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We study the category Fn of finite-dimensional integrable repre-
sentations of the periplectic Lie superalgebra p(n). We define an
action of the Temperley–Lieb algebra with infinitely many gen-
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weight diagrams and arrow diagrams for p(n) resembling those for
gl(m|n). We discover two natural highest weight structures. Us-
ing the Temperley–Lieb algebra action and the combinatorics of
weight and arrow diagrams, we then calculate the multiplicities of
irreducibles in standard and costandard modules and classify the
blocks of Fn. We also prove the surprising fact that indecompos-
able projective modules in this category are multiplicity-free.
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1. Introduction

The simple Lie superalgebras g over C were classified by Kac in 1977, [25].
These are divided into three groups: basic Lie superalgebras (which means
the classical and exceptional series), the strange ones (often also called
periplectic and queer) and the ones of Cartan type. The basic and strange
Lie superalgebras are the ones whose even part g0 is reductive and hence
there is some hope to apply some classical methods in these cases. How-
ever, already the most natural question of computing characters of finite-
dimensional irreducible representations of a simple Lie superalgebra turned
out to be quite difficult due to the fact that not every finite-dimensional
representation is completely reducible. Using geometric methods (see [34],
[33], [23]), and methods of categorification (see [5], [6], [8], [11], [18]), this
problem was solved for all simple Lie superalgebras except the periplectic
Lie superalgebra p(n) defined in Section 2.1

In this paper we study the combinatorics and decomposition numbers
of the category Fn of finite-dimensional representations of the algebraic su-
pergroup P (n) with Lie superalgebra p(n). By [9] this category is a highest
weight category (in the sense of [12]) with standard objects given by so-
called Kac modules. We describe this structure here in more detail stressing
thereby the unusual behaviour specific to the periplectic case.

1) A peculiar fact is that the usual duality functor for this category
(in contrast with the classical category O or the category of finite-
dimensional modules over basic Lie superalgebras) does not preserves
simple objects.

1Strictly speaking p(n) is not simple, but it has the simple ideal of codimension
1 consisting of matrices with zero supertrace which we could consider instead.
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2) Although projective modules are also injective and tilting, the combi-
natorics of standard modules is different from the combinatorics of co-
standard modules. In particular, the standard and costandard modules
with the same highest weight have different dimensions, (Lemma 3.1.1).
We call them therefore thick respectively thin Kac modules. A remark-
able observation (Lemma 3.2.1) is the existence of two highest weight
structure with the thick and thin Kac modules interchanged.

3) Another particular feature of this category is that, although we have
typical weights (for which indecomposable projectives are thick Kac
modules and irreducibles are thin Kac modules) the indecomposable
projective modules are never simple; see Theorems 6.3.1 and 6.3.3.
This fact is related to the existence of a non-trivial Jacobson radical
in U(p(n)), see [35].

Key ingredients in studying the categories of finite-dimensional modules over
basic and queer Lie superalgebras were the existence of a large center in the
universal enveloping algebra U(g), and so-called translation functors given
by tensoring with the natural representation (respectively its dual) followed
by the projection onto a block. In the case of p(n), the center of U(p(n))
is however trivial, [22]. This results in the fact that there are only very few
blocks in the category and therefore, one has to adjust the definition of
translation functors accordingly to get finer information. The key step is the
observation that, although U(p(n)) does not have a quadratic Casimir ele-
ment, one can use the canonical embedding p(n) ⊂ gl(n|n) and the fact that
gl(n|n) is the direct sum of the adjoint and the coadjoint representations of
p(n), see (4), to construct a p(n)-invariant element Ω ∈ p(n)⊗ gl(n|n). This
element Ω acts on M ⊗ V for any p(n)-module M and V = Cn|n, the vector
representation of gl(n|n). A translation functor is then given by tensoring
with V followed by projection onto a generalized eigenspace of Ω.

The main goal of our paper is to provide a detailed analysis of the com-
binatorics of the category Fn and the underlying highest weight structure.
On the way we introduce weight diagrams in the spirit of [8] as a useful com-
binatorial tool which allows to easily compute the multiplicities of standard
modules in indecomposable projective modules and of simple modules in
(co)standard modules. The surprising fact is that not only are these multi-
plicities at most 1 (Theorems 6.3.1 and 6.3.3), but even the indecomposable
projective modules are multiplicity-free (Corollary 8.1.1), i.e. the dimension
of the homomorphism space between two indecomposable projective mod-
ules is at most 1.
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A standard fact of Fn is that projective modules are at the same time
injective, and so in particular they have both a filtration by thick and by
thin Kac modules. Although the category is preserved under taking the
dual of a representation, this duality is not fixing the simple objects, but
permutes them in an interesting way. In Section 5.3 we determine the highest
weight of the dual to a simple module which at the same time gives us finer
information about the structure of modules.

Along the way we show (Theorem 4.5) that the translation functors
induce an action of the Temperley–Lieb algebra TL∞ = TL∞(q + q−1) at-
tached to the infinite symmetric group S∞ on the category Fn, where q = ±i
is a primitive fourth root of unity. As far as we know this is the first in-
stance of a categorical Hecke algebra action at roots of unity using abelian
categories. This is in contrast with the approach of [13], where homotopy
categories of complexes are used, and in contrast to [20] where the Schur-
Weyl dual quantum group for sl2 at q = i is categorified using the concept
of p-dg categories. As an application of this categorical Temperley-Lieb al-
gebra action we deduce in Theorem 9.1.2 a description of the blocks in Fn
with the action of the translation functors (Corollary 9.1.2).

This paper is the first part of a WINART group project which took
part in March 2016. In the second part, [2], we introduce the affine VW
supercategory s

∨∨
and the affine VW superalgebras (or odd affine Nazarov-

Wenzl algebras) s
∨∨

d which describe the natural transformations between
the translation functors in the spirit of [8], [19], but using now the element
Ω from above. In fact, up to crucial signs, the relations in this algebra s

∨∨
d

are exactly the ones from [31, Section 4], [19, Definition 2.1]. We prove it has
a basis completely analogous to [19, Section 2.2]. Its polynomial subalgebra
(generated by elements as in [19, (2.4), Lemma 11.5]) is defined using the
action of the element Ω from above. The algebra s

∨∨
d can also be seen as

a degenerate affine version of the odd or marked Brauer algebra studied in
[30], [28].

The affine VW-superalgebras were considered independently in [10],
where a basis theorem is formulated as well. We should also mention some
overlap with [14], which independently introduced the Casimir elements and
Jucys–Murphy elements and classified blocks using totally different methods.
In both papers, the authors use the term affine periplectic Brauer algebra
for what we call affine VW-superalgebra. We prefer the second terminology,
since (by making the parallel to the type A situation) we are in fact dealing
here with an affine VW-algebra (in the sense of [19]) in the supersetting.
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We see the construction here in parallel with Drinfeld’s degenerate version
of an affine Hecke algebra, [17] in type A. The affine VW-algebras from [19]
were originally introduced in [31] and further studied in [1] and also briefly
as degenerate affine BMW-algebras in [16]. Using partly our results, aspects
of the representation theory in the non-affine case are studied in [15].

Acknowledgements
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M. Ehrig, D. Tubbenhauer and in the referee for extremely useful remarks
on earlier versions of this paper. We also thank the Banff Center and the
organizers of the WINART workshop for the hospitality, and the Hausdorff
Center of Mathematics in Bonn for support.

1.1. Structure of the paper

In Section 3, we introduce thin and thick Kac modules. We consider the two
different resulting highest weight structures on Fn given by either taking
thick Kac modules as standard objects and thin Kac modules as costandard
objects or vice versa with the corresponding partial order on weights defined
in Section 3.3. In each case we prove a BGG-type reciprocity (Section 3.2),
and define the reduced Grothendieck group for Fn (Section 3.8). We also give
necessary conditions for extensions between simple modules in Section 3.7.

In Section 4, we define translation functors on Fn, using the endo-
morphism Ω of the endofunctor − ⊗ V of Fn which is our replacement
for the missing Casimir element. In particular we project onto generalized
eigenspaces for Ω instead of (as in familiar situations) blocks given by cen-
tral characters. This is crucial here, since it will turn out that there are only
a few blocks altogether.

This endomorphism Ω is defined in Section 4.1. We compute the actions
of translation functors on Kac modules in Section 4.3, and show that they
categorically lift the Temperley-Lieb relations (Section 4.5) by giving explicit
natural transformations realizing the desired relations of functors.

In Section 5, we introduce the notion of weight diagrams for dominant
weights and explain the combinatorics of the actions of translation functors
on (co)standard objects in terms of these diagrams (Section 5.2) as well as
the combinatorics of the duality (Proposition 5.3.1).

Section 6 is devoted to the computation of the decomposition numbers.
This requires the definition of arrow diagrams, given in Section 6.2.
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In Section 7 we describe the action of translation functors on indecom-
posable projective modules. We show that the result is indecomposable or
zero.

We prove that indecomposable projective modules are multiplicity-free
in Section 8.1 and deduce results concerning translations of simple modules.
Section 8.3 contains a description of the socles of the standard modules and
the cosocles of the costandard modules in terms of arrow diagrams.

Finally, Section 9 gives a classification of blocks in the category Fn, and
a description of the actions of translation functors on these blocks.

2. The periplectic Lie supergroup and its finite dimensional
representations

Throughout this paper, we will work over the base field C. By a vector
superspace we mean a Z/2Z-graded vector space V = V0̄ ⊕ V1̄. The parity of
a homogeneous vector v ∈ V will be denoted by p(v) ∈ Z/2Z = {0̄, 1̄}. If the
notation p(v) appears in formulas we always assume that v is homogeneous.
Throughout let n > 0 be a fixed positive integer.

2.1. The periplectic Lie superalgebra

Let V be an (n|n)-dimensional vector superspace equipped with a non-
degenerate odd symmetric form

β : V ⊗ V → C, β(v, w) = β(w, v),(1)

and β(v, w) = 0 if p(v) = p(w).

Then EndC(V ) inherits the structure of a vector superspace from V . By
g we denote the Lie superalgebra p(n) of all X ∈ EndC(V ) preserving β, i.e.
satisfying

β(Xv,w) + (−1)p(X)p(v)β(v,Xw) = 0.

Remark 2.1.1. If we choose dual bases v1, v2, . . . , vn in V0̄ and v1′ , v2′ ,
. . . , vn′ in V1̄, then the matrix of X ∈ p(n) has the form

(
A B
C −At

)
where

A,B,C are n× n matrices such that Bt = B, Ct = −C. In fact, we can
write an explicit homogeneous basis of g using our chosen basis. For this
let Eij , Ei′j , Eij′ , Ei′j′ (1 ≤ i, j ≤ n) be the corresponding unit matrices in



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 649 — #7 i
i

i
i

i
i

Translation functors and decomposition numbers for p(n) 649

gl(n|n). Using the elements

(2) A±ij := Eij ± Ej′i′ , B±ij := Eij′ ± Eji′ , C±ij := Ei′j ± Ej′i,

we obtain a homogeneous basis of g as

(3) {A−ij}1≤i,j≤n ∪ {B
+
ij}1≤i<j≤n ∪ {B

+
ii }1≤i≤n ∪ {C

−
ij}1≤i<j≤n.

As a vector space, gl(n|n) = p(n)⊕ p(n)⊥, where the complement is
taken to be the dual with respect to the supertrace form on gl(n|n) defined
as

〈x, y〉 = str(xy), where str

(
A B
C D

)
= tr(A)− tr(D).(4)

The basis dual to (3) is given in Remark 4.1.2 below. For a represen-
tation W of g we denote by W ∗ the dual representation with x.f(w) =
−(−1)p(f)p(w)f(xw) for x ∈ g, w ∈W , f ∈W ∗. In particular, there is an
isomorphism of g-modules

(5) η : V ∗ ∼= V ⊗ΠC

induced by the form β from (1). Here ΠC denotes the 1-dimensional (trivial)
representation in degree 1.

Lemma 2.1.2. Consider the decomposition V ⊗ V = S2V ⊕ Λ2V , where
S2V is the symmetric and Λ2V is the exterior power of V . Then S2V and
Λ2V are indecomposable g-modules and c =

∑
i(vi ⊗ vi′ − vi′ ⊗ vi) ∈ Λ2V

spans the unique trivial submodule in V ⊗V . Moreover, the algebra Endg(V ⊗
V ) is 3-dimensional with basis the identity and

s : v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v and e = β∗ ◦ β : 1 7→ c.(6)

Remark 2.1.3. Note that e = e ◦ s = −s ◦ e and Endg(V ⊗ V ) is by the
above decomposition isomorphic to the algebra of lower triangular 2× 2-
matrices via s 7→

(
1 0
0 −1

)
and e 7→ ( 0 0

1 0 ).

Proof. This is proved for instance in [30, Section 6.1]. �
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Note that g0̄ is isomorphic to gl(n) and g1̄ decomposes as

g1̄ = g−1 ⊕ g1

where g1 = {
(

0 B
0 0

)
} and g−1 = {

(
0 0
C 0

)
}. Thus, g has a Z-grading g = g−1 ⊕

g0 ⊕ g1. It is given by the adjoint action of the element

(7) h :=
1

2
diag(1, 1, . . . , 1,−1,−1, . . . ,−1) ∈ g0 = g0.

2.2. The category Fn of finite-dimensional integrable
representations

By Fn we denote the abelian category of finite-dimensional representations
of the corresponding supergroup G, i.e., finite-dimensional g-modules inte-
grable over G0

∼= GL(n). We will denote by Π the parity switching functor
−⊗ C(0|1) (that is tensoring with the odd trivial representation ΠC on the
right).

By definition, the morphisms in Fn are even G0-morphisms (otherwise
Fn would not be abelian), i.e., HomFn(X,Y ) is a vector space and not
a vector superspace. It will be convenient however to consider the vector
superspace

Homg(X,Y ) = HomFn(X,Y )⊕HomFn(X,ΠY )

and set

dim Homg(X,Y ) = dim HomFn(X,Y ) + dim HomFn(X,ΠY ).

In this way we also define the Jordan–Hölder multiplicities, [X : L] will
denote the total number of simple subquotients isomorphic to L or ΠL.

We fix the standard Cartan subalgebra h of diagonal matrices in g0 with
its standard dual basis {ε1, . . . , εn} and denote by ∆ = ∆(g−1) ∪∆(g0) ∪
∆(g1) the set of roots divided according to the Z-grading. Then weights of
modules in Fn are of the form

(8) λ = (λ1, . . . , λn) =

n∑
i=1

λiεi, λi ∈ Z.

A weight λ is (integral) dominant if and only if λ1 ≥ λ2 ≥ · · · ≥ λn. We
denote by V (λ) the simple g0-module with highest weight λ with respect to
the fixed Borel b0 of g0.
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Denote the set of dominant weights by Λn. The simple objects of Fn,
up to isomorphism and parity switch, will be parametrized by the set Λn,
with the simple module L(λ) having the highest weight λ with respect to
the Borel subalgebra b0 ⊕ g−1. We use the following abbreviations

|λ| =
∑
i

λi, ω =

n∑
i=1

εi, ρ =

n∑
i=1

(n− i)εi,(9)

λ̄ := λ+ ρ, cλ = {λ̄1, . . . , λ̄n} ⊂ Z,

γ =
∑

α∈∆+(g−1)

α =

n∑
i=1

(1− n)εi = (1− n)ω,

γ̃ =
∑

α∈∆+(g1)

α =

n∑
i=1

(n+ 1)εi = (n+ 1)ω.

Note that λ is dominant if and only if λ̄ is a strictly decreasing sequence
of integers.

3. Kac modules and BGG reciprocity

We introduce now the thin and thick Kac modules as induced modules,
where we use the usual induction and coinduction functors for a Lie super
subalgebra a ⊂ g forming the following pairs of adjoint functors with the
restriction functor Resga

(Indg
a,Resga) and (Resga,Coindg

a)(10)

and the functors H0(a,− ) and H0(a,− ) on Fn, of taking invariants and
coinvariants, see e.g. [21] for more details.

3.1. Thin and Thick Kac modules

Let λ be a dominant weight. We define the thin Kac module corresponding
to λ as

∇(λ) = Πn(n−1)/2 Indg
g0⊕g1

V (λ− γ) ' Coindg
g0⊕g1

V (λ).

Note that ∇(λ) is a free and cofree U(g−1)-module and we have

H0(g−1,∇(λ)) = Πn(n−1)/2V (λ− γ), H0(g−1,∇(λ)) = V (λ).
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Similarly, the thick Kac module corresponding to λ is defined as

∆(λ) = Indg
g0⊕g−1

V (λ) ' Πn(n+1)/2 Coindg
g0⊕g−1

V (λ+ γ̃).

Furthermore, ∆(λ) is a free and cofree U(g1)-module and we have

H0(g1,∆(λ)) = V (λ), H0(g1,∆(λ)) = Πn(n+1)/2V (λ+ γ̃).

The thick Kac module ∆(λ) is a highest weight module with highest
weight λ with respect to Borel subalgebra b0 ⊕ g−1, hence by a standard
argument, it has unique simple quotient L(λ), see for example [25]. Note
that by Frobenius reciprocity L(λ) coincides with the socle of ∇(λ).

Lemma 3.1.1. The dimensions of the thin and the thick Kac modules are
given by

dim∇(λ) = 2n(n−1)/2dimV (λ) and dim∆(λ) = 2n(n+1)/2dimV (λ).

Proof. We have the following isomorphisms of g0-modules:

∇(λ) ' Λ(g∗−1)⊗ V (λ) and ∆(λ) ' Λ(g1)⊗ V (λ).

Since dimg−1 = n(n− 1)/2 and dimg1 = n(n+ 1)/2, the statement follows.
�

Example 3.1.2. With respect to the Borel subalgebra b0 ⊕ g−1, the high-
est weight of the natural g-module V is (odd) −εn. Thus, we have V '
ΠL(−εn).

3.2. BGG reciprocity

The category Fn has enough projective and injective objects, since Indg
g0
V (λ)

is both projective and injective (cf. [4]). We will denote the full subcategory
of projectives in Fn by Pn. For any dominant weight λ we denote by P (λ)
the projective cover and by I(λ) the injective hull of L(λ). Furthermore,
every projective has a standard filtration (that means with subquotients
isomorphic to thick Kac modules) and a costandard filtration (that means
with subquotients isomorphic to thin Kac modules) since Indg

g0
V (λ) admits

such filtrations and then also any direct summand, because of the follow-
ing Ext-vanishing result. Moreover this result implies that the multiplicity
(P : ∆(λ)) or (P : ∇(λ)) of how often ∆(λ) or ∇(λ), respectively, appears
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as a subquotient for P is independent of the choice of the filtration. The
following lemmas are standard general results, see e.g. [9, Section 4] for our
special case.

Lemma 3.2.1. For any dominant λ and µ we have

dim Homg(∆(λ),∇(µ)) = δλ,µ and Ext1
Fn(∆(λ),∇(µ)) = 0,

and similarly,

dim Homg(∇(λ),∆(µ)) = δλ−2ω,µ and Ext1
Fn(∇(λ),∆(µ)) = 0.

Remark 3.2.2. Keeping track of the parity, the map ∆(λ)→ ∇(λ) is even,
while the map ∇(λ)→ ∆(λ− 2ω) has parity (−1)n.

Corollary 3.2.3 (BGG-reciprocity). For any dominant weights λ, µ the
following holds:

(P (λ) : ∆(µ)) = [∇(µ) : L(λ)], (P (λ) : ∇(µ+ 2ω)) = [∆(µ) : L(λ)].

The following crucial observation will be used throughout the paper.

Proposition 3.2.4. Let λ be dominant. Then ΠnP (λ− 2ω) is the injective
hull of L(λ).

Proof. Let I(λ) be the injective hull of L(λ). It satisfies: (I(λ) : ∇(µ)) =
[∆(µ) : L(λ)]. This is proved analogously to the BGG reciprocity above.
Yet I(λ) is an indecomposable projective module, and the multiplicities in
its filtration by thin Kac modules coincide with that of P (λ− 2ω). Thus
I(λ) ∼= P (λ− 2ω). Hence it is isomorphic to P (λ− 2ω) or its parity shift.
The proposition follows then from Remark 3.2.2. �

3.3. Ordering on weights

We define a partial order on the dominant weights Λn as follows: we say
that µ ≥ λ if µi ≤ λi for each i.

Lemma 3.3.1. If (P (λ) : ∆(µ)) 6= 0 (or equivalently, [∇(µ) : L(λ)] 6= 0)
then µ ≥ λ.

Similarly, if (P (λ) : ∇(µ+ 2ω)) 6= 0 (equivalently, [∆(µ) : L(λ)] 6= 0)
then µ ≥ λ.
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This lemma means that the above order gives a highest-weight structure
on the category Fn, with ∆(λ) as standard objects.

Proof. Recall from Corollary 3.2.3 that (P (λ) : ∆(µ)) 6= 0 implies [∇(µ) :
L(λ)] 6= 0. Thus,

[Resgg0
∇(µ) : V (λ)] = [Λ(Λ2(V0))⊗ V (µ) : V (λ)] 6= 0.

The g0-weights in Λ(Λ2(V0)) are sums of {εi+εj | i 6=j}. So λ = µ+
∑

i aiεi,
ai ≥ 0, as required. Similarly, by Corollary 3.2.3 (P (λ) : ∇(µ+ 2ω)) 6= 0 im-
plies [∆(µ) : L(λ)] 6= 0, and hence

[Resgg0
∆(µ) : V (λ)] = [Λ(S2(V0))⊗ V (µ) : V (λ)] 6= 0.

The g0-weights in Λ(S2(V0)) are sums of {εi + εj | i, j}. So λ = µ+
∑

i aiεi,
ai ≥ 0, as required. �

Remark 3.3.2. The category Fn is a highest weight category in the sense
of Cline, Parshall and Scott (see [12]). It has two natural highest weight
category structures. The first structure, which we will mostly use, with the
partial order on Λn given above, has thick Kac modules ∆(λ) as standard
modules, and thin Kac modules ∇(λ) as costandard modules. The second
structure has ∆(λ) as costandard modules, and ∇(λ) as standard modules.
Note that the standard module corresponding to L(τ) would not be ∇(τ),
but rather ∇(λ), where λ is obtained from τ using the procedure described
in Proposition 8.3.1. Note however, that there is no “duality” contravariant
endofunctor on Fn interchanging the thick and the thin Kac modules.

3.4. Typical weights

A dominant weight λ = (λ1, . . . , λn) is typical if λ1 > · · · > λn. The following
result can be found in [26].

Lemma 3.4.1. We have: ∆(λ) ' P (λ) and ∇(λ) ' L(λ) if and only if λ
is typical.

3.5. Tilting modules

An object X ∈ Fn is tilting if it has both a filtration by thin and by thick
Kac modules. Note that this is equivalent to X being free over U(g1) and
U(g−1). Also, if X is tilting then X∗ is tilting. By Lemma 3.2.1 a direct
summand of a tilting object is again tilting.
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Lemma 3.5.1. In the category Fn, an object X is tilting if and only if X
is projective.

Proof. IfX is projective, then it is tilting as we explained above. To prove the
opposite, assume X is tilting. First note that ∆(λ)⊗∇(µ) ' Indg

g0
(V (λ)⊗

V (µ)) is projective for any dominant weight λ, µ. Since X has filtrations
by thin respectively by thick Kac modules, we conclude that X ⊗X is
projective and therefore X ⊗X∗ ⊗X ∼= X ⊗X ⊗X∗ is projective. Since
the the counit map followed by the unit map defines a morphism X →
X ⊗X∗ ⊗X → X equal to the identity map, X is isomorphic to a direct
summand of X ⊗X∗ ⊗X. Thus, X is projective as well. �

3.6. Duality for Kac modules

Lemma 3.6.1. We have ∆(λ)∗ = ∆(−w0λ− γ̃) and ∇(λ)∗ = ∇(−w0λ+
γ), where w0 is the longest element in the Weyl group of g0.

In other words, we have ∆(λ)∗ = ∆(µ− 2ω), and ∇(λ)∗ = ∇(µ), where
µ+ ρ = −w0(λ+ ρ).

Proof. By definition, for every g-module M ,

Homg(M,∆(λ)∗) ∼= Homg(M ⊗∆(λ),C)
∼= Homg0⊕g−1

(ResM ⊗ V (λ),C)
∼= Homg0⊕g−1

(ResM,V (λ)∗)
∼= Homg(M,Coindg

g0⊕g−1
V (λ)∗).

Thus,

∆(λ)∗ ∼= Coindg
g0⊕g−1

V (λ)∗ ∼= Coindg
g0⊕g−1

V (−w0λ) ∼= ∆(−w0λ− γ̃).

Similarly,

Homg(∇(λ)∗,M) ∼= Homg(C,M ⊗∇(λ))
∼= Homg0⊕g1

(C,ResM ⊗ V (λ))
∼= Homg0⊕g1

(V (λ)∗,ResM)
∼= Homg(Indg

g0⊕g1
V (λ)∗,M).

Thus ∇(λ)∗ ∼= Indg
g0⊕g1

V (λ)∗ ∼= Indg
g0⊕g1

V (−w0λ) ∼= ∇(−w0λ+ γ). Hence
the claim follows. �



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 656 — #14 i
i

i
i

i
i

656 BalDauEntHalHenImLetNorSerStr

3.7. Extensions of simples

Proposition 3.7.1. Let λ, µ be dominant weights and h as in (7). Let

0→ L(µ)→ X → L(λ)→ 0

be a non-trivial extension. Then we have the following two possibilities

i.) either λ(h) < µ(h) and X is a quotient of ∆(λ) or of its parity switch;
or

ii.) µ(h) < λ(h) and X is a submodule of ∇(µ) or of its parity shift.

Proof. First, we note that if λ(h) = µ(h), then H0(g−1, X) ∼= V (λ)⊕ V (µ).
Indeed, t := λ(h) = µ(h) is the lowest eigenvalue of h. Therefore the h-
eigenspace with eigenvalue t is a g0-submodule annihilated by g−1.

Then U(g)V (λ) = U(g1)V (λ) is a proper submodule of X. Hence the
extension must be trivial.

Assume now that λ(h) < µ(h), then V (λ) ⊂ H0(g−1, X). Since the ex-
tension is non-split, we have X = U(g)V (λ). Thus, by adjointness (10), X
is a quotient of ∆(λ).

Finally, let us assume that µ(h) < λ(h). Then consider the dual extension

0→ L(λ)∗ → X∗ → L(µ)∗ → 0,

and use

H0(g1, L(µ)∗) = V (−w0(µ)) = V (µ)∗

and H0(g1, L(λ)∗) = V (−w0(λ)) = V (λ)∗.

Since we have−w0(λ)(h) < −w0(µ)(h), we obtain that V (µ)∗ is a submodule
inH0(g1, X). Hence by Frobenius reciprocity, we obtain thatX∗ is a quotient
of the induced module N := U(g)⊗g0⊕g1

V (µ)∗. Dualizing again, we get that
X is a submodule ofN∗. On the other hand,N∗ is isomorphic to∇(µ). Hence
the proposition follows. �

3.8. Reduced Grothendieck group

Let Gn denote the reduced Grothendieck group of Fn. By this we mean the
usual Grothendieck group quotient by the relation [ΠX] = [X]. Denote by
Gn(∇) and Gn(∆) the subgroups of Gn generated by the thin and thick Kac
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modules respectively and consider the pairing 〈−,−〉 : Gn(∆)×Gn(∇)→ Z
given by

〈[M ], [N ]〉 := dim Homg(M,N).(11)

Then {[∆(λ)]} and {[∇(λ)]} are dual bases.
Consider the full subcategories of modules with filtrations by thin and

thick Kac modules, respectively. A module X lies in both subcategories if
and only if X is tilting and therefore projective by Lemma 3.5.1. These
subcategories give us two groups Gn(∆) and Gn(∇), both mapping into
Gn. If we denote by G⊕(Pn), the reduced split Grothendieck group of the
full (additive) subcategory of projective modules in Fn, then the obvious
inclusion maps fit into a commutative square

G⊕(Pn) −−−−→ Gn(∆)y y
Gn(∇) −−−−→ Gn .

The restriction of 〈−,−〉 to G⊕(Pn)×G⊕(Pn) satisfies the relation

〈[P ], [Q]〉 = 〈[Q⊗ T ], [P ]〉,

where T is the one-dimensional g-module with highest weight 2ω, [36, Lemma
9.4]. This follows from Proposition 3.2.4, and we obtain for any dominant
weights λ, µ the following.

Corollary 3.8.1. It holds

dim Homg(P (λ), P (µ)) = dim Homg(P (µ+ 2ω), P (λ)).

Proof. Since we have dim Homg(P (λ), P (µ)) = dim Homg(P (λ), I(µ+ ω)) =
[P (λ) : L(µ+ 2ω)] = dim Homg(P (µ+ 2ω), P (λ)), the claim follows. �

4. Translation functors and the fake Casimir element

4.1. Endomorphism of the functor − ⊗ V

Consider the following endofunctor of Fn,

(12) Θ′ =− ⊗V : Fn −→ Fn.
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We would like to investigate the direct summands of this functor. In order
to do so, we introduce a crucial natural endotransformation Ω of Θ′.

Recall the even non-degenerate invariant supersymmetric form (4) on
gl(n|n), and consider the involutive anti-automorphism σ : gl(n|n)→ gl(n|n)
defined as (

A B
C D

)σ
:=
(
−Dt Bt

−Ct −At
)
.

Then g = p(n) ⊂ gl(n|n) is precisely given by all elements fixed by σ and

g′ := {x ∈ gl(n|n) |xσ = −x} = p(n)⊥.

Observe that g and g′ are maximal isotropic subspaces with respect to
the form 〈−,− 〉 from (4) and hence this form defines a non-degenerate g-
invariant pairing g⊗ g′ → C.

Definition 4.1.1. We pick now a Z-homogeneous basis {Xi} in g and the
basis {Xi} in g′ such that

〈
Xi, Xj

〉
= δij and define the fake Casimir element

Ω := 2
∑
i

Xi ⊗Xi ∈ g⊗ g′ ⊂ g⊗ gl(n|n).(13)

Remark 4.1.2. Consider the basis of g from Remark 2.1.1. Then the dual
basis is{

1
2A

+
ji

}
1≤i,j≤n

∪
{
−1

2C
+
ji

}
1≤i<j≤n

∪
{
−1

4C
+
ii

}
1≤i≤n ∪

{
1
2B
−
ji

}
1≤i<j≤n

.

Definition 4.1.3. Now, given a g-module M , let ΩM : M ⊗ V →M ⊗ V
be the linear map defined as

ΩM (m⊗ v) = 2
∑
i

(−1)p(Xi)p(m)Xim⊗Xiv

for homogeneous m ∈M , v ∈ V .

Lemma 4.1.4. The morphisms ΩM define an endomorphism of the func-
tor Θ′.
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Proof. For any homogeneous y ∈ g, we have

[y ⊗ 1 + 1⊗ y,Xi ⊗Xi] = [y,Xi]⊗Xi + (−1)p(Xi)p(y)Xi ⊗ [y,Xi].

By expanding [y,Xi], [y,Xi] in the bases {Xj} respectively {Xj} of gl(n|n),
we obtain:

[y,Xi] =
∑
j

〈
Xj , [y,Xi]

〉
Xj , [y,Xi] =

∑
j

〈
[y,Xi], Xj

〉
Xj .

Thus the non-degeneracy and invariance of the trace form (4) implies[
y ⊗ 1 + 1⊗ y,

∑
i

Xi ⊗Xi

]
=
∑
i

[y,Xi]⊗Xi + (−1)p(Xi)p(y)Xi ⊗ [y,Xi]

=
∑
i,j

〈
Xj , [y,Xi]

〉
Xj ⊗Xi +

∑
i,j

(−1)p(Xi)p(y)
〈
[y,Xi], Xj

〉
Xi ⊗Xj

=
∑
i,j

〈
Xj , [y,Xi]

〉
Xj ⊗Xi −

∑
i,j

〈
[Xi, y], Xj

〉
Xi ⊗Xj

=
∑
i,j

〈
Xj , [y,Xi]

〉
Xj ⊗Xi −

∑
i,j

〈
Xi, [y,Xj ]

〉
Xi ⊗Xj

=
∑
i,j

〈
Xj , [y,Xi]

〉
Xj ⊗Xi −

∑
i,j

〈
Xj , [y,Xi]

〉
Xj ⊗Xi = 0.

This implies that the map ΩM commutes with the action of g on M ⊗ V for
any g-module M , as required. �

Definition 4.1.5. Let 0 ≤ p < q ≤ d be integers and M a g-module. Define
the linear maps Ωp q,M : M ⊗ V ⊗d →M ⊗ V ⊗d by

Ωp q := 2
∑
i

1⊗ · · · ⊗Xi ⊗ 1⊗ · · · ⊗Xi ⊗ 1⊗ · · · ⊗ 1,

where Xi is applied to the p-th tensor factor and Xi is applied to the q-
th tensor factor (numbered from 0 to d). They define an endomorphism of
the endofunctor − ⊗ V ⊗d on the category of vector superspaces and we can
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consider, for 1 ≤ p ≤ d, the endomorphisms

(14) yp :=

p−1∑
k=0

Ωk p, in particular y1V = s+ e : V ⊗ V → V ⊗ V,

where s(x⊗ y) = (−1)p(x)p(y)y ⊗ x is the super swap and e projects onto
the unique trivial module by applying first β and then the inclusion given
in Lemma 2.1.2.

Using the decomposition V ⊗ V = S2V ⊕ Λ2V we have e(Λ2V ) = 0 and
e(S2V ) ⊂ Λ2V . As a consequence we have e ◦ s = −s ◦ e = e.

Proposition 4.1.6. The operators y1, y2, . . . , yd are pairwise commuting
endomorphisms of the functor − ⊗ V ⊗d : Fn −→ Fn.

Proof. Let ∆ : U(g)→ U(g)⊗ U(g) denote the comultiplication, and ∆q :
U(g) 7→ U(g)⊗d the iterated comultiplication. Note that, with our dual bases
{Xi}, {Xi},

yq =
∑
i

∆q−1(Xi)⊗Xi ⊗ 1⊗ · · · ⊗ 1.

We have shown in Lemma 4.1.4 that for any x ∈ g and any g-module M the
operators ∆(x) and Ω commute in M ⊗ V . Then it follows easily that yp is an
endomorphism of g-modules for 1 ≤ 1 ≤ d. Moreover, ∆q−1(Xi) commutes
with Ωa b for a, b ≤ q. Now for 1 ≤ p ≤ d with p < q we get

[yp, yq] =

p∑
k=1

[Ωk,p+1,∆
q−1(Xi)]⊗Xi ⊗ 1⊗ · · · ⊗ 1 = 0.

The statement is proved. �

Note that Θ′ is an exact functor; its left and right adjoint are isomorphic
to ΠΘ′ where Π is the parity switch functor, since V ∼= ΠV ∗ via (5).

Definition 4.1.7. For any k ∈ C we define a functor Θ′k : Fn → Fn as
the functor Θ′ =− ⊗V followed by the projection onto the generalized k-
eigenspace for Ω, i.e.,

Θ′k(M) :=
⋃
m>0

Ker(Ω− k Id)m|M⊗V(15)

and set Θk := ΠkΘ′k in case k ∈ Z.
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Lemma 4.1.8. The functors Θ′k, k ∈ C, and Θk, k ∈ Z are exact.

Proof. This follows from (15) and the fact that − ⊗ V is an exact functor. �

In fact all occurring eigenvalues for Ω are integral that means we obtain

Proposition 4.1.9. If k /∈ Z, then Θ′k = 0. Therefore, Θ′ =
⊕

k∈Z Θ′k.

This will be proved in Section 4.3.

4.2. Some useful properties of Ω

It will be convenient to write Ω = Ω0 + Ω1 + Ω−1 where

Ω0 = 2
∑

{i|Xi∈g0}

Xi ⊗Xi, Ω1 = 2
∑

{i|Xi∈g1}

Xi ⊗Xi,

Ω−1 = 2
∑

{i|Xi∈g−1}

Xi ⊗Xi.

We denote by C ∈ U(g0) and C̃ ∈ U(gl(n|n)) the respective Casimir ele-
ments.

Lemma 4.2.1. 1.) If M is a g-module, then

Ω±1(H0(g−1,M)⊗ V1) = 0 = Ω±1(H0(g1,M)⊗ V0).

2.) For every g0-module M , m ∈M and v ∈ V homogeneous, we have

Ω0(m⊗ v) = 1
2(−1)p(v) (C(m⊗ v)− C(m)⊗ v −m⊗ C(v)) .

3.) Consider the element 2
∑

iXiX
i in the universal enveloping algebra

U(gl(n|n)). Then

2
∑
i

XiX
i = C̃ − 1n,

where 1n ∈ gl(n|n) is the identity matrix.

4.) The element 2
∑

iXiX
i acts on the natural module V as − Id.

Proof. Part 1.) is straightforward: any Xi ∈ g−1 acts trivially on the g−1-
invariants H0(g−1,M) of M , so Ω−1(H0(g−1,M)⊗ V1) = 0. On the other
hand, for any Xi ∈ g1, we have that Xi is of the form

(
0 0
C 0

)
for some C :
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V0 → V1, and thus Xi acts trivially on V1. This implies Ω±1(H0(g−1,M)⊗
V1) = 0. Similarly for the second equality. To prove 2.) we first define an
involution on gl(n|n)0 by X =

(
A 0
0 D

)
7→ X̂ :=

(
A 0
0 −D

)
. Note that for ho-

mogeneous v ∈ V we have X̂v = (−1)p(v)Xv. For simplicity we assume that
we have a basis {Xj}j∈J for g0 induced from (3). Consider the elements
Xj ∈ gl(n|n), j ∈ J given in Remark 4.1.2. Then {2X̂j}j∈J is a dual basis
for g0, and C = 2

∑
j XjX̂

j .

Now, 2Xjm⊗ X̂jv = 2(−1)p(v)Xjm⊗Xjv. Thus

C(m⊗ V ) = Cm⊗ v +m⊗ Cv + 2
∑
j∈J

Xjm⊗ 2X̂jv

= Cm⊗ v +m⊗ Cv + 4(−1)p(v)
∑
Xj∈g0

Xjm⊗Xjv

= Cm⊗ v +m⊗ Cv + 2(−1)p(v)Ω0(m⊗ v)

This proves 2.).
To prove 3.) recall that by definition C̃ =

∑
iXiX

i + (−1)p(Xi)XiXi.
Using the relation XiX

i = (−1)p(Xi)XiXi + [Xi, X
i] we obtain

2
∑
l

XiX
i = C̃ +

∑
i

[Xi, X
i].

Note that
∑

i[Xi, X
i] ⊂ g′ and, moreover, [x,

∑
i[Xi, X

i]] = 0 for every x ∈ g.
Since g′ is the coadjoint g-module, every g-invariant vector in g′ is propor-
tional to 1n ∈ g′ ⊂ gl(n|n). Hence

∑
i[Xi, X

i] = t1n for some t ∈ C. It re-
mains to find t. For this we use the invariant supertrace form (4) and the
grading element h from (7):〈

h,
∑
i

[Xi, X
i]

〉
=
∑
i

〈
[h,Xi], X

i
〉
.

For Xi ∈ g0 we have [h,Xi] = 0 and for Xi ∈ g±1 we have [h,Xi] = ±Xi.
Thus, we obtain〈

h,
∑
i

[Xi, X
i]

〉
= −dimg1 + dimg−1 = −n.

Since 〈h,1n〉 = n, we get t = −1 and hence proved 3.).
Finally, to show 4.), we recall that by definition C̃ acts by zero on V . �
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4.3. The action of Θi on Kac modules

We would like to decompose ∇(λ)⊗ V and ∆(λ)⊗ V into a direct sum
of generalized eigenspaces with respect to Ω, and determine the occurring
eigenvalues. Throughout this section, we set ∆(µ) = ∇(µ) = 0 whenever µ
is not a dominant weight.

Lemma 4.3.1. The tensor products ∇(λ)⊗ V and ∆(λ)⊗ V have filtra-
tions

{0} = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ N2n = ∇(λ)⊗ V,(16)

{0} = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M2n = ∆(λ)⊗ V,

where

Ni/Ni−1
∼=

{
∇(λ+ εn−i+1), if i ≤ n,
Π∇(λ− εi−n), if i > n,

and Mi/Mi−1
∼=

{
Π∆(λ− εn−i+1), if i ≤ n,
∆(λ+ εi−n), if i > n.

Proof. We deal with the case of ∆(λ)⊗ V , the other case is similar. We use

∆(λ)⊗ V = Indg
g0⊕g−1

(V (λ)⊗ V )

and the exact sequence of g0 ⊕ g−1 modules

0→ V (λ)⊗ V1 → V (λ)⊗ V → V (λ)⊗ V0 → 0.

On the other hand, recall the well-known identities for g0 = gl(n)-modules

(17) V (λ)⊗ V1 =

n⊕
i=1

ΠV (λ− εi) and V (λ)⊗ V0 =

n⊕
i=1

V (λ+ εi),

where we replace V (λ± εi) by 0 if λ± εi is not dominant. Thus, applying
the exact induction functor Ind to (17), we obtain the exact sequence

0→
n⊕
i=1

Π∆(λ− εi)→ ∆(λ)⊗ V →
n⊕
i=1

∆(λ+ εi)→ 0,

which implies the statement. �



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 664 — #22 i
i

i
i

i
i

664 BalDauEntHalHenImLetNorSerStr

Next we notice that for each term of the filtration (16) we have

H0(g−1,∇(λ+ εi)) ⊂ H0(g1,∇(λ+ εi)) ⊂ V (λ− γ)⊗ V0,

H0(g−1,∇(λ− εi)) ⊂ V (λ)⊗ V1,

H0(g1,∆(λ− εi)) ⊂ H0(g−1,∆(λ− εi)) ⊂ V (λ)⊗ V1,

H0(g1,∇(λ+ εi)) ⊂ V (λ+ γ̃)⊗ V1.

In order to calculate the eigenvalue of Ω on each term of the filtration it
suffices to calculate the eigenvalue of Ω0 on

H0(g−1,∇(λ+ εi)), H0(g−1,∇(λ− εi)),
H0(g1,∆(λ− εi)), H0(g1,∆(λ+ εi)).

Now we use Lemma 4.2.1 (1), (2). Recall that the eigenvalue of C on V (µ)
is (µ+ 2ρ, µ). Thus, the eigenvalue of Ω on ∇(λ+ εi) ∩ (V (λ− γ)⊗ V0) is

1
2 ((λ− γ + εi + 2ρ, λ− γ + εi)− (λ− γ + 2ρ, λ− γ)− (ε1 + 2ρ, ε1)) ,

which is equal to

1
2 (2(εi, λ− γ) + 2(ρ, εi − ε1) + (εi, εi)− (ε1, ε1)) = λi + n− i = λ̄i.

Similarly, the eigenvalue of Ω on ∇(λ− εj) ∩ (V (λ)⊗ V1) is

1
2 ((λ+ 2ρ, λ) + (−εn + 2ρ,−εn)− (λ− εj + 2ρ, λ− εj)) = λ̄j .

Altogether we obtain:

Lemma 4.3.2. Let λ be a dominant weight. Fix k ∈ Z. Then there is at
most one 1 ≤ j ≤ n such that λ̄j = k.

i.) If λ̄j 6= k for all 1 ≤ j ≤ n, then Θ′k(∇(λ)) = 0.

ii.) If λ̄j = k, then Θ′k(∇(λ)) can be described by the exact sequence

0→ ∇(λ+ εj)→ Θ′k(∇(λ))→ Π∇(λ− εj)→ 0.

For the thick Kac modules the picture is more interesting. Namely, the
element Ω acts on ∆(λ− εj) ∩ (V (λ)⊗ V1) as multiplication by the scalar

(18) 1
2 ((λ+ 2ρ, λ) + (−εn + 2ρ,−εn)− (λ− εj + 2ρ, λ− εj)) = λ̄j ,
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and on ∆(λ+ εi) ∩ (V (λ+ γ̃)⊗ V0) by the scalar

1
2

(
(λ+ γ̃ + εi + 2ρ, λ+ γ̃ + εi)(19)

− (λ+ γ̃ + 2ρ, λ+ γ̃)− (ε1 + 2ρ, ε1)
)

= λi + 2 + n− i = λ̄i + 2.

Lemma 4.3.3. The subquotients ∆(λ− εi) and ∆(λ+ εj) of ∆(λ)⊗ V
have the same Ω-eigenvalue if and only if j = i+ 1 and λi = λi+1 + 1.

Proof. By (18) and (19) we must have λi = λi+1 + 2 which is equivalent to
λi = λi+1 + 1. �

Lemma 4.3.4. Let λ be a dominant weight. Fix k ∈ Z.

i.) If λ̄j 6= k, k − 2 for all j ≤ n, then Θ′k(∆(λ)) = 0.

ii.) If λ̄j = k and λj+1 6= λj − 1, then Θ′k(∆(λ)) = ∆(λ− εj).

iii.) If λ̄j = k − 2 and λj−1 6= λj + 1, then Θ′k(∆(λ)) = ∆(λ+ εj).

iv.) If λ̄j = k and λj+1 = λj − 1, then Θ′k(∆(λ)) fits into an exact sequence

0→ Π∆(λ− εj)→ Θ′k(∆(λ))→ ∆(λ+ εj+1)→ 0.

We finish this section with the proof of the statement Θ′k = 0 for k 6∈ Z:

Proof of Proposition 4.1.9. By Lemma 4.3.4, Θ′k(∆(λ)) = 0 for any k 6∈ Z
and λ ∈ Λn. Since Θ′k is exact, this implies that Θ′k(L(λ)) = 0 for any k 6∈ Z,
i.e. Θ′k is zero on all simple modules. Using exactness of Θ′k once again, we
conclude that Θ′k = 0 for k 6∈ Z. �

4.4. Adjunctions and Temperley-Lieb algebra relations

We establish now basic properties of the translation functors. Thanks to
Proposition 4.1.9 we can assume from now on that k ∈ Z whenever we con-
sider Θ′k or Θk.

Proposition 4.4.1. The functor Θk is left adjoint to Θk−1 and right ad-
joint to Θk+1.

Before we prove the proposition, we use our previous results to check
dimension formulas which would be implied by the adjunctions.
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Example 4.4.2. Consider a thick Kac module ∆(λ), and indices k, j such
that λ̄j = k and λj+1 = λj − 1. We established in Lemma 4.3.4 an exact
sequence

0→ Π∆(λ− εj)→ Θ′k(∆(λ))→ ∆(λ+ εj+1)→ 0,

and similarly, there is an injective map Π∆(λ)→ Θ′k−1∆(λ+ εj+1). Hence

dim Homg(Θ′k(∆(λ)),∆(λ+ εj+1))

= 1 = dim Homg(Π∆(λ),Θ′k−1∆(λ+ εj+1))

as predicted by Proposition 4.4.1.

For the proof of Proposition 4.4.1 we first discuss the left and right ad-
joint functors to the functor Θ′ =− ⊗V . The right adjoint is the functor

− ⊗ V ∗. It is isomorphic to the left adjoint functor, although the isomor-
phism is non-trivial. Indeed, the left adjoint is given by tensoring with the
right dual ∗V ; in our setting, there is an isomorphism η : ∗V ∼= V ∗, but the
isomorphism is non-trivial, see e.g. [27, XIV.2.2, XIV] for more details.

Now consider the natural transformation Ω of Θ′ from Section 4.1. It
induces transformations Ωt : − ⊗ V ∗ → − ⊗ V ∗ and tΩ : − ⊗ ∗V → − ⊗ ∗V
of the functors adjoint to Θ′ on either side; for instance the natural trans-
formation Ωt is defined for M ∈ Fn as the following composition (where ev
and coev denote the usual evaluation f ⊗ v 7→ f(v) respectively coevaluation
1 7→

∑
vi ⊗ fi maps, where fi is given by fi(vj) = δi j),

M ⊗ V ∗ Id⊗ coev−−−−−→M ⊗ V ∗ ⊗ V ⊗ V ∗(20)

ΩM⊗V ∗⊗Id−−−−−−−→M ⊗ V ∗ ⊗ V ⊗ V ∗ Id⊗ ev⊗ Id−−−−−−−→M ⊗ V ∗.

Hence the right (resp. left) adjoint functor to Θ′k is the direct summand
of − ⊗ V ∗ (resp. − ⊗ ∗V ) corresponding to the generalized eigenvalue k of
Ωt (resp. of tΩ).

Remark 4.4.3. Notice however that the isomorphism η between the left
and right adjoint functor to − ⊗ V does not need to intertwine Ωt and tΩ.
Hence the left and right adjoint functors to Θ′k would not necessarily be
isomorphic, and in fact they are not!

Proof of Proposition 4.4.1. Let us evaluate Ωt
M on m⊗ f , where m ∈M ,

f ∈ V ∗ are homogeneous. We calculate the first two maps in the composition
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(20):

m⊗ f 7−→
∑
j

m⊗ f ⊗ vj ⊗ vj(21)

7−→ 2
∑
i,j

(−1)p(m⊗f)p(Xi)Xi(m⊗ f)⊗Xivj ⊗ vj ,

for {vj} a homogeneous basis of V with dual basis {vj} of V ∗. Then the
result (21) equals

2
∑
i,j

(
(−1)p(m⊗f)p(Xi)Xim⊗ f ⊗Xivj ⊗ vj

+ (−1)p(Xi)p(m⊗f)+p(m)p(Xi)m⊗Xif ⊗Xivj ⊗ vj
)
.

Applying finally IdM ⊗ ev⊗ IdV ∗ we obtain

2
∑
i,j

(−1)p(Xi)p(m⊗f)Xim⊗ f(Xivj)v
j

+ 2
∑
i,j

m⊗ (−1)p(Xi)p(m⊗f)+p(m)p(Xi) (Xif) (Xivj)v
j .

Hence altogether we obtain

Ωt
M (m⊗ f) = −2

∑
i,j

(−1)p(Xi)p(m⊗f)+p(Xi)p(f)Xim⊗ (Xif)(vj)v
j(22)

+ 2
∑
i,j

m⊗ (−1)p(Xi)p(m⊗f)+p(m)p(Xi) (Xif) (Xivj)v
j

= −2
∑
i

(−1)p(Xi)p(m)Xim⊗Xif

− 2
∑
j

m⊗ f

(∑
i

XiX
ivj

)
vj

= −2

(∑
i

Xi ⊗Xi

)
m⊗ f +m⊗ f,

where for the last equality we used Lemma 4.2.14.).
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On the other hand, recall the isomorphism η : V ∗ ∼= V ⊗ΠC from (5).
It is easy to see that the elements Xi of gl(n|n) satisfy (note the sign ap-
pearing):

V ∗

η

��

Xi
// V ∗

η

��
V ⊗ΠC

−Xi

// V ⊗ΠC

.

Formula (22) and the definition of Ω imply that the following diagram
commutes

M ⊗ V ∗

Id⊗η
��

ΩtM //M ⊗ V ∗

Id⊗η
��

M ⊗ V ⊗ΠC ΩM⊗IdΠC + Id //M ⊗ V ⊗ΠC

Thus Ω̄t
M = ΩM ⊗ IdΠC + Id and therefore the eigenspace corresponding to

the eigenvalue k of Ωt
M coincides with the eigenspace corresponding to the

eigenvalue k − 1 of ΩM . Similarly one shows that the eigenspace correspond-
ing to the eigenvalue k + 1 of tΩM coincides with the eigenspace correspond-
ing to the eigenvalue k of ΩM . Hence the proposition follows. �

Since the functors Θ′k, for k ∈ Z, are exact by Lemma 4.1.8, they induce
Z-linear operators on the Grothendieck group Gn, which we denote by θ′k.
Note that the subgroups Gn(∆), Gn(∇) and G⊕(Pn) are θ′k-stable by the
Lemmas 4.3.2, 4.3.4 and 3.5.1.

We denote by U = CZ the vector space with fixed basis {ui | i ∈ Z} in-
dexed by Z. Consider the Lie algebra sl(∞) of all linear operators in CZ of
finite rank. This Lie algebra has Chevalley generators ei = Ei−1,i, fi = Ei,i−1

for i ∈ Z subject to the defining Serre relations of the A∞-Dynkin diagram.
Let Λn(U) be the Z lattice in the nth exterior vector space spanned by the
standard basis of wedges in the ui.

We define the Z-linear maps Φ and Φ∨ as follows:

Φ : Gn(∆)→ Λn(U) and Φ∨ : Gn(∇)→ Λn(U)

Φ[∆(λ)] = Φ∨[∇(λ)] = uλ̄1
∧ · · · ∧ uλ̄n .

Note that Φ and Φ∨ are in fact isomorphisms of abelian groups.

Theorem 4.4.4. For any k ∈ Z, we have the following equalities:

(23) Φ ◦ θ′k = (ek + fk−1) ◦ Φ and Φ∨ ◦ θ′k = (ek + fk+1) ◦ Φ∨.
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Proof. This follows immediately from Lemma 4.3.2 and Lemma 4.3.4. �

Remark 4.4.5. With the identifications Φ and Φ∨ of Gn(∆) respectively
Gn(∇) with Λn(U) we obtain from (23) directly

〈[Θ′kM ], [N ]〉 = 〈[M ], [Θ′k−1N ]〉

where 〈·, ·〉 is the pairing defined in Section 3.8. This corresponds to the fact
that Θ′k−1 is right adjoint to ΠΘ′k by Proposition 4.4.1 below.

The θ′k satisfy the defining relations for the Temperley-Lieb algebra of
type A∞:

Corollary 4.4.6. The operators θ′k on Gn satisfy the following relations
for any k, j ∈ Z, |k − j| > 1:

(24) θ′k
2

= 0, θ′kθ
′
j = θ′jθ

′
k, θ′kθ

′
k±1θ

′
k = θ′k.

Remark 4.4.7. The relations (24) are the defining relations for the
Temperley-Lieb algebra TL∞(q + q−1) on infinitely many generators. For
a definition of the Temperley-Lieb algebra, see for instance [37, Section 4].
In contrast to the situation described therein, in our case the parameter
q = ±i is a primitive fourth root of unity.

Proof. The relations from Theorem 4.4.4 still hold on Gn(∆) and on Gn(∇),
thus also on G⊕(Pn). Using the natural pairing G⊕(Pn)×Gn → Z induced
from (11) and Proposition (4.4.1) we obtain the same relations on Gn. �

4.5. Categorical action

In fact, we will show that the Temperley-Lieb relations (24) hold even in a
categorical version:

Theorem 4.5.1. There exists natural isomorphisms of functors

Θ2
k
∼= 0,(25)

ψk,k±1 = Θk adj : ΘkΘk±1Θk

∼=
=⇒ Θk,(26)

ψk,j = (j − i)1⊗ s+ Id : ΘkΘj
∼=

=⇒ ΘjΘk if |k − j| > 1,(27)

(for k, j ∈ Z), where adj denotes the respective adjunction morphism given
by Proposition 4.4.1.
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Proof. The first isomorphism (25) follows directly from Corollary 4.4.6.
By Proposition 4.4.1, there exist adjunction morphisms adj : Θk+1Θk ⇒

Id (that is the counit of the adjunction) and adj : Id⇒ Θk−1Θk (which is the
unit of the adjunction). The corresponding natural transformation Θk adj
(respectively Θkadj) is given by injective respectively surjective maps by
the adjunction axioms. Hence by Corollary 4.4.6 these are isomorphisms;
thus (26) holds.

To prove the existence of the isomorphisms ψk,j , let M ∈ Fn and define
the linear endomorphisms Ω1 2,Ω1 3,Ω2 3 of M ⊗ V ⊗ V by

Ω1 2 = 2
∑
i

Xi ⊗Xi ⊗ 1, Ω1 3 = 2
∑
i

Xi ⊗ 1⊗Xi,

Ω2 3 = 2
∑
i

1⊗Xi ⊗Xi.

By definition, Θ′kΘ
′
jM is a submodule in M ⊗ V ⊗ V which is a generalized

eigenspace of Ω1 2 with eigenvalue j and of Ω1 3 + Ω2 3 with eigenvalue k.
Recall that ΩV = s+ e, see (14) and Lemma 2.1.2. Consider the operator

1⊗ e : M ⊗ V ⊗ V →M ⊗ V ⊗ V . By the proof of Proposition 4.4.1 we ob-
tain Θ′iΘ

′
jM ⊂ Ker(1⊗ e) unless i− 1 = j: indeed, 1⊗ e : Θ′iΘ

′
jM →M ⊗

V ⊗ V factors through 1⊗ e : Θ′iΘ
′
jM → ΠM , and by Proposition 4.4.1, this

gives a map Θ′jM → Θ′i−1M ; such a map is non-zero only if i− 1 = j. Con-
sider the natural transformation

ψij := (j − i)1⊗ s+ Id : Θ′iΘ
′
j =⇒ −⊗ V ⊗ V.

We claim that the image of ψij lies in Θ′jΘ
′
iM , inducing a natural transfor-

mation

ψij : Θ′iΘ
′
j =⇒ Θ′jΘ

′
i

and thus also a natural transformation ψij : ΘiΘj =⇒ ΘjΘi. We use the
relations:

Ω1 2 ◦ (1⊗ s) = (1⊗ s) ◦ (Ω1 3 + Ω2 3)− Id−1⊗ e,
(Ω1 3 + Ω2 3) ◦ (1⊗ s) = (1⊗ s) ◦ Ω1 2 + Id +1⊗ e,
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to obtain the identities

Ω1 2ψij = (j − i)(1⊗ s) ◦ (Ω1 3 + Ω2 3)

+ Ω1 2 − (j − i) Id +(j − i)(1⊗ e),
(Ω1 3 + Ω2 3)ψij = (j − i)(1⊗ s) ◦ Ω1 2 + Ω1 3 + Ω2 3

+ (j − i) Id +(j − i)(1⊗ e).

We rewrite the above relations in the form

(Ω1 2 − i Id)ψij = ψij(Ω1 3 + Ω2 3 − i Id) + (Ω1 2 − j Id)

− (Ω1 3 + Ω2 3 − i Id) + (j − i)(1⊗ e),
(Ω1 3 + Ω2 3 − j Id)ψij = ψij(Ω1 2 − j Id)− (Ω1 2 − j Id)

+ (Ω1 3 + Ω2 3 − i Id) + (j − i)(1⊗ e).

Since the operators Ω1 2 − j Id and Ω1 3 + Ω2 3 − i Id commute and are nilpo-
tent on Θ′iΘ

′
jM and (1⊗ e)|Θ′iΘ′jM = 0, we conclude that Ω1,2 − i Id and and

Ω1 3 + Ω2 3 − j Id are nilpotent on ψijΘ
′
iΘ
′
jM . Hence the image ψij : Θ′iΘ

′
jM

lies in Θ′jΘ
′
iM .

For i 6= j ± 1, an easy computation shows that the map

(j − i)1⊗ s+ Id : M ⊗ V ⊗ V =⇒M ⊗ V ⊗ V

is injective for any M . Indeed, consider the basis {vi}i∈I of V (see Re-
mark 2.1.1), where I = {1, . . . , n} t {1′, . . . , n′}. The element

∑
k,l∈I mk,l ⊗

vk ⊗ vl ∈M ⊗ V ⊗ V is sent to

∑
k,l∈I

((−1)p(k)p(l)(i− j)ml,k +mk,l)⊗ vk ⊗ vl.

If this is zero, then for every k, l we have −(−1)p(k)p(l)(i− j)ml,k = mk,l,
and hence (i− j)2mk,l = mk,l for every k, l. If i− j 6= ±1, we conclude that
mk,l = 0 for every k, l.

Hence ψij is an injective natural transformation, and therefore an iso-
morphism by Corollary 4.4.6. �
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5. Combinatorics: Weight diagrams, translations and duality

5.1. From weights to weight diagrams

For λ a dominant weight we define the map

fλ : Z→ {0, 1} as fλ(i) =

{
1 if i ∈ cλ,
0 if i /∈ cλ.

where cλ := {λ̄i | i = 1, . . . , n} is as in (9). The corresponding weight diagram
dλ is the labeling of the integer line by symbols • (“black ball”) and ◦
(“empty”) such that i has label • if f(i) = 1, and label ◦ otherwise.

Example 5.1.1. Let n = 4. Then for λ = 0, the weight diagram is

· · · ◦
−1

•
0

•
1

•
2

•
3

◦
4

◦
5

◦
6

◦
7
· · ·

whereas for λ = ρ, the weight diagram is

· · · ◦
−1

•
0

◦
1

•
2

◦
3

•
4

◦
5

•
6

◦
7
· · ·

(in both diagrams all remaining positions are labeled by ◦).

Remark 5.1.2. The following properties are easy to verify.

1.) Typical weights (i.e. when P (λ) = ∆(λ)) correspond precisely to the
weight diagrams without two neighboring black balls.

2.) There are two possible partial orders on the weights, corresponding to the
choice of either thick Kac modules or thin Kac modules as the standard
objects in Fn, as mentioned in Remark 3.3.2. In both orders, if λ ≤ µ
then λi ≥ µi. In terms of diagrams, this means that the i-th black ball
in dλ (counted from left) lies further to the right of the i-th black ball
of dµ.

Obviously this induces a bijection between the set of dominant weights
of g = p(n), the set of maps f : Z→ {0, 1} such that

∑
i f(i) = n, and the

set of weight diagrams with exactly n black balls.
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5.2. Translation functors in terms of weight diagrams

We have the following description for the action of Θ′i on the thick and thin
Kac modules. By convention, any appearing diagram which is not defined,
e.g., due to lack of black balls to be moved, corresponds to the zero module.

Translation of thick Kac modules corresponds to moving black balls
to position k − 1, whereas translation of thin Kac modules corresponds to
moving black balls away from k:

Proposition 5.2.1 (Translation of thick Kac modules). Let k ∈ Z.
Then the following hold

i.) Θ′k∆(λ) ∼= ∆(µ′′) if dλ looks as follows at positions k − 2, k − 1, k with
dµ′′ displayed underneath (all other positons agree in the two weight
diagrams):

dλ = •
k−2

◦
k−1

◦
k

dµ′′ = ◦
k−2

•
k−1

◦
k

ii.) Θ′k∆(λ) = Π∆(µ′) if dλ looks as follows at positions k − 2, k − 1, k with
dµ′ displayed underneath (all other positions agree in the two weight
diagrams):

dλ = ◦
k−2

◦
k−1

•
k

dµ′ = ◦
k−2

•
k−1

◦
k

iii.) In case dλ looks at positions k − 2, k − 1, k as below, there is a short
exact sequence

0→ Π∆(µ′)→ Θ′k∆(λ)→ ∆(µ′′)→ 0

where dµ′′ and dµ′ are obtained from dλ by moving one black ball to
position k − 1 (from position k − 2 respectively position k) as follows:

dλ = •
k−2

◦
k−1

•
k

dµ′ = •
k−2

•
k−1

◦
k

dµ′′ = ◦
k−2

•
k−1

•
k



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 674 — #32 i
i

i
i

i
i

674 BalDauEntHalHenImLetNorSerStr

iv.) Θ′k∆(λ) = 0 in all other cases.

Proof. This is just a reformulation of Lemma 4.3.4. �

Proposition 5.2.2 (Translation of thin Kac modules). Let k ∈ Z.
Then

i.) Θ′k∇(λ) = ∇(µ′′) if dλ looks as follows at positions k − 1, k, k + 1 with
dµ′′ displayed underneath:

dλ = •
k−1

•
k

◦
k+1

dµ′′ = •
k−1

◦
k

•
k+1

ii.) Θ′k∇(λ) = Π∇(µ′) if dλ looks as follows at positions k − 1, k, k + 1 with
dµ′ displayed underneath:

dλ = ◦
k−1

•
k

•
k+1

dµ′ = •
k−1

◦
k

•
k+1

iii.) In case dλ looks locally at positions k − 1, k, k + 1 as below, there is a
short exact sequence

0→ ∇(µ′′)→ Θ′i∇(λ)→ Π∇(µ′)→ 0

where dµ′ and dµ′′ are obtained from dλ by moving one black ball away
from position k (to position k − 1 respectively k + 1) as follow:

dλ = ◦
k−1

•
k

◦
k+1

dµ′ = •
k−1

◦
k

◦
k+1

dµ′′ = ◦
k−1

◦
k

•
k+1

iv.) Θ′k∇(λ) = 0 in all other cases.

Proof. This is just a reformulation of Lemma 4.3.2. �
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5.3. Duality for simple modules

The goal of this subsection is to explain the effect of the duality functor on
simple modules, more precisely we will show the following.

Proposition 5.3.1 (Duality formula). There is an isomorphism L(λ]) '
ΠmL(λ)∗, where m = |λ]|+|λ|

2 in the notation of (9).

To explain the notation used we fix the lexicographic ordering on the set
(i, j), 1 ≤ i < j ≤ n, that means

(28) (1, 2) < (1, 3) < · · · < (1, n) < (2, 3) < · · · < (n− 1, n).

For a given dominant weight λ define λ] by the following rule.
Set ν = λ and (a, b) = (1, 2) and enumerate the black balls in dν by

1, . . . , n from right to left and let pi be the position of the ith black ball.
Then let dma,b(ν) be the diagram obtained from ν, by moving the ath and
bth black ball one position to the right if possible; that is in formulas (with
necessarily f(pa + 1) = f(pb + 1) = 0)

fma,b(ν)(i) =


0 if i = pa, pb,

1 if i = pa + 1, pb + 1,

fν(i) otherwise.

(29)

and fma,b(ν) = fν otherwise.

Repeat this procedure with the resulting weight (now m1,2(λ)) and the next
pair (a, b) (now (1, 3)) from (28) until there is now such pair left. Let λ†

be the resulting weight. Define finally λ] be the weight obtained from λ† by
reflecting dλ] at n−1

2 .

Example 5.3.2.

1.) For the natural g-module V = L(−εn), we have V ∗ ∼= ΠL(−εn) by (5).
Let us illustrate Proposition 5.3.1 for n = 4. We have λ = −ε4, and we
obtain

dλ = · · · ◦
−2

•
−1

◦
0

•
1

•
2

•
3

◦
4

◦
5

· · ·

dλ† = · · · ◦
−2

◦
−1

•
0

•
1

•
2

◦
3

•
4

◦
5

· · ·
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Note that our rule is only nontrivial when we apply it the first time, i.e.
for (a, b) = (1, 4). By reflecting this at n−1

2 = 3
2 we obtain

dλ] = · · · ◦
−2

•
−1

◦
0

•
1

•
2

•
3

◦
4

◦
5

· · ·

2.) If λ is typical (i.e. dλ has no adjacent black balls), then ma,b is nontrivial
for all pairs from (28) and λ] = −w0(λ) + (1− n)ω. Indeed, first we move
all •’s n− 1 positions to the right to obtain dλ† , and then reflect with
respect to n−1

2 . The diagram of λ] is then the mirror to that of λ with
respect to the reflection at 0.

3.) For instance λ = (10, 8, 4, 3, 1) gives the values λ† = (14, 12, 8, 7, 5) and
λ] = (−10,−8,−4,−3,−1).

4.) On the other hand, if λ = kω, see (9) for some k ≥ 0, then all ma,b are
trivial and therefore λ† = λ and λ] = −λ.

Proof of Proposition 5.3.1. We use the isomorphism of g0-modules:

(30) H0(g−1, L(λ)∗) ' (H0(g1, L(λ)))∗.

First, we will prove that

(31) H0(g1, L(λ)) = V (λ†).

Consider the two following Borel subalgebras of g, the standard one b = b0 ⊕
g−1 and its opposite b′ = b0 ⊕ g1. Then obviously λ is the highest weight of
L(λ) with respect to b and we have to show that λ† is the highest weight of
L(λ) with respect to b′. We use the odd reflection methods, introduced in
[32] for non-contragredient superalgebras. Observe that odd roots of b′ are of
form εi + εj for all i ≤ j ≤ n. Order these roots by setting εi + εj < εi′ + εj′

if i < i′ or i = i′ and j < j′ and enumerate them according to this order α1 <
· · · < αn(n+1)/2. Define the sequence of Borel subalgebra b0, . . . , bn(n+1)/2 by

setting b0 := b and defining bk by adding the root αk to bk−1 and removing
the root −αk if αk is invertible. Note that bn(n+1)/2 = b′. Let λk denote the
highest weight of L(λ) with respect to bk, in particular, λ0 = λ. Then we
have the following recursive formula:

i.) If αk = 2εi is not invertible, then λk = λk−1;
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ii.) If αk = εi + εj , i 6= j is invertible we have

λk =

{
λk−1 if λk−1

i = λk−1
j ,

λk−1 + αk if λk−1
i 6= λk−1

j .

Translating this condition to the language of weight diagrams, we obtain
λn(n+1)/2 = λ†. The proof of (31) is complete.

To finish the proof recall that if w0 is the longest element of the Weyl
group then V (µ)∗ = V (−w0(µ)). Hence using (30) we obtain that the b-
highest weight of L(λ)∗ equals −w0(λ†). Since −w0(ρ) = ρ− (n− 1)ω, we
have −w0(µ) + ρ = −w0(µ+ ρ)− (n− 1)ω for all dominant µ. In the lan-
guage of diagrams this means that the diagram of the highest weight of
L(λ)∗ is obtained from the diagram of λ† by the symmetry with respect to
n−1

2 . Hence it equals λ] and the statement is proven. �

6. Computation of decomposition numbers and multiplicity
formulas

For simplicity, we disregard in this section the parity switch; this means that
we will not distinguish between ΠM and M for M ∈ Fn.

6.1. Multiplicity formulas for P (0)

Consider the projective cover P (0) of the trivial module. We compute the
multiplicities (P (0) : ∆(λ)) of thick Kac modules in P (0). With the notation
from (9) let U and U−1 be the 1-dimensional g-modules with highest weight
ω and −ω respectively. Before we state the general result, we give some
examples.

Example 6.1.1. Let n = 2. We claim that

[P (0)] = [∆(0)] + [∆(−ω)].(32)

Consider the weight diagram for the trivial module:

d0 = · · · ◦
−2

◦
−1

•
0

•
1

◦
2

◦
3

· · ·

Write [P (0)] = [∆(0)] +
∑

µ>0 c0,µ[∆(µ)] in Gn, where c0,µ = (P (0) : ∆(µ))
are the multiplicities. We apply Θ2Θ3 and obtain (ignoring parity) from
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Proposition 5.2.1

[Θ2Θ3∆(0)] = [∆(ω)] + [∆(0)],

and for µ > 0 we have: [Θ2Θ3∆(µ)] = 0 if fµ(1) = 0:

?
−1

?
0

◦
1

◦
2

◦
3

and [Θ2Θ3∆(µ)] = ∆(µ) if fµ(1) = 1:

?
−1

◦
0

•
1

◦
2

◦
3

Thus [Θ2Θ3P (0)] = [∆(ω)] + [∆(0)] +
∑

µ>0,fµ(1)=1 c0,µ[∆(µ)]. This is a
projective module, and ω is minimal among the weights ′µ such that ∆(µ)
appears in a ∆-filtration of Θ2Θ3P (0), so P (ω) must be a summand by
Lemma 3.3.1. On the other hand,

(33) [P (ω)] = [P (0)⊗ U ] = [∆(ω)] +
∑
µ>0

c0,µ[∆(µ+ ω)].

Note that for any µ > 0 such that fµ(1) = 1, fµ+ω(2) = 1, so [∆(µ+ ω)]
does not appear in Θ2Θ3[P (0)]. Thus c0,µ = 0 in this case, and therefore

(34) [Θ2Θ3P (0)] = [∆(ω)] + [∆(0)] = [P (ω)].

Tensoring with U−1, we obtain from (33) the desired formula (32).

Example 6.1.2. A similar computation shows that for n = 3, applying
Θ2Θ3Θ4 to P (0) and comparing with P (ω) gives

[P (0)] = [∆(0)] + [∆(−2ω)] + [∆(µ1)] + [∆(µ2)]

where µ1 has the diagram

◦
−3

◦
−2

•
−1

•
0

◦
1

•
2

◦
3

and µ2 has the diagram

◦
−3

•
−2

◦
−1

•
0

•
1

◦
2

◦
3

More generally we have the following multiplicity formulas:



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 679 — #37 i
i

i
i

i
i

Translation functors and decomposition numbers for p(n) 679

Theorem 6.1.3 (Decomposition numbers for P (0)).

1.) The thick Kac modules appearing in the (thick) standard filtration of the
projective module P (0) are precisely the ∆(λ) where λ satisfies: fλ(0) = 1
and fλ(i) + fλ(−i) = 1 for any i = 1, 2, . . . , n− 1.

2.) Similarly, the thin Kac modules appearing in the (thin) costandard filtra-
tion of the projective module P (0) are precisely ∇(λ) where λ satisfies:
fλ(1) = 0 and fλ(1 + i) + fλ(1− i) = 1 for any i = 1, 2, . . . , n.

In particular, the multiplicities of the above (co)standard modules are 1.

Proof. Consider the module Indg
g0
V (0). We first claim that

P (0) ∼= Indg
g0
V (0).

It is a projective module, and there is a canonical map Indg
g0
V (0)→ L(0).

To prove the claim it suffices to verify dim Homg(Indg
g0
V (0), L(λ)) = δλ,0.

Recall that

dim Homg(Indg
g0
V (0), L(λ)) = dim Homg0

(V (0),Resgg0
L(λ)).

If this dimension is positive, then

dim Homg0
(V (0),Resgg0

∆(λ)) and dim Homg0
(V (0),Resgg0

∇(λ))

are positive, which means that both

[Λ(Λ2V0)⊗ V (λ) : V (0)] and [Λ(S2V0)⊗ V (λ) : V (0)]

are positive. Yet the g0-modules Λ(Λ2V0),Λ(S2V0) have only the common
summand V (0), appearing with multiplicity one, (see for example [38, Chap-
ter 2]). This implies that λ = 0, and P (0) ∼= Indg

g0
V (0). This proves our

claim. Now,

(P (0) : ∆(λ)) = (Indg
g0
V (0) : ∆(λ)) = [Λ(g−1) : V (λ)] = [Λ(Λ2V ∗0 ) : V (λ)].

This multiplicity is always equal to 0 or 1, and the latter happens precisely
when λ∗ (the highest weight of V (λ)∗) satisfies the conditions in II.) of
Lemma 6.1.4 below (this is proved, for instance, in [38, Chapter 2], and in
[29, Chapter I, Appendix A, Par. 7]). By Lemma 6.1.4, this is equivalent
to the required condition for λ. A similar argument works for thin Kac
modules. �



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 680 — #38 i
i

i
i

i
i

680 BalDauEntHalHenImLetNorSerStr

Assume µ = (µ1, . . . , µn) is a dominant weight, and µi ≥ 0 for i = 1, . . . ,
n. Then we define for 1 ≤ i ≤ n

(35) armi(µ) = µi − i+ 1 and legi = legi(µ) = µ∨i − i+ 1

as long as this number is positive and call it the i-th arm length respectively
leg length. Here µ is identified with a Young diagram, and µ∨ denotes the
transposed weight (that means the transposed Young diagram) defined as
µ∨i = |{j | µj ≥ i}|. Clearly µ is uniquely determined by the two strictly
decreasing sequences arm1, arm2, . . . , armr and leg1, leg2, . . . , legr observing
that the length of these sequences agree. (In terms of Young diagrams this
means that we describe the diagram by listing the number of boxes on and to
the right of the diagonal in each row respectively strictly below the diagonal
in each column.)

Lemma 6.1.4. Let µ be a dominant weight. Then the following are equiv-
alent

(I) The set Bµ = {µi − i+ 1 | 1 ≤ i ≤ n} contains 0 and precisely one el-
ement from each pair ±j, where 1 ≤ j ≤ n− 1.

(II) µi ≥ 0 for i = 1, . . . , n and armi +1 = legi whenever armi = armi(µ)
and legi = leg(µ)i are defined (equivalently, µi + 1 = µ∨i ).

(III) The set {µ∗i + n− i | 1 ≤ i ≤ n} contains 0 and precisely one element
from each pair ±j, where 1 ≤ j ≤ n− 1.

Proof. The equivalence (I) ⇔ (III) follows directly from the equality µi =
−µ∗n+1−i for 1 ≤ i ≤ n. We will now show (II) ⇒ (I). Since the sequence
(µi − i+ 1)i is strictly decreasing, and µi ≥ 0 for i = 1, . . . , n, we have −n+
1 ≤ µn − n+ 1 ≤ µi − i+ 1 ≤ µ1 ≤ n− 1. Hence

Bµ ⊂ {−n+ 1,−n+ 2, . . . , n− 1}.

It remains to show that µi − i+ 1 + µj − j + 1 6= 0 for any i 6= j. Let i 6= j.
In case µi < i, µj < j we have µi − i+ 1, µj − j + 1 ≤ 0, and since these
numbers are distinct, their sum is clearly not zero. Otherwise (without
loss of generality) µi ≥ i. Then armi, legi are defined, and the assumption
armi +1 = legi implies µ∨i = µi + 1. Thus,

µi − i+ 1 + µj − j + 1 = µ∨i − j + µj − i+ 1 6= 0,
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since µ∨i − j, µj − i are integers, both non-negative if µj ≥ i, and both neg-
ative if µj < i.

For the converse, we compare the cardinality of the set of weights µ
satisfying (I) respectively (II). Indeed, the first set is in bijection with the
collection B of sets Bµ ⊂ {−n+ 1,−n+ 2, . . . , n− 1} having n elements,
and such that if j 6= 0 lies inside, then −j does not (the bijection is via
µ 7→ Bµ = {µi − i+ 1}i=1,...,n). In particular, 0 necessarily lies inside all such
sets.

The second set is in bijection with the collection A of strictly decreas-
ing sequences (arm1, arm2, . . . , armk) with entries in the range 1, 2, . . . , n− 1
and 0 ≤ k ≤ n (denoting the number of boxes on the diagonal in the corre-
sponding Young diagram). The bijection is via

µ 7→ Aµ = (arm1(µ), arm2(µ), . . . , armk(µ))

where k is the number of boxes on the diagonal of the Young diagram of
µ (that is, the largest value for which armk(µ) is defined). Both sets have
cardinality 2n−1, and we have already proved that (II) ⇒ (I). Hence the
statement of the Lemma follows. �

6.2. Arrow diagrams

For a dominant weight λ define the function gλ : Z→ {−1, 1} by setting
gλ(i) = (−1)fλ(i)+1; so gλ(i) = 1 if i ∈ cλ, that means dλ has a black ball at
the i-th position and gλ(i) = −1 if i /∈ cλ. For any j < i set

r+(i, j) =

i−1∑
s=j

g(s) and r−(i, j) = −
i∑

s=j+1

g(s).

For every i ∈ cλ define

←i
N (λ) =

{
j < i | r+(i, j) = 0, r+(i, s) ≥ 0 for all j < s < i

}
.

Also for every j /∈ cλ define

H
j99K

(λ) =
{
i > j | r−(i, j) = 0, r−(s, j) ≥ 0 for all j < s < i

}
.

To obtain the arrow diagram for λ equip dλ with solid and dashed arrows:

• for every i ∈ cλ we draw a solid arrow from i to every j ∈
←i
N (λ).
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• for every j /∈ cλ we draw a dashed arrow from j to every i ∈ H
j99K

(λ).

Observe that H
j99K

(λ) ⊂ cλ and
←i
N (λ) ∩ cλ = ∅. (To see the latter assume

k ∈ cλ and k ∈ Ri(λ). Then 0 = r+(i, k) = 1 + r+(i, k + 1) > 0, which is a
contradiction. Argue similarly for the first.) That means solid arrows always
start at black balls and end at empty places, whereas dashed arrows start
at empty places and end at black balls.

Example 6.2.1. Let n = 4, λ = (1, 1, 0, 0). Below is the diagram of λ: each
element of cλ is marked with a black ball, and for each i ∈ cλ, the positions

j ∈
←i
N (λ) are connected with i by solid arrows. We connect by dashed arrows

all j /∈ cλ with i ∈ H
j99K

(λ),

◦
−4

88◦
−3

99 88◦
−2

<<◦
−1

•
0

•
1

uu ◦
2

•
3

•
4

vvuu ◦
5

For instance,
←4
N (λ) = {−2, 2}, whereas

←0
N (λ) = ∅ and N

99K−3
(λ) = {1, 3}.

Lemma 6.2.2. Let λ be a dominant weight.

1.) Let i1, i2 ∈ cλ, i1 < i2 and j1 ∈
←i1
N (λ), j2 ∈

←i2
N (λ), then either j2 < j1 or

j2 > i1. In other words, two solid arrows can only intersect at a common

source. In particular,
←i1
N (λ) ∩

←i2
N (λ) = ∅.

2.) Let j1, j2 /∈ cλ, j1 < j2 and i1 ∈ H
j199K

(λ), i2 ∈ H
j299K

(λ), then either i2 < i1

or i1 < j2. In other words, two dashed arrows can only intersect at a
common source. In particular, H

j199K
(λ) ∩ H

j299K
(λ) = ∅.

Proof. We only show the first part, since the second is similar. Assume that
the two solid arrow intersect, that is we have j2 < j1 < i2 such that

◦
j1

· · · ◦
j2

· · · •
i1

uu · · · •
i2

uu
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Then r+(i1, j2) ≥ 0, since j1 ≤ j2 < i1, r+(i2, i1 + 1) ≥ 0, hence r+(i2, j2) =

r+(i1, j2) + 1 + r+(i2, i1 + 1) > 1 6= 0. This contradicts j2 ∈
←i2
N (λ). �

We note that for every black ball in dλ there exists at least one arrow
ending there:

Lemma 6.2.3. For any i ∈ cλ, there exists ji /∈ cλ such that i ∈ H
ji99K

(λ).

Remark 6.2.4. The index ji (hence the above arrow) is unique due to
Lemma 6.2.2.

Proof. Given i ∈ cλ, consider the set Ji = {j ≤ i | r−(i, j) = 0} ⊂ Z. Clearly
i ∈ Ji, but Ji has at least one other element: indeed, for j � 0, r−(i, j − 1) <
0, while r−(i, i− 1) = 1, so Ji \ {i} 6= ∅.

In fact, we claim that the set Ji \ cλ is not empty either. Indeed, for
any i′ ∈ Ji ∩ cλ we have Ji′ ⊂ Ji (since r−(i, j) = r−(i, i′) + r−(i′, j) for any
j ≤ i′). Taking i′ := min(Ji ∩ cλ), we obtain Ji′ ⊂ Ji, and Ji′ \ cλ 6= ∅, since
Ji′ ∩ cλ = {i′}. Thus Ji \ cλ 6= ∅. Let ji = max(Ji \ cλ). We claim that i ∈
H

ji99K
(λ), i.e., that r−(s, ji) ≤ 0 for all ji < s < i.

Assume not, then there exists some s such that r−(s, ji) > 0 and ji < s <
i. Since r−(i− 1, ji) < 0, there exists s′ such that ji < s < s′ < i− 1 with
r−(s′, ji + 1) = 0, and thus r−(i, s′) = 0. Thus, s′ ∈ Ji and s′ > ji, which
contradicts the choice of ji. �

The following is an important tool for induction arguments.

Lemma 6.2.5. Consider a dominant weight ν and i such that fν(i) = 1,
fν(i+ 1) = 0. Let λ be obtained from ν by moving a black ball from position
i to position i+ 1:

dν = •
i

◦
i+1

and dλ = ◦
i

•
i+1

Next, let i1 be such that i+ 1 ∈
←i1
N (ν), fν(i1) = 1 and i2 be such that i+ 2 ∈

←i2
N (ν)t{i2}, fν(i2) = 1 (if i1 or i2 do not exist, we set the corresponding
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value to be ∞). Then for j ∈ cλ, we have

←j
N (λ) =



←j
N (ν) if j /∈ {i+ 1, i1, i2},
∅ if j = i+ 1,
←i2
N (ν) ∪ {i} ∪

←i
N (ν) if j = i2,

←i1
N (ν) \ {i+ 1} if j = i1.

Proof. This follows directly from the definitions. �

We denote by N(λ) the set of weight diagrams which are obtained from
dλ by sliding some black balls along solid arrows in the arrow diagram for
λ, and by H(λ) the set of weight diagrams obtained by sliding some black
balls (backwards) along dashed arrows. In formulas

N(λ) =

µ ∈ Λn

∣∣∣∣∣∣∣ ∀i ∈ cλ : fµ(i) +
∑

j∈
←i
N (λ)

fµ(j) = 1

(36)

H(λ) =

µ ∈ Λn

∣∣∣∣∣∣∣ ∀j /∈ cλ : 1− fµ(i) +
∑

i∈ H
j99K

(λ)

(1− fµ(i)) = 1

(37)

Proposition 6.2.6. For any dominant weight λ we have N(λ) ∩ H(λ) =
{λ}.

Proof. Clearly λ ∈ N(λ) ∩ H(λ). Let µ ∈ N(λ) ∩ H(λ). Assume µ 6= λ. Then
the weight diagram dµ of µ is obtained from dλ by sliding some (at least
one!) black balls along dashed arrows (since µ ∈ H(λ)). Consider such a
dashed arrow j0 99K i0 of minimal length. That is, fλ(j0) = 0, fµ(j0) = 1,
fλ(i0) = 1, fµ(i0) = 0, and fλ(s) = fµ(s) for any j0 < s < i0. That is, the
arrow diagram of λ and the weight diagram of µ are locally of the form

◦
j0

99· · · •
i0

resp. •
j0

· · · ◦
i0
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On the other hand, µ ∈ N(λ), which means that dµ was obtained by sliding
some black balls via solid arrows in the diagram for λ. In particular,∑

j∈
←i0
N (λ)

fµ(j) = fµ(i0) +
∑

j∈
←i0
N (λ)

fµ(j) = 1

(the first equality follows from fµ(i0) = 0); hence there exists exactly one

j0 ∈
←i0
N (λ) such that fµ(j) = 1, while fλ(j) = 0.

Also, since µ ∈ N(λ), the black ball at position j0 in dµ has been slid
through a solid arrow in the diagram of λ. We denote the source of this
arrow by i (thus fµ(i) = 0, fλ(i) = 1). Recall that fλ(s) = fµ(s) for any
j0 < s < i0, so j ≤ j0, and i ≥ i0. If i0 6= i then the arrow diagram for λ is
locally of the form

◦
j

· · · ◦
j0

99· · · •
i0

yy · · · •
i

yy

and we obtain contradiction to Lemma 6.2.2. Hence i0 = i, and dµ is of the
form

•
j

· · · •
j0

· · · ◦
i0=i

· · ·

and j0, i0 are connected by both a solid and a dashed arrow in the arrow dia-
gram for λ. Thus r−(i0, j0) = 0 = r+(i0, j0), which leads to the contradiction
−1 = r−(i0, j0)− 1 = r+(i0, j0 + 1) = r+(i0, j0) + 1 = 1 �

6.3. Multiplicity formulas and decomposition numbers

Theorem 6.3.1. For λ a dominant weight, the (thick and thin) Kac filtra-
tions of the projective module P (λ) give equalities in the reduced Grothendieck
group Fn of the form

(38) [P (λ)] =
∑

µ∈N(λ)

[∆(µ)] and [P (λ)] =
∑

µ∈H(λ)

[∇(µ+ 2ω)].
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Remark 6.3.2. Note that Theorem 6.1.3 is Theorem 6.3.1 in the special
case λ = 0.

Before we proceed to prove the theorem, we state the most important
direct consequence of Theorem 6.3.1 and Corollary 3.2.3.

Theorem 6.3.3 (Decomposition numbers). Let µ be a dominant weight.
The following hold in the Grothendieck group of Fn:

[∆(µ)] =
∑

λ s.t. µ∈H(λ)

[L(λ)], and [∇(µ)] =
∑

λ s.t. µ∈N(λ)

[L(λ)]

Together with Proposition 3.7.1 this implies

Corollary 6.3.4. If Ext1(L(λ), L(µ)) 6= 0, then either λ ∈ H(µ) or µ ∈
N(λ).

We introduce abbreviations for the right hand sides of the formulas (38).
Denote

(39) [N(λ)] :=
∑

µ∈N(λ)

[∆(µ)] and [H(λ)] :=
∑

µ∈H(λ)

[∇(µ)],

both considered as elements in the Grothendieck group. For the proof of The-
orem 6.3.1 we need the following important fact (with θi as in Section 4.4):

Proposition 6.3.5. Let ν be a dominant weight and i such that fν(i) = 1,
fν(i+ 1) = 0. Let dλ be obtained from dν by moving a black ball from position
i to position i+ 1, which means

dν = •
i

◦
i+1

and dλ = ◦
i

•
i+1

Then θi+2[N(ν)] = [N(λ)] and θi+2[H(ν)] = [H(λ)].

Proof. First of all, observe that cλ = cν t {i+ 1} \ {i}. As in Lemma 6.2.5,

let i1 be such that i+ 1 ∈
←i1
N (ν) and i2 be such that i+ 2 ∈

←i2
N (ν) t {i2}

(if i1 or i2 do not exist, we set the corresponding value to be ∞).

Then
←j
N (λ) =

←j
N (ν) unless j ∈ {i+ 1, i1, i2}. Let now ζ ∈ N(ν). We com-

pute [Θi+2∆(ζ)] and show that its standard summands lie in [N(λ)].
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i.) If neither i nor i+ 2 occurs in cζ , then [Θi+2∆(ζ)] = 0 by Proposi-
tion 5.2.1. Similarly for the case i+ 1 ∈ cζ .

Otherwise let (a, b, c) ∈ Z3
≥0 be the positions of the black balls in

dζ obtained from dν by sliding along arrows connected with i, i1, i2
respectively. In particular b 6= i+ 1.

ii.) If i occurs in cζ , but not i+ 2,

dζ = •
i

◦
i+1

◦
i+2

then (a, b, c) = (i, b, c) with c 6= i+ 2 and then [Θi+2∆(ζ)] = [∆(ζ ′)]
where ζ ′ corresponds to (i+ 1, b, c).

iii.) If i+ 2 occurs in cζ , but not i,

dζ = ◦
i

◦
i+1

•
i+2

then (a, b, c) = (a, b, i+ 2) with a 6= i and then [Θi+2∆(ζ)] = [∆(ζ ′)]
where ζ ′ corresponds to (i+ 1, b, a).

iv.) If i and i+ 2 occur in cζ ,

dζ = •
i

◦
i+1

•
i+2

then (a, b, c) = (i, b, i+ 2) and then [Θi+2∆(ζ)] = [∆(ζ ′)] + [∆(ζ ′′)]
where ζ ′ corresponds to (i+ 1, b, i+ 2) and ζ ′′ corresponds to (i+
1, b, i).

Note that the resulting triples are (i+ 1, b, c) (from i) and iv)) and (i, b, a)
(from ii) and iv)). Hence, by varying ζ, we obtain thanks to Lemma 6.2.5
precisely the weights in N(λ). The first claim follows.

The proof for the second part is similar, but easier. Let now ζ − 2ω ∈
H(ν), hence ζ ∈ H(ν + 2ω). By assumption dν+2ω has a black ball at position
i+ 2, but not at i+ 3. Assume first that there is no black ball at position
i+ 1 and let i1 be the starting point of the dashed arrow a ending in i+ 2:

dν+2ω = ◦
i1

77· · · ◦
i+1

•
i+2

◦
i+3

.

Then dλ+2ω has no black ball at positions i+ 1 and i+ 2, but at i+ 3 but

the dashed arrow a gets replaced by a dashed arrow from i+ 1 to i+ 3. Now
if i+ 2 does not occur in ζ then [∇(ζ)] does not give any contribution when
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applying θi+2, otherwise it gives exactly the sum [∇(ζ ′)] + [∇(ζ ′′)] where the
entry i+ 2 in cζ is replaced by i+ 1 in cζ′ and respectively i+ 3 in cζ′′ . The
claim follows.

Assume now that there is a black ball at position i+ 1 and let i1 and
i2 be the starting points of the dashed arrows ending in i+ 1, respectively
i+ 2:

dν+2ω = ◦
i2

66· · · ◦
i1

88· · · •
i+1

•
i+2

◦
i+3

.

Note that i2 < i1 and that these two arrows get replaced in the arrow
diagram for λ+ 2ω by two dashed arrows starting at i1 and ending at i+ 1
respectively i+ 3. If we focus on the black balls for these two arrows, then
dζ can have a black ball at positions (i+ 1, i+ 2), (i1, i+ 2), (i+ 1, i2), and
(i1, i2). The last two options clearly give θi[∇(ζ)] = 0 by Proposition 5.2.2,
so we will only consider the first two options. Applying θi+2 to [∇(ζ)] we
obtain the sum of [∇(ζ ′)]’s where ζ ′ has instead black balls at positions
(i+ 1, i+ 3) in the first case, at positions (i1, i+ 1) and (i1, i+ 3) in the
second case. But this gives exactly the claim. �

Proof of Theorem 6.3.1. First we restrict ourselves to the case where λi ≥ 0
for all i (this is possible since − ⊗ U : Pn → Pn is an equivalence of cate-
gories, shifting the weights by ω). In particular, |λ| ≥ 0 with equality exactly
when λ = 0. Now let |λ| > 0, then we can find some dominant weight ν and
i ∈ Z with νi ≥ 0 satisfying the assumptions of Proposition 6.3.5. By induc-
tion on |λ| we may assume that the theorem holds for P (ν). Since Θi+2 sends
projectives to projectives (see for instance Lemma 4.4.1), Θi+2P (ν) is pro-
jective, hence Θi+2P (ν) ∼= ⊕γP (γ)⊕nγ for some finite set of weights γ and
multiplicities nγ . Moreover, [Θi+2P (ν)] = [N(λ)] = [H(λ+ 2ω)] by Proposi-
tion 6.3.5. If P (γ) occurs as a summand, then γ ∈ N(λ) ∩ H(λ). But then
Proposition 6.2.6 forces γ = λ and nγ = 1. Hence Θi+2P (ν) ∼= P (λ) and the
Theorem 6.3.1 follows. �

7. Action of translation functors on indecomposable
projectives

For simplicity, we disregard the parity in the following section; this means
that we will not distinguish between ΠM and M for M ∈ Fn.
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7.1. Main result

Our next goal is to prove the following surprising fact (which should be
compared e.g. with [8, Lemma 2.4]).

Theorem 7.1.1. For any dominant λ and i ∈ Z, Θi(P (λ)) is either inde-
composable projective or zero.

7.2. Detailed analysis of translation functors applied to
projectives

Lemma 7.2.1. Let λ be a dominant weight.

1.) If fλ(i− 2) = 1 and fλ(i− 1) = 0, that is, we have locally

dλ = •
i−2

◦
i−1

then Θi(P (λ)) ∼= P (µ), where

fµ(j) =

{
fλ(j) if j 6= i− 2, i− 1

fλ(j) + 1(mod 2) if j = i− 2, i− 1
.

That is,

dµ = ◦
i−2

•
i−1

2.) If fλ(i− 2) = 0 and fλ(i− 1) = 1, that is, we have locally

dλ = ◦
i−2

•
i−1

then Θi(P (λ)) = 0.

Proof. In the proof of Theorem 6.3.1, we established part 1.). To prove 2.)
use that P (λ) ∼= Θi(P (ν)), where dν is obtained from dλ by moving the black
ball at position i− 1 to position i− 2. Then the statement follows from the
relation Θ2

i
∼= 0. �

Corollary 7.2.2. Assume νi ≤ λi for i = 1, . . . , n, then there exists a se-
quence j1 > · · · > jk of integers such that P (λ) ∼= Θjk · · ·Θj1(P (ν)), and if
we set P (νr) := Θjr · · ·Θj1(P (ν)), then dνr is obtained from dνr−1 by moving
one black ball one position to the right.
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Lemma 7.2.3. Let λ be a dominant weight.

1.) If fλ(i− 2) = fλ(i− 1) = 1, that is we have locally

dλ = •
i−2

•
i−1

then Θi(P (λ)) ∼= P (µ), where dµ is obtained from dλ by moving a black
black ball from i− 2 to the (empty) position j < i− 2 such that r+(i−
1, j) = 0 and j is maximal with such property.

2.) Let fλ(i− 2) = fλ(i− 1) = 0, that is we have locally

dλ = ◦
i−2

◦
i−1

If for all j ≥ i we have r−(j, i− 2) 6= 0, then Θi(P (λ)) = 0. Otherwise,
pick j ≥ i minimal such that r−(j, i− 2) = 0. We have Θi(P (λ)) ∼= P (µ),
where dµ is obtained from dλ by moving the black ball from j to i− 1.

Remark 7.2.4. In part 1.) of Lemma 7.2.3, dµ is obtained from dλ by
moving a black ball from position i− 2 to the empty position j which has
been connected to position i− 1 in the arrow diagram of dλ by the shortest
solid arc:

◦
j

· · · •
i−2

•
i−1

ss ?
i

with

dµ = •
j

· · · ◦
i−2

•
i−1

?
i

In part 2.) of the Lemma, dµ is obtained from dλ by moving a black ball
from position j to the position i− 1, where j has been connected to position
i− 2 in the arrow diagram of dλ by the shortest dashed arrow. (Notice the
symmetry with part 1.)). If j does not exist then ΘiP (λ) = 0. Otherwise,

dµ = ◦
i−2

•
i−1

◦
i

· · · ◦
j

and

dλ = ◦
i−2

77◦
i−1

◦
i

· · · •
j

Alternatively, one can check that if i is empty, it is the target of a solid
arrow in the arrow diagram of dλ whose source is j.
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Proof of Lemma 7.2.3. We start with 1.). First of all, observe that the re-
quirement on position j to be empty is superfluous: indeed, j is maxi-
mal such that r+(i− 1, j) = 0, and r+(i− 1, i− 2) = 1 (since fi−2 = 1), so

r+(i− 1, s) > 0 for any j < s < i− 1. Thus j ∈
←i−1
N (λ), and so j /∈ cλ. De-

note

ui(λ) :=
∑
j<i−2

fλ(j),

(so ui(λ) is the total number of black balls in dλ strictly to the left of position
i− 2).

Assume that fλ(i− 2− r) = · · · = fλ(i− 3) = 1 and fλ(i− 3− r) = 0
(so ui(λ) ≥ r + 2). We prove the statement by double induction on (ui(λ), r).

First assume that r = 0 (this is the base case: ui(λ) = 0 implies r = 0).
Then

dλ = ◦
i−3

•
i−2

•
i−1

Then consider dν obtained from dλ by moving the black balls from positions
i− 2, i− 1 to positions i− 3, i− 2 respectively:

dν = •
i−3

•
i−2

◦
i−1

Then we have P (λ) ∼= Θi−1Θi(P (ν)) and therefore

ΘiP (λ) ∼= ΘiΘi−1Θi(P (ν)) ∼= Θi(P (ν)) ∼= P (µ)

by Lemma 7.2.1, where

dµ = •
i−3

◦
i−2

•
i−1

We now consider the case r = 1:

dλ = ◦
i−4

•
i−3

•
i−2

•
i−1

Then P (λ) ∼= Θi−2(P (κ)) due to Lemma 7.2.1 (dκ is obtained from dλ by
moving a black ball from i− 3 to i− 4):

dκ = •
i−4

◦
i−3

•
i−2

•
i−1

Then Θi(P (λ)) ∼= ΘiΘi−2(P (κ)) ∼= Θi−2Θi(P (κ)) using that Θi and Θi−2

commute due to Theorem 4.5.1. Applying the previous case (r = 0) to
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Θi(P (κ)), we obtain Θi(P (κ)) ∼= P (τ) for

τ = •
i−4

•
i−3

◦
i−2

•
i−1

We can apply to Θi−2(P (τ)) the induction hypothesis, since ui−2(τ) =
ui(λ)− 1. Set Θi−2(P (τ)) ∼= P (µ). Now dτ is obtained from dλ by moving a
black ball from i− 2 to i− 4, and dµ is obtained from dτ by moving a black
ball from i− 4 to j such that r+(i− 3, j) = 0 in dτ , where j is maximal
with such property. Therefore, Θi(P (λ)) ∼= P (µ) satisfies the statement of
the Lemma.

If r ≥ 2, the argument is similar but easier. Let p = i− 1− r. Then let
dκ be the diagram obtained from dλ by moving a black ball from position
p− 1 to p− 2. By Lemma 7.2.1, P (λ) ∼= Θp(κ), and

Θi(P (λ)) ∼= ΘiΘp(P (κ)) ∼= ΘpΘi(P (κ)).

Again, Θi and Θp commute by Theorem 4.5.1. By induction hypothesis (on
r), we have Θi(P (κ)) ∼= P (τ) for some τ . We calculate

P (µ) ∼= Θp(P (τ)) ∼= Θi(P (λ))

using Lemma 7.2.1. To get dµ from dλ we move a black ball from i− 2 to
j and this j satisfies: r+(i− 1, j) = 0. Thus µ satisfies the statement of the
Lemma.

The proof of 2.) is almost symmetric, with minor differences. First of all,
note that if for all j ≥ i we have r−(j, i− 2) 6= 0, then by Theorem 6.3.1,
fλ′(j) = 0 for any thick Kac component ∆(λ′) of P (λ) and any j ≥ i− 2;
this implies Θi∆(λ′) = 0 and thus ΘiP (λ) = 0. Hence, we will assume that
r−(j, i− 2) = 0 for some j ≥ i. Set

u−i (λ) =
∑
j≥i

fλ(j)

(this is the number of black balls at positions to the right of i, inclusive).
By the assumption above, u−i (λ) > 0. Assume that fλ(i− 1) = · · · = fλ(i−
1 + r) = 0 and fλ(i+ r) = 1 (such r exists since u−i (λ) > 0).

We prove our statement by induction on (u−i (λ), r). Consider the base
case r = 0:

dλ = ◦
i−2

◦
i−1

•
i
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Then consider dν obtained from dλ by moving the black ball at position i
to position i− 2:

dν = •
i−2

◦
i−1

◦
i

Then we have P (λ) ∼= Θi+1Θi(P (ν)), and therefore by Lemma 7.2.1

ΘiP (λ) ∼= ΘiΘi+1Θi(P (ν)) ∼= Θi(P (ν)) ∼= P (µ)

where

dµ = ◦
i−2

•
i−1

◦
i

Next, consider the case r = 1, that means

dλ = ◦
i−2

◦
i−1

◦
i

•
i+1

Consider dκ obtained from dλ by moving the black ball at position i+ 1 to
position i:

dκ = ◦
i−2

◦
i−1

•
i

◦
i+1

Then we have P (λ) ∼= Θi+2P (κ) by 1.), and by Theorem 4.5.1

Θi(P (λ)) ∼= ΘiΘi+2(P (κ)) ∼= Θi+2Θi(P (κ)).

We have already seen that Θi(P (κ)) ∼= P (τ) for τ of the form

dτ = ◦
i−2

•
i−1

◦
i

◦
i+1

(this is the case r = 0). Then

Θi(P (λ)) ∼= Θi+2(P (τ)).

To compute Θi+2(P (τ)), we can apply the induction hypothesis, since u−τ (i+
2) = u−(λ)− 1, and obtain

Θi(P (λ)) ∼= Θi+2(P (τ)) ∼= P (µ)

where dµ is obtained from dτ by moving a black ball from j to i+ 1 such
that r−(j, i) = 0 in dτ , and j is minimal with such property. Then we obtain
Θi(P (λ)) ∼= P (µ), where µ satisfies the statement of the Lemma.
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Finally, the case r > 1 is very similar, but easier. Set p := i+ r. Let dκ
be the diagram obtained from dλ by moving a black ball from position p to
p− 1. By Lemma 7.2.1, we have P (λ) ∼= Θp+1(κ), and

Θi(P (λ)) ∼= ΘiΘp+1(P (κ)) ∼= Θp+1Θi(P (κ)).

Again, Θi,Θp+1 here commute by Theorem 4.5.1. By induction hypothesis
(induction on r), we have Θi(P (κ)) ∼= P (τ) for some τ . Calculating

P (µ) ∼= Θp(P (τ)) ∼= Θi(P (λ))

using Lemma 7.2.1, we obtain the desired µ. �

Theorem 7.1.1 follows now directly from Lemmas 7.2.1 and 7.2.3.

8. Multiplicity-freeness results

As an application, we deduce now several crucial multiplicity-freeness re-
sults.

8.1. Hom spaces between indecomposable projectives

Proposition 8.1.1. Let λ, µ be two dominant weights. Then

dim Homg(P (λ), P (µ)) ≤ 1

Proof. Recall that P (λ), P (µ) have filtrations by thick and thin Kac mod-
ules. In view of Lemma 3.2.1, we have:

dim Homg(P (λ), P (µ)) = dim Homg(P (µ+ 2ω), P (λ))

=
∑
τ

(P (µ+ 2ω) : ∆(τ))(P (λ) : ∇(τ))

= |N(µ+ 2ω) ∩ H(λ+ 2ω) |= |N(µ) ∩ H(λ) |

Thus, our claim is that |N(µ) ∩ H(λ) |≤ 1. In case µ is typical, i.e., N(µ) =
{µ} this is obvious, since |N(µ) ∩ H(λ) |≤ |N(µ) |= 1. We now show how to
reduce the problem to the case when µ is typical.
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Namely, by Corollary 7.2.2, P (µ) can be obtained from P (µ′) for some
typical weight µ′ by a sequence Θi1 ,Θi2 , . . . ,Θik of translation functors:

P (µ) ∼= Θi1 ◦Θi2 ◦ · · · ◦ΘikP (µ′)

Then by the adjunctions from Proposition 4.4.1 we obtain

dim Homg(P (λ), P (µ))

= dim Homg(P (λ),Θi1 ◦Θi2 ◦ · · · ◦ΘikP (µ′))

= dim Homg(Θik+1 ◦ · · · ◦Θi2+1 ◦Θi1+1P (λ), P (µ′))

Since by Theorem 7.1.1, the module Θik+1 ◦ · · · ◦Θi2+1 ◦Θi1+1P (λ) is inde-
composable, it is enough to consider the case when µ is a typical weight.
Hence the claim follows. �

This immediately implies the following surprising fact:

Theorem 8.1.2. Indecomposable projective objects in Fn are multiplicity-
free, i.e.,

[P (λ) : L(µ)] ≤ 1

for any dominant weights λ, µ.

Proof. We have [P (λ) : L(µ)] = dim Homg(P (µ), P (λ)) ≤ 1 by Prop. 8.1.1.
�

8.2. Multiplicities in translations of simples

In contrast to the case of projectives, the images of simple modules under the
action of translation functors is hard to describe. Below we deduce corollaries
of Lemma 7.2.3 concerning the translation of simple modules.

Theorem 7.1.1 implies that for any i, ΘiL(λ) is zero or indecomposable:
indeed if nonzero, it has a simple socle and a simple cosocle, since

ΘiP (λ)� ΘiL(λ) ↪→ ΘiI(λ)

and we have seen that the image of each indecomposable projective/injective
is again a projective/injective, with simple cosocle and socle.

Corollary 8.2.1. Let λ 6= λ′ be two distinct weights, and let i be an integer.

1) The module ΘiL(λ) is multiplicity-free.
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2) The modules ΘiL(λ) and ΘiL(λ′) do not have any common simple
components.

Proof. For any µ,

[Θi(L(λ)) : L(µ)] = dim Homg(P (µ),ΘiL(λ)) = dim Homg(Θi+1P (µ), L(λ)).

Now Θi+1P (µ) is either 0 or isomorphic to P (ν) for some ν, hence [Θi(L(λ)) :
L(µ)] = δν,λ ≤ 1, implying both statements. �

In fact, one can immediately give some sufficient conditions for ΘiL(λ)
to be zero:

Corollary 8.2.2. We have ΘiL(λ) = 0 if λ does not satisfy fλ(i− 1) =
0, fλ(i) = 1. That is Θi(L(λ)) 6= 0 only if dλ looks locally as follows

◦
i−2

◦
i−1

or •
i−2

•
i−1

or •
i−2

◦
i−1

Proof. Once again, for any µ, it holds

[Θi(L(λ)) : L(µ)] = dim Homg(P (µ),ΘiL(λ))

= dim Homg(Θi+1P (µ), L(λ)) = δΘi+1P (µ),P (λ).

To have ΘiL(λ) 6= 0, positions i− 2, i− 1, i of dλ have to be of the types
obtained in Lemma 7.2.3. �

8.3. Socles and cosocles of Kac modules

In this subsection we compute explicitly the socle of standard and the cosocle
of costandard modules. As in the previous section we disregard parity.

Proposition 8.3.1. Let λ ∈ Λn.

1.) The cosocle of ∇(λ) is L(τ), where dλ is obtained from dτ by transferring
each black ball through the longest solid arrow originating in it.

2.) The socle of ∆(λ) is L(τ ′), where dλ is obtained from dτ ′ by transferring
black balls through the maximal dashed arcs: i.e., for each empty position
we choose the dashed arrow of maximal length originating in it, and
transfer the corresponding black ball.

3.) In addition, we have τ ′ = τ + 2ω.
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Remark 8.3.2. This result gives another interpretation of the construction
(·)] given in Section 5.3: let µ := −w−1

0 (λ)− γ̃. Then L(τ + 2ω) = L(µ]) =

L(µ)∗ ↪→ ∆(µ)∗ = ∆(−w0µ− γ̃) = ∆(λ) and thus τ =
(
−w−1

0 (λ)− γ̃
)] − 2ω.

Example 8.3.3.

1.) Let n = 3, λ = 0:

dλ = ◦
−1

•
0

•
1

•
2

◦
3

◦
4

◦
5

◦
6

Then τ = 2ω:

dτ = ◦
−1

◦
0

◦
1

•
2

•
3

vv •
4

vv ◦
5

◦
6

and τ ′ = 4ω:

dτ ′ = ◦
−1

◦
0

77◦
1

99◦
2

==◦
3

•
4

•
5

•
6

2.) Let n = 3, λ = ρ.

dλ = ◦
−1

•
0

◦
1

•
2

◦
3

•
4

◦
5

◦
6

This is a typical weight, and τ = λ = ρ. On the other hand, τ ′ = ρ+ 2ω:

dτ ′ = ◦
−1

◦
0

8899<<◦
1

•
2

◦
3

•
4

◦
5

•
6

Proof of Proposition 8.3.1. Let us call an arrow (either solid or dashed)
maximal, if it is the longest arrow originating from its source.

Let L(τ) be the cosocle of ∇(λ). Let µ = −w0λ+ γ and let τ be the
highest weight of the simple module L(µ)∗. By Lemma 3.6.1, the dual of the
map ∆(µ)→ ∇(µ) (whose image is L(µ)) is a map

∇(µ)∗ = ∇(λ)→ ∆(µ)∗ = ∆(λ− 2ω)

whose image is the simple module L(τ) = L(µ)∗. Therefore L(τ) is the socle
of ∆(λ− 2ω) (and thus L(τ + 2ω) is the socle of ∆(λ)). This implies that
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λ ∈ N(τ) ∩ H(τ + 2ω). We know that

1 = dim Endg(P (τ))

=
∑
µ

(P (τ) : ∆(µ))(P (τ) : ∇(µ)) = |N(τ) ∩ H(τ + 2ω) | .

Thus it is enough to check that the only element in N(τ) ∩ H(τ + 2ω)
is obtained by sliding black balls along the maximal solid arrows in dτ (re-
spectively, the maximal dashed arrows in dτ+2ω).

Denote by dλ′ the diagram obtained from dτ by sliding black balls along
the maximal solid arcs, and by dλ′′ the diagram obtained from dτ+2ω by
sliding black balls along the maximal dashed arcs. We wish to show that
λ′ = λ′′, which would imply that they coincide with λ.

Indeed, consider a position i. Assume that fλ′(i) 6= fλ′′(i). We start by
some observations, which will be the main tools used in our proof, and then
arrive at a contradiction case-by-case.

(A) By definition, fτ (i) 6= fλ′(i) if and only if i is the source or the target
of a maximal solid arrow in dτ .
a) This happens only if fτ (i) = fτ (i− 1).

b) If fτ (i) = 1, then fτ (i) 6= fλ′(i) iff
←i
N (τ) 6= ∅ ⇔ fτ (i− 1) = 1 (a

black ball is the source of some maximal solid arrow iff it is the
source of any solid arc).

(B) Similarly, fτ (i− 2) = fτ+2ω(i) 6= fλ′′(i) if and only if i− 2 is the source
or the target of a maximal dashed arrow in dτ .
a) If 0 = fτ (i− 2) 6= fλ′′(i), then fτ (i− 1) = 0.
b) If fτ (i− 2) = 1, then fτ (i− 2) 6= fλ′(i) if and only if fτ (i− 1) = 1.

This happens since every black ball is the target of some dashed
arrow (see Lemma 6.2.3), and so it is the target of a maximal dashed
arrow if and only if fτ (i− 1)fτ (i− 2) = 1.

c) If fτ (i− 2) = 0, and H
i−299K

(τ) 6= ∅, then fτ (i− 2) 6= fλ′(i) (an empty

position is the source of some maximal dashed arrow iff it is the
source of any dashed arc).

(C) Assume fτ (i− 2) = fτ (i− 1) = fτ (i) = 0.

If H
i−299K

(τ) 6= ∅, then setting j := min( H
i−299K

(τ)), we have: i ∈
←j
N (τ),

and the solid arrow from j to i is maximal. And vice versa: if i ∈
←j
N (τ),

then j ∈ H
i−299K

(τ).



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 699 — #57 i
i

i
i

i
i

Translation functors and decomposition numbers for p(n) 699

dτ = ◦
i−2

66◦
i−1

◦
i

· · · •
j

vv

(D) Similarly, assume fτ (i− 2) = 1, fτ (i− 1) = fτ (i) = 0. If i ∈
←j
N (τ) for

some j, i− 2 ∈ H
j199K

(τ) for some j1, then j ∈ H
j199K

(τ):

dτ = ◦
j1

66 66· · · •
i−2

◦
i−1

◦
i

· · · •
j

vv

And vice versa: if i− 2 ∈ H
j199K

(τ) for some j1 and j := min( H
j199K

(τ) ∩

Z>i−2), then i ∈
←j
N (τ) (and the arrow from j to i is maximal).

We now consider the 8 possibilities for the values

~a := (fλ′(i)− fλ′′(i), |fλ′(i)− fτ (i)|, |fλ′′(i)− fτ (i− 2)|)
∈ {1,−1} × {0, 1} × {0, 1}.

i.) Let ~a = (−1, 1, 1). Then we would have fτ (i) = 1 6= fλ′(i) = 0 6=
fλ′′(i) = 1 6= fτ (i− 2) = 0, which would imply, by (A), (B) above
fτ (i) = fτ (i− 1) = fτ (i− 2) = 0, leading to a contradiction.

ii.) Let ~a = (1, 1, 1). In this case, we have fτ (i) = 0 6= fλ′(i) = 1 6= fλ′′(i) =
0 6= fτ (i− 2) = 1 and by the (A), 0 = fτ (i) = fτ (i− 1), fτ (i− 2) = 1:

dτ = •
i−2

◦
i−1

◦
i

Since fλ′′(i) 6= fτ (i− 2), i− 2 is the target of a maximal dashed arrow
in dτ , originating in a position j1. But (D) would imply that j ∈ H

j199K
(τ),

which means that the arrow from j1 to i− 2 is not maximal, leading
to a contradiction.

iii.) Let ~a = (−1, 0, 0). In this case fλ′(i) = 0 = fτ (i), fλ′′(i) = 1 = fτ (i−
2). By (B), we conclude that fτ (i− 1) = 0:

dτ = •
i−2

◦
i−1

◦
i
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Let j1 be such that i− 2 ∈ H
j199K

(τ) (such j2 exists by Lemma 6.2.3).

Since fλ′′(i) = fτ (i− 2), the dashed arrow from j1 to i− 2 is not max-
imal (see (B)), so by (D), setting j := min( H

j199K
(τ) ∩ Z>i−2), we have:

i ∈
←j
N (τ) (and the arrow from j to i is maximal). But this would imply

fλ′(i) 6= fτ (i) (see (A)), leading to a contradiction.

iv.) If fτ (i) = fλ′(i) = 1, then fτ (i− 1) = 0 = fλ′′(i). Assume fλ′′(i) =
fτ (i− 2) = 0:

dτ = ◦
i−2

◦
i−1

•
i

By (B), this would imply that H
i−299K

(τ) = ∅, although i ∈ H
i−299K

(τ),

leading to a contradiction. Thus fλ′′(i) 6= fτ (i− 2) = 1:

dτ = •
i−2

◦
i−1

•
i

Then 1 = fτ (i− 2) = fτ (i− 1) = 0 by (B), which leads to a contradic-
tion. Thus we have eliminated cases ~a = (1, 0, 0) and ~a = (1, 0, 1).

v.) If fλ′(i) = 1 6= fτ (i), and fλ′′(i) = 0, then i is the target of some max-
imal solid arrow starting in j, and thus j ∈ H

i−299K
(τ) by (C), thus 0 =

fτ (i− 2) 6= fλ′′(i) = 0, which is a contradiction. On the other hand, if
fλ′(i) = 0 = fτ (i), and fλ′′(i) = 1 6= fτ (i− 2), then H

i−299K
(τ) 6= ∅ (again,

by (C)), and so i is the target of a maximal solid arc, implying fλ′(i) 6=
fτ (i) which gives a contradiction. We have eliminated the cases ~a =
(1, 1, 0) and ~a = (−1, 0, 1).

vi.) Let ~a = (−1, 1, 0). In this case fλ′(i) = 0 6= fτ (i), fλ′′(i) = 1 = fτ (i−
2). By (A), the former implies fτ (i− 1) = fτ (i) = 1:

dτ = •
i−2

•
i−1

•
i

But then, by (B), fτ (i− 1) = 1 would imply fτ (i− 2) 6= fλ′(i), leading
to a contradiction.

This completes the proof of Proposition 8.3.1. �
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8.4. Illustrating examples

We conclude this section by presenting some examples showing that the
length of ΘiL(λ) can be any number between 0 and n+ 1.

Example 8.4.1. We have already seen that ΘiL(λ) is frequently zero. Here
is an example when it has length 1 (i.e., it is simple):

dλ = ◦
i−2

◦
i−1

•
i

•
i+1

Indeed, by Proposition 4.4.1, [ΘiL(λ) : L(µ)] 6= 0 if and only if Θi+1P (µ) ∼=
P (λ). This is (by the Lemmas 7.2.1 and 7.2.3) only the case for µ such that
fµ(i+ 1) = fµ(i− 1) = 1, fµ(i) = 0 and fµ(j) = fλ(j) otherwise.

Next, we give a general example of a λ such that ΘiL(λ) has length ≥ 2.

Example 8.4.2. Fix k ∈ {0, . . . , n− 1}. Let λ be a dominant weight with
black balls at positions i, i+ 2, . . . , i+ 2k, and all other positions ≥ i− 2 are
empty. The rest of the black balls can be arranged arbitrarily at positions
< i− 2:

dλ = ◦
i−1

•
i

◦
i+1

•
i+2

◦
i+3

· · · •
i+2k

◦
i+2k+1

We claim that ΘiL(λ) has length k + 2, i.e., there exist k + 2 dominant
weights µ such that Θi+1P (µ) ∼= P (λ). Indeed, by Lemma 7.2.3, such a
weight µ has the form

µj = ◦
i−1

◦
i

◦
i+1

•
i+2

◦
i+3

· · · •
i+2j

•
i+2j+1

· · ·

for some j ∈ {−1, 0, 1, 2, . . . , k}. Moreover, for any such j, Θi+1P (µj) ∼=
P (λ).

Example 8.4.3. Let us consider a special case of the above construction.
Let n = 3 and consider the typical weight λ with the diagram

◦
−1

•
0

◦
1

•
2

◦
3

•
4

◦
5

◦
6
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there are 4 possible weights µj as above:

dµ1
= •

−1
◦
0

◦
1

•
2

◦
3

•
4

◦
5

◦
6

dµ2
= ◦

−1
◦
0

•
1

•
2

◦
3

•
4

◦
5

◦
6

dµ3
= ◦

−1
◦
0

◦
1

•
2

•
3

•
4

◦
5

◦
6

dµ4
= ◦

−1
◦
0

◦
1

•
2

◦
3

•
4

•
5

◦
6

In this case the Loewy length of Θ0L(λ) is also 4, and the Loewy filtra-
tion has subquotients (from socle to cosocle):

L(µ2); ΠL(µ3);L(µ4); ΠL(µ1)

To prove this statement, recall that

1) The weight λ is typical, so we have an exact sequence

0→ ∇(µ2) −→ Θ0L(λ) = Θ0∇(λ) −→ L(µ1) = Π∇(µ1)→ 0

2) Θ0∆(λ) = Π∆(µ1), and has a simple cosocle ΠL(µ1). Thus

Θ0∆(λ) = Π∆(µ1) = ΠP (µ1)� Θ0L(λ)

and Θ0L(λ) has cosocle ΠL(µ1), with radical ∇(µ2).

By Lemma 8.3.1, ∇(µ2) has both a simple socle L(µ2) and a simple cosocle
L(µ4).

Remark 8.4.4. In particular

Ext1
Fn(L(µ4), L(µ3)) 6= 0 and Ext1

Fn(L(µ3), L(µ2)) 6= 0.

Moreover, the surjective map P (µ1)� Θ0L(λ) implies also

Ext1
Fn(L(µ1), L(µ4)) 6= 0.

This fits with Corollary 6.3.4, since µ4 ∈ H(µ3), µ2 ∈ N(µ3), and µ1 ∈ H(µ4).

In particular, ΘiL(λ) has Loewy length equal to 4 and its socle filtration
agrees with its radical filtration, hence the module is rigid.
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Remark 8.4.5. Observe that the socle/radical filtration does not seem to
be related to the order on the weights, since we have µ4 ≤ µ3 ≤ µ2 ≤ µ1.

Remark 8.4.6. The appearing large Loewy lengths are very much in con-
trast to the classical category O situation and the case of finite dimensional
representations of GL(m|n), where it is a (nontrivial!) fact that ΘsL(λ), that
is a through a wall translated simple module, is zero or of Loewy-length 3.
It always has simple socle and simple cosocle, but with a possibly large
semisimple middle layer which can be described via (parabolic) Kazdhan-
Lusztig-Vogan polynomials, see e.g. [24, 8.10, 8.16] and its translation to
the GL(m|n) situation via [8, Theorem 1.1], [7, Theorem 1.1]. In particu-
lar, these modules are always rigid. The rigidity can also be deduced via
[3, Proposition 2.4.1] from the fact that ΘiL(λ) has simple socle and simple
cosocle invoking the again a nontrivial fact that these categories are Koszul,
see [3], [8]. In our periplectic situation we expect that ΘiL(λ) is still always
rigid for any n, λ and i, but a proof would require new techniques.

9. Blocks and action of translation functors

In this section we finally determine the blocks of Fn, and describe the action
of translation functors on these blocks.

9.1. Classification of blocks

Example 9.1.1. In case n = 1 the integral dominant weights are just
given by integers λ. Since ρ = 0 in this case, the ρ-shift is irrelevant. By
Lemma 3.4.1 and Corollary 3.2.3 we have P (i) = ∆(i) and ∇(i) = L(i), and
so by Theorem 6.3.1 P (i) fits into a non-split short exact sequence of the
form

0→ L(i+ 2)→ P (i)→ L(i)→ 0.

In particular, the category decomposes into four blocks, two of which are
connected by a parity switch.

Ignoring the parity, the two blocks are: one where the simple modules
have an odd integer as their highest weight, and the one where the simple
modules have an even integer as their highest weight.

Moreover, apart from the identity morphisms on indecomposable pro-
jectives, we have only the maps φi : P (i)→ P (i− 2) for i ∈ Z (sending the
cosocle to the socle) which satisfy φi−2φi = 0. Hence, each block is equiva-
lent to the category of finite dimensional complexes of vector spaces; in other
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words, it is equivalent to the category of finite-dimensional representations
of the A∞-quiver

· · · � → � → � → · · ·

with vertices � labeled by integers, and with the relation that the composi-
tion of two arrows is always zero.

To state the classification of blocks, we need some notation. For every
λ ∈ Λn, set

κ(λ) =
∑
i∈cλ

(−1)i and q(λ) =

{
0 if |λ| ≡ 0, 1 mod 4,

1 if |λ| ≡ 2, 3 mod 4.

with cλ as in (9). For instance the weights µ1, µ2, µ3, µ4 from Example 8.4.3
have all the same κ-value 1, and q-values

q(µ1) = q(µ3) = 1, q(µ2) = q(µ4) = 0.

Theorem 9.1.2. The category Fn has 2(n+ 1) blocks. There is a bijection
between blocks and {−n,−n+ 2, . . . , n− 2, n} × {+,−}. We have a decom-
position

Fn =
⊕

p∈{−n,−n+2,...,n−2,n}

(Fn)+
p ⊕

⊕
p∈{−n,−n+2,...,n−2,n}

(Fn)−p ,

where the block (Fn)+
p (resp. (Fn)−p ) contains all simple modules L(λ) with

κ(λ) = p and with parity of the highest weight vector equal to q(λ) (resp.
q(λ) + 1).

Proof. Notice that the function q : Λn → Z2 extends uniquely to the whole
weight lattice so that q(λ+ α) = q(λ) + q(α) for any weight λ and any root
α. Moreover, q(α) = 0 for any even root α and q(α) = 1 for any odd root
α. We have a decomposition Fn = F+

n ⊕F−n , where F+
n (resp. F−n ) consists

of all modules such that all weight vectors of weight µ have parity q(µ)
(resp. q(µ) + 1). Now we proceed to decomposing F±n into the blocks. In the
argument which follows we ignore the parity consideration.

We consider the minimal equivalence relation on the set of dominant
weights such that λ ∼ µ if µ is obtained from λ by sliding a black ball via
a solid or dashed arc. Proposition 3.7.1 and Theorem 6.3.1 imply that L(λ)
and L(µ) belong to the same block if and only if λ ∼ µ. If we move a black
ball via a solid to dashed arrow from position i to position j, then i ≡ j
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mod 2. Hence κ is constant on every equivalence class. It remains to show
that if κ(λ) = κ(µ), then λ ∼ µ. We prove that by induction on n. The
case n = 1 is clear since moving via dashed arrow amount to moving the
only black ball two positions to the left. Now let ν(i) = νn−i+1 denote the
position of the i-th black ball counting from the left in the diagram of ν.

Assume first that λ(1) ≡ µ(1) mod 2. Then moving the leftmost black
ball in the both diagrams two position to the left several times we can obtain
λ′ ∼ λ and µ′ ∼ µ such that λ′(1) = µ′(1), λ′(i) = λ(i) and µ′(i) = µ(i) for
all i > 1, and λ′(2)− λ′(1), µ′(2)− µ′(1) > n2. Let λ̃ and µ̃ be the diagram
obtained from λ′ and µ′ by removing the leftmost black ball. It is easy to
see that the last condition implies that λ′ ∼ µ′ if and only if λ̃ ∼ µ̃. Since
κ(λ̃) = κ(µ̃) we have λ̃ ∼ µ̃ by the induction hypothesis. Hence λ ∼ µ.

Now we assume that λ(1) ≡ 1 + µ(1) mod 2. Without loss of generality
we may assume that λ(1) ≡ 1 mod 2 and µ(1) ≡ 0 mod 2. Note that in
this case κ(λ) = κ(µ) 6= ±n. Let r be the minimal index such that λ(r) ≡ 0
mod 2. Moving the r − 1-st black ball of λ to the right (against dashed
arrows), we obtain λ′ in the same equivalence class such that λ′(r − 1) + 1 =
λ′(r). Now we can move the r-th black ball of λ′ to the left via a solid
arrow, so that the r-th black ball jumps over the r − 1-st. In this way we
obtain λ′′ ∼ λ′ ∼ λ. Let s be the minimal index such that λ′′(s) ≡ 0 mod 2.
Then clearly s < r. Repeating this procedure several times, we will obtain a
dominant weight ν which is equivalent to λ, and such that ν(1) ≡ 0 mod 2.
This reduces the situation to the previous case. �

Remark 9.1.3. Note that the blocks (Fn)±n and (Fn)±−n are the only blocks
in which all simple modules have typical weights (and thus coincide with thin
Kac modules).

Example 9.1.4.

1.) The trivial module L(0) = C lies in (Fn)+
0 if n is even, and in (Fn)+

1 if
n is odd.

2.) The simple module L(ρ) = ∇(ρ) with a highest weight vector ~v such that
p(v) = 0 lies in (Fn)±n , where the sign is + if n ≡ −1, 0, 1, 2(mod 8), and
− otherwise.

9.2. Action of translation functors on blocks

The following result describes the action of translation functors on blocks.
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Corollary 9.2.1. Let i ∈ Z, p ∈ {−n,−n+ 2, . . . , n− 2, n}. Then we have

Θi((Fn)±p ) ⊂


(Fn)±p+2 if i is odd and n−p

2 is even,

(Fn)∓p+2 if i is odd and n−p
2 is odd,

(Fn)±p−2 if i is even and n−p
2 is even,

(Fn)∓p−2 if i is even and n−p
2 is odd.
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[22] M. Gorelik, The center of a simple P -type Lie superalgebra, J. Algebra
246 (2001), no. 1, 414–428.

[23] C. Gruson and V. Serganova, Cohomology of generalized supergrass-
mannians and character formulae for basic classical Lie superalgebras,
Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 852–892.

[24] J. E. Humphreys, Representations of Semisimple Lie Algebras in the
BGG Category O, Vol. 94 of Graduate Studies in Mathematics, Amer-
ican Mathematical Society, Providence, RI (2008).



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 708 — #66 i
i

i
i

i
i

708 BalDauEntHalHenImLetNorSerStr

[25] V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96.

[26] V. G. Kac, Representations of classical Lie superalgebras, in: Differ-
ential Geometrical Methods in Mathematical Physics, II (Proc. Conf.,
Univ. Bonn, Bonn, 1977), Vol. 676 of Lecture Notes in Math., 597–626,
Springer (1978).

[27] C. Kassel, Quantum Groups, Vol. 155 of Graduate Texts in Mathemat-
ics, Springer (1995).

[28] J. Kujawa and B. Tharp, The marked Brauer category, J. Lond. Math.
Soc. (2) 95 (2017), no. 2, 393–413.

[29] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University
Press, second edition (1995).

[30] D. Moon, Tensor product representations of the Lie superalgebra p(n)
and their centralizers, Comm. Algebra 31 (2003), no. 5, 2095–2140.

[31] M. Nazarov, Young’s orthogonal form for Brauer’s centralizer algebra,
J. Algebra 182 (1996), no. 3, 664–693.

[32] I. Penkov and V. Serganova, Generic irreducible representations of
finite-dimension Lie superalgebras, Internat. J. Math. 5 (1994), no. 3,
389–419.

[33] I. Penkov and V. Serganova, Characters of irreducible G-modules and
cohomology of G/P for the Lie supergroup G = Q(N), J. Math. Sci. 84
(1997), no. 5, 1382–1412.

[34] V. Serganova, Kazhdan-Lusztig polynomials and character formula for
the Lie superalgebra gl(m|n), Selecta Math. (N.S.) 2 (1996), no. 4, 607–
651.

[35] V. Serganova, On representations of the Lie superalgebra p(n), J. Alge-
bra 258 (2002), no. 2, 615–630.

[36] V. Serganova, Quasireductive supergroups, in: New Developments in Lie
Theory and Its Applications, Vol. 544 of Contemp. Math., 141–159,
Amer. Math. Soc., Providence, RI (2011).

[37] C. Stroppel, Categorification of the Temperley-Lieb category, tangles,
and cobordisms via projective functors, Duke Math. J. 126 (2005), no. 3,
547–596.



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 709 — #67 i
i

i
i

i
i

Translation functors and decomposition numbers for p(n) 709

[38] J. Weyman, Cohomology of Vector Bundles and Syzygies, number 149 in
Cambridge Tracts in Mathematics, Cambridge University Press (2003).

M.B.: School of Mathematics, Statistics and Physics

Newcastle University, NE1 7RU, UK

E-mail address: martina.balagovic@newcastle.ac.uk

Z.D.: Dept. of Mathematics, City College of New York

New York, NY 10031, USA

E-mail address: zdaugherty@gmail.com

I.E.-A.: Dept. of Mathematics, Tel Aviv University

Tel Aviv, Israel

E-mail address: inna.entova@gmail.com

I.H.: School of Math. and Statistics

University of Melbourne, VIC 3010, Australia

E-mail address: iva.halacheva@unimelb.edu.au

J.H.: Dept. of Mathematics and Statistical Sciences

University of Alberta, Edmonton, T6G 2G1, Canada

E-mail address: jhennig1@ualberta.ca

M.S.I.: Department of Mathematics Sciences

United States Military Academy, NY 10996, USA

E-mail address: meeseongim@gmail.com

G.L.: Department of Defense

Ft. George G. Meade, MD 20755, USA

E-mail address: gletzter@verizon.net

E.N.: Department of Mathematics, TU Kaiserslautern

67663 Kaiserslautern, Germany

E-mail address: norton@mathematik.uni-kl.de

V.S.: Department of Mathematics

University of California Berkeley, CA 94720, USA

E-mail address: serganov@math.berkeley.edu



i
i

“2-Stroppel” — 2019/9/3 — 11:42 — page 710 — #68 i
i

i
i

i
i

710 BalDauEntHalHenImLetNorSerStr

C.S.: Mathematisches Institut, Universitaet Bonn

53115 Bonn, Germany

E-mail address: stroppel@math.uni-bonn.de

Received January 31, 2017

Accepted August 7, 2018


	Introduction
	The periplectic Lie supergroup and its finite dimensional representations
	Kac modules and BGG reciprocity
	Translation functors and the fake Casimir element
	Combinatorics: Weight diagrams, translations and duality
	Computation of decomposition numbers and multiplicity formulas
	Action of translation functors on indecomposable projectives
	Multiplicity-freeness results
	Blocks and action of translation functors
	References

