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Equidistribution of Neumann data mass

on simplices and a simple inverse problem

Hans Christianson

In this paper we study the behaviour of the Neumann data of
Dirichlet eigenfunctions on simplices. We prove that the L2 norm
of the (semi-classical) Neumann data on each face is equal to 2/n
times the (n− 1)-dimensional volume of the face divided by the
volume of the simplex. This is a generalization of [2] to higher
dimensions. Again it is not an asymptotic, but an exact formula.
The proof is by simple integrations by parts and linear algebra.

We also consider the following inverse problem: do the norms of
the Neumann data on a simplex determine a constant coefficient
elliptic operator? The answer is yes in dimension 2 and no in higher
dimensions.

1. Introduction

In this paper we extend the results of [2] on triangles to simplices, which
are the higher dimensional analogues of triangles. The proof has many simi-
larities but involves more linear algebra and elementary geometry. We have
chosen to separate the two proofs in order to make the paper about trian-
gles simple and clean. We also have added to this paper some applications
to rudimentary inverse problems.

Let T ⊂ Rn be an n-dimensional (non-degenerate) simplex with faces
G0, . . . , Gn. We consider the Dirichlet eigenfunction problem on T :

(1.1)

{
−h2∆u = u in T,

u|∂T = 0.

The semiclassical parameter h > 0 denotes the (inverse of) the eigenvalues
hence takes values in a discrete set. We assume that the eigenfunctions are
normalized: ‖u‖L2(T ) = 1. Our main result, similarly to in [2] is that the
Neumann data on each face of the simplex is proportional to the volume of
the face.
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422 H. Christianson

Theorem 1. Let T ⊂ Rn be a non-degenerate simplex with faces G0, G1,
. . . , Gn and suppose u solves (1.1).

Then the (semi-classical) Neumann data on each of the the boundary
faces satisfies

(1.2)

∫
Gj

|h∂ωu|2dSj =
2Voln−1(Gj)

nVoln(T )
.

Here h∂ω is the semi-classical normal derivative on ∂T , dSj is the surface
measure on Gj, Voln(T ) is the volume of the simplex T , and Voln−1(Gj) is
the (n− 1)-dimensional induced volume of Gj.

Remark 1.1. As in [2], we are calling this “equidistribution” of Neumann
mass since it says that the Neumann data has mass proportional to the
(n− 1)-dimensional volume of the face to which it is restricted. Again it
should be remarked that perhaps the most surprising part of this result
is that it holds for the entire sequence of eigenfunctions, and is an exact
formula, rather than an asymptotic.

The proportionality constant in (1.2) depends in a seemingly non-obvious
way on the dimension n. However, it turns out this is the right dimensional
constant in the case of the Cauchy data for quantum ergodic eigenfunctions
restricted to a hypersurface, and indeed also for the boundary data quan-
tum ergodic restriction theorems in the original studies [5, 7]. One of the
author’s motivations for the present paper was to see if one could isolate the
mass of the Dirichlet vs. Neumann data of quantum ergodic eigenfunctions
restricted to an interior simplex hypersurface in the Cauchy data restriction
theorem in [4]. Unfortunately this does not help, and the present paper and
[2] do not preclude the possibility of quantum ergodic eigenfunctions having
o(1) (in L2) restrictions to the boundary of an interior simplex. See below
for a brief history.

A statement such as Theorem 1 is false in general for other polygonal
domains. It is clearly false in the case of a square, as discussed in [2], as well
as for a rectangular parallelepiped in any dimension by looking at Fourier
series.

Remark 1.2. From a big picture point of view, part of the method of
proof is to study two equivalent problems: one is the study of the flat Lapla-
cian on an arbitrary simplex, and the other is the study of an arbitrary
constant coefficient elliptic operator on the standard simplex. Elementary
linear algebra takes one problem to the other. Indeed, one could study an
arbitrary constant coefficient elliptic operator on an arbitrary simplex using
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these methods as well. The duality of these two problems was what led to
the statement of the inverse problem in Section 4.

1.1. Brief history

Previous results on restrictions to hypersurfaces primarily focused on up-
per bounds. Burq-Gérard-Tzvetkov [1] give an upper bound of the norm
(squared) of the restrictions of eigenfunctions, of order O(h−1/2). In the au-
thor’s paper with Hassell-Toth [3], an upper bound of O(1) was proved for
(semi-classical) Neumann data restricted to arbitrary co-dimension 1 hyper-
surfaces in any dimension. Both of these estimates are shown to be sharp,
so this gives a lower (and upper) bound for some eigenfunctions.

In the case of quantum ergodic eigenfunctions, a little more is known.
Gérard-Leichtnam [5] and Hassell-Zelditch [7] give asymptotic formulae for
(a density one subsequence of) the Neumann (respectively Dirichlet) bound-
ary data of Dirichlet (respectively Neumann) quantum ergodic eigenfunc-
tions. That means that there is a lower bound, and explicit local asymptotic
formula in this special case, at least for most of the eigenfunctions. Simi-
lar statements were proved for interior hypersurfaces in [4, 8, 9]. However,
for an interior hypersurface, it seems an intractible problem to separate the
behaviour of the Dirichlet or Neumann data, or a sparse subsequence must
be removed. This again gives lower bounds on the norms of the Dirichlet or
Neumann data for some of the eigenfunctions.

2. The standard simplex in R3

In this section we prove the theorem for the standard simplex in dimension
3 as it is simple to see how the proof works in this case. In Section 3 we
prove the general result.

Let p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 1, 0), and p3 = (0, 0, 1). The stan-
dard simplex is given by all convex combinations of these vectors:

T =


3∑
j=0

tjpj :

3∑
j=0

tj = 1, and tj > 0

 .

That is, T is the four sided solid with the pj and 0 at the corners.
We use (x1, x2, x3) as the standard rectangular coordinates in R3. Let

F1 denote the face in the (x2, x3) plane (where x1 = 0), F2 the face where
x2 = 0, F3 the face where x3 = 0, and F4 the remaining face. Then the
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unit normals are νj = −ej , j = 1, 2, 3 and ν4 = (3)−1/2(1, 1, 1) respectively,
where ej are the standard basis vectors pointing in the direction of xj respec-
tively. Then the statement of the theorem involves the quantities |νj · h∂u|
restricted to their respective faces.

Let us denote by X the vector field

X = (x1 +m1)∂x1
+ (x2 +m2)∂x2

+ (x3 +m3)∂x3
,

where the mjs are parameters independent of x. A simple computation yields
that [−h2∆− 1, X] = −2h2∆.

Remark 2.1. We are going to apply Green’s formula on simplices to u and
Xu. However, it should be noted that in order to apply Green’s formula in
this context, we need that both u and the gradient of u are H2 functions.
The referee has been kind enough to point out that this is non-trivial for a
domain with Lipschitz boundary, but that simplices are convex, and much
more is known about Sobolev regularity for elliptic equations on convex
domains. In the appendix we very briefly summarize the results in [6] which
allow us to conclude that Xu is in H2.

Now the eigenfunction equation (1.1) tells us that

[−h2∆− 1, X]u = −2h2∆u = 2u.

As Remark 2.1 indicates, u and Xu are both H2 functions, so we may apply
Theorem 4 (Green’s formula on simplices) to get

∫
T

([−h2∆− 1, X]u)ūdV

=

∫
T

((−h2∆− 1)Xu)ūdV

=

∫
∂T

(−h∂νhXu)ūdS +

∫
∂T

(hXu)(h∂ν ū)dS,
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or

2 = 2

∫
T
|u|2dV

= −2

∫
T

(h2∆u)ūdV

=

∫
∂T

(−h∂νhXu)ūdS +

∫
∂T

(hXu)(h∂ν ū)dS(2.1)

=

∫
∂T

(hXu)(h∂ν ū)dS,(2.2)

since we have assumed Dirichlet boundary conditions.
Let us break the analysis into the four different faces. On F1, we have

∫
F1

(hXu)(h∂ν ū)dS

=

∫
F1

(((x1 +m1)h∂x1
+ (x2 +m2)h∂x2

+ (x3 +m3)h∂x3
)u)ūdS1

= −m1

∫
F1

|h∂ν1u|2dS1,

since h∂x1
= −h∂ν1 and h∂xj

is tangential when j = 2, 3. Similarly, for j =
2, 3 we have

∫
Fj

(hXu)(h∂νj ū)dSj = −mj

∫
Fj

|h∂νj |2dSj .

On F4 we need to be a little bit more careful. The points on F4 all
satisfy x1 + x2 + x3 = 1 since the normal is parallel to (1, 1, 1). The normal
derivative is h∂ν4 = 3−1/2(h∂x1

+ h∂x2
+ h∂x3

), and the tangent vectors are
all linear combinations of e3 − e1 = (−1, 0, 0) and e2 − e1 = (−1, 1, 0), so
that, acting on functions which vanish on F4,

∂xj
= 3−1/2∂ν4
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for j = 1, 2, 3. Hence

∫
F4

(hXu)h∂ν4 ūdS4

=

∫
F4

(((x1 +m1)h∂x1
+ (x2 +m2)h∂x2

+ (x3 +m3)h∂x3
)u)h∂ν4 ūdS4

= (3)−1/2
∫
F4

(((x1 +m1) + (x2 +m2) + (x3 +m3))h∂ν4u)h∂ν4 ūdS4

= 3−1/2(1 +m1 +m2 +m3)

∫
F4

|h∂ν4u|2dS4.

Summing up, we have

2 = −m1

∫
F1

|h∂ν1u|2dS1 −m2

∫
F2

|h∂ν2u|2dS2 −m3

∫
F3

|h∂ν3u|2dS3(2.3)

+ 3−1/2(1 +m1 +m2 +m3)

∫
F4

|h∂ν4u|2dS4.

Now if mj = 0 for j = 1, 2, 3, using (2.3) we have

2 = (3)−1/2
∫
F4

|h∂ν4u|2dS4,

so that ∫
F4

|h∂ν4u|2dS4 = 31/2 · 2.

We know that Vol3(T ) = 1/3! = 1/6. The cross product computes the area
of the parallelogram, which is twice the area of the triangle, so that tells us
that

Vol2(F4) = |(−1, 1, 0)× (−1, 0, 1)|/2
=
√

3/2.
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Hence ∫
F4

|h∂ν4u|2dS4 = 2 · 31/2

= 4(
√

3/2)

= (2/3)

(
2 · 31/2

1/6

)
=

2Vol2(F4)

nVol3(T )
.

For j = 1, 2, 3 we have

Vol2(Fj) = 1/2.

Differentiating (2.3) with respect to mj , we have

0 = −
∫
Fj

|h∂νju|2dSj + (3)−1/2
∫
F4

|h∂ν4u|2dS4,

or

2 =

∫
Fj

|h∂νju|2dSj

=

(
2

3

)(
1/2

1/6

)
=

(
2

3

)
Vol2(Fj)

Vol3(T )
.

This proves the theorem for the standard simplex in dimension 3.

3. Proof of Theorem 1

Let p1, . . . , pn be independent vectors in Rn, and let p0 = (0, . . . , 0) denote
the origin. Then

(3.1) T =

{
n∑
0

tjpj :
∑

tj = 1 and tj > 0

}

is a simplex. If pj = ej (standard rectangular basis vectors) for each j, then
we say T is the standard simplex and denote it by T0.
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Since the pjs are independent, the matrix

A =

 · · ·
p1 p2 · · · pn

· · ·


is invertible. Let B = A−1, and for x ∈ Rn set

y = Bx.

This transformation simply takes the simplex T to the standard simplex T0.
Indeed, if x = pj , then Bx = ej . Hence

T0 =
{∑

tjBpj ,
∑

tj = 1, tj > 0∀j
}
.

We pause briefly to point out that this change of variables induces a volume
element, so that

det(A) = n!Vol(T ).

This is easily seen using the volume of the standard simplex is 1/n! and the
Jacobian for a change of volume integral is det(A).

We lift the transformation to T ∗Rn: for ξ ∈ Rn, let η = (B−1)T ξ. Then
since the symbol of the Laplacian in Rn is ξ21 + · · ·+ ξ2n, the symbol for the
Laplacian in our new coordinates is

ξT ξ = ηTBBT η.

Set Γ = BBT and

−h2∆̃ = −
∑

Γij∂yi∂yj ,

the Laplacian in the y coordinates on the standard simplex T0.
For the eigenfunctions u on T , let v(y) = u(Ay) be the eigenfunctions in

the y coordinates. Since −h2∆̃ is constant coefficient, the same commutator
argument can be used here. Indeed, let

Y =
∑

(yj +mj)∂yj ,

and a simple calculation gives

[−h2∆̃− 1, Y ] = −2h2∆̃.
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Following the recipe in Section 2 and Remark 2.1, we have using −h2∆̃v = v
and Green’s formula on simplices

2

∫
T0

|v|2dy = −2

∫
T0

(h2∆̃v)v̄dy

=

∫
T0

([−h2∆̃− 1, Y ]v)v̄dy

=

∫
T0

((−h2∆̃− 1)Y v)v̄dy

=

∫
T0

((−(h∂)TBBTh∂ − 1)Y v)v̄dy

=

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy

+

∫
∂T0

(−νTBBTh∂(hY v))v̄dy

=

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy

since we have assumed Dirichlet boundary condtions. Here ν denotes the unit
outward normal and dS denotes the induced surface measure. Continuing,

2

∫
T0

|v|2dy =

∫
T0

(BBTh∂Y v) · (h∂v̄)dy −
∫
T0

(Y v)v̄dy

=

∫
T0

(Y v)(−h∂TBBTh∂v̄)dy −
∫
T0

(Y v)v̄dy

+

∫
∂T0

(hY v)(νTBBTh∂v̄)dS

=

∫
∂T0

(hY v)(νTBBTh∂v̄)dS(3.2)

since ∆̃v̄ = v̄.
We have changed variables to be on T0 in order to make sure the normal

vectors are easy to compute. For T0, let Fj be the side where yj = 0, 1 6
j 6 n, and F0 the remaining face. Then for 1 6 j 6 n, we have the outgoing
normal vectors to Fj νj = −ej , where the ej are the standard basis vectors.
For F0, we have transformed to T0 so that

ν0 = n−1/2(1, . . . , 1).
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Then the unit normal derivatives are

h∂νj = −h∂yj

for 1 6 j 6 n and

h∂ν0 = n−1/2(h∂x1
+ · · ·+ h∂xn

).

We are assuming Dirichlet boundary conditions, so all of the tangential
derivatives of v vanish. That is, for 1 6 j 6 n,

h∂`v = 0,

except for ` = j. We also have using symmetry that on F0,

h∂ν0v = n1/2h∂yjv

for every 1 6 j 6 n. We recall again that yj = 0 on Fj for 1 6 j 6 n and on
F0 we have y1 + y2 + · · ·+ yn = 1.

Plugging these observations in to (3.2), we have

2

∫
T0

|v|2dy =

∫
∂T0

(hY v)(νTBBTh∂v̄)dS

=
n∑
j=1

∫
Fj

((∑
`

(m` + y`)h∂y`

)
v

)
(νTj BB

Th∂v̄)dSj

+

∫
F0

((∑
`

(m` + y`)h∂y`

)
v

)
(ν0

TBBTh∂v̄)dS0

=

n∑
j=1

∫
Fj

(mjh∂yjv)(h∂νj v̄)dSj

+

∫
F0

(
n∑
1

(n−1/2(yj +mj))h∂ν0v

)
(νT0 BB

Th∂v̄)dS0

=
n∑
j=1

∫
Fj

(−mjh∂νjv)(νTj BB
Th∂v̄)dSj

+

∫
F0

n−1/2(1 +m1 + · · ·+mn)((h∂ν0)v)(νT0 BB
Th∂v̄)dS0

=

n∑
j=1

(−mj)Ij + n−1/2(1 +m1 + · · ·+mn)I0,(3.3)
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where for each 0 6 j 6 n

Ij =

∫
Fj

(h∂νjv)(νTj BB
Th∂v̄)dSj .

Let us now compute the Ijs. Using equation (3.3), setting mj = 0 for all
1 6 j 6 n, we have

I0 = 2n1/2
∫
T0

|v|2dy.

Differentiating equation (3.3) with respect to mj yields for 1 6 j 6 n

Ij = n−1/2I0 = 2

∫
T0

|v|2dy.

Now we must compute the Ij in terms of the corresponding integrals on
the original simplex T . We first observe that, since for 1 6 j 6 n we have
Fj ⊂ {yj = 0}, changing variables on one of the boundary integrals induces
the area of the (n− 1)-dimensional parallelepiped spanned by p1, p2, . . . ,
pj−1, pj+1, . . . , pn. Denote this parallelepiped Γj , and observe that

Voln−1Γj = (n− 1)!Voln−1(Gj),

where Gj is the (n− 1)-dimensional simplex spanned by p1, p2, . . . , pj−1,
pj+1, . . . , pn.

For F0, our area element is n1/2dy, so changing variables in the integral
over F0 induces the area of the parallelepiped spanned by p1, p2 − p1, p3 −
p1, . . . , pn − p1 divided by n1/2. Denote this parallelepiped by Γ0, and again
we have

Voln−1(Γ0) = (n− 1)!Voln−1(G0).

We now need to compute the integrand inside of each Ij in terms of the
corresponding normal derivatives on Gj of u.

We first observe that on Fj , for 1 6 j 6 n, h∂y` v̄ = 0 for ` 6= j, so that
the semiclassical gradient can be written

h∂yv|Fj
= ejh∂yjv|Fj

= νjh∂νjv|Fj
.
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Similarly, for j = 0, we have on F0

h∂v =

 h∂y1
...

h∂yn

 v
= n−1/2

 1
...
1

h∂ν0v
= ν0h∂ν0v.

Now for each j, let ωj be the unit outward normal on Gj . We know for
each j on the face Gj

h∂ωj
u|Gj

= ωTj h∂xu|Gj

= ωTj B
Th∂yv|Fj

= (Bωj)
Th∂yv|Fj

= (Bωj)
T νjh∂νjv|Fj

= (ωTj B
T νj)h∂νjv|Fj

,

so that

h∂νjv|Fj
= (ωTj B

T νj)
−1h∂ωj

u|Gj

written in the y and x coordinates respectively.
On the other hand, we have h∂x = BTh∂y, so that

νTj Bh∂xu = νTj BB
Th∂yv.

The left hand side is zero except for the projection on to the ωj , so that on
each Gj we have

νTj Bh∂xu = (νTj Bωj)ω
T
j h∂xu

= (ωTj B
T νj)h∂ωj

u.(3.4)

Hence

νTj BB
Th∂yv|Fj

= (ωTj B
T νj)h∂ωj

u|Gj
.
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Plugging these observations in to the formulae for the Ij , we get for
1 6 j 6 n

Ij =

∫
Fj

(h∂νjv)(νTj BB
Th∂v̄)dSj

=
1

(n− 1)!Voln−1(Gj)

∫
Gj

(
(ωTj B

T νj)
−1h∂ωj

u|Gj

) (
(ωTj B

T νj)h∂ωj
ū|Gj

)
dS̃j

=
1

(n− 1)!Voln−1(Gj)

∫
Gj

|h∂ωj
u|2dS̃j ,

where dS̃j is the induced surface measure on Gj .
On the other hand, for I0, we have

I0 =

∫
F0

(h∂ν0v)(νT0 BB
Th∂v̄)dS0

=
n1/2

(n− 1)!Voln−1(G0)

∫
G0

|∂ω0
u|2dS̃0,

where dS̃0 is the induced surface measure on G0.
We recall that ∫

T0

|v|2dy =
1

n!Voln(T )
,

so that rearranging we have for each 1 6 j 6 n

Ij =
2

n!Voln(T )
,

and

I0 = n1/2
2

n!Voln(T )
.

Rearranging, we have for 0 6 j 6 n∫
Gj

|h∂ωj
u|2dS̃j

=
2(n− 1)!Voln−1(Gj)

n!Voln(T )

=
2Voln−1(Gj)

nVoln(T )
,

which completes the proof of Theorem 1.
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4. A simple inverse problem

The proof of Theorem 1 suggests a further question: If u solves a constant
coefficient eigenfunction equation, does the Neumann data determine the
coefficients? In fact, in this paper, we only have information about the norms
of the Neumann data, so we cannot fully answer this question using only
this very elementary information. In fact, in the general case, the answer is
that the norms of the Neumann data do not determine the coefficients (see
Subsection 4.1 below). However, in dimension 2 the norms do determine the
coefficients. We will return to this question after a few easier results.

This question is, of course intimately related to posing the standard
Laplacian eigenfunction problem on a different simplex. Let us pose it as
such in dimension 2. Let T ⊂ R2 be a triangle with sides a, b, c, with the
convention that the length of the sides are a, b, c respectively. Suppose u
solves

(4.1)


(−h2∆− 1)u = 0 on T,

u|∂T = 0,

‖u‖L2(T ).

We have the following Theorem.

Theorem 2. Suppose u solves (4.1), and suppose Na =
∫
a |h∂νu|

2dS and
similarly for Nb and Nc. Then the three quantities Na, Nb, Nc uniquely de-
termine the triangle T (up to reflection).

This theorem seems obvious, but in the formulae for the Na, Nb, and
Nc, there is both the length of the side and the area of the triangle. The
proof is by scaling.

Proof. Suppose we have another triangle T1 with the same Neumann data
norms. Let a1, b1, c1 denote the three sides of T1, again with the convention
that a1, b1, c1 denote also the length of the sides. We know that the Neumann
data relates the lengths of the sides to the area of the triangle. We have

Na =
a

Area(T )
,

and similarly for b, c. On the other hand, we also have

Na =
a1

Area(T1)
,



i
i

“4-Christianson” — 2019/7/25 — 11:56 — page 435 — #15 i
i

i
i

i
i

Neumann data on simplices 435

and similarly for b1, c1. Equating these quantities, we have

a

a1
=

Area(T )

Area(T1)
,

and similarly

b

b1
=

c

c1
=

Area(T )

Area(T1)
.

This means that the side lengths of T1 are all scalar multiples of the corre-
sponding sides on T with the same scalar. Hence T1 is similar to T . Let

λ =
Area(T )

Area(T1)
.

On the one hand, this implies that

(4.2) Area(T ) = λArea(T1).

On the other hand, we have

(4.3) a = λa1

and similarly

(4.4) b = λb1, c = λc1.

As the lengths scale linearly, the area scales quadratically. That is, (4.3)
and (4.4) imply that

Area(T ) = λ2Area(T1).

Hence combining with (4.2), we have λ2 = λ, so that λ = 1. This means
precisely that T = T1 (up to reflection). �

We now consider the question of determining the coefficients of a con-
stant coefficient elliptic operator on the standard 2-simplex. Let B be a non-
degenerate 2× 2 matrix, and let Γ = BBT . Consider P = −Γijh∂xi

h∂xj
be

the associated positive definite elliptic operator. Our next result is that the
semi-classical Neumann data uniquely determines the operator P . Interest-
ingly, this does not determine the matrix B (see Remark 4.5).
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Theorem 3. Let B be a non-degenerate 2× 2 matrix and Γ = BBT . Let
P = −Γijh∂xi

h∂xj
. Let T0 be the standard triangle in R2 generated by the

vectors (1, 0) and (0, 1). Suppose u solves the eigenfunction problem
Pu = u in T0,

u|∂T0
= 0,

‖u‖L2(T0) = 1.

Let F1 and F2 denote the sides of length 1 and F0 the hypotenuse of length√
2. Then the norms

‖h∂νu‖2L2(F1)
, ‖h∂νu‖2L2(F2)

, and ‖h∂νu‖2L2(F0)

uniquely determine Γ.

Remark 4.1. We pause to remark that in the statement of the theorem is
buried a rather astounding fact: the norms of the (semi-classical) Neumann
data of any single eigenfunction determine Γ. Of course this requires some
knowledge also about the spectrum. In other words, if one eigenvalue and
corresponding eigenfunction’s Neumann mass is known, then Γ is uniquely
determined.

Remark 4.2. It is also very interesting that the proof in fact computes the
entries of Γ explicitly in terms of the Neumann data norms. Indeed, if we
label

J1 = ‖h∂νu‖2L2(F1)
, J2 = ‖h∂νu‖2L2(F2)

,

and

J0 = ‖h∂νu‖2L2(F0)
,

and we write Γ = (Γ)jk, we have

Γ11 =
2

J1
,

Γ22 =
2

J2
,

and

Γ12 = Γ21 =
2
√

2

J0
− 1

J1
− 1

J2
.

In particular, if J1 = J2 = 2 and J0 = 2
√

2, we have Γ = I as expected
(since each Jj is twice the length of the sides, which is the length of the side
divided by the area of the triangle).
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First we write a Lemma giving yet another way of computing the Neu-
mann data mass. We state this Lemma in any dimension.

Lemma 4.3. Let B be a non-degenerate n× n matrix, Γ = BBT , and

P = −Γijh∂xi
h∂xj

.

Let T0 be the standard simplex in Rn with faces F0, F1, . . . , Fn in the notation
of earlier in this paper. Suppose u solves the eigenfunction problem

(4.5)


Pu = u in T0,

u|∂T0
= 0,

‖u‖L2(T0) = 1.

Then on each face Fj, 0 6 j 6 n, we have

∫
Fj

(h∂νju)(νTj BB
Th∂xū)dSj = |BT νj |2

∫
Fj

|h∂νju|2dSj ,

where dSj is the induced surface measure on Fj as usual.

Remark 4.4. Note that this is a different way of computing this quantity
than in (3.4). Indeed, the rest of this section is based on the following idea:
The proof of Theorem 1 involves n+ 1 normal derivative quantities in di-
mension n, and Lemma 4.3 shows how the Neumann data mass determines
the quantities |BT νj |2. In two dimensions, there are three such quantities
for the three different faces of the simplex. As BBT is symmetric, there are
only three elements to determine in dimension 2. In higher dimensions, there
are n(n+ 1)/2 elements to determine in BBT , and n(n+ 1)/2 > n+ 1 for
n > 2. Hence in the case of n > 2 we do not expect such a result to hold
true. In Subsection 4.1 below, an explicit example is given.

Proof. We observe that on Fj , for 1 6 j 6 n, h∂x`
ū = 0 for ` 6= j, so that

h∂xu = ejh∂xj
u = νjh∂νju.
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Similarly, for j = 0, we have on F0

h∂u =

 h∂y1
...

h∂yn

u
= n−1/2

 1
...
1

h∂ν0u
= ν0h∂ν0u.

Then on each face Fj with normal νj , we have

νTj BB
Th∂ū = νTj BB

T νjh∂νj ū

= (BT νj)
T (BT νj)h∂νj ū

= |BT νj |2h∂νj ū.

Hence on each face Fj , we have∫
Fj

(h∂νju)(νTj BB
Th∂ū)dSj = |BT νj |2

∫
Fj

|h∂νju|2dSj .

This completes the proof. �

Proof of Theorem 3. The proof proceeds by using an eigenvector diagonal-
ization argument. It is interesting that, although the argument uses the
existence of eigenvalues/vectors of Γ, we do not need to know them.

Let v1, v2 be orthonormal eigenvectors for Γ. Since Γ = BBT is positive
definite, write λ21, λ

2
2 for the eigenvalues of Γ so that Γvj = λ2jvj for j = 1, 2.

Let

L =

 v1 v2

 ,

so that (since L is orthogonal),

LTΓL =

(
λ21 0
0 λ22

)
.

Let us denote

G = L

(
λ1 0
0 λ2

)
,

so that GGT = Γ.
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We now change variables using the matrix G. Let T1 denote the triangle
spanned by the new coordinates v1, v2. Rescaling in each variable vj 7→ λ−1j vj
gives a new triangle T . Let w(x) = u(Gx), so that

(4.6)

∫
T
|w|2dV =

∫
T
|u(Gx)|2dV = |G|−1

∫
T0

|u|2dV =
1

λ1λ2
.

We also have −h2∆w = w on T0, so we can use the same commutator ar-
gument as above to compute the mass of the Neumann data. For j = 1, 2,
let

Ij =

∫
λ−1
j vj

|h∂νw|2dS,

and I0 =
∫
H |h∂νw|

2dS be the Neumann mass of the function w on the legs
spanned by the λ−1j vj and the hypotenuse H. Using Theorem 1 and (4.6),
we have for j = 1, 2

Ij =

(
1

λ1λ2

)(
length of λ−1j vj

area(T )

)

=

(
1

λ1λ2

)(
λ−1j

(λ−11 λ−12 /2)

)
=

2

λj
.

Further,

I0 = 2(λ−21 + λ−22 )1/2.

For j = 0, 1, 2, let

Jj =

∫
Fj

|h∂νu|2dS

be the Neumann mass of the original eigenfunction u on the faces of T0.
These are the quantities we are assuming we know.
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Using Lemma 4.3, that means

Jj =
1

|GT ν|2

∫
Fj

(h∂νu)(νTGGTh∇ū)dS

=

(
1

|GT ν|2

)(
length of Fj

length of λ−1j vj

)
Ij

=

(
1

|GT ν|2

)
λj

(
2

λj

)
=

2

|GT ν|2
(4.7)

for j = 1, 2, and

J0 =
2
√

2

|GT ν|2
.

We pause momentarily to recall that the normal vectors ν in the above ex-
pressions are the normals to the original faces Fj , j = 0, 1, 2 on the standard
triangle T0.

Recall that ν1 = (−1, 0), ν2 = (0,−1) and ν0 = (
√

2)−1(1, 1), which will
help us determine the matrix Γ.

Write

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
.

As Γ is symmetric, we have Γ12 = Γ21, so we only need to determine the
three numbers Γ11,Γ12, and Γ22.

The quantities we need to examine are all of the form |GT νj |2, which we
rewrite:

|GT νj |2 = (GT νj)
T (GT νj)

= νTj GG
T νj

= νTj Γνj .

Plugging in the νj , j = 0, 1, 2, we have:

νT1 Γν1 = (−1, 0)Γ

(
−1
0

)
= Γ11,

and similarly

νT2 Γν2 = Γ22.
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For ν0, we get information about the off diagonal terms as well:

νT0 Γν0 =
1

2
(1, 1)Γ

(
1
1

)
=

1

2
(1, 1)

(
Γ11 + Γ12

Γ21 + Γ22

)
=

1

2
(Γ11 + Γ12 + Γ21 + Γ22)

=
1

2
(Γ11 + 2Γ12 + Γ22)(4.8)

again due to Γ being symmetric.
Returning now to (4.7), we have for j = 1, 2

Jj =
2

|GT νj |2

=
2

Γjj
.

Hence

Γ11 =
2

J1

and similarly for Γ22. For Γ12, we appeal to equation (4.8) to get

J0 =
2
√

2

|GT ν0|2

=
2
√

2
1
2(Γ11 + 2Γ12 + Γ22)

=
4
√

2

Γ11 + 2Γ12 + Γ22
.

Rearranging, we have

Γ11 + 2Γ12 + Γ22 =
4
√

2

J0
,

so that solving for Γ12, we have

Γ12 =
2
√

2

J0
− 1

2
(Γ11 + Γ22).
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Plugging in the known values of Γ11 and Γ22, we have

Γ12 =
2
√

2

J0
− 1

2

(
2

J1
+

2

J2

)
=

2
√

2

J0
− 1

J1
− 1

J2
.

This gives the Γjk in terms of the known quantities J1, J2, and J0,
completing the proof. �

Remark 4.5. It is interesting to note that the proof of Theorem 3 does
not uniquely determine the matrix B, due to rotational invariance. Indeed,
if

B =

(
a b
c d

)
with a = c = d = 2−1/2 and b = −2−1/2, then we still have a2 + c2 = b2 +
d2 = 1, and ac+ bd = 0. Note, however, that BBT = I in this case as well.

4.1. Dimension 3: an example

The result in Theorem 3 is false in higher dimensions, even for small per-
turbations of I. Let T0 be the standard simplex in R3, B be a 3× 3 non-
degenerate matrix, Γ = BBT , and P = −Γijh∂xi

h∂xj
. Suppose u solves the

eigenfunction problem (4.5). Lemma 4.3 still applies, with νj = −ej for
1 6 j 6 3 and ν0 = 3−1/2(1, 1, 1). For 0 < ε < 1, define the matrix B by

BT =

 a 0 0

d (1− ε2)1/2 ε

ε ε (1− ε2)1/2

 ,

where

d =
−3ε(1− ε2)1/2 − ε2

(1− ε2)1/2 + ε

and

a = (1− d2 − ε2)1/2.

Observe that B = I +O(ε) and satisfies

|BT e1|2 = a2 + d2 + ε2 = 1,

|BT e2|2 = (1− ε2) + ε2 = 1,

|BT e3|2 = ε2 + (1− ε2) = 1,
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and

|BT (1, 1, 1)T |2 = a2 + (d+ (1− ε2)1/2 + ε)2 + (2ε+ (1− ε2)1/2)2

= a2 + d2 + (1− ε2) + ε2 + 2d(1− ε2)1/2 + 2dε

+ 2ε(1− ε2)1/2 + 4ε2 + (1− ε2) + 4ε(1− ε2)1/2

= (1− ε2) + (1− ε2) + ε2 + 2d((1− ε2)1/2 + ε)

+ 2ε(1− ε2)1/2 + 4ε2 + (1− ε2) + 4ε(1− ε2)1/2

= 2− ε2 − 6ε(1− ε2)1/2 − 2ε2 + 6ε(1− ε2)1/2 + 1 + 3ε2

= 3.

These are the same values one gets from B = I = Γ, however BBT 6= I, so
these 4 numbers do not determine Γ.

Appendix A. Green’s formula on simplices

As pointed out by the referee, a simplex T ⊂ Rn is a Lipschitz domain, so
Green’s formula requires a little bit of justification. Naturally we expect
eigenfunctions to be well behaved enough for Green’s formula to apply. We
recall here how this is done in the book of Grisvard [6]. We continue to let
u = u(h) denote the sequence of normalized Dirichlet eigenfunctions on T ,
satisfying (1.1).

Standard elliptic regularity theory guarantees that the eigenfunctions
on T are C∞ on the interior, however we need more control over Sobolev
estimates in order to apply Green’s formula. Using that the simplex T is
convex, we can apply [6, Theorem 3.1.3.1] on a priori elliptic estimates for
convex domains, which tells us that an eigenfunction is in any (semiclassical)
Hm space with the implicit constants in the estimates independent of m.
Then we may apply [6, Theorem 1.4.4.6] to conclude that the derivative
is bounded from Hm(T ) to Hm−1(T ), m > 1. From this we deduce that
Y u ∈ H2(T ), where Y =

∑
(yj +mj)∂yj is the perturbed radial vector field

used in (3.2). We can then use [6, Lemma 1.5.3.2], which is Green’s formula
for Lipschitz domains and H2 functions. For convenience, we state it here for
the specific case of the standard simplex and a constant coefficient elliptic
operator as used in Section 3.

Theorem 4 (Green’s formula for simplices). Let K be an n× n real
symmetric positive definite matrix, and let P = −

∑
ijKij∂xi

∂xj
be the as-

sociated elliptic operator. Let T0 be the standard simplex in Rn with faces
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F0, F1, . . . , Fn. Then for f, g ∈ H2(T0), we have

∫
T0

(Pf)ḡdV =

∫
T0

f(P ḡ)dV −
n∑
j=0

∫
Fj

(νTj K∂f)ḡdsj +

n∑
j=0

∫
Fj

f(νTj K∂ḡ)dsj ,

where νj denotes the outward unit normal vector on Fj, dsj the induced
surface measure on Fj, and ∂ the n-dimensional gradient.
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