Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers

Andrei K. Lerner

Quantitative weighted estimates are obtained for the Littlewood-Paley square function S associated with a lacunary decomposition of \mathbb{R} and for the Marcinkiewicz multiplier operator. In particular, we find the sharp dependence on $[w]_{A_p}$ for the $L^p(w)$ operator norm of S for 1 .

1. Introduction

Given a weight w (i.e., a non-negative locally integrable function on \mathbb{R}^n), we say that $w \in A_p, 1 , if$

$$[w]_{A_p} = \sup_{Q} \langle w \rangle_Q \langle w^{1-p'} \rangle_Q^{p-1} < \infty,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ and $\langle \cdot \rangle_Q$ is the integral mean over Q.

In the recent decade, it has been of great interest to obtain the $L^p(w)$ operator norm estimates (possibly optimal) in terms of $[w]_{A_p}$ for the different operators in harmonic analysis. In particular, it was established that the $L^p(w)$ operator norms of Calderón-Zygmund and a large class of Littlewood-Paley operators are bounded by a multiple of

$$[w]_{A_p}^{\max\left(1,\frac{1}{p-1}
ight)}$$
 and $[w]_{A_p}^{\max\left(\frac{1}{2},\frac{1}{p-1}
ight)}$,

respectively, and these bounds are sharp for all 1 (see [6, 12, 17, 21]).

On the other hand, there are still a number of operators for which the sharp bounds in terms of $[w]_{A_p}$ are not known yet. For example, for rough

The author was supported by ISF grant No. 447/16 and ERC Starting Grant No. 713927.

Andrei K. Lerner

homogeneous singular integrals T_{Ω} with angular part $\Omega \in L^{\infty}$ the currently best known result says that $||T_{\Omega}||_{L^2(w)\to L^2(w)}$ is at most a multiple of $[w]_{A_2}^2$, and it is an open question whether this bound is sharp (see [5, 15, 18]). Several other examples are the main objects of the present paper.

We consider the classical Littlewood-Paley square function associated with a lacunary decomposition of \mathbb{R} and the Marcinkiewicz multiplier operator. Recall the definitions of these objects. For $k \in \mathbb{Z}$ set $\Delta_k = (-2^{k+1}, -2^k] \cup [2^k, 2^{k+1})$. The Littlewood-Paley square function we shall deal with is defined by

$$Sf = \left(\sum_{k \in \mathbb{Z}} |S_{\Delta_k}f|^2\right)^{1/2},$$

where $\widehat{S_{\Delta_k}f} = \widehat{f}\chi_{\Delta_k}$. We say that T_m is the Marcinkiewicz multiplier operator if $\widehat{T_mf} = m\widehat{f}$, where $m \in L^{\infty}$ and

$$\sup_{k\in\mathbb{Z}}\int_{\Delta_k}|m'(t)|dt<\infty.$$

The fact that S and T_m are bounded on $L^p(w)$ for $w \in A_p$ is well known and due to D. Kurtz [16]. Tracking the dependence on $[w]_{A_p}$ in the known proofs yields, for example, that the $L^2(w)$ operator norms of S and T_m are bounded by a multiple of $[w]_{A_2}^2$ and $[w]_{A_2}^4$, respectively.

In this paper we give new proofs of the $L^p(w)$ boundedness of S and T_m providing better quantitative estimates it terms of $[w]_{A_p}$. Our main results are the following.

Theorem 1.1. If α_p is the best possible exponent in

$$\|S\|_{L^{p}(w)\to L^{p}(w)} \le C_{p}[w]_{A_{n}}^{\alpha_{p}},$$

then

$$\max\left(1, \frac{3}{2}\frac{1}{p-1}\right) \le \alpha_p \le \frac{1}{2}\frac{1}{p-1} + \max\left(1, \frac{1}{p-1}\right) \quad (1$$

in particular, $\alpha_p = \frac{3}{2} \frac{1}{p-1}$ for 1 .

Theorem 1.2. If β_p is the best possible exponent in

$$||T_m||_{L^p(w)\to L^p(w)} \le C_{p,m}[w]_{A_p}^{\beta_p},$$

then

$$\frac{3}{2} \max\left(1, \frac{1}{p-1}\right) \le \beta_p \le \frac{p'}{2} + \max\left(1, \frac{1}{p-1}\right) \quad (1$$

Observe that the lower bounds for α_p and β_p are immediate consequences of several known results. By a general extrapolation argument due to T. Luque, C. Pérez and E. Rela [20], if an operator T is such that its unweighted L^p norms satisfy $||T||_{L^p \to L^p} \simeq \frac{1}{(p-1)^{\gamma_1}}$ as $p \to 1$ and $||T||_{L^p \to L^p} \simeq$ p^{γ_2} as $p \to \infty$, then the best possible exponent ξ_p in $||T||_{L^p(w)\to L^p(w)} \leq$ $C[w]_{A_p}^{\xi_p}$ satisfies $\xi_p \geq \max(\gamma_2, \frac{\gamma_1}{p-1})$. Therefore, the lower bounds for α_p and β_p follow from the sharp unweighted behavior of the L^p norms of S and T_m .

Such a behavior for S was found by J. Bourgain [3]:

(1.1)
$$||S||_{L^p \to L^p} \simeq \frac{1}{(p-1)^{3/2}} \text{ as } p \to 1 \text{ and } ||S||_{L^p \to L^p} \simeq p \text{ as } p \to \infty,$$

which implies the lower bound for α_p . These asymptotic relations were obtained in [3] for the circle version of the Littlewood-Paley square function but the arguments can be transferred to the real line version in a straightforward way. An alternative proof of the first asymptotic relation in (1.1) has been recently found by O. Bakas [1].

The sharp unweighted L^p norm behavior of T_m is due to T. Tao and J. Wright [22]:

$$||T_m||_{L^p \to L^p} \simeq \max(p, p')^{3/2} \quad (1$$

which implies the lower bound for β_p .

Bourgain's proof [3] of the first relation in (1.1) was based on a dual restatement in terms of the vector-valued operator $\sum_{k \in \mathbb{Z}} S_{\Delta_k} \psi_k$ with its subsequent handling by means of the Chang-Wilson-Wolff inequality [4]. Our proof of the upper bound for α_p follows similar ideas but with some modifications. As the key tool we use Theorem 2.7, which is a discrete analogue of the sharp weighted continuous square function estimate proved by M. Wilson [23]. Notice that the latter estimate is also based on the Chang-Wilson-Wolff inequality. We mention that the sharp $L^2(w)$ bound in Theorem 1.1,

$$||S||_{L^2(w)\to L^2(w)} \le C[w]_{A_2}^{3/2},$$

by extrapolation yields yet another proof of the unweighted upper bound $||S||_{L^p \to L^p} \leq \frac{C}{(p-1)^{3/2}}, 1 (see Remark 4.2 below).$

Another important ingredient used both in the proofs of Theorems 1.1 and 1.2 is Lemma 3.2. This lemma establishes a two-weighted estimate for the multiplier operator $T_{m\chi_{[a,b]}}$. The need to consider two-weighted estimates comes naturally from the method of the proof of Theorem 1.2.

The paper is organized as follows. Section 2 contains some preliminaries and, in particular, the proof of Theorem 2.7. In Section 3 we prove two main technical lemmas. The proof of Theorems 1.1 and 1.2 is contained in Section 4. In Section 5 we make several conjectures related to the sharp upper bounds for α_p and β_p .

2. Preliminaries

Although the main objects we deal with are defined on \mathbb{R} , the results of subsections 2.1, 2.2 and 2.3 are valid on \mathbb{R}^n .

2.1. Dyadic lattices

The material of this subsection is taken from [19].

Given a cube $Q_0 \subset \mathbb{R}^n$, let $\mathcal{D}(Q_0)$ denote the set of all dyadic cubes with respect to Q_0 , that is, the cubes obtained by repeated subdivision of Q_0 and each of its descendants into 2^n congruent subcubes.

Definition 2.1. A dyadic lattice \mathscr{D} in \mathbb{R}^n is any collection of cubes such that

- (i) if $Q \in \mathscr{D}$, then each child of Q is in \mathscr{D} as well;
- (ii) every 2 cubes $Q', Q'' \in \mathscr{D}$ have a common ancestor, i.e., there exists $Q \in \mathscr{D}$ such that $Q', Q'' \in \mathcal{D}(Q)$;
- (iii) for every compact set $K \subset \mathbb{R}^n$, there exists a cube $Q \in \mathscr{D}$ containing K.

In order to construct a dyadic lattice \mathscr{D} , it suffices to fix an arbitrary cube Q_0 and to expand it dyadically (carefully enough in order to cover the

whole space) by choosing one of 2^n possible parents for the top cube and including it into \mathscr{D} together with all its dyadic subcubes during each step. Therefore, given h > 0, one can choose a dyadic lattice \mathscr{D} such that for any $Q \in \mathscr{D}$ its sidelength ℓ_Q will be of the form $2^k h, k \in \mathbb{Z}$.

Theorem 2.2. (The Three Lattice Theorem) For every dyadic lattice \mathscr{D} , there exist 3^n dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{(3^n)}$ such that

$$\{3Q:Q\in\mathscr{D}\}=\bigcup_{j=1}^{3^n}\mathscr{D}^{(j)}$$

and for every cube $Q \in \mathscr{D}$ and $j = 1, ..., 3^n$, there exists a unique cube $R \in \mathscr{D}^{(j)}$ of sidelength $\ell_R = 3\ell_Q$ containing Q.

2.2. Some Littlewood-Paley theory

Denote by $\mathscr{S}(\mathbb{R}^n)$ the class of Schwartz functions on \mathbb{R}^n . The following statement can be found in [11, Lemma 5.12] (see also [10, p. 783] for some details).

Lemma 2.3. There exist $\varphi, \theta \in \mathscr{S}(\mathbb{R}^n)$ satisfying the following properties:

- (i) supp $\theta \subset \{x : |x| \leq 1\}$ and $\int \theta = 0$;
- (ii) $\operatorname{supp} \widehat{\varphi} \subset \{\xi : 1/2 \le |\xi| \le 2\};$
- (iii) $\sum_{k\in\mathbb{Z}}\widehat{\varphi}(2^{-k}\xi)\widehat{\theta}(2^{-k}\xi) \equiv 1 \text{ for all } \xi \neq 0.$

Property (iii) implies, by taking the Fourier transform, the discrete version of the Calderón reproducing formula:

(2.1)
$$f = \sum_{k \in \mathbb{Z}} f * \varphi_{2^{-k}} * \theta_{2^{-k}}.$$

Remark 2.4. There are several interpretations of convergence in (2.1). In particular, we will use the following one. Let $1 and suppose <math>w \in A_p$. Given $f \in L^p(w)$ and $N \in \mathbb{N}$, set

$$f_N(x) = \sum_{k=-N}^N \int_{E_N} (f * \varphi_{2^{-k}})(y) \theta_{2^{-k}}(x-y) dy,$$

where $\{E_N\}$ is an increasing sequence of bounded measurable sets such that $E_N \to \mathbb{R}^n$. Then $f_N \to f$ in $L^p(w)$ as $N \to \infty$. For the continuous version

of (2.1) this fact was proved by M. Wilson [24, Th. 7.1] (see also [25]), and in the discrete case the proof follows the same lines.

The following result is also due to M. Wilson (see [23, Lemma 2.3] and [24, Th. 4.3]).

Theorem 2.5. Let \mathscr{D} be a dyadic lattice and let $\mathscr{G} \subset \mathscr{D}$ be a finite family of cubes. Assume that $f = \sum_{Q \in \mathscr{G}} \lambda_Q a_Q$, where $\operatorname{supp} a_Q \subset Q$, $||a_Q||_{L^{\infty}} \leq |Q|^{-1/2}$, $||\nabla a_Q||_{L^{\infty}} \leq \ell_Q^{-1} |Q|^{-1/2}$ and $\int a_Q = 0$. Then for all $1 and for every <math>w \in A_p$,

(2.2)
$$||f||_{L^{p}(w)} \leq C_{p,n}[w]_{A_{p}}^{1/2} \left\| \left(\sum_{Q \in \mathscr{G}} \frac{|\lambda_{Q}|^{2}}{|Q|} \chi_{Q} \right)^{1/2} \right\|_{L^{p}(w)}$$

Remark 2.6. Notice that actually (2.2) was proved in [23] with a smaller $[w]_{A_{\infty}}$ constant defined by

$$[w]_{A_{\infty}} = \sup_{Q} \frac{1}{\int_{Q} w} \int_{Q} M(w\chi_{Q}),$$

where $Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f|$ is the Hardy-Littlewood maximal operator. See also [14] for various estimates in terms of $[w]_{A_{\infty}}$.

Theorem 2.5 along with the continuous version of (2.1) was applied in [23] in order to obtain the $L^p(w)$ -norm relation between f and the continuous square function. In a similar way, using (2.1), we obtain the $L^p(w)$ norm relation between f and the discrete square function defined (for a given dyadic lattice \mathscr{D}) by

$$S_{\varphi,\mathscr{D}}(f)(x) = \left(\sum_{k \in \mathbb{Z}} \sum_{Q \in \mathscr{D}: \ell_Q = 2^{-k}} \left(\frac{1}{|Q|} \int_Q |f \ast \varphi_{2^{-k}}|^2\right) \chi_Q(x)\right)^{1/2}$$

Theorem 2.7. There exists a function $\varphi \in \mathscr{S}(\mathbb{R}^n)$ with $\operatorname{supp} \widehat{\varphi} \subset \{\xi : 1/2 \leq |\xi| \leq 2\}$ and there are 3^n dyadic lattices $\mathscr{D}^{(j)}$ such that for every $w \in A_p$ and for any $f \in L^p(w), 1 ,$

$$\|f\|_{L^{p}(w)} \leq C_{p,n}[w]_{A_{p}}^{1/2} \sum_{j=1}^{3^{n}} \|S_{\varphi,\mathscr{D}^{(j)}}(f)\|_{L^{p}(w)}$$

Proof. Let φ, θ be functions from Lemma 2.3. Let \mathscr{D} be a dyadic lattice such that for every $Q \in \mathscr{D}$ its sidelength is of the form $\ell_Q = \frac{2^k}{3}, k \in \mathbb{Z}$. Let $\mathscr{D}^{(j)}, j = 1, \ldots, 3^n$, be dyadic lattices obtained by applying Theorem 2.2 to \mathscr{D} . Then for every $Q \in \mathscr{D}^{(j)}$ its sidelength is of the form $\ell_Q = 2^k, k \in \mathbb{Z}$. For $Q \in \mathscr{D}$ with $\ell_Q = 2^{-k}/3$ set

$$\gamma_Q(x) = \int_Q (f * \varphi_{2^{-k}})(y)\theta_{2^{-k}}(x-y)dy.$$

It is easy to check that supp $\gamma_Q \subset 3Q$, $\int \gamma_Q = 0$ and

(2.3)
$$\max(\|\gamma_Q\|_{L^{\infty}}, \ell_Q\|\nabla\gamma_Q\|_{L^{\infty}}) \le c \left(\frac{1}{|Q|} \int_Q |f * \varphi_{2^{-k}}|^2\right)^{1/2},$$

where c depends only on n and θ .

Take an increasing sequence of cubes $Q_N \in \mathscr{D}$ such that $\ell_{Q_N} = \frac{2^N}{3}, N \in$ \mathbb{N} . Set

$$\mathscr{G}_N = \{ Q \in \mathscr{D} : Q \subseteq Q_N, \ell_Q = 2^{-k}/3, k \in [-N, N] \}.$$

By Theorem 2.2, one can write

$$\{3Q: Q \in \mathscr{G}_N\} = \bigcup_{j=1}^{3^n} \mathscr{G}_N^{(j)},$$

where $\mathscr{G}_N^{(j)} \subset \mathscr{D}^{(j)}$. Then

$$f_N(x) = \sum_{k=-N}^N \int_{Q_N} (f * \varphi_{2^{-k}})(y) \theta_{2^{-k}}(x-y) dy$$

=
$$\sum_{k=-N}^N \sum_{Q \in \mathscr{D}: Q \subseteq Q_N, \ell_Q = 2^{-k}/3} \gamma_Q(x) = \sum_{j=1}^{3^n} \sum_{P \in \mathscr{G}_N^{(j)}} \lambda_P^{(j)} a_P^{(j)},$$

where, for $P = 3Q, Q \in \mathcal{D}, \ell_Q = 2^{-k}/3$, we set

$$\lambda_P^{(j)} = c \left(\int_{3Q} |f * \varphi_{2^{-k}}|^2 \right)^{1/2}$$

and $a_P^{(j)} = \frac{1}{\lambda_P^{(j)}} \gamma_Q.$

By (2.3), we have that the functions $a_P^{(j)}$ satisfy all conditions from Theorem 2.5. Therefore, by (2.2),

$$\begin{split} \|f_N\|_{L^p(w)} &\leq C_{p,n}[w]_{A_p}^{1/2} \sum_{j=1}^{3^n} \left\| \left(\sum_{P \in \mathscr{G}_N^{(j)}} \frac{|\lambda_P^{(j)}|^2}{|P|} \chi_P \right)^{1/2} \right\|_{L^p(w)} \\ &\leq C_{p,n}[w]_{A_p}^{1/2} \sum_{j=1}^{3^n} \|S_{\varphi, \mathscr{G}^{(j)}}(f)\|_{L^p(w)}. \end{split}$$

Applying the convergence argument as described in Remark 2.4 completes the proof. $\hfill \Box$

2.3. The sharp extrapolation

The following result was proved in [9].

Theorem 2.8. Assume that for some f, g and for all weights $w \in A_{p_0}$,

$$||f||_{L^{p_0}(w)} \le CN([w]_{A_{p_0}})||g||_{L^{p_0}(w)},$$

where N is an increasing function and the constant C does not depend on w. Then for all $1 and all <math>w \in A_p$,

$$||f||_{L^p(w)} \le CK(w) ||g||_{L^p(w)},$$

where

$$K(w) = \begin{cases} N([w]_{A_p}(2\|M\|_{L^p(w) \to L^p(w)})^{p_0 - p}), & \text{if } p < p_0; \\ N\left([w]_{A_p}^{\frac{p_0 - 1}{p - 1}}(2\|M\|_{L^{p'}(w^{1 - p'}) \to L^{p'}(w^{1 - p'})})^{\frac{p - p_0}{p - 1}}\right), & \text{if } p > p_0. \end{cases}$$

In particular, $K(w) \leq C_1 N\left(C_2[w]_{A_p}^{\max\left(1, \frac{p_0-1}{p-1}\right)}\right)$ for $w \in A_p$.

2.4. Some two-weighted estimates

Let

$$Hf(x) = \text{p.v.} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy \quad \text{and} \quad H^{\star}f(x) = \sup_{\varepsilon > 0} \frac{1}{\pi} \left| \int_{|x - y| > \varepsilon} \frac{f(y)}{x - y} dy \right|$$

be the Hilbert and the maximal Hilbert transforms, respectively.

Given two weights u and v, set

$$[u,v]_{A_2} = \sup_Q \langle u \rangle_Q \langle v^{-1} \rangle_Q.$$

Then the following two-weighted estimates hold:

(2.4)
$$\max(\|M\|_{L^{2}(v)\to L^{2}(u)}, \|H^{\star}\|_{L^{2}(v)\to L^{2}(u)}) \leq C[u,v]_{A_{2}}^{1/2}([u]_{A_{2}}^{1/2} + [v]_{A_{2}}^{1/2}).$$

The proofs of these estimates can be found in [13, 14] (notice that stronger versions of (2.4) in terms of the $[w]_{A_{\infty}}$ constants are proved there).

2.5. The partial sum operator

Given an interval [a, b], the partial sum operator $S_{[a,b]}$ is defined by $\widehat{S_{[a,b]}f} = \widehat{f}\chi_{[a,b]}$. We will use two standard facts about $S_{[a,b]}$ (see, e.g., [8]). First,

(2.5)
$$S_{[a,b]} = \frac{i}{2} (\mathcal{M}_a H \mathcal{M}_{-a} - \mathcal{M}_b H \mathcal{M}_{-b}),$$

where $\mathcal{M}_a f(x) = e^{2\pi i a x} f(x)$. Second, if $(T_{m\chi_{[a,b]}}f) = m\chi_{[a,b]}\hat{f}$, then

(2.6)
$$T_{m\chi_{[a,b]}}f = m(a)S_{[a,b]}f + \int_{a}^{b} (S_{[t,b]}f)m'(t)dt.$$

3. Two key lemmas

Given a dyadic lattice \mathscr{D} in \mathbb{R} , a weight w and $k \in \mathbb{Z}$, denote

$$w_{k,\mathscr{D}} = \sum_{I \in \mathscr{D}: |I| = 2^{-k}} \langle w \rangle_I \chi_I.$$

Lemma 3.1. Let $w \in A_2$. Then $w_{k,\mathscr{D}} \in A_2$ and

$$(3.1) \qquad \qquad [w_{k,\mathscr{D}}]_{A_2} \le 9[w]_{A_2}.$$

Also, for two arbitrary dyadic lattices \mathscr{D} and \mathscr{D}' ,

(3.2)
$$[w_{k,\mathscr{D}}, ((w^{-1})_{k,\mathscr{D}'})^{-1}]_{A_2} \le 9[w]_{A_2}.$$

Proof. Denote $u = w_{k,\mathscr{D}}$ and $\mathcal{P}_k = \{I \in \mathscr{D} : |I| = 2^{-k}\}$. Take an arbitrary interval $J \subset \mathbb{R}$. Notice that

(3.3)
$$\langle u \rangle_J = \frac{1}{|J|} \sum_{I \in \mathcal{P}_k : I \cap J \neq \emptyset} \frac{|I \cap J|}{|I|} \int_I w.$$

Next, by Hölder's inequality,

$$|I|^2 \le \left(\int_I w\right) \left(\int_I w^{-1}\right),$$

which implies

(3.4)
$$\langle u^{-1} \rangle_J = \frac{1}{|J|} \sum_{I \in \mathcal{P}_k : I \cap J \neq \emptyset} |I \cap J| \frac{|I|}{\int_I w}$$
$$\leq \frac{1}{|J|} \sum_{I \in \mathcal{P}_k : I \cap J \neq \emptyset} \frac{|I \cap J|}{|I|} \int_I w^{-1}.$$

Denote

$$J^* = \bigcup_{I \in \mathcal{P}_k: I \cap J \neq \emptyset} I.$$

If $|J| > 2^{-k}$, then $|J^*| \le 3|J|$, and hence, by (3.3) and (3.4),

(3.5)
$$\langle u \rangle_J \leq \frac{1}{|J|} \int_{J^*} w \leq 3 \langle w \rangle_{J^*} \text{ and } \langle u^{-1} \rangle_J \leq 3 \langle w^{-1} \rangle_{J^*}.$$

Assume that $|J| \leq 2^{-k}$. Then $|J^*| \leq 2^{-k+1}$. Hence in this case,

$$\langle u \rangle_J \leq \frac{1}{|I|} \int_{J^*} w \leq 2 \langle w \rangle_{J^*} \text{ and } \langle u^{-1} \rangle_J \leq 2 \langle w^{-1} \rangle_{J^*},$$

which along with (3.5) implies (3.1).

The proof of (3.2) is identically the same. Denote $v = ((w^{-1})_{k,\mathscr{D}'})^{-1}$. If $|J| > 2^{-k}$, then by (3.5),

$$\langle u \rangle_J \le 3 \langle w \rangle_{J^*}$$
 and $\langle v^{-1} \rangle_J \le 3 \langle w^{-1} \rangle_{J^*}.$

Similarly, if $|J| \leq 2^{-k}$, then

$$\langle u \rangle_J \le 2 \langle w \rangle_{J^*}$$
 and $\langle v^{-1} \rangle_J \le 2 \langle w^{-1} \rangle_{J^*}$,

which along with the previous estimate proves (3.2).

546

Define the operator $T_{m\chi_{[a,b]}}$ by $(T_{m\chi_{[a,b]}}f)^{\hat{}} = m\chi_{[a,b]}\hat{f}$. In the lemma below we use the same notation $u_{k,\mathscr{D}}$ as in Lemma 3.1.

Lemma 3.2. Assume that m is a bounded and differentiable function on [a,b]. Then for all $u, v \in A_2$,

$$||T_{m\chi_{[a,b]}}f||_{L^2(u_{k,\mathscr{D}})} \le cK(m)N(u,v)(2^{-k}(b-a)+1)||f||_{L^2(v)},$$

where $K(m) = ||m||_{L^{\infty}} + \int_a^b |m'(t)| dt$,

$$N(u,v) = \min\left([u,v]_{A_2}, [u_{k,\mathscr{D}},v]_{A_2}\right)^{1/2} \left([u]_{A_2}^{1/2} + [v]_{A_2}^{1/2}\right)$$

and c > 0 is an absolute constant.

Proof. Let $t \in [a, b)$. Take an arbitrary $I \in \mathscr{D}$ with $|I| = 2^{-k}$. Notice that

$$||S_{[t,b]}f||_{L^{\infty}} \le (b-a)||f||_{L^{1}}.$$

Therefore, for all $x, y \in I$,

(3.6)
$$|S_{[t,b]}f(y)| \le (b-a) \int_{3I} |f| + |S_{[t,b]}(f\chi_{\mathbb{R}\setminus 3I})(y)| \le 3(b-a)2^{-k}Mf(x) + |S_{[t,b]}(f\chi_{\mathbb{R}\setminus 3I})(y)|.$$

Applying (2.5) yields

(3.7)
$$|S_{[t,b]}(f\chi_{\mathbb{R}\backslash 3I})(y)| \leq |H\mathcal{M}_{-t}(f\chi_{\mathbb{R}\backslash 3I})(y)| + |H\mathcal{M}_{-b}(f\chi_{\mathbb{R}\backslash 3I})(y)|.$$

For every $t \in [a, b]$,

(3.8)
$$|H\mathcal{M}_{-t}(f\chi_{\mathbb{R}\backslash 3I})(y) - H\mathcal{M}_{-t}(f\chi_{\mathbb{R}\backslash 3I})(x)|$$
$$\leq c|I| \int_{\mathbb{R}\backslash 3I} |f(\xi)| \frac{1}{|x-\xi|^2} d\xi \leq cMf(x).$$

Further,

$$\begin{aligned} |H\mathcal{M}_{-t}(f\chi_{\mathbb{R}\backslash 3I})(x)| &\leq |H\mathcal{M}_{-t}(f\chi_{\mathbb{R}\backslash [x-|I|/2,x+|I|/2]})(x)| \\ &+ |H\mathcal{M}_{-t}(f\chi_{3I\backslash [x-|I|/2,x+|I|/2]})(x)| \\ &\leq H^{\star}\mathcal{M}_{-t}f(x) + cMf(x), \end{aligned}$$

which, combined with (3.6), (3.7) and (3.8), implies

$$|S_{[t,b]}f(y)| \le H^* \mathcal{M}_{-b}f(x) + H^* \mathcal{M}_{-t}f(x) + (3(b-a)2^{-k} + c)Mf(x)|$$

From this and from (2.6), for all $x, y \in I$ we have

$$|T_{m\chi_{[a,b]}}f(y)| \le cK(m)\mathcal{T}(f)(x) + \int_a^b H^*\mathcal{M}_{-t}f(x)|m'(t)|dt,$$

where

$$\mathcal{T}(f)(x) = H^* \mathcal{M}_{-b} f(x) + H^* \mathcal{M}_{-a} f(x) + (2^{-k}(b-a) + 1) M f(x).$$

Therefore,

(3.9)
$$\frac{1}{|I|} \int_{I} |T_{m\chi_{[a,b]}}f|^2 \leq \inf_{I} \left(cK(m)\mathcal{T}(f) + \int_{a}^{b} H^*\mathcal{M}_{-t}f|m'(t)|dt \right)^2.$$

Hence, applying Minkowski's inequality and using (2.4), we obtain

$$\begin{aligned} \|T_{m\chi_{[a,b]}}f\|_{L^{2}(u_{k,\mathscr{D}})} &\leq \left\|cK(m)\mathcal{T}(f) + \int_{a}^{b} H^{\star}\mathcal{M}_{-t}f|m'(t)|dt\right\|_{L^{2}(u)} \\ &\leq cK(m)\|\mathcal{T}(f)\|_{L^{2}(u)} + \int_{a}^{b} \|H^{\star}\mathcal{M}_{-t}f\|_{L^{2}(u)}|m'(t)|dt \\ &\leq cK(m)(2^{-k}(b-a)+1)[u,v]_{A_{2}}^{1/2}([u]_{A_{2}}^{1/2} + [v]_{A_{2}}^{1/2})\|f\|_{L^{2}(v)} \end{aligned}$$

On the other hand, (3.9) also implies

$$\|T_{m\chi_{[a,b]}}f\|_{L^2(u_{k,\mathscr{D}})} \leq \left\|cK(m)\mathcal{T}(f) + \int_a^b H^*\mathcal{M}_{-t}f|m'(t)|dt\right\|_{L^2(u_{k,\mathscr{D}})}.$$

Therefore, by the previous arguments and Lemma 3.1,

$$||T_{m\chi_{[a,b]}}f||_{L^{2}(u_{k,\mathscr{D}})} \le cK(m)(2^{-k}(b-a)+1)[u_{k,\mathscr{D}},v]_{A_{2}}^{1/2}([u]_{A_{2}}^{1/2}+[v]_{A_{2}}^{1/2})||f||_{L^{2}(v)},$$

which completes the proof.

4. Proof of Theorems 1.1 and 1.2

The lower bounds for α_p and β_p are explained in the Introduction. Therefore, we are left with establishing the upper bounds.

Proof of Theorem 1.1. By duality, the estimate

(4.1)
$$\|Sf\|_{L^p(w)} \le C[w]_{A_p}^{\frac{1}{2}\frac{1}{p-1}} + \max\left(1, \frac{1}{p-1}\right) \|f\|_{L^p(w)}$$

is equivalent to

$$\left\|\sum_{k\in\mathbb{Z}}S_{\Delta_k}\psi_k\right\|_{L^{p'}(\sigma)} \le C[\sigma]_{A_{p'}}^{\frac{1}{2}+\max(1,p-1)} \left\|\left(\sum_{k\in\mathbb{Z}}|\psi_k|^2\right)^{1/2}\right\|_{L^{p'}(\sigma)},$$

where $\sigma = w^{1-p'}$. Changing here p' by p and σ by w, we see that it suffices to prove that

(4.2)
$$\left\| \sum_{k \in \mathbb{Z}} S_{\Delta_k} \psi_k \right\|_{L^p(w)} \le C[w]_{A_p}^{\frac{1}{2} + \max\left(1, \frac{1}{p-1}\right)} \left\| \left(\sum_{k \in \mathbb{Z}} |\psi_k|^2 \right)^{1/2} \right\|_{L^p(w)}$$

Applying Theorem 2.7 yields

$$\left\|\sum_{k\in\mathbb{Z}}S_{\Delta_k}\psi_k\right\|_{L^p(w)} \le C[w]_{A_p}^{\frac{1}{2}}\sum_{j=1}^3 \left\|S_{\varphi,\mathscr{D}^{(j)}}\left(\sum_{k\in\mathbb{Z}}S_{\Delta_k}\psi_k\right)\right\|_{L^p(w)}$$

Therefore, by Theorem 2.8, (4.2) will follow from

(4.3)
$$\left\| S_{\varphi,\mathscr{D}}\left(\sum_{k\in\mathbb{Z}}S_{\Delta_k}\psi_k\right) \right\|_{L^2(w)} \le C[w]_{A_2} \left\| \left(\sum_{k\in\mathbb{Z}}|\psi_k|^2\right)^{1/2} \right\|_{L^2(w)}.$$

Using that $\operatorname{supp} \widehat{\varphi_{2^{-k}}} \subset \{\xi : 2^{k-1} \le |\xi| \le 2^{k+1}\}$, we have

$$\left(\sum_{j\in\mathbb{Z}}S_{\Delta_j}\psi_j\right)*\varphi_{2^{-k}}=\left(S_{\Delta_{k-1}}\psi_{k-1}+S_{\Delta_k}\psi_k\right)*\varphi_{2^{-k}},$$

which implies

$$S_{\varphi,\mathscr{D}}\left(\sum_{j\in\mathbb{Z}}S_{\Delta_{j}}\psi_{j}\right)(x)^{2}$$

= $\sum_{k\in\mathbb{Z}}\sum_{I\in\mathscr{D}:\ell_{I}=2^{-k}}\left(\frac{1}{|I|}\int_{I}|(S_{\Delta_{k-1}}\psi_{k-1}+S_{\Delta_{k}}\psi_{k})*\varphi_{2^{-k}}|^{2}\right)\chi_{I}(x).$

•

Hence, in order to prove (4.3), it suffices to establish that for every $k \in \mathbb{Z}$,

(4.4)
$$\| (S_{\Delta_{k-1}}f) * \varphi_{2^{-k}} \|_{L^2(w_{k,\mathscr{D}})} \le C[w]_{A_2} \| f \|_{L^2(w)}$$

and

(4.5)
$$\| (S_{\Delta_k} f) * \varphi_{2^{-k}} \|_{L^2(w_{k,\mathscr{D}})} \le C[w]_{A_2} \| f \|_{L^2(w)}.$$

Since

$$((S_{\Delta_{k-1}}f) * \varphi_{2^{-k}})\widehat{}(\xi) = \widehat{\varphi}(2^{-k}\xi)\chi_{\{2^{k-1} \le |\xi| \le 2^k\}}\widehat{f}(\xi),$$

(4.4) is an immediate corollary of Lemma 3.2 (applied in the case of equal weights). Estimate (4.5) follows in the same way. Notice that the constants C in (4.4) and (4.5) can be taken as

$$C = c \left(\|\widehat{\varphi}\|_{L^{\infty}} + \int_{1/2 \le |\xi| \le 2} |(\widehat{\varphi})'(\xi)| d\xi \right)$$

with some absolute c > 0.

Remark 4.1. There is a minor inaccuracy in the proof, namely, applying Theorem 2.7, we have used that $\sum_{k\in\mathbb{Z}} S_{\Delta_k}\psi_k \in L^p(w)$ as an *a priori* assumption. This point can be fixed in several ways. First, by [16], $f \in L^p(w)$ implies $Sf \in L^p(w)$ for $w \in A_p$ for all 1 . By duality, this means $that <math>\left(\sum_{k\in\mathbb{Z}} |\psi_k|^2\right)^{1/2} \in L^p(w)$ implies $\sum_{k\in\mathbb{Z}} S_{\Delta_k}\psi_k \in L^p(w)$.

However, one can avoid the use of [16] as follows. Defining

$$S_N f = \left(\sum_{k=-N}^N |S_{\Delta_k} f|^2\right)^{1/2},$$

we have that (4.1) with $S_N f$ instead of Sf is equivalent to (4.2) with $\sum_{k=-N}^{N} S_{\Delta_k} \psi_k$ on the left-hand side. But the fact that $\sum_{k=-N}^{N} S_{\Delta_k} \psi_k \in L^p(w)$ follows immediately from (2.5). The rest of the proof is exactly the same, and we obtain (4.1) with $S_N f$ instead of Sf with the corresponding constant independent of N. Letting $N \to \infty$ yields the desired bound for S.

550

Remark 4.2. Theorem 1.1 in the case p = 2 says that

$$||S||_{L^2(w)\to L^2(w)} \le C[w]_{A_2}^{3/2}.$$

From this, by Theorem 2.8,

$$||S||_{L^p \to L^p} \le C ||M||_{L^p \to L^p}^{3/2} \quad (1$$

Since $||M||_{L^p \to L^p} \simeq \frac{1}{p-1}$ for 1 , we obtain the sharp upper bound

$$||S||_{L^p \to L^p} \le \frac{C}{(p-1)^{3/2}} \quad (1$$

found by J. Bourgain [3].

Proof of Theorem 1.2. Using the fact that

$$||T_m||_{L^p(w)\to L^p(w)} = ||T_m||_{L^{p'}(\sigma)\to L^{p'}(\sigma)}$$

and $[\sigma]_{A_{p'}} = [w]_{A_p}^{\frac{1}{p-1}}$, it suffices to prove that

(4.6)
$$||T_m||_{L^p(w) \to L^p(w)} \le C_{p,m}[w]_{A_p}^{\frac{1}{2} + \frac{3}{2}\frac{1}{p-1}} \quad (1$$

By Theorems 2.7 and 2.8, (4.6) will follow from

(4.7)
$$\|S_{\varphi,\mathscr{D}}(T_m f)\|_{L^2(w)} \le C_m[w]_{A_2}^{3/2} \|f\|_{L^2(w)}.$$

Notice that

$$\|S_{\varphi,\mathscr{D}}(T_m f)\|_{L^2(w)} = \left(\sum_{k\in\mathbb{Z}}\int_{\mathbb{R}} |(T_m f) * \varphi_{2^{-k}}|^2 w_{k,\mathscr{D}} dx\right)^{1/2}.$$

Therefore, by duality, (4.7) is equivalent to

$$\left\|\sum_{k\in\mathbb{Z}} (T_m\psi_k) * \varphi_{2^{-k}}\right\|_{L^2(w^{-1})} \le C_m[w]_{A_2}^{3/2} \left(\sum_{k\in\mathbb{Z}} \int_{\mathbb{R}} |\psi_k|^2 (w_{k,\mathscr{D}})^{-1} dx\right)^{1/2}.$$

Applying Theorem 2.7 again, we see that the question is reduced to the estimate

(4.8)
$$\left(\sum_{k\in\mathbb{Z}} \left\| \left(\sum_{j\in\mathbb{Z}} (T_m\psi_j) * \varphi_{2^{-j}}\right) * \varphi_{2^{-k}} \right\|_{L^2((w^{-1})_{k,\mathscr{D}'})}^2 \right)^{1/2} \le C_m[w]_{A_2} \left(\sum_{k\in\mathbb{Z}} \|\psi_k\|_{L^2((w_{k,\mathscr{D}})^{-1})}^2 \right)^{1/2}$$

for some dyadic lattices ${\mathscr D}$ and ${\mathscr D}'.$

Since

$$\left(\sum_{j\in\mathbb{Z}} (T_m\psi_j)*\varphi_{2^{-j}}\right)*\varphi_{2^{-k}} = \sum_{j=k-1}^{k+1} (T_m\psi_j)*\varphi_{2^{-j}}*\varphi_{2^{-k}},$$

in order to prove (4.8), it suffices to show that for every $k \in \mathbb{Z}$ and every j = k - 1, k, k + 1,

(4.9)
$$||(T_m f) * \varphi_{2^{-j}} * \varphi_{2^{-k}} ||_{L^2((w^{-1})_{k,\mathscr{D}'})} \le C_m[w]_{A_2} ||f||_{L^2((w_{k,\mathscr{D}})^{-1})}.$$

By Lemma 3.1,

$$[(w^{-1})_{k,\mathscr{D}'},(w_{k,\mathscr{D}})^{-1})]_{A_2}^{1/2} ([(w^{-1})_{k,\mathscr{D}'}]_{A_2}^{1/2} + [(w_{k,\mathscr{D}})^{-1})]_{A_2}^{1/2}) \le c[w]_{A_2}.$$

From this and from Lemma 3.2 we obtain (4.9) with

$$C_m = cC_{\varphi}\left(\|m\|_{L^{\infty}} + \sup_{k \in \mathbb{Z}} \int_{\Delta_k} |m'(t)| dt\right),$$

which completes the proof.

Remark 4.3. As in Remark 4.1, it is not difficult to justify the use of Theorem 2.7. We omit the details.

5. Concluding remarks

5.1. On the sharpness of α_p and β_p

The extrapolation principle explained in the Introduction says that if ξ_p is the best possible exponent in $||T||_{L^p(w)\to L^p(w)} \leq C[w]_{A_p}^{\xi_p}$, then

$$\xi_p \ge \max\left(\gamma_2, \frac{\gamma_1}{p-1}\right),$$

where γ_1 and γ_2 are the constants appearing in the endpoint asymptotic relations for $||T||_{L^p \to L^p}$. In fact, for many particular operators we have that $\xi_p = \max(\gamma_2, \frac{\gamma_1}{p-1})$.

Therefore, it is plausible that the upper bounds for α_p and β_p from Theorems 1.1 and 1.2 are not sharp for p > 2 and 1 , respectively, and it is natural to make the following.

Conjecture 5.1. The best possible exponent α_p in

$$||S||_{L^p(w) \to L^p(w)} \le C_p[w]_{A_p}^{\alpha_p}$$

is

$$\alpha_p = \max\left(1, \frac{3}{2}\frac{1}{p-1}\right) \quad (1$$

Conjecture 5.2. The best possible exponent β_p in

$$||T_m||_{L^p(w)\to L^p(w)} \le C_{p,m}[w]_{A_p}^{\beta_p}$$

is

$$\beta_p = \frac{3}{2} \max\left(1, \frac{1}{p-1}\right) \quad (1$$

Observe that by Theorem 2.8, in order to establish Conjectures 5.1 and 5.2, it suffices to show that

$$||S||_{L^{5/2}(w) \to L^{5/2}(w)} \le C[w]_{A_{5/2}}$$
 and $||T_m||_{L^2(w) \to L^2(w)} \le C_m[w]_{A_2}^{3/2}$

respectively.

5.2. Sparse bounds for S and T_m ?

A family of cubes S is called sparse if there exist $0 < \eta < 1$ and a family of pairwise disjoint sets $\{E_Q\}_{Q \in S}$ such that $E_Q \subset Q$ and $|E_Q| \ge \eta |Q|$ for all $Q \in S$. By a sparse bound for a given operator T we mean an estimate of the form

$$|\langle Tf,g\rangle| \leq C \sum_{Q \in \mathcal{S}} \langle f \rangle_{r,Q} \langle g \rangle_{s,Q} |Q|,$$

with suitable $1 \le r, s < \infty$, where $\langle f \rangle_{p,Q} = \langle |f|^p \rangle_Q^{1/p}$, and \mathcal{S} is a sparse family.

Sparse bounds have become a powerful tool for obtaining sharp quantitative weighted estimates in recent years (see, e.g., [2, 5, 18]). Therefore it would be natural to try to attack Conjectures 5.1 and 5.2 by means of the corresponding sparse bounds for S and T_m .

At this point, we mention that it is not clear to us what is the sparse bound for S leading to Conjecture 5.1. For example, it is plausible that Ssatisfies

$$|\langle Sf,g\rangle| \leq \frac{C}{(r-1)^{1/2}} \sum_{Q \in \mathcal{S}} \langle f \rangle_{r,Q} \langle g \rangle_{1,Q} |Q| \quad (1 < r \leq 2)$$

but one can show that this estimate leads to the same upper bound for α_p as obtained in Theorem 1.1.

Contrary to this, the sparse bound

(5.1)
$$|\langle T_m f, g \rangle| \le \frac{C}{(r-1)^{1/2}} \sum_{Q \in \mathcal{S}} \langle f \rangle_{r,Q} \langle g \rangle_{r,Q} |Q| \quad (1 < r \le 2)$$

would imply Conjecture 5.2. The technique developed in [22] probably may play an important role in establishing (5.1).

Added in proof. In a recent paper [7], the authors consider similar questions in the Walsh-Fourier setting. In particular they establish Conjecture 5.1 for all $1 and Conjecture 5.2 for max<math>\{p, p'\} \ge 5/2$ in this setting.

References

- O. Bakas, Endpoint mapping properties of the Littlewood-Paley square function, preprint, arXiv:1612.09573.
- [2] F. Bernicot, D. Frey, and S. Petermichl, Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE 9 (2016), no. 5, 1079– 1113.

- [3] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis (1987–88), 202– 208, Lecture Notes in Math. 1376, Springer, Berlin, 1989.
- [4] S.-Y. A. Chang, J. M. Wilson, and T. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comm. Math. Helv. 60 (1985), 217–246.
- [5] J. M. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou, A sparse domination principle for rough singular integrals, Anal. PDE 10 (2017), no. 5, 1255–1284.
- [6] D. Cruz-Uribe, J. M. Martell, and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), no. 1, 408–441.
- [7] A. Culiuc, F. Di Plinio, M. Lacey, and Y. Ou, Endpoint sparse bounds for Walsh-Fourier multipliers of Marcinkiewicz type, preprint, arXiv:1805.06060.
- [8] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001.
- [9] J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), no. 6, 1886–1901.
- [10] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799.
- [11] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics 79, 1991.
- [12] T. P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. 175 (2012), no. 3, 1473–1506.
- [13] T. P. Hytönen and M. T. Lacey, The $A_p A_{\infty}$ inequality for general Calderón-Zygmund operators, Indiana Univ. Math. J. **61** (2012), no. 6, 2041–2092.
- [14] T. P. Hytönen and C. Pérez, Sharp weighted bounds involving A_{∞} , Anal. PDE **6** (2013), no. 4, 777–818.
- [15] T. P. Hytönen, L. Roncal, and O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math., 218 (2017), no. 1, 133–164.

- [16] D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^p spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254.
- [17] A. K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math. 226 (2011), 3912–3926.
- [18] A. K. Lerner, A weak type estimate for rough singular integrals, to appear in Rev. Mat. Iberoam., arXiv:1705.07397.
- [19] A. K. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics, to appear in Expo Math., arXiv:1508.05639.
- [20] T. Luque, C. Pérez, and E. Rela, Optimal exponents in weighted estimates without examples, Math. Res. Lett. 22 (2015), no. 1, 183–201.
- [21] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_p characteristic, Amer. J. Math. **129** (2007), no. 5, 1355–1375.
- [22] T. Tao and J. Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoam. 17 (2001), no. 3, 521–558.
- [23] M. Wilson, Weighted norm inequalities for the continuous square functions, Trans. Amer. Math. Soc. 314 (1989), 661–692.
- [24] M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Lecture Notes in Mathematics 1924, Springer, Berlin, 2008.
- [25] M. Wilson, How fast and in what sense(s) does the Calderón reproducing formula converge? J. Fourier Anal. Appl. 16 (2010), no. 5, 768–785.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY 5290002 RAMAT GAN, ISRAEL *E-mail address*: lernera@math.biu.ac.il

Received March 30, 2018