × Ci−◦h−(e), g⊕ ḡ) acts with coisotropic stabilizers.

• an assignment of a scheme Xh to each widowed half-edge h ∈ H±,wΓ :=
H±Γ \ h±

(
EΓ

)
on which (Ci±(h), g) acts with coisotropic stabilizers.

A morphism of skeletized coloured surfaces

φ : (Γ<, C·, X·)→ (Γ′<, C ′· , X
′
· )

is a morphism of the underlying ciliated graphs φ : Γ< → Γ′<, along with
morphisms

• Cv ← C ′φV(v), for any v ∈ VΓ,

• equivariant morphisms Xe ← X ′φE(e), for any e ∈ EΓ, and

• equivariant morphisms Xh ← X ′φH± (h), for any h ∈ H±,wΓ .

We denote the corresponding category by skCSurf.

Given a skeletized coloured surface (Γ<, c·, X·), let

XΓ :=
∏

e∈EΓtH±,wΓ

Xe, and(3.1a)

CΓ :=
∏
v∈VΓ

Cv.(3.1b)
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We define the ringed space MΓ :=M(Γ<,C·,X·), to be the quotient (in the
category of commutative-ringed spaces6)

(3.1c) MΓ := XΓ/CΓ =

( ∏
e∈EΓtHΓ

Xe

)
/

( ∏
v∈VΓ

Cv

)
,

where each Cv (for v ∈ VΓ) acts diagonally. Explicitly, the underlying topo-
logical space is the quotient space |MΓ| := |XΓ|/|CΓ| and for any open set

U ⊆MΓ, the structure sheaf is OMΓ
(U) = π∗OXΓ

(U)C = OXΓ

(
π−1(U)

)C
,

where π : |XΓ| → |MΓ| is the quotient map. In particular, (3.1c) is the geo-
metric quotient of schemes (if it exists).

This construction defines a functor

(3.2) skCSurf
Γ 7→MΓ−−−−→ TopK−CAlg

from (combinatorial) skeletized coloured surfaces to comutatively ringed
spaces, which we call the classical moduli space functor (see [24] for the
terminology).

Remark 3.2. As mentioned in § 3.1, any skeleton for a coloured surface
(Σ,Walls, C·) defines a skeletized coloured surface (Γ<, C·, X·) (in the sense
of Definition 3.1), where the graph Γ has edge set EΓ := Bones, vertex
set VΓ := Walls, and half edge sets H±Γ := EΓ := Bones. The maps h± :
EΓ → H±Γ are the identity maps, and for any half edge γ ∈ H±Γ := Bones,
the incidence maps are defined as

i−(γ) = wi ⇔ γ− ∈ wi,

i+(γ) = wi ⇔ γ+ ∈ wi.

Each domain wall w ∈Walls inherits the boundary orientation from ∂Σ ⊂
Σ, so the bones incident to w inherit a linear ordering.

6The category of commutative ringed spaces is a Grothendieck bi-fibration
over the category of topological spaces, the projection being the functor X =
(|X|,OX) 7→ |X| which forgets the sheaf of rings. Since the base is (co)complete,
and so are each of the fibres, it follows that the total category of commutative ringed
spaces is (co)complete. Moreover, any (co)limit can be computed by first taking the
(co)limit in the base, and then computing the (co)limit of the (co)cartesian image
of the diagram in the (co)limiting fibre. Note however, that colimits of commutative
locally ringed spaces may not be locally ringed.
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Thus, we have a natural map

(3.3a) (Σ,Walls,Bones, C·) 7→ (Γ<, C·, X·)

from coloured surfaces equipped with skeleta to (combinatorial) skeletized
coloured surfaces (in the sense of Defintion 3.1), defined by setting Xe = G
for every e ∈ EΓ.7

Recall from § 1.1 that a morphism between (geometric) coloured surfaces

(Σ,Walls, C·)→ (Σ′,Walls′, C ′·)

is defined to be an orientation preserving embedding of surfaces Σ→ Σ′

which maps domain walls coloured by a given coisotropic subgroup of G into
domain walls coloured by the same coisotropic subgroup. If both coloured
surfaces are equipped with skeleta, we say that a morphism is compatible
with the skeleta if it preserves the parity of the domain walls, and the image
of any bone in Σ is homotopic (relative the domain walls) to a bone in Σ′. We
call the resulting category skCSurfgeom the category of geometric coloured
surfaces equipped with skeleta.

It is clear that (3.3a) extends to a combinatorialization functor

(3.3b) K : skCSurfgeom → skCSurf

from the category of (geometric) coloured surfaces equipped with skeleta to
the category of (combinatorial) skeletized coloured surfaces (in the sense of
Definition 3.1).

Conversely, given a (combinatorial) skeletized coloured surface
(Γ<, C·, X·), we have the following construction: Given an ordered morphism
of finite sets, p : I → J , let Σp denote the surface obtained by blowing up a
polygonal representation of p at the corner of every polygon. We may equip
Σp with a choice of ‘half-bones’ indexed by I: for each i ∈ I a half bone is an
embedded line segment connecting the midpoint the boundary segment of
Σp labelled by i to the boundary segment labelled by p(i); we assume that
these half-bones a mutually disjoint. For example, if the ordered morphism
is as pictured in (2.1), then Σp is

7The Lie algebra g⊕ ḡ-acts on G with coisotropic stabilizers via

(ξ, η) · f := (ηL − ξR)f, f ∈ O(G), ξ, η ∈ g⊕ ḡ,

and ξL (resp. ξR) denotes the left (resp. right) invariant vector field on G corre-
sponding to ξ ∈ g.
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Σp

a

2a 1a

c

1c

b

3b 1b

2b

Gluing the surfaces ΣΓ(i+) and ΣΓ(i+) along the boundary segments h+(e)

and h−(e) (respectively) for each e ∈ EΓ results in an oriented surface, which
we denote by ΣΓ< . For each vertex v ∈ V ±Γ , we may interpret the boundary
segment labelled by v as a domain wall coloured by Cv; and for each edge
e ∈ EΓ, the half-bones corresponding to h−(e) and h+(e) concatenate to
define a bone which connects the domain walls i− ◦ h−(e) and i+ ◦ h+(e).
In particular, if there are no widowed half edges, and Xe = G for each e ∈
EΓ, it follows that (ΣΓ< ,Walls± ∼= V ±Γ ,Bones ∼= EΓ, C·) is a (geometric)
skeletized coloured surface.

If there are widowed half edges, but Xe = G for each e ∈ EΓ, we may
still represent the (combinatorial) skeletized coloured surface (Γ<, C·, X·)
by colouring the boundary segments of ΣΓ< corresponding to the vertices
appropriately, and for each widowed half edge h ∈ H±,wΓ , we will draw a
node at the free tip of the corresponding half-bone and label the node by
Xh. For example, suppose Γ< is the graph with no negative half edges (and
hence no edges or negative vertices), two positive half edges (1, 2), and one
positive vertex v, so that ΣΓ< is as in Figure 5a then we would represent

v

2 1

(a)

v

Domain walls
Cv ⊆ G

X2 X1

(b) A pictorial representation of a (combinato-
rial) skeletized coloured surface which has wid-
owed half-edges.

Figure 5.
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(Γ<, C·, X·) as in Figure 5b. As before, morphisms of such (combinatorial)
skeletized coloured surfaces correspond to appropriate embeddings of the
corresponding (geometric) coloured surfaces.

3.4. The ringed space M~
Γ associated to a skeletized coloured

surface

We let K−Alg~ denote the category of associative deformations of com-
mutative K-algebras, formally parametrized by ~. Explicitly, it is the full
subcategory of associative algebras over K[[~]] which is spanned by algebras
which are topologically free as modules over K[[~]],8 and which become com-
mutative at ~ = 0. The topological tensor product equips K−Alg~ with a
monoidal structure. Moreover, the classical limit functor

K−Alg~
A~→A~=0−−−−−−→ K−CAlg

is strictly monoidal. We let TopK−Alg~
denote the category of topological

spaces equipped with sheaves in K−Alg~, it inherits a monoidal structure
from the cartesian product (on the level of spaces), and the topological
tensor product (on the level of sheaves of rings). Notice that the classical
limit functor

TopK−Alg~

X~ 7→X~=0

↪−−−−−−→ TopK−CAlg

is monoidal.
For anyX~ ∈ TopK−Alg~

, the underlying commutative ringed spaceX :=

X~=0 carries a natural Poisson bracket: if f, g ∈ OX(U) (where U ⊆ X is an
open set), then

(3.4a) {f, g} :=
f̃ g̃ − g̃f̃

~
(mod ~),

where f̃ , g̃ ∈ OX~(U) are any lifts of f, g. We say that X
~=0
↪−−→ X~ is a defor-

mation quantization (of this Poisson structure on X). We let K−CPoiss de-
note the category of commutative Poisson algebras over K, and TopK−CPoiss

denote the category of Poisson ringed spaces, i.e. spaces equipped with a
K−CPoiss-valued presheaf of functions, whose underlying K−CAlg-valued

8That is, they are separated, complete, and torsion free.
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presheaf is actually a sheaf. Then (3.4a) defines a functor:

(3.4b) TopK−Alg~

X~ 7→(X~=0,{·,·})
↪−−−−−−−−−−−→ TopK−CPoiss

In this section, we construct a lift Γ→M~
Γ of the classical moduli space

functor (3.2), which we call the quantized moduli space functor:
(3.5)

skCSurfgeom skCSurf

TopK−Alg~

TopK−CAlg
Γ→MΓ

Γ→M~
Γ

We begin by noting that since FSet< and FSet(<) are biequivalent as 2-
categories, we may assume that every ordered morphism is canonically and
coherently equipped with a parenthesization (for example, we may choose
the standard parenthesization). In particular, the strict (quantum) fusion
2-functor induces a pseudo-functor from FSet< to MonCat which we also
denote by F (−), and which is canonically defined up to a unique pseudo-
natural isomorphism. As a result, we are at liberty to implicitly assume
that parenthesizations have been coherently9 chosen in what follows.

Suppose that (Γ<, C·, X·) is a skeletized coloured surface, and let XΓ,
CΓ and MΓ be as in (3.1).

First, let C◦Γ ⊆ CΓ denote the identity component and define M◦Γ =
XΓ/C

◦
Γ (in the category of commutative-ringed spaces) with the quotient

map π◦ : XΓ →M◦Γ.

Notice that for any open set V ⊆ XΓ, the ring OXΓ
(V ) is a gH+

Γ ⊕ ḡH−Γ -
quasi-Poisson-commutative algebra. In particular, for V = π◦

−1(W ) (where
W ⊆ |M◦Γ| is open),

OXΓ
(V ) ∈ U

(
gH+

Γ ⊕ ḡH−Γ
)
−ModΦ

~

is a commutative associative algebra, where the product is the original (un-
deformed) product (cf. [29, Proposition 1]).

9That is, up to canonical 2-morphisms.
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Fusing the gH+
Γ factors along i+ : H+

Γ → V+
Γ and the ḡH−Γ factors along

i− : H−Γ → V−Γ yields an associative algebra

F i+ ◦ F i−(OXΓ
(V )) ∈ U

(
gV+

Γ ⊕ ḡV−Γ
)
−ModΦ

~

Explicitly, the multiplication on F i+ ◦ F i−(OXΓ
(V )) = F i+ti−(OXΓ

(V )) is

(3.6) m~
Γ :=

(
mΓ

)
◦ (νi+ ⊗ νi−),

where mΓ : OXΓ
(V )⊗OXΓ

(V )→ OXΓ
(V ) is the original multiplication on

OXΓ
(V ), and νi± are as in (2.3).
Now the Lie algebra

cΓ := {(ξ·) ∈ gVΓ | ξv ∈ cv} ⊆ gV+
Γ ⊕ ḡV−Γ

of CΓ is a coisotropic subalgebra. Thus, the cΓ invariant subspace

cΓ-invariants

(
F i+ ◦ F i−

(
OXΓ

(V )
))

is an associative algebra (in the category of vector spaces), whose multipli-
cation depends on the formal parameter ~. We define

(3.7a) OM~,◦
Γ

(W ) := cΓ-invariants

(
F

i+
g ◦ F i−

ḡ

(
OXΓ

(π◦
−1(W ))

))
[[~]]

by extending the multiplication to be ~-linear. As a K[[~]]-module,

(3.7b) OM~,◦
Γ

(W ) =
(
OXΓ

(π◦
−1(W ))

)cΓ [[~]] = OM◦Γ(W )[[~]],

where cΓ acts via (i!+ ⊕ i!−) : gV+
ΓtV−Γ → gH+

ΓtEΓ ⊕ ḡH−Γ tEΓ , and the multi-
plication is given by (3.6).10

10Since the νi± appearing in (3.6) depends explicitly on the choice of parenthe-
sization on i± : H±Γ → V±Γ , so does the algebra (3.7). However, Theorem 2.1 as well

as the biequivalence between FSet(<) and FSet<, means that for any two choices
of parenthesization, the resulting algebras are canoncially isomorphic as K[[~]] al-
gebras. Since parenthesizations can be chosen canonically (for example, one may
always take the standard parenthesization), one may interpret this as follows: The
algebra OM~,◦

Γ
(W ) is canonically defined as a K[[~]] algebra, and any choice of paren-

thesization of i± defines a trivialization OM~,◦
Γ

(W ) ∼= OM◦Γ(W )[[~]] as a free K[[~]]

module.
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Now (3.7) depends naturally on the open subset W ⊆ |M◦Γ|, so that
OM~,◦

Γ
(W ) defines a presheaf of associative algebras over |M◦Γ|. Moreover the

isomorphism (3.7b) implies thatOM~,◦
Γ

is a sheaf of K[[~]]-modules, and hence

also of algebras. Thus, (|M◦Γ|,OM~,◦
Γ

) is a (non-commutative) ringed space,

flat over Spec(K[[~]]), whose fibre over ~ = 0 is the quotient M◦Γ = XΓ/C
◦
Γ.

In the event that CΓ is not connected, there is a natural action of the
discrete group CΓ/C

◦
Γ on (|M◦Γ|,OM~,◦

Γ
), and we define M~

Γ as the cor-

responding quotient in the category of (possibly non-commutative) ringed
spaces.

Theorem 3.1. The map (Γ<, C·, X·) 7→ M~
Γ extends to a contravariant

monoidal functor

skCSurf
Γ→M~

Γ−−−−−→ TopK−Alg~

fitting into the diagram (3.5), where the monoidal structure on skCSurf is
given by disjoint union.

We start with a Lemma. Suppose that p : I → J is an ordered morphism
of finite sets, for every (i, j) ∈ I × J , g acts on given K-schemes Yi, Xj with
coisotropic stabilizers, and for every i ∈ I, fi : Xp(i) → Yi is a g-equivariant
morphism. Let X =

∏
j∈J Xj and Y =

∏
i∈I Yi, and

(3.8) f :=
∏
i∈I

fi : X
{xj}j∈J 7→{yi:=fi(xp(i))}i∈I−−−−−−−−−−−−−−−−−→ Y

denote the diagonal morphism, and let f ] : OY → f∗OX denote the under-
lying morphism of the sheaves of rings.

Theorem 2.1 implies that, for any parenthesization of the ordered mor-
phism p : I → J and any open set V ⊆ Y , F p

(
OY (V )

)
with the original mul-

tiplication precomposed with νp is an associative algebra in U(gJ)−ModΦ
~ .

Similarly, for any open set U ⊆ X, OX(U) (with the original multiplication)
is also an associative algebra in U(gJ)−ModΦ

~ . In particular, (|X|,OX) and(
|Y |, F p

(
OY
))

are spaces equipped with sheaves of rings in U(gJ)−ModΦ
~ .

Lemma 3.1. The map (f, f ]) : (|X|,OX)→
(
|Y |, F p

(
OY
))

is a morphism

of spaces equipped with sheaves of rings in U(gJ)−ModΦ
~ .

Proof. Firstly, without loss of generality, we may assume that I = {1, . . . , n},
J = {∗} is the one point set, and p : I → J is equipped with the standard or-
der on I = {1, . . . , n}. Secondly, by factoring f : X = X∗ → Y = Y1 × · · · ×
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Yn as the diagonal map X → Xn followed by f1 × · · · fn : Xn → Y , we may
also assume without loss of generality that Yi = X for every i. Lastly, it is
sufficient to suppose that X = Spec(AX) is affine.

Now the k-fold diagonal mapX → Xk is dual to the k-fold multiplication

m
(k)
AX

: A⊗kX → AX .
Thus, we need to show that

(3.9) mAX ◦ (m
(n)
AX
⊗m(n)

AX
) = m

(n)
AX
◦ (mAX )⊗n ◦ νp.

We may simplify both sides of (3.9) using the identity

mAX ◦ (m
(n)
AX
⊗m(n)

AX
) = m

(2n)
AX

= m
(n)
AX
◦ (mAX )⊗n.

Now, m
(2n)
AX
◦ νp = m

(2n)
AX

since AX is g-quasi-Poisson commutative, which
implies (3.9). �

Proof of Theorem 3.1. Let φ : (Γ<, C·, X·)→ (Γ′<, C ′· , X
′
· ) be a morphism of

skeletized coloured surfaces. For simplicity, we will assume that each of the
algebraic groups C· and C ′· is connected. When we need to distinguish them,
we let iΓ± and iΓ

′

± denote the incidence maps for Γ and Γ′ respectively.
Let XΓ :=

∏
e∈EΓtH±,wΓ

Xe, and X ′Γ′ :=
∏
e∈EΓ′tH±,w

Γ′
X ′e be as in (3.1).

For any e ∈ EΓ tH±,wΓ , we have a map Xe ← Xφ(e), and these fit together

to define a morphism of ringed spaces (|XΓ|,OXΓ
)← (|X ′Γ′ |,OX′Γ′ ) : (f̃φ, f̃

]
φ),

as in (3.8).
Notice that for any open set V ⊆ |XΓ|,

OXΓ
(V ) ∈ U

(
gH+

Γ ⊕ ḡH−Γ
)
−ModΦ

~

is a commutative associative algebra. We let

F φH±
(
OXΓ

(V )
)

:= F φH+ ◦ F φH−
(
OXΓ

(V )
)

denote the result of taking the quantum fusion of the gH+
Γ factors along the

ordered morphism φH+ : H+
Γ → H+

Γ′ and the ḡH−Γ factors along the ordered
morphism φH− : H−Γ → H−Γ′ .

Now Lemma 3.1 implies that we have a morphism(
|XΓ|, F φH± (OXΓ

)
)
← (|X ′Γ′ |,OX′Γ′ ) : (f̃φ, f̃

]
φ)

of spaces equipped with sheaves of rings in U
(
gH+

Γ′ ⊕ ḡH−
Γ′
)
−ModΦ

~ .
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Taking the quantum fusion with respect to the ordered morphisms iΓ
′

+

for the gH+

Γ′ factors and iΓ
′

− for the ḡH−
Γ′ factors yields a morphism(

|XΓ|, F iΓ
′
± ◦φH± (OXΓ

)
)
←
(
|X ′Γ′ |, F iΓ

′
± (OX′

Γ′
)
)

:
(
f̃φ, F

iΓ
′
± (f̃ ]φ)

)
of spaces equipped with sheaves of rings in U

(
gV+

Γ′ ⊕ ḡV−
Γ′
)
−ModΦ

~ (where

as before, we have used the shorthand F iΓ
′
± ◦φH± = F iΓ

′
+ ◦φH+ ◦ F iΓ

′
− ◦φH− and

F iΓ
′
± = F iΓ

′
+ ◦ F iΓ

′
− ).

However, since iΓ
′

± ◦ φH± = φV± ◦ iΓ± as ordered morphisms, Theorem 2.1
implies that we have a canonical isomorphism(

|XΓ|, FφV±◦iΓ±(OXΓ
)
) ∼= (|XΓ|, F iΓ

′
± ◦φH± (OXΓ

)
)

as spaces equipped with sheaves of rings in U
(
gV+

Γ′ ⊕ ḡV−
Γ′
)
−ModΦ

~ .
Let CΓ :=

∏
v∈VΓ

Cv, and C ′Γ′ :=
∏
v∈VΓ′

C ′v be as in (3.1), and let cΓ
and c′Γ′ denote the respective Lie algebras. Note that c′Γ′ ⊆ gVΓ′ acts on XΓ

via the pullback

gVΓ′
{ξv:=ηφV(v)}v∈VΓ

← [{ηv′}v′∈V
Γ′←−−−−−−−−−−−−−−−−−−−− gVΓ : φ∗V.

Now, applying Theorem 2.2 iteratively, for each v′ ∈ VΓ′ , yields a mor-
phism

rφV
: cΓ-invariants

(
F iΓ±(OXΓ

)
)
→ c′Γ′-invariants

(
F φV±◦iΓ±(OXΓ

)
)

∼= c′Γ′-invariants
(
F iΓ

′
± ◦φH± (OXΓ

)
)
.

of sheaves over XΓ of K[[~]] rings.
Let π : XΓ → XΓ/CΓ =MΓ and π′ : X ′Γ′ → X ′Γ′/C

′
Γ′ =MΓ′ denote the

quotient maps, and MΓ ←MΓ′ : fφ the quotient of f̃φ. Suppose that W ⊆
|MΓ| is an open set. Since

OM~
Γ
(W ) = cΓ-invariants

(
F iΓ±(OXΓ

(W ))
)
[[~]],

while for any open set W ′ ⊆ |MΓ′ |

OM~
Γ′

(W ′) = c′Γ′-invariants
(
F iΓ

′
± (OX′

Γ′
(W ′))

)
[[~]],

the composition

f ]φ(W ) := F iΓ
′
± (f̃ ]φ) ◦ rφV

: OM~
Γ
(W )→ OM~

Γ′

(
f−1
φ (W )

)
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is a morphism of associative K[[~]]-algebras. Since f ]φ(W ) is natural in W ,

(MΓ,OM~
Γ
)← (MΓ′ ,OM~

Γ′
) : (fφ, f

]
φ)

is a morphism in TopK−Alg~
. Since (fφ, f

]
φ) is natural in φ, it follows that the

association Γ→ (MΓ,O~
M◦Γ) defines a contravariant functor skCSurf

Γ→M~
Γ−−−−−→

TopK−Alg~
which, by construction, fits into the diagram (3.5).

The functor Γ→M~
Γ is monoidal, by construction. �

Remark 3.3. There are obvious variants of skeletized coloured surfaces in
which algebraic groups G and Cv ⊆ G are replaced by (complex) Lie groups
Lie groups, and the schemes Xe assigned to (half) edges are replaced by
(complex holomorphic) manifolds; subject to the condition that the quotient
MΓ := XΓ/CΓ defined in (3.1) is well behaved (in the appropriate sense).
Moreover, it is clear that the same proof yields an appropriate variant of
Theorem 3.1 in both the smooth or holomorphic settings.

4. Applications

4.1. Geometric skeletized coloured surfaces

Suppose that G is an affine algebraic group whose Lie algebra is g.
Suppose that (Σ,Walls, C·) is a (geometric) coloured surface, and let

M(Σ,Walls, c·;G)

denote the moduli space classifying pairs

(
P → Σ, {Qw → w}w∈Walls

)
where P → Σ is a flatG-bundle, and for each domain wall w ∈Walls,Qw →
w is a Cw-invariant subbundle. Then M(Σ,Walls, c·;G) carries a natural
Poisson structure [23, 24] which can be described in terms of a Goldman-type
bracket [17, 18].

Suppose that we equip the (geometric) coloured surface (Σ,Walls, c·)
with a skelata whose bones are Bones, then [24] shows that we have a
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canonical identificiation

(4.1) M(Σ,Walls, c·;G) ∼=MK(Σ),

where K(Σ) is as in (3.3). Moreover, [29] proves that the resulting inclusion

M(Σ,Walls, c·;G)
~=0
↪−−→M~

K(Σ)

is a deformation quantization of the Poisson structure. In particular, to first
order in ~, the ringed space M~

K(Σ) does not depend on either the choice of
skeleton or the choice of associator.

Now let CSurfgeom denote the category of (geometric) coloured surfaces
(as defined in § 1.1), whose objects are coloured surfaces (Σ,Walls, C·), and
whose morphisms

(Σ,Walls, C·)→ (Σ′,Walls′, C ′·)

are embeddings Σ→ Σ′ compatible with the colouring. Then we have a
forgetful functor

F : skCSurfgeom
(Σ,Walls,C·;Bones)→(Σ,Walls,C·)−−−−−−−−−−−−−−−−−−−−−−→ CSurfgeom

from the category of (geometric) coloured surfaces equipped with skeleta to
the category of (geometric) coloured surfaces.

Theorem 4.1. The following diagram of functors commutes

skCSurf

skCSurfgeom

CSurfgeom

TopopK−Alg~

TopopK−CPoiss

K

F

where the top triangle is as described in § 3, the rightmost vertical arrow
is as in (3.4), and the bottom arrow sends a (geometric) coloured surface
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(Σ,Walls, C·) to the corresponding moduli space of flat bundles

M(Σ,Walls, c·;G)

with its Goldman-type Poisson structure [23, 24]. To summarize, Σ→M~
K(Σ)

is a functorial deformation quantization of the moduli spaces associated to
(geometric) coloured surfaces equipped with skeleta.

In particular, to coherently quantize a diagram p : J → CSurfgeom, it
suffices to find a lift p̃ : J → skCSurfgeom (i.e. p = F ◦ p̃).

Proof. This follows by relating Theorem 3.1 to the results in [29]. �

As an example, we will use this result to describe the deformation quan-
tization of a Poisson algebraic group H. Our procedure is a slight variant of
the one first presented in [28] to quantize Lie bialgebras. For now, we make
the simplifying assumption that we may identify G with the Drinfeld double
of H (we will treat the general case in the next section). More precisely, we
suppose that H,H∗ ⊂ G are closed subgroups where H∗ is a dual Poisson
algebraic group to H, that the product map

(4.2) H∗ ×H h,h′ 7→h·h′−−−−−−→ G

is invertible, so that g = h⊕ h∗ as a vector space (here h and h∗ denote the
Lie algebras corresponding to H and H∗), and that t ∈ S2(g) ∼= S2(h⊕ h∗)
corresponds to the canonical symmetric pairing between h and h∗.

Consider the skeletized coloured surface depicted in Figure 6a. By choos-

H ⊂ G
H∗ ⊂ G

Domain walls
Σ =

(a) The (geometric) coloured surface for
a Poisson Lie group.

H ⊂ G
H∗ ⊂ G

Domain walls
Σ =

+

−−

(b) A good choice of skeleton.

Figure 6.

ing a skeleton as in Figure 6b we may use (3.7) to compute the corresponding
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algebra:

O
(
(G×G)/(H∗ ×H ×H∗

)
[[~]],

where the action is

(h∗1, h, h
∗
2) · (g1, g2) =

(
hg1(h∗1)−1, hg2(h∗2)−1

)
,

(h∗1, h, h
∗
2) ∈ H∗ ×H ×H∗, (g1, g2) ∈ G×G.

In particular, using the decomposition (4.2), we may identify the algebra
with O(H)[[~]] via the map

H
h7→(1,h)−−−−−→ (G×G)/(H∗ ×H ×H∗).

The multiplication (3.6) is a deformation quantization of the Poisson struc-
ture on H [29].

We now want to describe a compatible comultiplication on O(H)[[~]]
corresponding to the group product H ×H → H. For this, consider the
following sequence of embeddings:

(4.3)

=

Σ(2) Σ(2) ΣΣ t Σ

The colours are as before, and we choose the following compatible skeleton
on Σ(2):

Once again, using (3.7), we may identify the algebra corresponding to
Σ(2) with

O
(
(G×G×G)/(H ×H∗ ×H∗ ×H∗)

)
[[~]] ∼= O

(
(H ×H ×H)/H

)
[[~]]

∼= O(H ×H)[[~]],

(here H acts diagonally on H ×H ×H). Thus, applying the functor
O(M~

K(−)) to the sequence of embeddings (4.3) yields a sequence of algebra
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morphisms:

(4.4) O(H)[[~]]⊗̂O(H)[[~]]
∼=−→ O(H ×H)[[~]]← O(H)[[~]].

Theorem 4.2. The left hand morphism in (4.4) is invertible, and the cor-
responding composite

(4.5) ∆ : O(H)[[~]]→ O(H)[[~]]⊗̂O(H)[[~]]

is the comultiplication for a Hopf-algebra structure on O(H)[[~]] quantizing
the Poisson algebraic group H.

Proof. At ~ = 0, the left hand morphism in (4.4) is the canonical identi-
fication, and hence invertible. Since all the algebras in (4.4) are flat K[[~]]
algebras, it follows that the left hand morphism in (4.4) remains invertible
away from ~ = 0.

Now coassociativity is the equation

(4.6a) (id ⊗̂∆) ◦∆ = (∆⊗̂ id) ◦∆.

We claim that both sides of this equations are equal to the morphism

(4.6b) ∆(3) : O(H)[[~]]→ O(H)[[~]]⊗̂O(H)[[~]]⊗̂O(H)[[~]]

obtained by applying the functor O(M~
K(−)) to the diagram

(4.6c)

0

0

3

3

30

1 2

21
0 1 1 2 2 3
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and composing from top left to bottom right (after applying the func-
tor O(M~

K(−)), the horizontal edge become invertible). In more detail, the

skeleta are as in11:

Σ = Σ(1) Σ(2) Σ(4)Σ(0) Σ(3)

· · ·

and we have numbered the H∗-coloured (red) domain walls to emphasize
where they are mapped to.

Indeed the diagram (4.6c) fits into the following commutative diagram:

0

0

0

0

0

0

0

3

3

3

3

30

3

41 1

1

1

1

1 2

21

2

1

3
1

2

1

0
3

1
2

1
0 1 1 2 2 3

11These fit together to define a cosimplicial object

(4.7) ∆
[n]7→Σ(n)

−−−−−−→ skCSurfgeom
O(M~

K(−))−−−−−−−→ K−Alg~,

(here ∆ is the simplex category, or equivalently, the category of linearly ordered
finite sets).
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After applying the functor O(M~
K(−)), the horizontal edges again become

invertible, and composing the diagram from top-left to bottom right along
the top/right-most path yields the left hand side of (4.6a). On the other hand
composing the diagram from top-left to bottom right along the bottom/left-
most path yields the right hand side of (4.6a), which shows that it too is
equal to (4.6b).

The counit is obtained by applying the functor O(M~
K(−)) to the unique

embedding Σ ∼= Σ(1) → Σ(0).
Now, at ~ = 0, (4.5) is just the comultiplication dual to the group prod-

uct H ×H → H, so the bialgebra structure on O(H) is the standard one;
in particular it is a Hopf-algebra. It follows that O(H)[[~]] remains a Hopf-
algebra away from ~ = 0 which deformation quantizes the Poisson algebraic
group H. �

Remark 4.1. We should mention that the sequence of embeddings (4.3)
corresponds to vertical-time-slices of the following cobordism

In particular, there should be a deeper TQFT proof of Theorem 4.2. In future
work we hope to define this TQFT rigorously using factorization homology.

As a second example, we will use this result to describe an equivariant
deformation quantization procedure for Lu-Yakimov Poisson Homogeneous
spaces [26]. In more detail, suppose that H,H∗ ⊂ G are as before and C ⊂ G
is a closed subgroup whose Lie algebra c ⊂ g is coisotropic. Then Lu and
Yakimov described a natural Poisson structure on G/C for which the action
map H ×G/C → G/C is Poisson.

Consider the skeletized coloured surface



i
i

“7-Li-Bland” — 2019/9/3 — 16:04 — page 840 — #36 i
i

i
i

i
i

840 D. Li-Bland and P. Ševera

H ⊂ G
H∗ ⊂ G

Domain walls

ΣC =

C ⊂ G

The corresponding moduli space is MK(ΣC) = G/C with the Lu-Yakimov

Poisson structure [24], and Theorem 4.1 implies that G/C
~=0
↪−−→M~

K(ΣC) is

a deformation quantization of the Poisson scheme G/C (cf. [29]).
Applying the functor M~

K(−) to following sequence of embeddings

=

Σ
(1)
C Σ

(1)
C ΣCΣ t ΣC

yields the following sequence of morphisms of spaces equipped with sheaves
of rings in K−Alg~:

(4.8) M~
K(Σ) ×M

~
K(ΣC)

∼=←−M~
K(Σ

(1)
C )
→M~

K(ΣC),

which restricts at ~ = 0 to the morphism of schemes

H ×G/C ∼= (H ×H ×G/C)/H → G/C

where the leftmost map is invertible (the H-action in the middle term is
diagonal) and the composite is the action map. As before, it follows that the
leftmost map in (4.8) is invertible, and the composite defines an action map
of the monoid M~

K(Σ) on M~
K(ΣC)

M~
K(Σ) ×M

~
K(ΣC) →M

~
K(ΣC)
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in the category TopK−Alg~
. That is, we have an equivariant deformation

quantization:

M~
K(Σ) M~

K(ΣC)

H G/C

~ = 0~ = 0

of the Poisson homogeneous space G/C for the Poisson Lie group H.

4.2. Quantization of Poisson algebraic groups (the general case)

Suppose that H is a Poisson algebraic group.12 Let h denote the correspond-
ing Lie algebra, (g; h, h∗) the corresponding Manin triple,13 and t := 〈·, ·〉−1 ∈
S2(g)g the inverse of the non-degenerate invariant symmetric quadratic form
on g. As proven in the appendix of [22], there is a unique action of g on H
which extends the dressing action ρ : h∗ → X(H) of h∗ ⊆ g and the action
of h ⊆ g by left invariant vector fields; and the stabilizers for this g-action
are coisotropic. Moreover, it will be significant to us that t ∈ S2(g)g is H
invariant. Here the action of H on g arises from the Poisson structure on H:
it extends the adjoint action on h ⊂ g, and for ξ ∈ h∗ ⊂ g is given by

h · ξ = ad∗hξ + ιρ(ξ)θ
R
h , h ∈ H, ξ ∈ h∗,

where θR is the right Maurer-Cartan form (see [22, Appendix B] for details).

Let Γ
(n)
H denote the ciliated graph which has one (positive) vertex VΓ

(n)
H

=

V+

Γ
(n)
H

= {∗}, no full-edges EΓ
(n)
H

= ∅, and n+ 1 (positive) half-edges HΓ
(n)
H

=

12Recall: by an algebraic group we mean an affine group scheme of finite type
over K; in particular, since K is of characteristic zero, an algebraic group over K is
smooth.

13We do not assume that (g; h; h∗) integrate to a compatible triple of algebraic
groups.
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H+

Γ
(2)
H

= {0, 1, 2, . . . , n} with 0 < 1 < · · · < n. We colour Γ
(n)
H as follows: C∗ =

H, andX0 = · · · = Xn = H. We may picture Γ
(n)
H in terms of the correspond-

ing surfaces ΣΓ
(n)
H

as follows (cf. Remark 3.2):

ΣΓ
(1)
H

ΣΓ
(2)
H

ΣΓ
(0)
H

ΣΓ
(3)
H

· · ·
H H H

H H

H H H

HH

H

Domain walls

Remark 4.2. In the case that the subalgebras h, h∗ ⊂ g integrate to alge-
braic subgroups H,H∗ ⊆ G such that the group product (4.2) is an isomor-
phism, then H → G→ G/H∗ is a g-equivariant isomorphism of K-schemes.

In particular,

O(M~
Γ

(n)
H

) ∼= O
(
(

n+1︷ ︸︸ ︷
H × · · · ×H)/H

)
[[~]] ∼= O

(
(Gn+1)/(H × (H∗)n+1)

)
[[~]].

More precisely, we have a canonical isomorphism M~
Γ

(n)
H

∼=M~
K(Σn), where

the (geometric) coloured surface Σ(n) is pictured in the proof of Theorem 4.2.

As in [24], we have a canonical isomorphism MΓ
(1)
H

= (H ×H)/H ∼= H

as Poisson manifolds (where H is equipped with the Lie Poisson structure);

and the inclusion H
~=0
↪−−→M~

Γ
(1)
H

is a deformation quantization of the Lie

Poisson structure on H (cf. [29, Theorem 3]). We will now show thatM~
Γ

(1)
H

is a monoid in TopK−Alg~
deforming the group product on H. Equivalently,

O(M~
Γ

(1)
H

) ∼= O(H)[[~]] has a Hopf algebra structure deforming the standard

one on O(H).
Any monotone map τ : {0, . . . , n} → {0, . . . ,m} between the linearly or-

dered sets 0 < · · · < n and 0 < · · · < m, defines a morphism of skeletized

coloured surfaces τ! : Γ
(n)
H → Γ

(m)
H which sends the half edge i ∈ {0, . . . , n} =

HΓ
(n)
H

to the half edge τ(i) ∈ {0, . . . ,m} = HΓ
(m)
H

. This defines morphisms of

the corresponding (non-commutative) ringed spaces:

τ∗ :M~
Γ

(m)
H

→M~
Γ

(n)
H
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Let δi : {0, . . . , n− 1} → {0, 1, . . . , n} denote the injective monotone map
which ‘misses’ i ∈ {0, 1, . . . , n}. Now there is a unique monotone morphism
of ciliated graphs

P (2) := δ2
! t δ0

! : Γ
(1)
H t Γ

(1)
H → Γ

(2)
H

which restricts to δ2
! on the left copy of Γ

(1)
H and δ0

! on the right copy (this
can be pictured as the left hand emebedding in Remark 4.3). So we have a
morphism

(4.9) (P (2))∗ :M~
Γ

(2)
H

→M~
Γ

(1)
H

×M~
Γ

(1)
H

.

Theorem 4.3. The morphism (4.9) is invertible, and the composite mor-
phism

(4.10) ∇ := (δ1)∗ ◦
(
(P (2))∗

)−1
:M~

Γ
(1)
H

×M~
Γ

(1)
H

→M~
Γ

(1)
H

is an associative product on M~
Γ

(1)
H

quantizing the Poisson algebraic group

H; that is H
~=0
↪−−→M~

Γ
(1)
H

is both a morphism of monoids and a deforma-

tion quantization of the Poisson structure. Dually, O(M~
Γ

(1)
H

) ∼= O(H)[[~]] is

a Hopf-algebra which deformation quantizes the Poisson algebraic group H.

Remark 4.3. We can picture (4.10) as follows:

=

ΣΓ
(2)
H

ΣΓ
(2)
H

ΣΓ
(1)
H

ΣΓ
(1)
H
t ΣΓ

(1)
H

H H H H H H
HHHH

H H

Proof. The proof is essentially the same as the proof of Theorem 4.2, so we
omit many of the details.

For j ∈ {0, 1, . . . , n− 1}, we define εjn : {0, 1} i→i+j−−−−→ {0, 1, . . . , n}. Now
there is a unique monotone morphism of ciliated graphs

P (n) := (ε0n)! t · · · t (εn−1
n )! :

n︷ ︸︸ ︷
Γ

(1)
H t · · · t Γ

(1)
H → Γ

(n)
H
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which restricts to εjn on the ith copy of Γ
(1)
H . Thus we have morphisms

(4.11) (P (n))∗ :M~
Γ

(n)
H

→

n︷ ︸︸ ︷
M~

Γ
(1)
H

× · · · ×M~
Γ

(n)
H

.

As in the proof of Theorem 4.2, at ~ = 0, (4.11) is the canonical identi-
fication

MΓ
(n)
H

= Hn+1/H →

n︷ ︸︸ ︷
(H2/H)× · · · × (H2/H) =

n︷ ︸︸ ︷
MΓ

(1)
H
× · · · ×MΓ

(n)
H
,

(where all the H actions are diagonal) and hence invertible. Since all the
sheaves of algebras in (4.11) are flat K[[~]] algebras, it follows that (4.11)
remains invertible away from ~ = 0.

The coassociativity of (4.10) follows from the fact that

∇ ◦ (id×∇) =
(
(δ1)∗ ◦ ((P (2))∗)−1

)
◦
(

(id×(δ2)∗) ◦
(

id×((P (2))∗)−1
))

= τ∗ ◦ ((P (3))∗)−1 = ∇ ◦ (∇× id)

where τ : {0, 1} → {0, 1, 2, 3} is defined by τ(0) = 0 and τ(1) = 3 (this equa-
tion is the analogue of (4.6c)).

Note that MΓ
(0)
H

= H/H ∼= ∗ is just a point, and the inclusion M~
Γ

(0)
H

→
M~

Γ
(1)
H

corresponding to the unique map {0, 1} → {0} is the unit for the

monoid.
Now, at ~ = 0, (4.10) is just the group product H ×H → H (cf. [24,

Example 7]). Dually, it follows that O(M~
Γ

(1)
H

) ∼= O(H)[[~]] is a Hopf-algebra

which deformation quantizes the Poisson algebraic group H. �

4.3. Equivariant quantization

Suppose that H is a Poisson algebraic group, X a scheme over K equipped
with a Poisson structure, and H ×X → X an action which is also a Poisson
morphism; in particular H ∈ TopK−CPoiss is a monoid and X ∈ TopK−CPoiss

is a module for H. Then an equivariant deformation quantization of X is a
monoid H~ ∈ TopK−Alg~

over H, together with a module X~ ∈ TopK−Alg~
for H~ over X (cf. [10]). The Groenewold - Van Hove No-Go theorem implies
that equivariant quantizations need not exist in general [19, 20, 30].

Let (g, h, h∗) denote the Manin triple corresponding to H. Suppose that
(H, g) acts on a scheme M with coisotropic stabilizers. Then M carries a
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natural Poisson structure whose bivector field is given by the formula

(4.12) π =
1

2

∑
i

(ξi)M ∧ (ξi)M

where for any ξ ∈ g, ξM ∈ X(M) denotes the corresponding vector field on
M , and {ξi} ⊂ h and {ξi} ⊂ h∗ are basis in duality; moreover the action
map H ×M →M is a Poisson morphism (cf. [21, 26]).

In this section we will construct an equivariant quantization of M . First,
however, we give some examples:

Example 4.1 (Variety of Lagrangian (coisotropic) subalgebras).
Let L(g) ⊆ Ciso(g) denote the variety (resp. coisotropic) Lie subalgebras of
g. The Lie algebra g both act on L(g) (resp. Ciso(g)) by adjunction, and the
stabilizer of any point l ⊆ L(g) (resp. l ⊆ Ciso(g)) contains l; in particular
it is coisotropic. The algebraic group H also acts compatibly by adjunction.
The Poisson structure (4.12) on L(g) (resp. Ciso(g)) is the one appearing in
[14, 15, 21].

Note that if N is any Poisson homogeneous space for H, the H-
equivariant Drinfeld map M → L(g) is Poisson (cf. [14]).

Example 4.2 (Wonderful Compactification). As explained in § 4.2 the
action of g on H (which extends both the dressing action of h∗ and the action
of h by left-invariant vector fields) has coisotropic stabilizers. Therefore any
(H, g)-equivariant compactification H ⊂ H̄ of H will also have coisotropic
stabilizers.

Suppose that G is an algebraic group with Lie algebra g, which is
equipped with an algebraic morphism H → G over the inclusion h ⊆ g. Sup-
pose further that t := 〈·, ·〉−1 ∈ S2(g)g is G-invariant. Then the action of
G×G on G given by

(g1, g2) · g = g1gg
−1
2 , (g1, g2) ∈ G×G, g ∈ G

has coisotropic stabilizers with respect to t⊕−t ∈ S2(g⊕ g). Therefore
any G×G-equivariant compactification G ⊂ Ḡ of G will also have g⊕ ḡ-
coisotropic stabilizers; where g⊕ ḡ = g⊕ g as a Lie algebra but comes
equipped with tg⊕ḡ := t⊕−t ∈ S2(g⊕ g).

Example 4.3 (Canonical embeddings of Poisson homogeneous
spaces). Suppose that N is a Poisson homogeneous space for H. Then
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[6] associated to each point x ∈ N a Lagrangian Lie subalgebra lx := {⊂ g
such that the stabilizer Lie subalgebra of x ∈ N is hx = h ∩ lx.

Suppose that G is an algebraic group with Lie algebra g, which is
equipped with an algebraic morphism H → G over the inclusion h ⊆ g. Sup-
pose further that t := 〈·, ·〉−1 ∈ S2(g)g is G-invariant. Finally, suppose that
Drinfeld’s Lie subalgebra lx ⊂ g integrates to an algebraic subgroup Lx ⊂ G
whose preimage in H is the stabilizer subgroup x = Lx ×G H ⊂ H of x ∈ N .
(Note that all these conditions are automatically satisfied if we work with
formal rather than algebraic groups).

Then G/Lx the action of g on G/Lx has coisotropic stabilizers, and the
natural embedding N ∼= H/Hx ↪→ G/Lx is a Poisson morphism with respect
to the Lu-Yakimov Poisson structure (4.12) on G/Lx (cf. [25, Remark 2.10]
and [7]).

In particular, Theorem 4.4 implies that given any (formal) Poisson group
H and any (formal) Poisson homogeneous space N , there exists a canonical
embedding of N into a (formal) Poisson space G/Lx which can be equiv-
ariantly quantized. The idea of equivariantly quantizing G/Lx as a means
of equivariantly quantizing N was first explored by Enriquez and Kosmann-
Schwarzbach in [7].

Let Γ
(n)
M denote the ciliated graph which has one (positive) vertex VΓ

(n)
M

=

V+

Γ
(n)
M

= {∗}, no full-edges EΓ
(n)
M

= ∅, and n+ 2 (positive) half-edges HΓ
(n)
M

=

H+

Γ
(n)
M

= {0, 1, 2, . . . , n,♣} with 0 < 1 < 2 < · · · < n < ♣. We colour Γ
(n)
M as

follows: C∗ = H, X0 = · · · = Xn = H, and X♣ = M . We may picture Γ
(n)
M

in terms of the corresponding surfaces ΣΓ
(n)
M

as follows (cf. Remark 3.2):

ΣΓ
(0)
M

ΣΓ
(1)
M

ΣΓ
(2)
M

· · ·H M
H M

H H H

MH

H
Domain walls

As in § 4.2 any monotone map τ : {0, . . . , n} → {0, . . . ,m} defines two

morphisms of skeletized coloured surfaces τ! : Γ
(n)
H → Γ

(m)
M and τ! : Γ

(n)
M →

Γ
(m)
M via the corresponding map of half edges

HΓ
(n)
H

HΓ
(m)
M
, and HΓ

(n)
M

HΓ
(m)
M
.

i 7→ τ(i) i 7→ τ(i)

♣ 7→ ♣
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This, in turn, yields morphisms of the corresponding (non-commutative)
ringed spaces:

τ∗ :M~
Γ

(m)
M

→M~
Γ

(n)
H

,

τ∗ :M~
Γ

(m)
M

→M~
Γ

(n)
M

Consider the monotone morphism of ciliated graphs

P
(2)
M := id! tδ0

! : Γ
(1)
H t Γ

(0)
M → Γ

(1)
M

which restricts to id! on Γ
(1)
H and δ0

! on Γ
(1)
M (this can be pictured as the left

hand embedding in Remark 4.4). So we have a morphism

(4.13) (P (2))∗ :M~
Γ

(1)
M

→M~
Γ

(1)
H

×M~
Γ

(0)
M

.

Theorem 4.4. The morphism (4.13) is invertible, and the composite mor-
phism

(4.14) ∇M := (δ1)∗ ◦
(
(P

(2)
M )∗

)−1
:M~

Γ
(1)
H

×M~
Γ

(0)
M

→M~
Γ

(0)
M

defines an action of the monoid M~
Γ

(1)
H

on M~
Γ

(0)
M

, equivariantly quantizing

the action of the Poisson algebraic group H on M .
Moreover, this equivariant quantization depends functorially on the

scheme M .

Remark 4.4. We can picture (4.14) as follows:

=

ΣΓ
(1)
M

ΣΓ
(1)
M

ΣΓ
(0)
M

ΣΓ
(1)
H
t ΣΓ

(0)
M

H H H M H M
MHMH

H H

Proof. The proof of the fact that (4.14) is an action of the monoidM~
Γ

(1)
H

on

M~
Γ

(0)
M

, equivariantly quantizing the action of the Poisson algebraic group H

on M , is a direct analogue of the proof of Theorem 4.3, and so we omit it.
To see that this equivariant quantization depends naturally on M , notice

that any (H, g)-equivariant morphism between schemes M → N on which g
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acts with coisotropic stabilizers defines a morphism Γ
(n)
N → Γ

(n)
M of the corre-

sponding skeletized coloured surfaces; that is Γ
(n)
M depends (contravariantly)

functorially on M . Similarly, M~
Γ

(n)
M

depends (contravariantly) functorially

on Γ
(n)
M (cf. Theorem 3.1). Hence M~

Γ
(0)
M

(as well as all the structural maps)

depends naturally on M . �

References

[1] Michael Atiyah and Raoul Bott, The Yang-Mills equations over Rie-
mann surfaces, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 308 (1983), no. 1505,
523–615.

[2] Dror Bar-Natan, On associators and the Grothendieck-Teichmuller
group. I, Selecta Mathematica. New Series 4 (1998), no. 2, 183–212.

[3] David Ben-Zvi, Adrien Brochier, and David Jordan, The quantum ge-
ometric Langlands TFT, I: Punctured surfaces, preprint, arXiv:1501.
04652.

[4] Corrado De Concini and C Procesi, Complete symmetric varieties,
in: Invariant Theory (Montecatini, 1982), pages 1–44. Springer, Berlin,
Berlin, Heidelberg, (1983).

[5] Vladimir Gershonovich Drinfel’d, Quasi-Hopf Algebras, Algebra i
Analiz, 1989.

[6] Vladimir Gershonovich Drinfel’d, On Poisson homogeneous spaces of
Poisson-Lie groups, Theoretical and Mathematical Physics 95 (1993),
no. 2, 524–525.

[7] Benjamin Enriquez and Yvette Kosmann-Schwarzbach, Quantum ho-
mogeneous spaces and quasi-Hopf algebras, in: Conférence Moshé Flato
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[24] David Li-Bland and Pavol Ševera, Moduli spaces for quilted surfaces and
Poisson structures, Documenta Mathematica 20 (2015), 1071–1135.

[25] Jiang-Hua Lu, A note on Poisson homogeneous spaces, in: Poisson
Geometry in Mathematics and Physics, pages 173–198. Amer. Math.
Soc., Providence, RI, (2008).

[26] Jiang-Hua Lu and Milen Yakimov, Group orbits and regular partitions
of Poisson manifolds, Communications in Mathematical Physics 283
(2008), no. 3 729–748.

[27] Saunders Mac Lane, Categories for the Working Mathematician, Vol-
ume 5 of Graduate Texts in Mathematics, Springer-Verlag, New York,
second edition, (1998).
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[29] Pavol Ševera and David Li-Bland, On Deformation quantization of
Poisson–Lie groups and moduli spaces of flat connections, International
Mathematics Research Notices, 2015 (2014), no. 15, 6734–6751.
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