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Quantitative weighted estimates for the

Littlewood-Paley square function and

Marcinkiewicz multipliers

Andrei K. Lerner

Quantitative weighted estimates are obtained for the Littlewood-
Paley square function S associated with a lacunary decomposition
of R and for the Marcinkiewicz multiplier operator. In particular,
we find the sharp dependence on [w]Ap for the Lp(w) operator
norm of S for 1 < p ≤ 2.

1. Introduction

Given a weight w (i.e., a non-negative locally integrable function on Rn), we
say that w ∈ Ap, 1 < p <∞, if

[w]Ap = sup
Q
〈w〉Q〈w1−p′〉p−1

Q <∞,

where the supremum is taken over all cubes Q ⊂ Rn and 〈·〉Q is the integral
mean over Q.

In the recent decade, it has been of great interest to obtain the Lp(w)
operator norm estimates (possibly optimal) in terms of [w]Ap for the different
operators in harmonic analysis. In particular, it was established that the
Lp(w) operator norms of Calderón-Zygmund and a large class of Littlewood-
Paley operators are bounded by a multiple of

[w]
max
(

1, 1

p−1

)
Ap

and [w]
max
(

1

2
, 1

p−1

)
Ap

,

respectively, and these bounds are sharp for all 1 < p <∞ (see [6, 12, 17,
21]).

On the other hand, there are still a number of operators for which the
sharp bounds in terms of [w]Ap are not known yet. For example, for rough
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homogeneous singular integrals TΩ with angular part Ω ∈ L∞ the currently
best known result says that ‖TΩ‖L2(w)→L2(w) is at most a multiple of [w]2A2

,
and it is an open question whether this bound is sharp (see [5, 15, 18]).
Several other examples are the main objects of the present paper.

We consider the classical Littlewood-Paley square function associated
with a lacunary decomposition of R and the Marcinkiewicz multiplier opera-
tor. Recall the definitions of these objects. For k ∈ Z set ∆k = (−2k+1,−2k] ∪
[2k, 2k+1). The Littlewood-Paley square function we shall deal with is defined
by

Sf =

(∑
k∈Z
|S∆k

f |2
)1/2

,

where Ŝ∆k
f = f̂χ∆k

. We say that Tm is the Marcinkiewicz multiplier oper-

ator if T̂mf = mf̂ , where m ∈ L∞ and

sup
k∈Z

∫
∆k

|m′(t)|dt <∞.

The fact that S and Tm are bounded on Lp(w) for w ∈ Ap is well known
and due to D. Kurtz [16]. Tracking the dependence on [w]Ap in the known
proofs yields, for example, that the L2(w) operator norms of S and Tm are
bounded by a multiple of [w]2A2

and [w]4A2
, respectively.

In this paper we give new proofs of the Lp(w) boundedness of S and Tm
providing better quantitative estimates it terms of [w]Ap . Our main results
are the following.

Theorem 1.1. If αp is the best possible exponent in

‖S‖Lp(w)→Lp(w) ≤ Cp[w]
αp
Ap
,

then

max

(
1,

3

2

1

p− 1

)
≤ αp ≤

1

2

1

p− 1
+ max

(
1,

1

p− 1

)
(1 < p <∞);

in particular, αp = 3
2

1
p−1 for 1 < p ≤ 2.
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Theorem 1.2. If βp is the best possible exponent in

‖Tm‖Lp(w)→Lp(w) ≤ Cp,m[w]
βp
Ap
,

then

3

2
max

(
1,

1

p− 1

)
≤ βp ≤

p′

2
+ max

(
1,

1

p− 1

)
(1 < p <∞).

Observe that the lower bounds for αp and βp are immediate conse-
quences of several known results. By a general extrapolation argument due
to T. Luque, C. Pérez and E. Rela [20], if an operator T is such that its
unweighted Lp norms satisfy ‖T‖Lp→Lp ' 1

(p−1)γ1 as p→ 1 and ‖T‖Lp→Lp '
pγ2 as p→∞, then the best possible exponent ξp in ‖T‖Lp(w)→Lp(w) ≤
C[w]

ξp
Ap

satisfies ξp ≥ max(γ2,
γ1
p−1). Therefore, the lower bounds for αp and

βp follow from the sharp unweighted behavior of the Lp norms of S and Tm.
Such a behavior for S was found by J. Bourgain [3]:

(1.1) ‖S‖Lp→Lp '
1

(p− 1)3/2
as p→ 1 and ‖S‖Lp→Lp ' p as p→∞,

which implies the lower bound for αp. These asymptotic relations were ob-
tained in [3] for the circle version of the Littlewood-Paley square function
but the arguments can be transferred to the real line version in a straight-
forward way. An alternative proof of the first asymptotic relation in (1.1)
has been recently found by O. Bakas [1].

The sharp unweighted Lp norm behavior of Tm is due to T. Tao and
J. Wright [22]:

‖Tm‖Lp→Lp ' max(p, p′)3/2 (1 < p <∞),

which implies the lower bound for βp.
Bourgain’s proof [3] of the first relation in (1.1) was based on a dual

restatement in terms of the vector-valued operator
∑

k∈Z S∆k
ψk with its

subsequent handling by means of the Chang-Wilson-Wolff inequality [4].
Our proof of the upper bound for αp follows similar ideas but with some
modifications. As the key tool we use Theorem 2.7, which is a discrete ana-
logue of the sharp weighted continuous square function estimate proved by



i
i

“7-Lerner” — 2019/7/29 — 18:22 — page 540 — #4 i
i

i
i

i
i

540 Andrei K. Lerner

M. Wilson [23]. Notice that the latter estimate is also based on the Chang-
Wilson-Wolff inequality. We mention that the sharp L2(w) bound in Theo-
rem 1.1,

‖S‖L2(w)→L2(w) ≤ C[w]
3/2
A2
,

by extrapolation yields yet another proof of the unweighted upper bound
‖S‖Lp→Lp ≤ C

(p−1)3/2 , 1 < p ≤ 2 (see Remark 4.2 below).
Another important ingredient used both in the proofs of Theorems 1.1

and 1.2 is Lemma 3.2. This lemma establishes a two-weighted estimate for
the multiplier operator Tmχ[a,b]

. The need to consider two-weighted estimates
comes naturally from the method of the proof of Theorem 1.2.

The paper is organized as follows. Section 2 contains some preliminaries
and, in particular, the proof of Theorem 2.7. In Section 3 we prove two
main technical lemmas. The proof of Theorems 1.1 and 1.2 is contained in
Section 4. In Section 5 we make several conjectures related to the sharp
upper bounds for αp and βp.

2. Preliminaries

Although the main objects we deal with are defined on R, the results of
subsections 2.1, 2.2 and 2.3 are valid on Rn.

2.1. Dyadic lattices

The material of this subsection is taken from [19].
Given a cube Q0 ⊂ Rn, let D(Q0) denote the set of all dyadic cubes with

respect to Q0, that is, the cubes obtained by repeated subdivision of Q0 and
each of its descendants into 2n congruent subcubes.

Definition 2.1. A dyadic lattice D in Rn is any collection of cubes such
that

(i) if Q ∈ D , then each child of Q is in D as well;

(ii) every 2 cubes Q′, Q′′ ∈ D have a common ancestor, i.e., there exists
Q ∈ D such that Q′, Q′′ ∈ D(Q);

(iii) for every compact set K ⊂ Rn, there exists a cube Q ∈ D contain-
ing K.

In order to construct a dyadic lattice D , it suffices to fix an arbitrary
cube Q0 and to expand it dyadically (carefully enough in order to cover the
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whole space) by choosing one of 2n possible parents for the top cube and
including it into D together with all its dyadic subcubes during each step.
Therefore, given h > 0, one can choose a dyadic lattice D such that for any
Q ∈ D its sidelength `Q will be of the form 2kh, k ∈ Z.

Theorem 2.2. (The Three Lattice Theorem) For every dyadic lattice D ,
there exist 3n dyadic lattices D (1), . . . ,D (3n) such that

{3Q : Q ∈ D} =

3n⋃
j=1

D (j)

and for every cube Q ∈ D and j = 1, . . . , 3n, there exists a unique cube R ∈
D (j) of sidelength `R = 3`Q containing Q.

2.2. Some Littlewood-Paley theory

Denote by S (Rn) the class of Schwartz functions on Rn. The following
statement can be found in [11, Lemma 5.12] (see also [10, p. 783] for some
details).

Lemma 2.3. There exist ϕ, θ ∈ S (Rn) satisfying the following properties:

(i) supp θ ⊂ {x : |x| ≤ 1} and
∫
θ = 0;

(ii) supp ϕ̂ ⊂ {ξ : 1/2 ≤ |ξ| ≤ 2};

(iii)
∑

k∈Z ϕ̂(2−kξ)θ̂(2−kξ) ≡ 1 for all ξ 6= 0.

Property (iii) implies, by taking the Fourier transform, the discrete ver-
sion of the Calderón reproducing formula:

(2.1) f =
∑
k∈Z

f ∗ ϕ2−k ∗ θ2−k .

Remark 2.4. There are several interpretations of convergence in (2.1). In
particular, we will use the following one. Let 1 < p <∞ and suppose w ∈ Ap.
Given f ∈ Lp(w) and N ∈ N, set

fN (x) =

N∑
k=−N

∫
EN

(f ∗ ϕ2−k)(y)θ2−k(x− y)dy,

where {EN} is an increasing sequence of bounded measurable sets such that
EN → Rn. Then fN → f in Lp(w) as N →∞. For the continuous version
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of (2.1) this fact was proved by M. Wilson [24, Th. 7.1] (see also [25]), and
in the discrete case the proof follows the same lines.

The following result is also due to M. Wilson (see [23, Lemma 2.3] and
[24, Th. 4.3]).

Theorem 2.5. Let D be a dyadic lattice and let G ⊂ D be a finite family
of cubes. Assume that f =

∑
Q∈G λQaQ, where supp aQ ⊂ Q, ‖aQ‖L∞ ≤

|Q|−1/2, ‖∇aQ‖L∞ ≤ `−1
Q |Q|−1/2 and

∫
aQ = 0. Then for all 1 < p <∞ and

for every w ∈ Ap,

(2.2) ‖f‖Lp(w) ≤ Cp,n[w]
1/2
Ap

∥∥∥∥∥∥∥
∑
Q∈G

|λQ|2

|Q|
χQ

1/2
∥∥∥∥∥∥∥
Lp(w)

.

Remark 2.6. Notice that actually (2.2) was proved in [23] with a smaller
[w]A∞ constant defined by

[w]A∞ = sup
Q

1∫
Qw

∫
Q
M(wχQ),

where Mf(x) = supQ3x
1
|Q|
∫
Q |f | is the Hardy-Littlewood maximal opera-

tor. See also [14] for various estimates in terms of [w]A∞ .

Theorem 2.5 along with the continuous version of (2.1) was applied
in [23] in order to obtain the Lp(w)-norm relation between f and the con-
tinuous square function. In a similar way, using (2.1), we obtain the Lp(w)-
norm relation between f and the discrete square function defined (for a given
dyadic lattice D) by

Sϕ,D(f)(x) =

∑
k∈Z

∑
Q∈D :`Q=2−k

(
1

|Q|

∫
Q
|f ∗ ϕ2−k |2

)
χQ(x)

1/2

.

Theorem 2.7. There exists a function ϕ ∈ S (Rn) with supp ϕ̂ ⊂ {ξ : 1/2 ≤
|ξ| ≤ 2} and there are 3n dyadic lattices D (j) such that for every w ∈ Ap and
for any f ∈ Lp(w), 1 < p <∞,

‖f‖Lp(w) ≤ Cp,n[w]
1/2
Ap

3n∑
j=1

‖Sϕ,D(j)(f)‖Lp(w).
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Proof. Let ϕ, θ be functions from Lemma 2.3. Let D be a dyadic lattice
such that for every Q ∈ D its sidelength is of the form `Q = 2k

3 , k ∈ Z. Let

D (j), j = 1, . . . , 3n, be dyadic lattices obtained by applying Theorem 2.2 to
D . Then for every Q ∈ D (j) its sidelength is of the form `Q = 2k, k ∈ Z.

For Q ∈ D with `Q = 2−k/3 set

γQ(x) =

∫
Q

(f ∗ ϕ2−k)(y)θ2−k(x− y)dy.

It is easy to check that supp γQ ⊂ 3Q,
∫
γQ = 0 and

(2.3) max(‖γQ‖L∞ , `Q‖∇γQ‖L∞) ≤ c
(

1

|Q|

∫
Q
|f ∗ ϕ2−k |2

)1/2

,

where c depends only on n and θ.
Take an increasing sequence of cubes QN ∈ D such that `QN = 2N

3 , N ∈
N. Set

GN = {Q ∈ D : Q ⊆ QN , `Q = 2−k/3, k ∈ [−N,N ]}.

By Theorem 2.2, one can write

{3Q : Q ∈ GN} =

3n⋃
j=1

G
(j)
N ,

where G
(j)
N ⊂ D (j). Then

fN (x) =

N∑
k=−N

∫
QN

(f ∗ ϕ2−k)(y)θ2−k(x− y)dy

=

N∑
k=−N

∑
Q∈D :Q⊆QN ,`Q=2−k/3

γQ(x) =

3n∑
j=1

∑
P∈G (j)

N

λ
(j)
P a

(j)
P ,

where, for P = 3Q,Q ∈ D , `Q = 2−k/3, we set

λ
(j)
P = c

(∫
3Q
|f ∗ ϕ2−k |2

)1/2

and a
(j)
P = 1

λ
(j)
P

γQ.
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By (2.3), we have that the functions a
(j)
P satisfy all conditions from

Theorem 2.5. Therefore, by (2.2),

‖fN‖Lp(w) ≤ Cp,n[w]
1/2
Ap

3n∑
j=1

∥∥∥∥∥∥∥
 ∑
P∈G (j)

N

|λ(j)
P |2

|P |
χP

1/2
∥∥∥∥∥∥∥
Lp(w)

≤ Cp,n[w]
1/2
Ap

3n∑
j=1

‖Sϕ,D(j)(f)‖Lp(w).

Applying the convergence argument as described in Remark 2.4 completes
the proof. �

2.3. The sharp extrapolation

The following result was proved in [9].

Theorem 2.8. Assume that for some f, g and for all weights w ∈ Ap0,

‖f‖Lp0 (w) ≤ CN([w]Ap0 )‖g‖Lp0 (w),

where N is an increasing function and the constant C does not depend on
w. Then for all 1 < p <∞ and all w ∈ Ap,

‖f‖Lp(w) ≤ CK(w)‖g‖Lp(w),

where

K(w) =

N
(
[w]Ap(2‖M‖Lp(w)→Lp(w))

p0−p
)
, if p < p0;

N

(
[w]

p0−1

p−1

Ap
(2‖M‖Lp′ (w1−p′ )→Lp′ (w1−p′ ))

p−p0
p−1

)
, if p > p0.

In particular, K(w) ≤ C1N

(
C2[w]

max
(

1,
p0−1

p−1

)
Ap

)
for w ∈ Ap.

2.4. Some two-weighted estimates

Let

Hf(x) = p.v.
1

π

∫
R

f(y)

x− y
dy and H?f(x) = sup

ε>0

1

π

∣∣∣∣∣
∫
|x−y|>ε

f(y)

x− y
dy

∣∣∣∣∣
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be the Hilbert and the maximal Hilbert transforms, respectively.
Given two weights u and v, set

[u, v]A2
= sup

Q
〈u〉Q〈v−1〉Q.

Then the following two-weighted estimates hold:

max(‖M‖L2(v)→L2(u), ‖H?‖L2(v)→L2(u))(2.4)

≤ C[u, v]
1/2
A2

(
[u]

1/2
A2

+ [v]
1/2
A2

)
.

The proofs of these estimates can be found in [13, 14] (notice that stronger
versions of (2.4) in terms of the [w]A∞ constants are proved there).

2.5. The partial sum operator

Given an interval [a, b], the partial sum operator S[a,b] is defined by Ŝ[a,b]f =

f̂χ[a,b]. We will use two standard facts about S[a,b] (see, e.g., [8]). First,

(2.5) S[a,b] =
i

2
(MaHM−a −MbHM−b),

where Maf(x) = e2πiaxf(x). Second, if (Tmχ[a,b]
f )̂ = mχ[a,b]f̂ , then

(2.6) Tmχ[a,b]
f = m(a)S[a,b]f +

∫ b

a
(S[t,b]f)m′(t)dt.

3. Two key lemmas

Given a dyadic lattice D in R, a weight w and k ∈ Z, denote

wk,D =
∑

I∈D :|I|=2−k

〈w〉IχI .

Lemma 3.1. Let w ∈ A2. Then wk,D ∈ A2 and

(3.1) [wk,D ]A2
≤ 9[w]A2

.

Also, for two arbitrary dyadic lattices D and D ′,

(3.2) [wk,D , ((w
−1)k,D ′)

−1]A2
≤ 9[w]A2

.
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Proof. Denote u = wk,D and Pk = {I ∈ D : |I| = 2−k}. Take an arbitrary
interval J ⊂ R. Notice that

(3.3) 〈u〉J =
1

|J |
∑

I∈Pk:I∩J 6=∅

|I ∩ J |
|I|

∫
I
w.

Next, by Hölder’s inequality,

|I|2 ≤
(∫

I
w

)(∫
I
w−1

)
,

which implies

〈u−1〉J =
1

|J |
∑

I∈Pk:I∩J 6=∅

|I ∩ J | |I|∫
I w

≤ 1

|J |
∑

I∈Pk:I∩J 6=∅

|I ∩ J |
|I|

∫
I
w−1.(3.4)

Denote

J∗ =
⋃

I∈Pk:I∩J 6=∅

I.

If |J | > 2−k, then |J∗| ≤ 3|J |, and hence, by (3.3) and (3.4),

(3.5) 〈u〉J ≤
1

|J |

∫
J∗
w ≤ 3 〈w〉J∗ and 〈u−1〉J ≤ 3 〈w−1〉J∗ .

Assume that |J | ≤ 2−k. Then |J∗| ≤ 2−k+1. Hence in this case,

〈u〉J ≤
1

|I|

∫
J∗
w ≤ 2 〈w〉J∗ and 〈u−1〉J ≤ 2 〈w−1〉J∗ ,

which along with (3.5) implies (3.1).
The proof of (3.2) is identically the same. Denote v = ((w−1)k,D ′)

−1. If
|J | > 2−k, then by (3.5),

〈u〉J ≤ 3 〈w〉J∗ and 〈v−1〉J ≤ 3 〈w−1〉J∗ .

Similarly, if |J | ≤ 2−k, then

〈u〉J ≤ 2 〈w〉J∗ and 〈v−1〉J ≤ 2 〈w−1〉J∗ ,

which along with the previous estimate proves (3.2). �
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Define the operator Tmχ[a,b]
by (Tmχ[a,b]

f )̂ = mχ[a,b]f̂ . In the lemma be-
low we use the same notation uk,D as in Lemma 3.1.

Lemma 3.2. Assume that m is a bounded and differentiable function on
[a, b]. Then for all u, v ∈ A2,

‖Tmχ[a,b]
f‖L2(uk,D) ≤ cK(m)N(u, v)(2−k(b− a) + 1)‖f‖L2(v),

where K(m) = ‖m‖L∞ +
∫ b
a |m

′(t)|dt,

N(u, v) = min
(
[u, v]A2

, [uk,D , v]A2

)1/2(
[u]

1/2
A2

+ [v]
1/2
A2

)
and c > 0 is an absolute constant.

Proof. Let t ∈ [a, b). Take an arbitrary I ∈ D with |I| = 2−k. Notice that

‖S[t,b]f‖L∞ ≤ (b− a)‖f‖L1 .

Therefore, for all x, y ∈ I,

|S[t,b]f(y)| ≤ (b− a)

∫
3I
|f |+ |S[t,b](fχR\3I)(y)|(3.6)

≤ 3(b− a)2−kMf(x) + |S[t,b](fχR\3I)(y)|.

Applying (2.5) yields

|S[t,b](fχR\3I)(y)| ≤ |HM−t(fχR\3I)(y)|(3.7)

+ |HM−b(fχR\3I)(y)|.

For every t ∈ [a, b],

|HM−t(fχR\3I)(y)−HM−t(fχR\3I)(x)|(3.8)

≤ c|I|
∫
R\3I
|f(ξ)| 1

|x− ξ|2
dξ ≤ cMf(x).

Further,

|HM−t(fχR\3I)(x)| ≤ |HM−t(fχR\[x−|I|/2,x+|I|/2])(x)|
+ |HM−t(fχ3I\[x−|I|/2,x+|I|/2])(x)|
≤ H?M−tf(x) + cMf(x),
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which, combined with (3.6), (3.7) and (3.8), implies

|S[t,b]f(y)| ≤ H?M−bf(x) +H?M−tf(x) + (3(b− a)2−k + c)Mf(x).

From this and from (2.6), for all x, y ∈ I we have

|Tmχ[a,b]
f(y)| ≤ cK(m)T (f)(x) +

∫ b

a
H?M−tf(x)|m′(t)|dt,

where

T (f)(x) = H?M−bf(x) +H?M−af(x) + (2−k(b− a) + 1)Mf(x).

Therefore,

(3.9)
1

|I|

∫
I
|Tmχ[a,b]

f |2 ≤ inf
I

(
cK(m)T (f) +

∫ b

a
H?M−tf |m′(t)|dt

)2

.

Hence, applying Minkowski’s inequality and using (2.4), we obtain

‖Tmχ[a,b]
f‖L2(uk,D) ≤

∥∥∥∥cK(m)T (f) +

∫ b

a
H?M−tf |m′(t)|dt

∥∥∥∥
L2(u)

≤ cK(m)‖T (f)‖L2(u) +

∫ b

a
‖H?M−tf‖L2(u)|m′(t)|dt

≤ cK(m)(2−k(b− a) + 1)[u, v]
1/2
A2

([u]
1/2
A2

+ [v]
1/2
A2

)‖f‖L2(v).

On the other hand, (3.9) also implies

‖Tmχ[a,b]
f‖L2(uk,D) ≤

∥∥∥∥cK(m)T (f) +

∫ b

a
H?M−tf |m′(t)|dt

∥∥∥∥
L2(uk,D)

.

Therefore, by the previous arguments and Lemma 3.1,

‖Tmχ[a,b]
f‖L2(uk,D)

≤ cK(m)(2−k(b− a) + 1)[uk,D , v]
1/2
A2

([u]
1/2
A2

+ [v]
1/2
A2

)‖f‖L2(v),

which completes the proof. �

4. Proof of Theorems 1.1 and 1.2

The lower bounds for αp and βp are explained in the Introduction. Therefore,
we are left with establishing the upper bounds.
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Proof of Theorem 1.1. By duality, the estimate

(4.1) ‖Sf‖Lp(w) ≤ C[w]
1

2

1

p−1
+max

(
1, 1

p−1

)
Ap

‖f‖Lp(w)

is equivalent to∥∥∥∥∥∑
k∈Z

S∆k
ψk

∥∥∥∥∥
Lp′ (σ)

≤ C[σ]
1

2
+max(1,p−1)

Ap′

∥∥∥∥∥∥
(∑
k∈Z
|ψk|2

)1/2
∥∥∥∥∥∥
Lp′ (σ)

,

where σ = w1−p′ . Changing here p′ by p and σ by w, we see that it suffices
to prove that

(4.2)

∥∥∥∥∥∑
k∈Z

S∆k
ψk

∥∥∥∥∥
Lp(w)

≤ C[w]
1

2
+max

(
1, 1

p−1

)
Ap

∥∥∥∥∥∥
(∑
k∈Z
|ψk|2

)1/2
∥∥∥∥∥∥
Lp(w)

.

Applying Theorem 2.7 yields∥∥∥∥∥∑
k∈Z

S∆k
ψk

∥∥∥∥∥
Lp(w)

≤ C[w]
1

2

Ap

3∑
j=1

∥∥∥∥∥Sϕ,D(j)

(∑
k∈Z

S∆k
ψk

)∥∥∥∥∥
Lp(w)

.

Therefore, by Theorem 2.8, (4.2) will follow from

(4.3)

∥∥∥∥∥Sϕ,D
(∑
k∈Z

S∆k
ψk

)∥∥∥∥∥
L2(w)

≤ C[w]A2

∥∥∥∥∥∥
(∑
k∈Z
|ψk|2

)1/2
∥∥∥∥∥∥
L2(w)

.

Using that supp ϕ̂2−k ⊂ {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}, we have∑
j∈Z

S∆j
ψj

 ∗ ϕ2−k = (S∆k−1
ψk−1 + S∆k

ψk) ∗ ϕ2−k ,

which implies

Sϕ,D

∑
j∈Z

S∆j
ψj

 (x)2

=
∑
k∈Z

∑
I∈D :`I=2−k

(
1

|I|

∫
I
|(S∆k−1

ψk−1 + S∆k
ψk) ∗ ϕ2−k |2

)
χI(x).
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Hence, in order to prove (4.3), it suffices to establish that for every k ∈ Z,

(4.4) ‖(S∆k−1
f) ∗ ϕ2−k‖L2(wk,D) ≤ C[w]A2

‖f‖L2(w)

and

(4.5) ‖(S∆k
f) ∗ ϕ2−k‖L2(wk,D) ≤ C[w]A2

‖f‖L2(w).

Since

((S∆k−1
f) ∗ ϕ2−k )̂ (ξ) = ϕ̂(2−kξ)χ{2k−1≤|ξ|≤2k}f̂(ξ),

(4.4) is an immediate corollary of Lemma 3.2 (applied in the case of equal
weights). Estimate (4.5) follows in the same way. Notice that the constants C
in (4.4) and (4.5) can be taken as

C = c

(
‖ϕ̂‖L∞ +

∫
1/2≤|ξ|≤2

|(ϕ̂)′(ξ)|dξ

)

with some absolute c > 0. �

Remark 4.1. There is a minor inaccuracy in the proof, namely, applying
Theorem 2.7, we have used that

∑
k∈Z S∆k

ψk ∈ Lp(w) as an a priori as-
sumption. This point can be fixed in several ways. First, by [16], f ∈ Lp(w)
implies Sf ∈ Lp(w) for w ∈ Ap for all 1 < p <∞. By duality, this means

that
(∑

k∈Z |ψk|2
)1/2

∈ Lp(w) implies
∑

k∈Z S∆k
ψk ∈ Lp(w).

However, one can avoid the use of [16] as follows. Defining

SNf =

(
N∑

k=−N
|S∆k

f |2
)1/2

,

we have that (4.1) with SNf instead of Sf is equivalent to (4.2) with∑N
k=−N S∆k

ψk on the left-hand side. But the fact that
∑N

k=−N S∆k
ψk ∈

Lp(w) follows immediately from (2.5). The rest of the proof is exactly the
same, and we obtain (4.1) with SNf instead of Sf with the corresponding
constant independent of N . Letting N →∞ yields the desired bound for S.
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Remark 4.2. Theorem 1.1 in the case p = 2 says that

‖S‖L2(w)→L2(w) ≤ C[w]
3/2
A2
.

From this, by Theorem 2.8,

‖S‖Lp→Lp ≤ C‖M‖3/2Lp→Lp (1 < p ≤ 2).

Since ‖M‖Lp→Lp ' 1
p−1 for 1 < p ≤ 2, we obtain the sharp upper bound

‖S‖Lp→Lp ≤
C

(p− 1)3/2
(1 < p ≤ 2)

found by J. Bourgain [3].

Proof of Theorem 1.2. Using the fact that

‖Tm‖Lp(w)→Lp(w) = ‖Tm‖Lp′ (σ)→Lp′ (σ)

and [σ]Ap′ = [w]
1

p−1

Ap
, it suffices to prove that

(4.6) ‖Tm‖Lp(w)→Lp(w) ≤ Cp,m[w]
1

2
+ 3

2

1

p−1

Ap
(1 < p ≤ 2).

By Theorems 2.7 and 2.8, (4.6) will follow from

(4.7) ‖Sϕ,D(Tmf)‖L2(w) ≤ Cm[w]
3/2
A2
‖f‖L2(w).

Notice that

‖Sϕ,D(Tmf)‖L2(w) =

(∑
k∈Z

∫
R
|(Tmf) ∗ ϕ2−k |2wk,Ddx

)1/2

.

Therefore, by duality, (4.7) is equivalent to

∥∥∥∥∥∑
k∈Z

(Tmψk) ∗ ϕ2−k

∥∥∥∥∥
L2(w−1)

≤ Cm[w]
3/2
A2

(∑
k∈Z

∫
R
|ψk|2(wk,D)−1dx

)1/2

.
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Applying Theorem 2.7 again, we see that the question is reduced to the
estimate

∑
k∈Z

∥∥∥∥∥∥
∑
j∈Z

(Tmψj) ∗ ϕ2−j

 ∗ ϕ2−k

∥∥∥∥∥∥
2

L2((w−1)k,D′ )


1/2

(4.8)

≤ Cm[w]A2

(∑
k∈Z
‖ψk‖2L2((wk,D)−1)

)1/2

for some dyadic lattices D and D ′.
Since∑

j∈Z
(Tmψj) ∗ ϕ2−j

 ∗ ϕ2−k =

k+1∑
j=k−1

(Tmψj) ∗ ϕ2−j ∗ ϕ2−k ,

in order to prove (4.8), it suffices to show that for every k ∈ Z and every
j = k − 1, k, k + 1,

(4.9) ‖(Tmf) ∗ ϕ2−j ∗ ϕ2−k‖L2((w−1)k,D′ ) ≤ Cm[w]A2
‖f‖L2((wk,D)−1).

By Lemma 3.1,

[(w−1)k,D ′ , (wk,D)−1)]
1/2
A2

(
[(w−1)k,D ′ ]

1/2
A2

+ [(wk,D)−1)]
1/2
A2

)
≤ c[w]A2

.

From this and from Lemma 3.2 we obtain (4.9) with

Cm = cCϕ

(
‖m‖L∞ + sup

k∈Z

∫
∆k

|m′(t)|dt
)
,

which completes the proof. �

Remark 4.3. As in Remark 4.1, it is not difficult to justify the use of
Theorem 2.7. We omit the details.
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5. Concluding remarks

5.1. On the sharpness of αp and βp

The extrapolation principle explained in the Introduction says that if ξp is

the best possible exponent in ‖T‖Lp(w)→Lp(w) ≤ C[w]
ξp
Ap

, then

ξp ≥ max

(
γ2,

γ1

p− 1

)
,

where γ1 and γ2 are the constants appearing in the endpoint asymptotic
relations for ‖T‖Lp→Lp . In fact, for many particular operators we have that
ξp = max(γ2,

γ1
p−1).

Therefore, it is plausible that the upper bounds for αp and βp from
Theorems 1.1 and 1.2 are not sharp for p > 2 and 1 < p <∞, respectively,
and it is natural to make the following.

Conjecture 5.1. The best possible exponent αp in

‖S‖Lp(w)→Lp(w) ≤ Cp[w]
αp
Ap

is

αp = max

(
1,

3

2

1

p− 1

)
(1 < p <∞).

Conjecture 5.2. The best possible exponent βp in

‖Tm‖Lp(w)→Lp(w) ≤ Cp,m[w]
βp
Ap

is

βp =
3

2
max

(
1,

1

p− 1

)
(1 < p <∞).

Observe that by Theorem 2.8, in order to establish Conjectures 5.1
and 5.2, it suffices to show that

‖S‖L5/2(w)→L5/2(w) ≤ C[w]A5/2
and ‖Tm‖L2(w)→L2(w) ≤ Cm[w]

3/2
A2
,

respectively.
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5.2. Sparse bounds for S and Tm?

A family of cubes S is called sparse if there exist 0 < η < 1 and a family of
pairwise disjoint sets {EQ}Q∈S such that EQ ⊂ Q and |EQ| ≥ η|Q| for all
Q ∈ S. By a sparse bound for a given operator T we mean an estimate of
the form

|〈Tf, g〉| ≤ C
∑
Q∈S
〈f〉r,Q〈g〉s,Q|Q|,

with suitable 1 ≤ r, s <∞, where 〈f〉p,Q = 〈|f |p〉1/pQ , and S is a sparse family.
Sparse bounds have become a powerful tool for obtaining sharp quanti-

tative weighted estimates in recent years (see, e.g., [2, 5, 18]). Therefore it
would be natural to try to attack Conjectures 5.1 and 5.2 by means of the
corresponding sparse bounds for S and Tm.

At this point, we mention that it is not clear to us what is the sparse
bound for S leading to Conjecture 5.1. For example, it is plausible that S
satisfies

|〈Sf, g〉| ≤ C

(r − 1)1/2

∑
Q∈S
〈f〉r,Q〈g〉1,Q|Q| (1 < r ≤ 2)

but one can show that this estimate leads to the same upper bound for αp
as obtained in Theorem 1.1.

Contrary to this, the sparse bound

(5.1) |〈Tmf, g〉| ≤
C

(r − 1)1/2

∑
Q∈S
〈f〉r,Q〈g〉r,Q|Q| (1 < r ≤ 2)

would imply Conjecture 5.2. The technique developed in [22] probably may
play an important role in establishing (5.1).

Added in proof. In a recent paper [7], the authors consider similar ques-
tions in the Walsh-Fourier setting. In particular they establish Conjecture 5.1
for all 1 < p <∞ and Conjecture 5.2 for max{p, p′} ≥ 5/2 in this setting.
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