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Joins in the strong Weihrauch degrees

Damir D. Dzhafarov

The Weihrauch degrees and strong Weihrauch degrees are partially
ordered structures representing degrees of unsolvability of various
mathematical problems. Their study has been widely applied in
computable analysis, complexity theory, and more recently, also
in computable combinatorics. We answer an open question about
the algebraic structure of the strong Weihrauch degrees, by ex-
hibiting a join operation that turns these degrees into a lattice.
Previously, the strong Weihrauch degrees were only known to form
a lower semi-lattice. We then show that unlike the Weihrauch de-
grees, which are known to form a distributive lattice, the lattice
of strong Weihrauch degrees is not distributive. Therefore, the two
structures are not isomorphic.

1. Introduction

Weihrauch reducibility provides a framework for measuring the relative com-
plexity of solving certain mathematical problems, and in particular, of telling
when the task of solving one mathematical problem can be reduced to the
task of solving another. The program of classifying mathematical prob-
lems using Weihrauch reducibility was initiated by Brattka and Gherardi [4]
and Gherardi and Marcone [10]. Weihrauch reducibility itself goes back to
Weihrauch [19], and has been widely deployed in computable analysis. More
recently, the concept was independently re-discovered by Dorais, Dzhafarov,
Hirst, Mileti, and Shafer [6] in the context of computable combinatorics.
The classification program can be seen as a foundational one, in the spirit of
Friedman and Simpson’s program of reverse mathematics (cf. Simpson [16]).
In many ways, Weihrauch reducibility leads to a refinement and extension
of reverse mathematics; see Hirschfeldt [12, Section 2.2] or Hirschfeldt and
Jockusch [13, Section 1] for detailed discussions.

Intuitively, a mathematical problem P consists of a collection of in-
stances, and for each instance, a collection of solutions to this instance (in
that problem). Given problems P0 and P1, we can then informally define
P0 to be strongly Weihrauch reducible to P1 if there is an effective way to
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convert every instance p of P0 into an instance p̃ of P1, and an effective way
to convert every solution q̃ to p̃ in P1 into a solution q to p in P0. This
method of reducing the task of solving P0 to that of solving P1 is natural,
and shows up frequently throughout mathematics (see, e.g., [6], Section 1,
for some specific examples). It is, however, somewhat restrictive in that the
backward conversion is not allowed access to the original instance p of P0.
For this reason, we also define P0 to be Weihrauch reducible to P1 if there is
an effective way to convert every instance p of P0 into an instance p̃ of P1,
and an effective way to convert p, together with any solution q̃ to p̃ in P1,
into a solution q to p in P0. Both types of reductions have been examined at
length in the literature, with the past few years in particular seeing a surge of
interest. An updated bibliography of publications contributing to this study
is maintained by Brattka [1]. (See also Dzhafarov [7, 8], and Remark 4.6 be-
low, for a non-uniform version of Weihrauch reducibility; and see Weihrauch
[19] and Pauly [15] for a version in which computable transformations are
replaced by continuous ones.)

In this paper, we focus on the algebraic structure of these reducibilities.
For Weihrauch reducibility, this has been studied extensively, e.g., by Brat-
tka and Gherardi [3], Brattka and Pauly [5], Higuchi and Pauly [11], and
others. We focus here on strong Weihrauch reducibility. It is known that
the Weihrauch degrees (i.e., the equivalence classes under Weihrauch re-
ducibility) form a lattice under certain natural operations (see Theorem 2.6
below). We prove the corresponding result for the strong Weihrauch de-
grees, thereby answering an open question (see, e.g., Brattka [2], or Hölzl and
Shafer [14], Section 2). Further, we show that as in the case of the Weihrauch
lattice, every countable distributive lattice can be embedded into the strong
Weihrauch lattice. However, unlike in the Weihrauch case, we show that
the strong Weihrauch lattice is itself not distributive. Hence, in particular,
the Weihrauch degrees and strong Weihrauch degrees are not isomorphic
structures.

The paper is organized as follows. In Section 2, we give some general
background about Weihrauch reducibility, including precise definitions of
the Weihrauch and strong Weihrauch degrees. In Section 3, we define the
supremum (join) operation on the strong Weihrauch degrees, and prove our
main result that this turns the strong Weihrauch degrees into a lattice.
Finally, in Section 4, we prove the non-distributivity of this lattice, and
consider lattice embeddings.
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2. Background

Our notation and terminology is mostly standard, following, e.g., Soare [17]
and Weihrauch [20]. Throughout, we identify subsets of ω with their char-
acteristic functions, and so regard them as elements of 2ω. For convenience,
if p ∈ 2ω and n ∈ ω, we will frequently write n ∈ p and n /∈ p instead of
p(n) = 1 and p(n) = 0, respectively, and refer to n as being or not being an
element of p. We let 〈·, ·〉 denote the standard computable pairing function
on ω, and also the effective join on 2ω (in place of the more commonly used
symbol ⊕). We use (·, ·), for general set-theoretic ordered pairs. For p ∈ 2ω,
we write 〈0, p〉 and 〈1, p〉 for 〈{0}, p〉 and 〈{1}, p〉, respectively. For a finite
binary string σ and a bit i < 2, we write σiω for the element p ∈ 2ω with
p(n) = σ(n) for all n < |σ| and p(n) = i for all n ≥ |σ|. In particular, we
write 0ω and 1ω for all the all-0 and all-1 infinite binary sequence, respec-
tively.

For Turing functionals, we follow the following conventions.

Convention 2.1. Let Φ be a Turing functional and p ∈ 2ω.

• If Φp(n)[s] ↓ for some n, s ∈ ω then also Φp(m)[s] ↓ for all m < n.

• For each s ∈ ω there is at most one n ∈ ω for which s is least such that
Φp(n)[s] ↓.

Further, we regard all Turing functionals as being {0, 1}-valued, so that if
Φp is total for some Φ and p, then Φp is an element of 2ω.

We use 2ω here merely as a convenience, but will not rely on any of its
specific properties as a topological space. Hence, everything in our treatment
would go through equally well for Baire space in place of Cantor space.

We shall consider functions below which can take on multiple values,
called multifunctions. Formally, a multifunction f from a set X to a set
Y , denoted f : X ⇒ Y , represents that the value of f(x) for each x ∈ X is
a subset of Y . If f is a function or multifunction with domain a (possibly
proper) subset of X, we denote this by f :⊆ X → Y or f :⊆ X ⇒ Y , respec-
tively. In this case, we refer to f as a partial function/multifunction (on X),
and we denote its domain by dom(f).

A multifunction f : X ⇒ Y thus formalizes the concept of a mathemat-
ical problem, as was informally discussed in the introduction. The elements
of X are regarded as the instances of this problem, and for each x ∈ X,
the elements of f(x) are regarded as the solutions to the instance x (in the
problem f).
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Unlike in the introduction, there are no restrictions above that the do-
mains and co-domains of problems be subsets of the natural numbers, which
was necessary in order to define computations from instances and solutions.
The following definition will allow us to develop computability theory on a
broader class of spaces for when we define Weihrauch reducibility below.

Definition 2.2. A representation of a set X is a partial surjective function
δ :⊆ 2ω → X. The pair (X, δ) is a represented space.

We regard Cantor space as a represented space under the trivial (iden-
tity) representation. We denote this by δ2ω for consistency of notation when
viewing it as a representation, but we shall usually suppress it for simplic-
ity. Thus, for example, we shall write f :⊆ 2ω ⇒ 2ω to denote the partial
multifunction f :⊆ (2ω, δ2ω) ⇒ (2ω, δ2ω), etc.

Given represented spaces (X0, δX0
) and (X1, δX1

), we can define

δX0tX1
:⊆ 2ω → X0 tX1

by δX0tX1
(〈i, p〉) = (i, δXi

(p)) for each i < 2 and p ∈ 2ω, and δX0×X1
:⊆ 2ω →

X0 ×X1 by δX0×X1
(〈p0, p1〉) = (δX0

(p0), δX1
(p1)) for all p0, p1 ∈ 2ω. These

provide representations for X0 tX1 and X0 ×X1, respectively, which will
play an important role in our work below.

Definition 2.3. Let f :⊆ (X, δX) ⇒ (Y, δY ) be a partial multifunction on
represented spaces. A function F :⊆ 2ω → 2ω is a realizer of f , in symbols
F ` f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX).

Definition 2.4. Let f and g be partial multifunctions on represented
spaces.

• f is Weihrauch reducible to g, in symbols f ≤W g, if there are Turing
functionals Φ,Ψ :⊆ 2ω → 2ω such that Ψ〈id, GΦ〉 ` f for all G ` g.

• f is strongly Weihrauch reducible to g, in symbols f ≤sW g, if there are
Turing functionals Φ,Ψ :⊆ 2ω → 2ω such that ΨGΦ ` f for all G ` g.

If the above applies, we say that f ≤W g or f ≤sW via Φ and Ψ.

The notion above formalizes the intuitive one of reducing one mathe-
matical problem to another, as discussed in the introduction. We give an
alternative definition, due to Dorais et al. [6, Definition 1.5], in Section 4.
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It is customary to refer to the equivalence classes under ≤W and ≤sW

as the Weihrauch degrees and strong Weihrauch degrees, respectively. For-
mally, of course, these objects are not sets but proper classes. Thus, we
implicitly identify each partial multifunction f :⊆ (X, δX) ⇒ (Y, δY ) with
δ−1
Y ◦ f ◦ δX :⊆ 2ω ⇒ 2ω, whereby the (strong) Weihrauch degrees can be

regarded just as equivalence classes of multifunctions on Cantor space.
The following definition gives two important operations on multifunc-

tions.

Definition 2.5. Let f :⊆ (X0, δX0
) ⇒ (Y0, δY0

) and g :⊆ (X1, δX1
) ⇒

(Y1, δY1
) be partial multifunctions on represented spaces.

• f t g :⊆ (X0 tX1, δX0tX1
) ⇒ (Y0 t Y1, δY0tY1

) is defined by

f((0, x)) = {0} × f(x)

for all x ∈ dom(f), and

f((1, x)) = {1} × g(x)

for all x ∈ dom(g).

• f u g :⊆ (X0 ×X1, δX0×X1
) ⇒ (Y0 t Y1, δY0tY1

) is defined by

f((x, y)) = ({0} × f(x)) ∪ ({1} × g(y))

for all x ∈ dom(f) and y ∈ dom(g).

To save on notation, given a degree structure defined as the set of equiva-
lence classes under some reducibility, we identify degree-invariant operations
on the elements of the underlying space with operations on the degrees them-
selves. It is easy to see that both t and u are invariant under ≡W, and we
have the following result establishing their main properties.

Theorem 2.6 (Pauly [15], Theorem 4.22; Brattka and Gherardi [4],
Theorem 3.14). The Weihrauch degrees form a distributive lattice under
≤W, with t as supremum and u as infimum.

There are also top and bottom elements in the Weihrauch and strong
Weihrauch degrees, but their definitions are somewhat complicated, and we
will not need them for our work here. We refer the reader to [5, Section 2.1]
for details.



i
i

“5-Dzhafarov” — 2019/8/30 — 12:14 — page 754 — #6 i
i

i
i

i
i

754 Damir D. Dzhafarov

The proof of Theorem 2.6 also shows that u gives the infimum operation
for the strong Weihrauch degrees, and hence that these form a lower semi-
lattice. By contrast, t does not give a supremum for the strong Weihrauch
degrees. To see this, consider the following example due to Brattka and
Pauly (personal communication). Fix Turing incomparable p, q ∈ 2ω. Let
f, g : 2ω → 2ω be the constant functions mapping all elements of 2ω to p and
q, respectively. Then it is not difficult to see that f t g is ≤sW-incomparable
with the function h : 2ω → 2ω that maps every element of 2ω to 〈p, q〉. But
in fact, both f t g and h are upper bounds on f and g under ≤sW, so in
particular, f t g cannot be the ≤sW-supremum of this pair.

3. Main construction

We begin in this section with a series of computability-theoretic defini-
tions, leading up to the definition of the supremum operation in the strong
Weihrauch degrees.

Definition 3.1. A monotone approximation1 is an element a ∈ 2ω with the
following properties:

• every element of a is of the form 〈n, s, i〉, where n, s ∈ ω and i < 2;

• for all n, s, t ∈ ω and i, j < 2, if 〈n, s, i〉, 〈n, t, j〉 ∈ a then s = t and
i = j;

• for allm,n, s, t ∈ ω and i, j < 2, if 〈m, s, i〉, 〈n, t, j〉 ∈ a andm < n then
s < t.

The monotone approximation is total if for every n ∈ ω there is an s ∈ ω
and i < 2 such that 〈n, s, i〉 ∈ a.

An important class of monotone approximations for our purposes come
from Turing computations.

Definition 3.2. Given a Turing functional Ψ and p ∈ 2ω, let aΨ(p) ∈ 2ω

consist of all the 〈n, s, i〉 where n, s ∈ ω, i < 2, and s is least such that
Ψ(p)(n)[s] ↓= i.

Convention 2.1 ensures that aΨ(p) is indeed a monotone approximation,
as well as the following basic facts.

1Monotone approximations were also considered, in an unrelated context, by
Dzhafarov and Igusa [9], where they were called partial oracles.
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Proposition 3.3. For each Turing functional Ψ and each p ∈ 2ω, aΨ(p) is
uniformly computable from p and (an index for) Ψ. Further, if Ψ(p) is total
(i.e., is an element of 2ω) then aΨ(p) is total as a monotone approximation.

Proof. Immediate. �

Definition 3.4. Let e :⊆ 2ω → 2ω be the partial function with domain the
set of all total monotone approximations a, such that for any such a and
all n ∈ ω and i < 2 we have e(a)(n) = i if and only if 〈n, s, i〉 ∈ a for some
s ∈ ω.

We thank Vasco Brattka for pointing out an omission in an earlier version
of the statement and proof of the following proposition.

Proposition 3.5.

1) The partial function e is a Turing functional.

2) For each Turing functional Ψ and each p ∈ 2ω, if Ψ(p) is total then
e(aΨ(p)) = Ψ(p).

Proof. For part (1), fix p ∈ 2ω. We can uniformly computably check, for each
k ∈ ω, whether the defining conditions of p being a monotone approximation
hold for all numbers less than k. Now for each k for which this is the case
and for each n < k, e(p)(n) is computed by searching through p until, if ever,
an s ∈ ω and i < 2 are found with 〈n, s, i〉 ∈ p, in which case the output is
i. Thus, if p is a total monotone approximation, e(p)(n) will be defined for
all n, and hence e(p) will be defined as an element of 2ω. Otherwise, either
p fails to be a monotone approximation, or it fails to be total, and in both
cases e(p)(n) will be undefined for some n. Thus, e is a Turing functional
with the desired domain.

For part (2), note that by Proposition 3.3, aΨ(p) is total, so e(aΨ(p)) is an
element of 2ω. Now by definition, for all n ∈ ω we have that e(aΨ(p))(n) = i
if and only if 〈n, s, i〉 ∈ aΨ(p) for some s, if and only if Ψ(p)(n) ↓= i. �

In what follows, if Y is any set, we use ⊥Y to denote a fixed element not
in Y .

Definition 3.6. Let (Y, δY ) be a represented space.

1) Let Y = Y ∪ {⊥Y }.
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2) Define δY : 2ω → Y by

δY (p) =

{
δY e(p) if p ∈ dom(e) and e(p) ↓∈ dom(δY ),

⊥Y otherwise

for all p ∈ 2ω.

Clearly, δY is a representation of Y . The definition gives rise to the
following operation on partial multifunctions.

Definition 3.7. Let f :⊆ (X0, δX0
) ⇒ (Y0, δY0

) and g :⊆ (X1, δX1
) ⇒

(Y1, δY1
) be partial multifunctions on represented spaces. We define

f � g :⊆ (X0 tX1, δX0tX1
) ⇒ (Y0 × Y1, δY0×Y1

)

by

(f � g)((0, x)) = f(x)× Y1

for all x ∈ dom(X0), and

(f � g)((1, x)) = Y0 × g(x)

for all x ∈ dom(X1).

It is not difficult to check that � is invariant, commutative, and asso-
ciative, up to strong Weihrauch equivalence. We are now ready to prove our
main theorem, that the above definition gives the supremum operation on
the strong Weihrauch degrees.

Theorem 3.8. Let f :⊆(X0, δX0
)⇒(Y0, δY0

) and g :⊆(X1, δX1
)⇒(Y1, δY1

)
be partial multifunctions on represented spaces. Then f � g is the supremum
of f and g under ≤sW.

Proof. Fix f and g. We divide our proof into the following two lemmas.

Lemma 3.9. f ≤sW f � g and g ≤sW f � g.

Proof. For each i < 2, let Φi : 2ω → 2ω be the map p 7→ 〈i, p〉, and let Ψi :
2ω → 2ω be the map 〈q0, q1〉 7→ e(qi). Note that Ψ0 and Ψ1 are Turing func-
tionals by Proposition 3.5. We show that f ≤sW f � g via Φ0 and Ψ0; a
symmetric argument shows that g ≤sW f � g via Φ1 and Ψ1.
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Suppose H ` f � g and fix any p ∈ dom(fδX0
). We must show that

δY0
Ψ0HΦ0(p) = δY0

Ψ0H(〈0, p〉) ∈ fδX0
(p).

Since H ` f � g and 〈0, p〉 ∈ dom((f � g)(δX0tX1
)), we have

δY0×Y1
H(〈0, p〉) ∈ (f � g)(δX0tX1

)(〈0, p〉)
= (f � g)(〈0, δX0

(p)〉)
= fδX0

(p)× Y1,

Thus, δY0×Y1
H(〈0, p〉) is a pair (y, z) with y ∈ Y0, so in particular, y 6= ⊥Y0

.
Letting H(〈0, p〉) = 〈a, b〉, this means that a ∈ dom(e) and e(a) ∈ dom(δY0

),
and hence by definition,

δδY0×Y1
H(〈0, p〉) = (δY0

e(a), z).

We conclude that δY0
e(a) ∈ fδX0

(p), but since δY0
e(a) = δY0

Ψ0HΦ0(p), this
is what we wanted. �

Lemma 3.10. Let h :⊆ (U, δU ) ⇒ (V, δV ) be a partial multifunction on rep-
resented spaces, and suppose f ≤sW h and g ≤sW h. Then f � g ≤sW h.

Proof. Suppose f ≤sW h via Φ0 and Ψ0, and g ≤sW h via Φ1 and Ψ1. Let
Φ :⊆ 2ω → 2ω be the map with domain all pairs 〈i, p〉 for i < 2 and p ∈
dom(Φi), and with Φ(〈i, p〉) = Φi(p). Let Ψ : 2ω → 2ω be the map q 7→
〈aΨ0(q), aΨ1(q)〉. We claim that f � g ≤sW h via Φ and Ψ.

Suppose H ` h and fix any element in the domain of (f � g)(δX0tX1
),

which must have the form 〈i, p〉 for some i < 2. Without loss of generality,
assume i = 0; a symmetric argument works if i = 1. We aim to show that

δY0×Y1
ΨHΦ(〈0, p〉) ∈ (f � g)(δX0tX1

)(〈0, p〉).

Since δY0×Y1
ΨHΦ(〈0, p〉) = δY0×Y1

ΨHΦ0(p) and (f � g)(δX0tX1
)(〈0, p〉) =

fδX0
(p)× Y1, this is equivalent to showing

(1) δY0×Y1
ΨHΦ0(p) ∈ fδX0

(p)× Y1.

Now 〈0, p〉 ∈ dom((f � g)(δX0tX1
)), so p ∈ dom(fδX0

) by definition. And
since f ≤sW h via Φ0 and Ψ0 and H ` h, this implies that

(2) δY0
Ψ0HΦ0(p) ∈ fδX0

(p).
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In particular, this means that Ψ0HΦ0(p) ∈ 2ω, so by Proposition 3.3,
aΨ0HΦ0(p) is total, and by Proposition 3.5,

e(aΨ0HΦ0(p)) = Ψ0HΦ0(p).

It also means that Ψ0HΦ0(p) ∈ dom(δY0
), and so e(aΨ0HΦ0(p)) ∈ dom(δY0

).

Now by definition, for some z ∈ Y1, we have

δY0×Y1
ΨHΦ0(p) = δY0×Y1

(〈aΨ0HΦ0(p), aΨ1HΦ0(p)〉)
= (δY0

e(aΨ0HΦ0(p)), z)

= (δY0
Ψ0HΦ0(p), z).

Combining this with (2) now gives (1). �

The proof of the theorem is complete. �

Corollary 3.11. The strong Weihrauch degrees form a lattice under ≤sW,
with � as supremum and u as infimum.

As noted at the end of Section 2, the t operation does not give the
supremum in the strong Weihrauch degrees, so � and t are in general dif-
ferent. However, as the next proposition shows, this is no longer the case
if we move from strong Weihrauch degrees to the more general setting of
(non-strong) Weihrauch degrees.

Proposition 3.12. Let f :⊆ (X0, δX0
) ⇒ (Y0, δY0

) and g :⊆ (X1, δX1
) ⇒

(Y1, δY1
) be partial multifunctions on represented spaces. Then f � g ≡W

f t g.

Proof. Since f, g ≤sW f � g by Theorem 3.8, and f t g is the supremum of
f and g under ≤W, it follows that f t g ≤W f � g. So, we only need to
show that f � g ≤W f t g, and in fact, we show that f � g ≤sW f t g. Let
Φ : 2ω → 2ω be the identity functional, and let Ψ : 2ω → 2ω be defined by

Ψ(〈0, q〉) = 〈aΦ(q), 0
ω〉

and

Ψ(〈1, q〉) = 〈0ω, aΦ(q)〉

for all p, q ∈ 2ω. Fix H ` f t g, and any element in the domain of (f �
g)(δX0tX1

), which must have the form 〈i, p〉 for some i < 2. We assume
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i = 0; the case i = 1 follows by a symmetric argument. We must show that

δY0×Y1
ΨHΦ(〈0, p〉) = δY0×Y1

ΨH(〈0, p〉) ∈ (f � g)(δX0tX1
)(〈0, p〉).

By definition,

(f � g)(δX0tX1
)(〈0, p〉) = (f � g)((0, δX0

(p))) = fδX0
(p)× Y1,

so the above is equivalent to

(3) δY0×Y1
ΨH(〈0, p〉) ∈ fδX0

(p)× Y1.

Since H ` f t g, we have

δY0tY1
H(〈0, p〉) ∈ (f t g)(δX0tX1

)(〈0, p〉) = {0} × fδX0
(p).

Thus, it must be that δY0tY1
H(〈0, p〉) = (0, y) for some y ∈ fδX0

(p), and
hence that H(〈0, p〉) = 〈0, q〉 for some q with δY0

(q) = y. Thus, we have

(4) δY0×Y1
ΨH(〈0, p〉) = δY0×Y1

Ψ(〈0, q〉) = δY0×Y1
(aΦ(q), 0

ω).

Since Φ(q) = q we have e(aΦ(q)) = Φ(q) = q, so e(aΦ(q)) ∈ dom(δ0). We con-
clude that

δY0×Y1
(aΦ(q), 0

ω) = (δY0
(q), z)

for some z ∈ Y1. Combining this with (4) gives (3). �

4. Distributivity

Our aim is to examine some of the lattice-theoretic properties of the strong
Weihrauch degrees. Recall that a lattice L = (L,∨,∧) is distributive if the
operations of join and meet distribute over one another, i.e., if for all a, b, c ∈
L we have (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c). As noted above, the Weihrauch
lattice is distributive. By contrast, we will show below that the strong
Weihrauch lattice is not.

We begin with the following result, showing that one half of the dis-
tributivity identity in the strong Weihrauch degrees does indeed hold under
≤sW, while the other holds if we replace � by t.

Proposition 4.1. Let f :⊆(X0, δX0
)⇒(Y0, δY0

), g :⊆(X1, δX1
)⇒(Y1, δY1

),
and h : (U, δU )→ (V, δV ) be partial multifunctions on represented spaces.
Then we have:



i
i

“5-Dzhafarov” — 2019/8/30 — 12:14 — page 760 — #12 i
i

i
i

i
i

760 Damir D. Dzhafarov

1) (f u h) � (g u h) ≤sW (f � g) u h;

2) (f t g) u h ≤sW (f u h) t (g u h).

Proof. For part (1), let Φ :⊆ 2ω → 2ω be the map 〈i, 〈p0, p1〉〉 7→ 〈〈i, p0〉, p1〉
for all i < 2 and all p0, p1 ∈ 2ω. Let id : 2ω → 2ω be the identity functional,
and let Ψ :⊆ 2ω → 2ω be the map given by

Ψ(〈0, 〈q0, q1〉〉) = 〈aid(〈0,e(q0)〉), aid(〈0,e(q1)〉)〉

for all q0, q1 ∈ 2ω, and

h(〈1, q〉) = 〈aid(〈1,q〉), aid(〈1,q〉)〉

for all q ∈ 2ω. We claim that (f u h) � (g u h) ≤sW (f � g) u h via Φ and Ψ.
Fix any H ` (f � g) u h, and any element in the domain of ((f u h) �

(g u h))δ(X0×U)t(X1×U). This must have the form 〈i, 〈p0, p1〉〉 for some i < 2
and some p0 in the domain of fδX0

if i = 0 or gδX1
if i = 1, and some p1 in

the domain of hδU . Assume i = 0; a symmetric argument works if i = 1. We
must then show that

δY0tV×Y1tV ΨHΦ(〈0, 〈p0, p1〉〉)
∈ (f u h) � (g u h)δ(X0×U)t(X1×U)(〈0, 〈p0, p1〉〉).

We have

δY0tV×Y1tV ΨHΦ(〈0, 〈p0, p1〉〉) = δY0tV×Y1tV ΨH(〈〈0, p0〉, p1〉),

and

(f u h) � (g u h)δ(X0×U)t(X1×U)(〈0, 〈p0, p1〉〉)
= (f u h) � (g u h)((0, (δX0

(p0), δU (p1))))

= (f u h)((δX0
(p0), δU (p1)))× Y1 t V

= (fδX0
(p0) t hδU (p1))× Y1 t V .

Thus, it is enough to show that

δY0tV×Y1tV ΨH(〈〈0, p0〉, p1〉) ∈ (fδX0
(p0) t hδU (p1))× Y1 t V .
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Now since H ` (f � g) u h, we have

δ(Y0×Y1)tVH(〈〈0, p0〉, p1〉) ∈ ((f � g) u h)δ(X0tX1)×U (〈〈0, p0〉, p1〉)
= (fδX0

(p0)× Y1) t hδU (p1).

Therefore, δ(Y0×Y1)tVH(〈〈0, p0〉, p1〉) is either (0, (y, z)) for some y ∈ fδX0
(p0)

and z ∈ Y1, or (1, v) for some v ∈ hδU (p1). In the first case, since y 6= ⊥Y0
,

it must be that H(〈〈0, p0〉, p1〉) = 〈0, 〈a, q〉〉 for some a ∈ dom(e) with e(a) ∈
dom(δY0

), meaning δY0
(e(a)) = y. Consequently, aid(〈0,e(a)〉) ∈ dom(e) and

e(aid(〈0,e(a)〉)) = 〈0, e(a)〉 ∈ dom(δY0tV ). It follows that

δY0tV×Y1tV ΨH(〈〈0, p0〉, p1〉) = δY0tV×Y1tV Ψ(〈0, 〈a, q〉〉)
= δY0tV×Y1tV (〈aid(〈0,e(a)〉), aid(〈0,e(q)〉)〉)
= (δY0tV (aid(〈0,e(a)〉)), δY1tV (aid(〈0,e(q)〉)))

= (δY0tV (e(aid(〈0,e(a)〉))), δY1tV (aid(〈0,e(q)〉)))

= ((0, δY0
(e(a))), δY1tV (aid(〈0,e(q)〉)))

∈ (fδX0
(p0) t hδU (p1))× Y1 t V ,

which is what was to be shown. In the second case, if

δ(Y0×Y1)tVH(〈〈0, p0〉, p1〉) = (1, v)

for some v ∈ hδU (p1), it must be that H(〈〈0, p0〉, p1〉) = 〈1, q〉 for some q
with δV (q) = v. We then have

δY0tV×Y1tV ΨH(〈〈0, p0〉, p1〉) = δY0tV×Y1tV Ψ(〈1, q〉)
= δY0tV×Y1tV (〈aid(〈1,q〉), aid(〈1,q〉)〉)
= (δY0tV (aid(〈1,q〉)), δY1tV (aid(〈1,q〉)))

= (δY0tV (e(aid(〈1,q〉))), δY1tV (e(aid(〈1,q〉))))

= (δY0tV (〈1, q〉)), δY1tV (〈1, q〉))
= ((1, δV (q)), (1, δV (q)))

∈ (fδX0
(p0) t hδU (p1))× Y1 t V .

This completes the proof of part (1).
Part (2) can be proved similarly, but can also be observed more di-

rectly: the proof that (f t g) u h ≤W (f u h) t (g u h) actually shows (f t
g) u h ≤sW (f u h) t (g u h); see, e.g., [15, Theorem 4.21]. We omit the de-
tails. �
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In the remainder of this section, we will be dealing with multifunctions
on Cantor space. In this setting, we can then use the following alternative
definition of Weihrauch reducibility, which will be slightly easier to work
with.

Definition 4.2. Let f :⊆ 2ω ⇒ 2ω and g :⊆ 2ω ⇒ 2ω be multifunctions.

• f ≤W g if there are Turing functionals Φ,Ψ :⊆ 2ω → 2ω such that for
every p ∈ dom(f), Φ(p) ∈ dom(g) and Ψ(〈p, q〉) ∈ f(p) for every q ∈
g(Φ(p)).

• f ≤sW g if there are Turing functionals Φ,Ψ :⊆ 2ω → 2ω such that
for every p ∈ dom(f), Φ(p) ∈ dom(g) and Ψ(q) ∈ f(p) for every q ∈
g(Φ(p)).

See [6], Appendix A, for a discussion and comparison of this approach to
that in Definition 2.4, and for a proof of the equivalence of the two.

The following observation will be useful.

Lemma 4.3. Let f :⊆ 2ω ⇒ 2ω and g :⊆ 2ω ⇒ 2ω be given. Let h :⊆ 2ω ⇒
2ω be the multifunction with domain consisting of all pairs 〈0, p〉 for p ∈
dom(f), and 〈1, p〉 for p ∈ dom(g), and satisfying the following:

• h(〈0, p〉) consists of all pairs 〈a, q〉 with a, q ∈ 2ω, where a is a mono-
tone approximation with a ∈ dom(e) and e(a) ∈ f(p);

• h(〈1, p〉) consists of all pairs 〈q, a〉 with q, a ∈ 2ω, where a is a mono-
tone approximation with a ∈ dom(e) and e(a) ∈ g(p).

Then h ≡sW f � g.

Proof. It is clear that f, g ≤sW h, hence f � g ≤sW h. We thus only need to
show that h ≤sW f � g, and we claim that this is so via the identity map,
id : 2ω → 2ω, in both directions. To see this, fix H ` f � g, and any element
in the domain of hδ2ω = h. Without loss of generality, assume this has the
form 〈0, p〉 for some p ∈ dom(f); a symmetric argument works if it has the
form 〈1, p〉 for p ∈ dom(g). We must show that

idH id(〈0, p〉) = H(〈0, p〉) ∈ hδ2ω(p) = h(p).

Since H ` f � g, we have that

δ2ω×2ωH(〈0, p〉) ∈ (f � g)(δ2ωt2ω)(〈0, p〉) = (f � g)(〈0, p〉) = f(p)× 2ω.
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Thus, δ2ω×2ωH(〈0, p〉) = 〈y, z〉 for some y ∈ f(p) and z ∈ 2ω. In particular,
y 6= ⊥2ω , so by definition, H(〈0, p〉) = 〈a, q〉 for some a ∈ dom(e) with y =
e(a). In other words, e(a) ∈ f(p), whence we conclude that 〈a, q〉 ∈ h(〈0, p〉),
as desired. �

We now come to our main result in this section, in which we will
demonstrate that the inequality of Proposition 4.1 cannot in general be
reversed.

Theorem 4.4. The lattice of strong Weihrauch degrees is not distributive.

Proof. Choose p0, p1, p2, q0, q1, q2 ∈ 2ω with the following properties:

• p0 �T 〈p1, p2〉 and p1 �T 〈p0, p2〉;

• q0 �T q2 and q2 �T q1.

Define f, g, h :⊆ 2ω → 2ω to be p0 7→ q0, p1 7→ q1, and p2 7→ q2, respectively.
We claim that

(f � g) u h �sW (f u h) � (g u h),

which gives the theorem.
Seeking a contradiction, suppose Φ and Ψ actually witness the reduction

above. For each i < 2, we must then have that

Φ(〈〈i, pi〉, p2〉) = 〈i, 〈pi, p2〉〉.

For otherwise there would be i, j < 2 with i 6= j and

Φ(〈〈i, pi〉, p2〉) = 〈j, 〈pj , p2〉〉,

whence we would have pj ≤T 〈pi, p2〉, contrary to our assumption.
Now fix any monotone approximation a2 such that a2 ≤T q2 and a2 ∈

dom(e) and e(a2) = 〈1, q2〉. By Lemma 4.3, 〈a2, 0
ω〉 is a solution to 〈0, 〈p0, p2〉〉

in (f u h) � (g u h). Hence, Ψ(〈a2, 0
ω〉) must be a solution to 〈〈0, p0〉, p2〉 in

(f � g) u h, and hence be equal either to 〈1, q2〉, or else, again by the lemma,
to 〈0, 〈a0, c〉〉 for some monotone approximation a0 with a0 ∈ dom(e) and
e(a0) = q0. In the latter case, we would have q0 ≤T a0 ≤T a2 ≤T q2, contra-
dicting our choice of q0 and q2. So it must be the first case that applies.

Let u be the use of computing that the first coordinate of Ψ(〈a2, 0
ω〉)

is 1. Fix a monotone approximation a1 with min a1 > u and a1 ≤T q1 and
a1 ∈ dom(e) and e(a1) = 〈0, q1〉. Let q = (a2 �u)0ω, noting that q is com-
putable. Then 〈q, a1〉 is a solution to 〈1, 〈p1, p2〉〉 in (f u h) � (g u h), and
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Ψ(〈q, a1〉) must therefore be a solution to 〈〈1, p1〉, p2〉 in (f � g) u h. But
the first coordinate of Ψ(〈q, a1〉) agrees with Ψ(〈a2, 0

ω〉), so we must have
that Ψ(〈q, a1〉) = 〈1, q2〉. We then have that q2 ≤T 〈q, a1〉 ≤T a1 ≤T q1, con-
tradicting our choice of q1 and q2. �

Corollary 4.5. The strong Weihrauch lattice is not isomorphic to the
Weihrauch lattice.

Remark 4.6. The above proof does not go through if ≤sW is replaced by
the related strong computable reducibility (≤sc). Along with computable re-
ducibility (≤c), these form non-uniform variants of strong Weihrauch and
Weihrauch reducibility, respectively. (See, e.g., [8], Definition 1.1, for the
precise definitions.) The corresponding algebraic structures have not previ-
ously been studied, but it is easy to see that they form lattices under t and
u, just as in the Weihrauch case. The distributivity of ≤c then follows from
the distributivity of ≤W. For ≤sc, it follows from Proposition 4.1, together
with Proposition 3.12, the proof of which also shows that � and t are the
same up to strong computable equivalence. We can conclude that the non-
distributivity of the strong Weihrauch lattice is not a feature of uniformity
alone, or of denying access to the original instance alone, but rather of the
two properties in combination.

We finish by showing that, in spite of Theorem 4.4, the strong Weihrauch
lattice is nonetheless very rich. Recall that a set A ⊆ 2ω is Medvedev reducible
to B ⊆ 2ω if there is a functional Φ such that Φ(p) ∈ A for every p ∈ B. The
Medvedev degrees are the equivalence classes under this reducibility. It is
easy to see that these form a lattice, with A×B serving as the join of A
and B, and A tB serving as the meet. Sorbi [18, Lemma 6.1] has shown that
every countable distributive lattice embeds into the Medvedev lattice. It is
easy to see that the Medvedev degrees embed into the Weihrauch degrees
as a partial order, via the embedding sending A ⊆ 2ω to 0ω 7→ A, but it was
shown by Higuchi and Pauly [11, Corollary 5.3] that this is not a lattice
embedding. However, they also established the following reverse-embedding
result.

Proposition 4.7 (Higuchi and Pauly [11], Lemma 5.6). The Medvedev
lattice reverse-embeds into the Weihrauch lattice.

The proof uses the following map, originally due to Brattka (see [11], Defi-
nition 5.5).
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Definition 4.8. Given A ⊆ 2ω, let dA :⊆ 2ω → 2ω be the map A→ {0ω}.

We show that the same map works to reverse-embed the Medvedev de-
grees into the strong Weihrauch degrees as lattices.

Proposition 4.9. The Medvedev lattice reverse-embeds into the strong
Weihrauch lattice.

Proof. Given A,B ⊆ 2ω, if Φ is a Turing functional such that Φ(p) ∈ A for
every p ∈ B then dB ≤sW dA via Φ and the identity. Conversely, if dB ≤sW

dA via Φ and Ψ then Φ(p) ∈ A for every p ∈ B. We have dA, dB ≤sW dAtB,
so dA � dB ≤sW dAtB. In the other direction, we have dAtB ≤sW dA � dB
via the identity and the constant q 7→ 0ω map. Similarly, we have dA×B ≤sW

dA, dB and hence dA×B ≤sW dA u dB. And dA u dB ≤sW dA×B via the iden-
tity map and the map q 7→ 〈0, 0ω〉. �

Corollary 4.10. Every countable distributive lattice can be embedded into
the strong Weihrauch lattice.
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