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equations and the

Gross-Pitaevskii equation

Kenji Nakanishi and Takuto Yamamoto

We consider the final-data problem for systems of nonlinear Schrö-
dinger equations (NLS) with L2 subcritical nonlinearity. An asymp-
totically free solution is uniquely obtained for almost every ran-
domized asymptotic profile in L2(Rd), extending the result of
J. Murphy [29] to powers equal to or lower than the Strauss ex-
ponent. In particular, systems with quadratic nonlinearity can be
treated in three space dimensions, and by the same argument, the
Gross-Pitaevskii equation in the energy space. The extension is by
use of the Strichartz estimate with a time weight.

1. Introduction

We study asymptotic behavior for large time of solutions to a system of
nonlinear Schrödinger equations:

i∂tu +M∆u = f(u),(NLS)

where u = (u1, . . . , uN )(t, x) : R× Rd → CN for some d,N ∈ N is the un-
known function, M = diag(M1, . . . ,MN ) is an N ×N diagonal matrix with
non-zero real diagonal elements, and f = (f1, . . . , fN ) : CN → CN is a power-
type nonlinearity. The precise conditions are given in Assumption 1.2 below.

We are interested in whether the solution u of (NLS) can be approx-
imated by a free solution for large time, namely the nonlinear scattering
problem. Let

U(t) := eitM∆(1.1)

denote the free propagator, and let X be a Banach space embedded in the
space of CN -valued tempered distributions on Rd. We say that a solution u
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of (NLS) scatters in X as t→∞ if U(−t)u(t) converges to some final-state
u+ in X as t→∞.

The scattering problem can be divided into two parts: (1) For a given
final-state u+, if there is a scattering solution, and (2) For a given initial
data u(0), if the solution u scatters. We will call (1) the final-data problem,
and (2) the initial-data problem. There is a huge amount of literature on
both. For a brief review, we take the simplest case of (NLS), which is the
scalar equation with a pure power nonlinearity: for some constants p > 0
and λ ∈ R,

i∂tu+ ∆u = λ|u|pu.(1.2)

This equation is invariant for the scaling with a parameter a > 0:

u(t, x) 7→ a
2

pu(a2t, ax).(1.3)

In the mass critical case p = 4/d, the above scaling preserves the L2(Rd)
norm of u (the mass), which is a conserved quantity for (1.2). In general, the
scattering problem is more difficult for lower p, since the free solutions decay
by dispersion for large time, although the local existence is more difficult
for higher p. In this paper, we restrict our attention to the L2 subcritical
case p < 4/d, where (1.2) is known to be globally well-posed in L2(Rd) for
any λ ∈ R, see [37]. On the other hand, the scattering is known to fail for
p ≤ 2/d, see [1, 15, 33], so we should restrict to p > 2/d.

On the initial-data problem, Tsutsumi and Yajima [38] showed that
if p > 2/d, (d− 2)p < 4 and λ ≥ 0, then for any initial-data u(0) in the
weighted Sobolev space

Σ := {ϕ ∈ L2(Rd) | ∇ϕ, xϕ ∈ L2(Rd)},(1.4)

the solution u scatters in L2(Rd). If p ≥ p0(d) := 2−d+
√
d2+12d+4
2d , then the so-

lution u scatters also in Σ, see [6, 36]. This critical number p0(d) ∈ (2/d, 4/d)
is often called by the name of Strauss, for his systematic study [34] of the
scattering problem for small data in L(p+2)′ . For small initial data in the
weighted space

FHs(Rd) := {ϕ ∈ L2
loc(Rd) | (1 + |x|)sϕ ∈ L2(Rd)},(1.5)

the solution u scatters in FHs if 0 ≤ s < min(d/2, p) and 4/(d+ 2s) ≤ p ≤
4/d, see [13, 32].
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On the final-data problem, the first author proved [31] existence of a solu-
tion u scattering in L2(Rd) for any final-data u+ ∈ L2(Rd) for p ∈ (2/d, 4/d)
and d ≥ 3, which was extended to d = 2 by Holmer and Tzirakis [22] in the
case u+ ∈ H1(R2) and λ ≥ 0. However, the uniqueness of the solution u for
a given final-state u+ is an open question in those results, since the proof
relies crucially on a compactness argument. For u+ ∈ FHs, the solution u
scattering to u+ in FHs uniquely exists, provided that 0 < s < min(d/2, p)
and 4/(n+ 2s) ≤ p < 4/d, see [6, 31].

It is worth noting that the uniqueness problem in [31] is super-critical
in view of the scaling, where the invariant scaling (1.3) implies that neither
smallness in L2(Rd) nor the limit t→∞ makes the situation better. Indeed,
the problem in the region

‖u+‖L2(Rd) ≤ 1, ‖u‖L2(Rd) ≤ 1, t ≥ 1(1.6)

can be reduced by the invariant scaling to the smaller region

‖u+‖L2(Rd) ≤ ε, ‖u‖L2(Rd) ≤ ε, t ≥ 1/ε(1.7)

for any ε > 0, which implies that the latter region is no easier than the
former. Another way to observe the supercriticality is to invoke the pseudo-
conformal inversion u(t, x) 7→(it)−d/2 exp(i|x|2/(4t))ū(1/t, x/t), which trans-
forms the final-data problem into the Cauchy problem

iu̇+ ∆u = λt2−dp/2|u|pu, u(0) = Fu+ ∈ L2(Rd),(1.8)

where F denotes the Fourier transform unitary on L2(Rd). In the same
way as above, the invariant scaling implies that the local Cauchy problem
restricted to ‖u‖L2(Rd) ≤ ε and 0 < t < ε is no easier for any ε > 0 than that
with ε = 1.

Recently, Murphy [29] shed new light on this supercritical problem. For
arbitrary given final-data u+ ∈ L2(Rd), he introduced a randomization in
the physical space, and proved that a scattering solution with some space-
time integrability exists uniquely for almost every randomized final-data. In
view of the pseudo-conformal inversion, it is naturally related to the Cauchy
problem for initial data randomized in the Fourier space, for which there
is an extensive literature, cf. [2, 4, 5, 27, 30, 35], aiming at solutions with
less regularity than required by the scaling or the deterministic argument.
Concerning the initial data problem, almost sure scattering results have been
obtained in [10, 11, 24] for the energy-critical equations (hence in the mass
supercritical case) by randomization in the Fourier space.
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The idea behind those works, particularly in [4] and the succeeding ones,
is first to derive some better properties of the free solution almost surely
than the original one before the randomization, and then to consider non-
linear perturbation in a deterministic way exploiting the better properties.
Murphy [29] proved that the randomized free solutions have better global
dispersive properties in the sense of space-time integrability due to the phys-
ical randomization, and then the unique existence of a scattering solution
for p ∈ (p0(d), 4/d) by Kato’s argument [23] using non-admissible Strichartz
norms.

Using a time-weighted Strichartz estimate instead of the non-admissible
ones, we can extend Murphy’s result to lower powers p ∈ (p1(d), 4/d), where

p1(d) :=
4− d+

√
d2 + 24d+ 16

4d
∈ (2/d, p0(d)).(1.9)

Since p1(3) < 1 = p0(3) in particular, the above extension allows us to
include systems with quadratic polynomial nonlinearity in three space di-
mensions, which appear in some physical models. This is why we consider the
system (NLS). In the deterministic scattering problems in weighted spaces
such as FHs, one often needs precise information about the nonlinear os-
cillation and resonance, which makes it highly non-trivial to extend results
for the scalar equation (1.2) to the system. In our case, however, such a fine
analysis is not needed in using only a time weight, except for a conservation
law of L2-type quantity ensuring global existence of the solution. A similar
idea of time-weighted norms was used in [18] for the deterministic final-data
problem of the Gross-Pitaevskii equation in three space dimension.

Before stating our main result, we introduce randomization of the final-
data to our system (NLS), following Murphy [29].

Definition 1.1 (L2-randomization). Let χ ∈ C∞c (Rd) be a non-negative
bump function with

χ(x) =

{
1 (|x| < 1),

0 (|x| > 2).
(1.10)

We define a partition of unity {χk}k∈Zd as

χk(x) :=
χ(x− k)∑
`∈Zd χ(x− `)

.(1.11)

For each k ∈ Zd, and a, b ∈ {1, . . . , N}, let gka,b be a mean-zero real-

valued random variable with distribution µka,b on a probability space (Ω,A,P).
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Moreover, for all a, b ∈ {1, . . . , N}, we assume that {gka,b}k∈Zd is independent,

and that there exists C > 0 such that for all γ ∈ R and k ∈ Zd, it holds that∫
R
eγx dµka,b(x) ≤ eCγ2

.(1.12)

For example, we can take a mean-zero Gaussian random variable with a
bounded variance σka,b > 0, then µka,b(x) = (2πσka,b)

−1/2 exp(− x2

2σka,b
) and the

above left side is equal to exp(σka,bγ
2/2). Another example is the case where

the distribution µka,b is compactly supported.

Then, for any u ∈ (L2(Rd))N , we define its randomization uω as

uω(x) :=
∑
k∈Zd

χk(x)Gk(ω)u(x), Gk(ω) :=

g
k
1,1(ω) . . . gk1,N (ω)

...
. . .

...
gkN,1(ω) . . . gkN,N (ω)

 .
(1.13)

Next we specify the conditions needed for the nonlinearity and M .

Assumption 1.2. Let d,N ∈ N and p ∈ (p1(d), 4/d). We assume that the
function f : CN → CN and the matrix M = diag(M1, . . . ,MN ) satisfy the
following (i) and (ii):

(i) f(0) = 0 and there exists C > 0 such that for all u,v ∈ Rd

|f(u)− f(v)| ≤ C max
w∈{u,v}

|w|p|u− v|.(1.14)

(ii) There exists a positive-definite N ×N Hermite matrix Λ satisfying
MΛ = ΛM and =(u∗Λf(u)) = 0 for all u ∈ Rd, where u∗ denotes the
transposed complex conjugate.

Now we are ready to state the main theorem.

Theorem 1.3 (Main Theorem). Under the Assumption 1.2, for all u+ ∈
(L2(Rd))N and for almost every ω ∈ Ω, there exists a unique global solution
u ∈ Ct([0,∞);L2(Rd)) to (NLS) such that

‖tε(u− U(t)uω+)‖LqtLrx((0,∞)×Rd) <∞(1.15)

for all q, r ∈ [2,∞] satisfying

1

q
+

d

2r
=
d

4
, (d, q, r) 6= (2, 2,∞),(1.16)
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and all ε > 0 satisfying

1

p
− d

4
< ε <

dp

4(p+ 1)
.(1.17)

In particular, choosing (q, r) = (∞, 2) in (1.15) implies that u scatters in
L2(Rd) with the final-state uω+. The uniqueness holds under the condition
(1.15) for a fixed (q, r, ε) satisfying the above and

max(1, 2d/(d+ 2)) ≤ r

p+ 1
≤ 2,

(
d,

r

p+ 1

)
6= (2, 1).(1.18)

Remark 1.4. We have p1(d) < p0(d) for all d ∈ N, so the above result is a
small improvement of [29]. In particular, it includes the case of p = p0(3) = 1
for d = 3. For example, we can apply Theorem 1.3 to the following system
of nonlinear Schrödinger equations with quadratic interaction{

i∂tu+ 1
2m1

∆u = λūv,

i∂tv + 1
2m2

∆v = µu2,
(1.19)

where (u, v) : R× Rdx → C2 are the unknown functions, m1,m2 ∈ R \ {0}
and λ, µ ∈ C are some constants satisfying λµ > 0. Assumption 1.2 holds
with Λ = diag(|µ|, |λ|). The deterministic scattering problems have been
studied for this system in weighted spaces, see [20, 21].

Remark 1.5. Those (q, r) ∈ [2,∞]2 satisfying (1.16) are called admissible
pairs for the Strichartz estimate of the Schrödinger equation:

‖U(t)ϕ‖LqtLrx(R1+d) . ‖ϕ‖L2(Rd).(1.20)

The range (1.17) of ε is non-empty for positive p iff p > p1(d). There is
(q, r) ∈ [2,∞]2 satisfying both (1.16) and (1.18) as long as p ≥ 0 and (d−
2)p ≤ 4, namely in the H1 subcritical and critical cases.

If p > 4
d+2 , then (q, r, ε) can be chosen such that qε < 1 and r <∞, in

which case we have ‖tεU(t)uω+‖LqtLrx((0,∞)×Rd) <∞ almost surely, so that the
space-time condition for uniqueness may be simplified to

‖tεu‖LqtLrx((0,∞)×Rd) <∞.

Note that p = 4
d+2 is the critical exponent by scaling for the deterministic

scattering in FH1. We have p1(d) > 4
d+2 for d ≤ 5, p1(d) = 4

d+2 for d = 6,

and p1(d) < 4
d+2 for d ≥ 7, whereas p0(d) > 4

d+2 for all d ∈ N.
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A similar argument applies to the scattering problem around plane wave
solutions to the nonlinear Schrödinger equation with the defocusing cubic
power in three dimensions:

i∂tφ+ ∆φ = |φ|2φ, φ(t, x) : R1+3 → C.(1.21)

By the gauge, the scaling and the Galilean invariance, the problem for any
plane wave |φ| = const. > 0 is reduced to the simplest case φ = e−it. Then
the change of variable ψ = e−itφ transforms the problem to the scattering
around the non-zero equilibrium ψ = 1 to

i∂tψ + ∆ψ = (|ψ|2 − 1)ψ, ψ(t, x) : R1+3 → C,(GP)

which is sometimes called the Gross-Pitaevskii equation, in distinction to
the standard NLS setting. A natural space for solutions is the nonlinear
metric space of functions with finite energy:

E(ψ) :=

∫
R3

|∇ψ|2

2
+

(|ψ|2 − 1)2

4
dx <∞.(1.22)

The global well-posedness of (GP) in the energy space was proven by Gérard
[12]. Gustafson, Tsai and the first author [19] proved existence of a solution
to any asymptotic profile in the energy space. It is worth noting that the
asymptotic behavior of ψ − 1 contains quadratic correction terms from the
linearized evolution.

Since the proof in [19] is by a compactness argument similar to [31], the
uniqueness is an open question. Randomizing the final-data in the energy
space, however, we can prove almost sure unique existence of a solution
with the prescribed asymptotic behavior and some space-time integrability.
Actually, we obtain the asymptotic convergence in a stronger topology than
in the deterministic case [19], which is due to a low-frequency improvement
by the randomization. See Section 4 (and Theorem 4.4) for the detail.

We conclude this section with some notation used throughout the paper.
A . B denotes A ≤ CB for some constants C > 0, and A ∼ B means that
we have A . B and B . A. For p ∈ [1,∞], p′ = p/(p− 1) denotes the Hölder
conjugate exponent. For T > 0, IT denotes the interval (T,∞). `p denotes
the Lp space with the counting measure. The mixed Lp norms are denoted
by

‖u(t, x)‖LptLqx(A×B) =

{∫
A

(∫
B
|u(t, x)|qdx

)p/q
dt

}1/p

(1.23)
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for p, q <∞, with obvious modifications in the case of p =∞ or q =∞.
The case with more than two variables is treated in the same way. For
vector-valued function u = (u1, . . . , uN ), we use the same notation of norms
as for scalar functions, meaning ‖u‖X := {

∑N
n=1 ‖un‖2X}1/2. The norms for

intersection and sum are defined as usual

‖u‖A∩B := max(‖u‖A, ‖u‖B), ‖u‖A+B := inf
u=v+w

(‖v‖A + ‖w‖B).(1.24)

Finally, for ε ∈ R, T > 0 and p, q ∈ [1,∞], a time-weighted norm is denoted
by

‖u‖Xp,q
ε (IT ) = ‖tεu(t, x)‖LptLqx(IT×Rd).(1.25)

2. Linear estimates

In this section, we prepare basic linear estimates, some are probabilistic and
others are deterministic.

Lemma 2.1 (Large Deviation Estimate). Let d,N ∈ N and {Gk}k∈Zd
be as in Definition 1.1. Then there is a constant C > 0 such that for any
α ∈ [2,∞) and any {ck}k∈Zd ∈ (`2k(Zd;C))N , it holds that∥∥∥∑

k∈Zd
Gkck

∥∥∥
Lαω(Ω)

≤ C
√
α ‖ck‖`2k(Zd) .(2.1)

Proof. This is [4, Lemma 3.1] in the scalar case N = 1. The extension to
vectors is obvious. �

Lemma 2.2. Let d,N ∈ N and {Gk}k∈Zd be as in Definition 1.1, and let
U(t) be as in (1.1) with some M1, . . . ,MN ∈ R \ {0}. Then there exists a
constant C > 0 such that for any a ∈ (0,∞), b ∈ (2,∞) and ε ≥ 0 satisfying

ε0 := −ε+

(
d

2
− d

b

)
− 1

a
> 0,(2.2)

and for any ϕ ∈ (L2(Rd))N , α ∈ [max(a, b),∞) and T > 0, we have

‖U(t)ϕω‖Lαω(Ω;Xa,b
ε (IT )) ≤ C

√
αε
−1/a
0 T−ε0‖ϕ‖L2(Rd),(2.3)

where ϕω is the randomization of ϕ defined by (1.13).
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Proof. First note that by explicit integration we have for any p ∈ (0,∞),
ε > 0, and T > 0,

‖t−ε‖Lpt (IT ) = (εp− 1)−1/pT−ε+1/p ∼ (ε− 1/p)−1/pT−(ε−1/p).(2.4)

If a < 2, then let a1 := 2 and ε1 := ε+ 1/a− 1/2 + ε0/2. We have an
embedding Xa1,b

ε1 (IT ) ⊂ Xa,b
ε (IT ) by Hölder: putting 1/a2 := 1/a− 1/2,

‖ϕ‖Xa,b
ε (IT ) ≤ ‖t

−(ε1−ε)‖La2
t (IT )‖ϕ‖Xa1,b

ε1 (IT )(2.5)

. ε1/2−1/a
0 T−ε0/2‖ϕ‖Xa1,b

ε1 (IT ),

since ε1 − ε = 1/a2 + ε0/2 > 1/a2. If a ≥ 2, then let a1 := a and ε1 := ε.
In both cases, using Minkowski’s inequality, Lemma 2.1, and the disper-

sive decay for the Schrödinger equation, we obtain

‖U(t)ϕω‖Lαω(Ω;X
a1,b
ε1 (IT )) ≤

∥∥‖U(t)ϕω‖Lαω(Ω)

∥∥
X
a1,b
ε1 (IT )

(2.6)

=
∥∥∥∥∥∑k∈Zd Gk[U(t)χkϕ]

∥∥
Lαω(Ω)

∥∥∥
X
a1,b
ε1 (IT )

.
√
α
∥∥∥‖U(t)χkϕ‖`2k(Zd)

∥∥∥
X
a1,b
ε1 (IT )

≤
√
α
∥∥∥‖U(t)χkϕ‖Xa1,b

ε1 (IT )

∥∥∥
`2k(Zd)

.
√
α
∥∥∥tε1−d/2+d/b ‖χkϕ‖Lb′x (Rd)

∥∥∥
`2kL

a1
t (Zd×IT )

.
√
α
∥∥∥tε1−d/2+d/b

∥∥∥
L
a1
t (IT )

‖ϕ‖L2
x(Rd),

where we used that | suppχk| = | suppχ0| . 1 and
∑

k∈Zd |χk(x)|2 ∼ 1 in the
last step. If a ≥ 2, then ε1 − d/2 + d/b = −1/a− ε0, so

‖tε1−d/2+d/b‖La1
t (IT ) ∼ ε

−1/a
0 T−ε0 ,(2.7)

implies the desired estimate. If a < 2, then ε1 − d/2 + d/b = −1/a− ε0 −
ε+ ε1 = −1/a1 − ε0/2, so

‖tε1−d/2+d/b‖La1
t (IT ) ∼ ε

−1/a1

0 T−ε0/2,(2.8)

together with (2.5) implies the desired estimate. �

Lemma 2.3. Let d,N ∈ N and let U(t) be as in (1.1) with some M1, . . . ,
MN ∈ R \ {0}. Let (q0, r0), (q1, r1) ∈ [2,∞]2 be admissible pairs. Then there
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exists a constant C > 0 such that for any ε ≥ 0, T > 0 and any F ∈
(X

q′1,r
′
1

ε (IT ))N , we have∥∥∥∥∫ t

∞
U(t− s)F (s) ds

∥∥∥∥
X
q0,r0
ε (IT )

≤ C‖F ‖
X
q′
1
,r′

1
ε (IT )

.(2.9)

Proof. In the case without weight ε = 0, this is the well-known Strichartz
estimate for the Schrödinger equation, to which the case of ε > 0 is reduced
as follows. We interpret IT as the indicator function of IT . For any ε > 0
and 1 ≤ q <∞, let g(t) := (εq)1/qtε−1/q. Then for t > T > 0, we have

tεq = T εq +

∫ t

T
εqτ εq−1dτ = T εq + ‖g(τ)Iτ (t)‖qLqτ (IT ).(2.10)

Hence for any measurable u : IT → R we obtain, using Fubini and Hölder
for `q({1, 2}) as well,

‖tεu(t)‖Lqt (IT ) ≤ ‖T εu(t)‖Lqt (IT ) + ‖g(τ)Iτ (t)u(t)‖LqtLqτ (IT×IT )(2.11)

= T ε‖u‖Lqt (IT ) + ‖g(τ)‖u(t)‖Lqt (Iτ )‖Lqτ (IT )

≤ 2‖tεu(t)‖Lqt (IT ).

If ε > 0 and q0 <∞, then using the above estimate and the Strichartz with-
out weight, we obtain∥∥∥∥∫ t

∞
U(t− s)F (s) ds

∥∥∥∥
X
q0,r0
ε (IT )

(2.12)

. T ε‖F ‖
X
q′
1
,r′

1
0 (IT )

+
∥∥∥g(τ)‖F ‖

X
q′
1
,r′

1
0 (Iτ )

∥∥∥
L
q0
τ (IT )

≤ ‖F ‖
X
q′
1
,r′

1
ε (IT )

+ ‖g(τ)F (t, x)Iτ (t)‖
L
q′
1
t L

q0
τ L

r′
1
x (IT×IT×Rd)

≤ 2‖F ‖
X
q′
1
,r′

1
ε (IT )

,

where we used L
q′1
t L

q0
τ ⊂ Lq0τ Lq

′
1

t by Minkowski and q0 ≥ q′1 in the second
inequality. The case of q0 =∞ is immediate from the Strichartz estimate
without weight into L2

x. �

3. Proof of the main theorem

The proof of Theorem 1.3 consists of three steps. First, for the free solu-
tion of the randomized final-data u0 := U(t)uω+, we have dispersive decay
estimates, which are almost the best possible, by Lemma 2.2. Then using
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this decay property, we can construct a unique solution u asymptotic to u0

locally around time infinity in a time-weighted Strichartz space, under the
Assumption 1.2 (i). Finally, the local solution is extended to a global one
using Assumption 1.2 (ii).

The unique local solution is given by the following lemma, which is a
deterministic statement.

Lemma 3.1. Let d,N ∈ N, p ∈ (p1(d), 4
d), and f : CN → CN satisfy As-

sumption 1.2 (i). Let ε > 0 satisfy (1.17). Let (q0, r0) ∈ (0,∞]2 and (q1, r1) ∈
[2,∞]2 such that (q, r) = (qj , rj) satisfies (1.16) and (1.18) for j = 0, 1.
Then there exists η0 > 0 such that the following holds. For any η ∈ (0, η0),
u+ ∈ (L2(Rd))N and T ≥ 1 satisfying

‖U(t)u+‖Xq0,r0
ε (IT ) ≤ η,(3.1)

there exists a unique local solution u ∈ Ct(IT ; (L2
x(Rd))N ) to (NLS) on IT

such that

‖u− U(t)u+‖X∞,2ε (IT )∩Xq1,r1
ε (IT ) ≤ η.(3.2)

Remark 3.2. The above solution u scatters in L2(Rd) with the final-data
u+ because of the X∞,2ε (IT ) estimate in (3.2). If a pair (q, r) satisfies (1.16)
and q ≥ 2, we call (q, r) is admissible as defined in Remark 1.5. The pair
(q1, r1) is admissible, but (q0, r0) is not necessarily so, since we need q0 ∈
(0, 2) for p < 4

d+2 actually. This extension of the range of (q0, r0) is needed

to satisfy (3.1) when p ∈ (p1(d), 4
d+2), which is not empty for d ≥ 7. The

small constant η0 can be taken uniformly for [q1, r1] except for the limit
(q1, r1)→ (2,∞) in d = 2, where the Strichartz estimate blows up.

Proof. Let u0 := U(t)u+ and u1 := u− u0. Then (NLS) for u with the final-
data u+ is rewritten for u1 as

u1 = i

∫ ∞
t

U(t− s)f(u0 + u1) ds.(3.3)

Hence it suffices to show that the mapping Φ defined by

Φ(v) := i

∫ ∞
t

U(t− s)f(u0 + v) ds(3.4)
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is a contraction on the closed η-ball of the Banach space

XT =
(
Ct(IT ;L2(Rd)) ∩X∞,2ε (IT ) ∩Xq1,r1

ε (IT )
)N

,(3.5)

if η > 0 is small enough.
For j = 0, 1, let q̃j := qj/(p+ 1), r̃j := rj/(p+ 1), and

Xj
T := Xqj ,rj

ε (IT ), X̃j
T := X

q̃j ,r̃j
(p+1)ε(IT ).(3.6)

Then for any v ∈ XT with ‖v‖XT ≤ η, we have by Assumption 1.2 (i) and
Hölder in (t, x),

‖f(u0 + v)‖X̃0
T+X̃1

T
. ‖|u0|p+1‖X̃0

T
+ ‖|v|p+1‖X̃1

T
(3.7)

. ‖u0‖p+1
X0
T

+ ‖v‖p+1
X1
T
. ηp+1.

Since (1.18) holds for r = rj , there is a unique q̂j ∈ [2,∞] such that (q̂j , r̃
′
j)

is admissible, and then

1

q̂′j
+

d

2r̃j
=
d

4
+ 1,

1

q̃j
+

d

2r̃j
=
d

4
(p+ 1) =⇒ 1

q̂′j
− 1

q̃j
= 1− dp

4
< pε,

(3.8)

where the last inequality follows from (1.17). Hence by Hölder in t,

‖f(u0 + v)‖X̂0
T+X̂1

T
. ‖tpε‖Lat (IT )‖f(u0 + v)‖X̃0

T+X̃1
T
. T 1/a−pεηp+1,(3.9)

where 1/a := 1− dp/4 and X̂j
T := X

q̂′j ,r̃j
ε (IT ). Since T ≥ 1, the right hand

side can be made much smaller than η by choosing η0 > 0 small enough. On
the other hand, the weighted Strichartz Lemma 2.3 implies

‖Φ(v)‖XT . ‖f(u0 + v)‖X̂0
T+X̂1

T
.(3.10)

Therefore, it holds that ‖Φ(v)‖XT ≤ η, if η0 > 0 is sufficiently small.
Similarly, if v0,v1 ∈ XT satisfy ‖vj‖XT ≤ η, then

‖Φ(v0)− Φ(v1)‖XT . ‖f(u0 + v0)− f(u0 − v1)‖X̂0
T+X̂1

T
(3.11)

. T 1/a−pε‖(|u0|+ |v0|+ |v1|)p|v0 − v1|‖X̃0
T+X̃1

T

.
(
‖u0‖pX0

T
+ ‖v0‖pX1

T
+ ‖v1‖pX1

T

)
‖v0 − v1‖X1

T

. ηp‖v0 − v1‖X1
T
,
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where in the third inequality we used the interpolation

‖|u0|p|v0 − v1|‖X̃0
T+X̃1

T
. ‖|u0|p|v0 − v1|‖[X̃0

T ,X̃
1
T ]1/(p+1)

(3.12)

. ‖u0‖pX0
T
‖v0 − v1‖X1

T
,

where [X̃0
T , X̃

1
T ]1/(p+1) = Xq2,r2

(p+1)ε(IT ) with(
1

q2
,

1

r2

)
:= p

(
1

q0
,

1

r0

)
+

(
1

q1
,

1

r1

)
.(3.13)

Therefore, if η0 > 0 is small enough, then Φ is a contraction mapping on the
closed η-ball of XT , so the conclusion follows from the Banach fixed point
theorem. �

By Lemmas 2.2 and 3.1, we can prove Theorem 1.3.

Proof of Theorem 1.3. Take any ε > 0 in (1.17), and any (q1, r1) ∈ [2,∞]2

satisfying (1.16) and (1.18). In order to apply Lemma 3.1 to the randomized
final-data uω+, we need some (q0, r0) ∈ (0,∞]2 satisfying (1.16), (1.18), and

‖U(t)uω+‖Xq0,r0
ε (IT ) < η0(3.14)

for some T ≥ 1 almost surely. In order to use Lemma 2.2, we need

ε0 := −ε+ d(1/2− 1/r0)− 1/q0 = 1/q0 − ε > 0.(3.15)

Among those (q0, r0) satisfying (1.16) and (1.18), the maximal 1/q0 is
achieved when r0 is the maximum in (1.18), namely r0 = 2(p+ 1) ∈ (2,∞),
and by (1.16),

1

q0
=
d

4
− d

2r0
=

dp

4(p+ 1)
.(3.16)

Then (1.17) implies that ε0 > 0, and so Lemma 2.2 implies

‖U(t)uω+‖Lαω(Ω;X
q0,r0
ε (IT )) .

√
αε
−1/q0
0 T−ε0‖u+‖L2(Rd) <∞.(3.17)

In particular, for almost every ω ∈ Ω, we have U(t)uω+ ∈ X
q0,r0
ε (I1). For

each ε there exists a null set Nε such that for all ω ∈ Ω \Nε it holds that
U(t)uω+ ∈ X

q0,r0
ε (I1). Since we have

⋂
ε<1/q0

Xq0,r0
ε (I1) =

⋂∞
n=1X

q0,r0
1/q0−1/n(I1),

it holds that U(t)uω+ ∈ X
q0,r0
ε (I1) for all ω ∈ Ω \

⋃∞
n=1Nε and all ε < 1/q0.

We note that
⋃∞
n=1Nε is a null set, since it is a sum of null sets.
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Since q0 <∞, the dominated convergence theorem implies that
‖U(t)uω+‖Xq0,r0

ε (IT ) < η0 for sufficiently large T , and thus by Lemma 3.1,
there exists a unique local solution u to (NLS) on IT satisfying (3.2). Ap-
plying the weighted Strichartz estimate once again as in the estimate on
Φ(v) yields

‖u− U(t)uω+‖Xq,r
ε (IT ) <∞(3.18)

for all admissible (q, r). This solution u is extended uniquely to a global one
satisfying

u ∈ (C(R;L2(Rd)) ∩ Lqloc(R;Lr(Rd)))N ,(3.19)

by the global well-posedness in L2(Rd) in the subcritical case p < 4/d, see
[37] for the case of (1.2). In the case of (NLS), the L2 conservation is replaced
with

∂t〈u|Λu〉 = 2〈−M∆u + f(u)|iΛu〉 = 0,(3.20)

by Assumption 1.2 (ii), where 〈u|v〉 := <
∑N

j=1

∫
Rd uj(x)v̄j(x)dx is the real

inner product in (L2(Rd))N . Since Λ is positive definite, the above conser-
vation law implies a priori bound of solutions in L2(Rd), thereby the global
well-posedness of (NLS). Thus for any ε in (1.17), we obtain a global solution
u satisfying (1.15) for all (q, r) in (1.16). It remains to show the uniqueness
among all such solutions.

Let u,u′ ∈ (Ct(R;L2
x(Rd))N be two solutions to (NLS) satisfying (1.15)

for some admissible (q1, r1) with (1.18), and some ε in (1.17). Then, the
dominated convergence theorem implies that for any η > 0 and for suffi-
ciently large T > 1, (3.2) holds both for u and for u′. Then the uniqueness
in Lemma 3.1 implies that u = u′ on IT , and the well-posedness implies that
u = u′ on the whole R, which concludes Theorem 1.3. �

4. Application to the Gross-Pitaevskii Equation

In this section, we study the final-data problem in the energy space for the
Gross-Pitaevskii equation (GP) in three space dimension. It is natural to
put

u := ψ − 1 = u1 + iu2 ∈ R⊕ iR,(4.1)
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then the equation (GP) is rewritten as

iu̇+ ∆u− 2u1 = 3u2
1 + u2

2 + |u|2u1 + i(2u1u2 + |u|2u2).(4.2)

Following [19, Section 4], we further transform the unknown function u by

U :=
√
−∆(2−∆)−1, M(u) := u1 + iUu2 + (2−∆)−1|u|2,

ζ := U−1M(u),
(4.3)

where u 7→ u1 + iUu2 is the natural R-linear transform making the linearized
evolution into a unitary group, while the quadratic transform M is a local
homeomorphism from the energy space to H1(R3) for L6(R3)-small func-
tions, playing crucial roles in the nonlinear analysis, removing some singular
terms around the zero frequency. In fact, the energy is rewritten as

E(ψ) =

∫
R3

|∇u|2

2
+
||u|2 + 2u1|2

4
dx =

∫
R3

|∇ζ|2

2
+
|U |u|2|2

4
dx,(4.4)

while the equation is transformed into

i∂tζ −Hζ = N(u) := 2u2
1 + |u|2u1

− iH−1∇ · {4u1∇u2 +∇(|u|2u2)},
H :=

√
−∆(2−∆).

(4.5)

Also recall from [17] that the propagator e−itH for the linearized equation
of ζ enjoys the same dispersive as the Schrödinger eit∆ (possibly excepting
L∞x ). Actually it is better than eit∆ in the low frequency, or gains some
power of U .

Lemma 4.1 ([17]). Let f : R3
x → C be measurable. For r ∈ [2,∞) we have∥∥e−itHf∥∥

Lr(R3)
. |t|−3( 1

2
− 1

r
)
∥∥∥U 1

2
− 1

r f
∥∥∥
Lr′ (R3)

.(4.6)

The above implies the same Strichartz estimate for e−itH as for the
Schrödinger equation, which can be weighted as in Lemma 2.3:

Lemma 4.2. There exists a constant C > 0 such that for any admissible
pairs (q0, r0), (q1, r1) ∈ [2,∞]2 on R3, ε ≥ 0, T > 0 and F ∈ Xq′1,r

′
1

ε (IT ), we
have ∥∥∥∥∫ t

∞
e−i(t−s)HF (s) ds

∥∥∥∥
X
q0,r0
ε (IT )

≤ C‖F‖
X
q′
1
,r′

1
ε (IT )

.(4.7)
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It also implies that scattering solutions are vanishing in L6(R3), hence
the energy space for the asymptotic profiles of ζ = U−1M(u) is U−1H1(R3) =
Ḣ1(R3).

For the final-data problem, existence of a solution u of (4.2) such that
‖M(u)− e−iHtz+‖H1(R3) → 0 is given for any z+ ∈ H1(R3) by [19, Theo-
rem 1.2]. In terms of ζ = U−1M(u), it means the existence of a scatter-
ing solution ζ of (4.5) in Ḣ1(R3). We consider a randomized version with
uniqueness. Note that the physical randomization in Definition 1.1 does not
commute with derivatives, unlike similar randomization in the Fourier side.
If we directly apply that randomization to a final-state in Sobolev spaces,
then estimates on the randomized data and the corresponding free solution
get extra terms from differentiating the partition of unity χk. Therefore,
it seems more natural to apply the randomization after transforming the
energy space onto L2(R3).

Definition 4.3 (Ḣ1-randomization). For ϕ ∈ Ḣ1(R3), we define its ran-
domization ϕω,1 by

ϕω,1 := |∇|−1(|∇|ϕ)ω = |∇|−1
∑
k∈Zd

Gk(ω)χk|∇|ϕ.(4.8)

Then we obtain the following, which is a randomized version of [19,
Theorem 1.2].

Theorem 4.4. For any ζ+ ∈ Ḣ1(R3) and for almost every ω ∈ Ω, there
exists a unique global solution u ∈ Ct(R;H1(R3)) to (4.2) such that v :=
U−1u1 + iu2 satisfies

‖tε〈∇〉(v − e−itHζω,1+ )‖LqtLrx(IT×R3) <∞,(4.9)

for some T > 0, all admissible pair (q, r), and all ε ∈ (1/4, 3/8). The unique-
ness holds under the condition (4.9) for a fixed (q, r, ε) with r ∈ [12/5, 4].
Moreover,

‖v(t)− e−itHζω,1+ ‖H1(R3) + ‖ζ(t)− e−itHζω,1+ ‖H1(R3) = o(t−ε)(4.10)

as t→∞ for all ε < 3/8, namely the scattering holds for v, ζ and M(u) =
Uζ in H1(R3).

The above conditions on q, r, ε are the same as in Theorem 1.3 for d = 3
and p = 1. Even though ζ+ ∈ Ḣ1(R3), z and v scatter in H1(R3) almost
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surely, and correspondingly, the solution ψ belongs to the smaller space
1 +H1(R3), where the global well-posedness was proved by Bethuel and
Saut [3]. This is because the randomization by Murphy improves the low
frequency. It makes the quadratic term in the transform M asymptotically
negligible as t→∞ in H1(R3), which is in contrast to the deterministic
case, cf. [19, Remark 4.1]. Actually the following implies that ζω,1+ ∈ Ḣs for
−1/2 < s ≤ 1 almost surely.

Lemma 4.5. Let d ∈ N, φ ∈ L2(Rd). Then we have φω ∈ Ḣs(Rd) almost
surely for all s ∈ (−d/2, 0]. If φ ∈ Ḣ1(Rd), then φω,1 ∈ Ḣs(Rd) almost surely
for all s ∈ (1− d/2, 1].

Proof. Let φ ∈ L2(Rd) and s ∈ (−d/2, 0]. For all α ∈ [2,∞), using Lemma
2.1, Sobolev’s inequality with 1

r := 1
2 −

s
d , and Hölder’s inequality with com-

pact supported χkφ for all k ∈ Zd, it holds that

‖φω‖LαωḢs
x(Ω×Rd) ≤

∥∥∥∥∥∥∥∑k∈Zd
gk(ω)|∇|s(χkφ)

∥∥∥
Lαω(Ω)

∥∥∥∥
L2
x(Rd)

(4.11)

.
∥∥∥∥∥|∇|s(ψkχ)

∥∥
`2k(Zd)

∥∥∥
L2
x(Rd)

=
∥∥∥∥∥|∇|s(χkφ)

∥∥
L2
x(Rd)

∥∥∥
`2k(Zd)

.
∥∥‖χkφ‖Lrx(Rd)

∥∥
`2k(Zd)

.
∥∥‖χkφ‖L2

x(Rd)

∥∥
`2k(Zd)

∼ ‖φ‖L2
x(Rd).

Thus we deduce that φω ∈ Ḣs for almost every ω and for all s ∈ (−d/2, 0],
taking a countable dense set of s in (−d/2, 0] including 0. Then the claim
on φω,1 follows from the fact that |∇| is an isomorphism from Ḣs+1 onto
Ḣs. �

In particular, the reference free solution e−itHζω,1+ ∈ L∞(R;H1(R3)) al-
most surely, and then it decays in L3(R3) because of the dispersive decay
estimate (4.6) together with the Sobolev embedding H1(R3) ⊂ L3(R3). The
L3-smallness makes it easy to invert the quadratic transform M as follows.

Lemma 4.6. There exists a constant η∗ > 0 with the following property.
Let B∗ := {ϕ ∈ H1(R3) | ‖ϕ‖L3(R3) ≤ η∗}. Then for any ϕ ∈ B∗, there exists
a unique u ∈ H1(R3) satisfying

Uϕ = M(u), ‖u‖L3(R3) ≤ 2‖Uϕ1 + iϕ2‖L3(R3).(4.12)

Let g : B∗ → H1(R3) be the map defined by g(ϕ) := u given above. Then
there exists a constant C > 0 such that for any r ∈ [2, 6], s ∈ [0, 1] and ϕ,ψ ∈
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B∗ ∩Hs
r (R3), we have

‖g(ϕ)− g(ψ)‖Hs
r (R3) ≤ C‖ϕ− ψ‖Hs

r (R3).(4.13)

Note that g(0) = 0 because M(0) = 0, so ‖g(ψ)‖Hs
r
≤ C‖ψ‖Hs

r
.

Proof. For ϕ, u∈H1(R3), let ϕ̃ := Uϕ1+iϕ2 and Φϕ(u) := ϕ̃+(2−∆)−1|u|2.
Then Uϕ = M(u) is equivalent to u = Φϕ(u). First we show that Φϕ is a
contraction on

Kη := {u ∈ H1(R3) | ‖u‖L3(R3) ≤ 2η},(4.14)

provided that ‖ϕ̃‖L3(R3) ≤ η and η > 0 is small enough. For any r ∈ (3/2,∞),
and any u ∈ H1

r (R3) ∩ L3(R3), we have

‖(2−∆)−1|u|2‖H1
r
∼ ‖|u|2‖H−1

r
. ‖|u|2‖Lr̄ ≤ ‖u‖L3‖u‖Lr ,(4.15)

where r̄ ∈ (1,∞) is determined by 1/r̄ = 1/r + 1/3. Restricting r to the
closed interval [2, 6] allows us to take the implicit constants independent of
r. In particular, choosing r = 2, 3, we deduce that Φϕ maps Kη into itself if
η > 0 is small enough. The difference is estimated in the same way as

‖Φϕ(u)− Φϕ(w)‖H1
r
. ‖|u|2 − |w|2‖Lr̄ ≤ ‖u+ w‖L3‖u− w‖Lr .(4.16)

Hence Φϕ is a contraction on Kη for small η > 0, and so there is a unique
fixed point u ∈ Kη, which is the unique solution of Uϕ = M(u) in Kη. Since
‖ϕ̃‖L3 . ‖ϕ‖L3 ≤ η∗, choosing η∗ > 0 small enough ensures the smallness
of ‖ϕ̃‖L3 ≤ η. Thus the map g : B∗ → H1 is well-defined and given by the
iteration limit

g(ϕ) = lim
n→∞

(Φϕ)n(0),(4.17)

in Kη. By the same estimate as above, we have for any ϕ,ψ ∈ B∗ and any
u,w ∈ Kη,

‖Φϕ(u)− Φψ(w)‖Hs
r
≤ ‖ϕ̃− ψ̃‖Hs

r
+ Cη‖u− w‖Lr .(4.18)

Choosing η∗ > 0 small ensures that Cη < 1/2 on the right side. Then by
induction on n ∈ N, we obtain

‖(Φϕ)n(0)− (Φψ)n(0)‖Hs
r
≤ 2‖ϕ̃− ψ̃‖Hs

r
.(4.19)
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and then sending n→∞,

‖g(ϕ)− g(ψ)‖Hs
r
≤ 2‖ϕ̃− ψ̃‖Hs

r
. ‖ϕ− ψ‖Hs

r
,(4.20)

as claimed. �

By the above lemma, it suffices to solve the equation (4.5) coupled with
u = g(ζ), namely

i∂tζ −Hζ = N(g(ζ))(4.21)

for large t > 0, since we are looking for solutions u in H1(R3) decaying in
L3(R3) by scattering. In order to prove Theorem 4.4, we prepare Lemma 4.7
and Lemma 4.9 that correspond to Lemma 2.2 and Lemma 3.1 for (NLS).

Lemma 4.7. Let a ∈ (0,∞), b ∈ (2, 4) and ε ≥ 0 satisfy (2.2). Then for
any T > 0, α ∈ [max(a, b),∞) and ϕ ∈ Ḣ1(R3), we have

‖〈∇〉e−itHϕω,1‖Lαω(Ω;Xa,b
ε (IT )) .

√
αε
−1/α
0 T−ε0‖ϕ‖Ḣ1(R3),(4.22)

where 〈∇〉 :=
√

2−∆, ϕω,1 is defined in (4.8), and ε0 is defined in (2.2).

Proof. If a < 2, then let a1 := 2 and ε1 := ε+ 1/a− 1/2 + ε0/2. Otherwise,
let a1 := a and ε1 := ε. By the same argument as in the proof of Lemma 2.2
using Minkowski’s inequality and Lemma 4.1, it holds that∥∥〈∇〉e−itHϕω,1∥∥

Lαω(Ω;X
a1,b
ε1 (IT ))

(4.23)

=
∥∥∑

k∈Z3 Gk
[
e−itHU−1(ψk|∇|ϕ)

]∥∥
Lαω(Ω;X

a1,b
ε1 (IT ))

.
√
α
∥∥∥∥∥e−itHU−1(ψk|∇|ϕ)

∥∥
X
a1,b
ε1 (IT )

∥∥∥
`2k(Z3)

.
√
α
∥∥∥tε1−d/2−d/b∥∥∥

L
a1
t (IT )

∥∥∥∥∥U−1/2−1/bψk|∇|ϕ
∥∥
Lb′x (Rd)

∥∥∥
`2k(Z3)

.

The last norm is estimate by the Sobolev embedding Ḣ
1/2+1/b

b̄
(R3) ⊂ Lb′(R3)

with b̄ ∈ (1,∞) defined by

1

b̄
:=

1

b′
+

1

3

[
1

2
+

1

b

]
=

7

6
− 2

3b
,(4.24)
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∥∥∥∥∥U−1/2−1/bψk|∇|ϕ
∥∥
Lb′x (Rd)

∥∥∥
`2k(Z3)

(4.25)

.
∥∥∥∥∥ψk|∇|ϕ∥∥Lb̄x(Rd)

∥∥∥
`2k(Z3)

. ‖|∇|ϕ‖L2(R3).

Then using (2.4), together with (2.5) if a < 2, leads to the desired estimate.
�

Remark 4.8. If we do not exploit the low frequency gain U1/2−1/b for e−itH

in the above proof at all, then the upper bound on b becomes b < 3, which is
related to the critical Sobolev embedding Ḣ1

3 (R3) 6⊂ L∞(R3). On the other
hand, we need ε > 1/4 to treat the quadratic nonlinear terms, which can be
easily seen by a scaling argument, but ε > 1/4 is equivalent to b > 3 in the
above lemma. This implies that we can not prove Theorem 4.4 simply as for
(NLS) without using the low frequency gain.

The next lemma is the main deterministic claim in this section.

Lemma 4.9. Let 1/4 < ε < 3/8. Then there exists η0 > 0 such that the
following holds. Let (q, r) ∈ (2,∞)× [12/5, 4] be an admissible pair on R3.
Then for any η ∈ (0, η0], ζ+ ∈ H1(R3) and T ≥ 1 satisfying

‖〈∇〉e−itHζ+‖Xq,r
ε (IT ) + ‖e−itHζ+‖X∞,30 (IT ) ≤ η,(4.26)

there exists a unique local solution ζ ∈ Ct(IT ;B∗) to (4.21) on IT such that

‖〈∇〉(ζ − e−itHζ+)‖X∞,2ε (IT )∩Xq,r
ε (IT ) ≤ η,(4.27)

where B∗ is the domain of g defined in Lemma 4.6.

Proof. The equation (4.21) for ζ with the final-data ζ+ is rewritten as

ζ = e−itHζ+ + i

∫ ∞
t

e−i(t−s)HN(g(ζ))ds,(4.28)

as long as ζ stays in B∗. Hence it suffices to show that the mapping Ψ defined
by

ζ0 := e−itHζ+, Ψ(w) := ζ0 + i

∫ ∞
t

e−i(t−s)HN(g(ζ))ds(4.29)

is a contraction on the following closed non-empty set in a Banach space:

YT := {w ∈ C(IT ;B∗), ‖〈∇〉(w − ζ0)‖X∞,2ε (IT )∩Xq,r
ε (IT ) ≤ η},(4.30)
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endowed with the norm ‖〈∇〉 · ‖X∞,2ε (IT )∩Xq,r
ε (IT ), provided that η0 > 0 is

small.
First we impose η0 ≤ η∗, where η∗ is as in Lemma 4.6, then ζ0 ∈ YT .

Next to see that Ψ maps YT into itself, let w ∈ YT and u := g(w). Then
Lemma 4.6 implies that u ∈ C(IT ;H1(R3)), and for all t ∈ IT , s ∈ [0, 1] and
r ∈ [2, 6], we have ‖u(t)‖Hs

r (R3) . ‖w(t)‖Hs
r (R3). In particular,

‖〈∇〉u‖Xq,r
ε (IT ) . ‖〈∇〉w‖Xq,r

ε (IT ),(4.31)

and, using H1(R3) ⊂ L3(R3),

‖u‖X∞,30 (IT ) . ‖ζ
0‖X∞,30 (IT ) + ‖〈∇〉(w − ζ0)‖X∞,20 (IT ) . η.(4.32)

On the nonlinear terms, using the Sobolev norm ‖ϕ‖H1
r

= ‖〈∇〉ϕ‖Lr ∼
‖ϕ‖Lr + ‖∇ϕ‖Lr together with Hölder’s inequality as well as the bounded-
ness of |∇|−1∇ on Lr (for 1 < r <∞), the quadratic part is estimated at
each t ∈ IT for j = 0, 1 by

‖u2
1‖H1

r/2
. ‖u2‖Lr/2 + ‖u∇u‖Lr/2 . ‖u‖2H1

r
,

‖H−1∇ · (u1∇u2)‖H1
r/2
. ‖u∇u‖Lr/2 . ‖u‖2H1

r
.

(4.33)

For the cubic part, we also use the Sobolev inequality:

‖u2‖Lr . ‖∇u2‖Lr̄ . ‖u‖L3‖∇u‖Lr ,(4.34)

where r̄ ∈ [6/5, 2) is defined by 1/r̄ = 1/r + 1/3. Then at each t ∈ IT , we
have

‖|u|2u1 − iH−1∆(|u|2u2)‖H1
r/2
. ‖|u|2u‖H1

r/2
(4.35)

. ‖u3‖Lr/2 + ‖u2∇u‖Lr/2 . ‖u2‖Lr(‖u‖Lr + ‖∇u‖Lr)

. ‖u‖L3‖∇u‖Lr̄‖u‖H1
r
. ‖u‖L3‖u‖2H1

r
.

Then using Hölder in t and (4.32), we obtain, assuming η0 ≤ 1,

‖〈∇〉N(u)‖X̃T . ‖〈∇〉u‖
2
XT ,(4.36)

where X̃T := X2q,2r
2ε (IT ) and XT := Xq,r

ε (IT ). Since (1.18) holds with d = 3,
p = 1, there is a unique admissible pair (q̂, r̂) such that r̂′ = 2r. Then from
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(3.8), we have 1/q̂′ − 1/(2q) = 1/4 < ε and so

‖〈∇〉N(u)‖X̂T . T
1/4−ε‖〈∇〉N(u)‖X̃T . T

1/4−ε‖〈∇〉u‖2XT ,(4.37)

where X̂T := X q̂′,r̂′
ε (IT ). Combining this with (4.31) and Lemma 4.2, we

obtain

‖〈∇〉(ζ0 −Ψ(w))‖X∞,2ε (IT )∩XT(4.38)

. T 1/4−ε(‖〈∇〉ζ0‖XT + ‖〈∇〉w‖XT )2 . T 1/4−εη2,

which is much smaller than η if η0 is small. Also using H1(R3) ⊂ L3(R3),

‖Ψ(w)‖X∞,30 (IT ) ≤ η + CT 1/4−εη2 ≤ η∗,(4.39)

if η0 is small enough. Hence Ψ maps YT into itself.
To show that it is a contraction, let w0, w1 ∈ YT , uj := g(wj), and

u′ := u0 − u1. Since N(u) consists of Fourier multipliers, product and sum,
N(u0)−N(u1) is expanded into similar quadratic and cubic terms in u0, u1

and u′, which are at least linear in u′ (and ū′). Hence by the same argument,
we obtain

‖〈∇〉(N(u0)−N(u1))‖X̃T . η‖〈∇〉u
′‖X∞,20 (IT )∩XT ,(4.40)

where the X∞,20 (IT ) norm is used to bound ‖u′‖L3
x

by Sobolev. By Lemma
4.6, we have

‖〈∇〉u′‖X∞,20 (IT )∩XT . ‖〈∇〉(w
0 − w1)‖X∞,20 (IT )∩XT .(4.41)

Then using the same linear estimates as above, we obtain

‖〈∇〉(Ψ(w0)−Ψ(w1))‖X∞,2ε (IT )∩XT(4.42)

. T 1/4−ε‖〈∇〉(N(u0)−N(u1))‖X̃T

. T 1/4−εη‖〈∇〉(w0 − w1)‖X∞,2ε (IT )∩XT .

Taking η0 > 0 smaller if necessary, we deduce that Ψ is a contraction on YT ,
so there is a unique fixed point w ∈ YT , which is the unique solution. �
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Remark 4.10. Since we have v = ζ − 〈∇〉−1|∇|−1|u|2 for v = U−1u1 + iu2,
it follows that

‖v − e−itHζω,1+ ‖H1(R3) . ‖ζ − e−itHζ
ω,1
+ ‖H1(R3) + ‖|u|2‖Ḣ−1(R3).(4.43)

Combining that

‖|∇|−1|u|2‖X∞,20 (IT ) . ‖|u|
2‖X∞,6/5

0 (IT ) . T
−ε‖u‖X∞,2ε (IT )‖u‖X∞,30 (IT )(4.44)

. T−ε‖〈∇〉w‖X∞,2ε (IT )‖u‖X∞,30 (IT ) . T
−εη2,

we obtain that ‖v − e−itHζω,1+ ‖H1(R3) = o(t−ε) as t→∞.

From Lemmas 4.5, 4.7 and 4.9, we can prove Theorem 4.4.

Proof of Theorem 4.4. Take any ε ∈ (1/4, 3/8) and an admissible pair
(q, r) ∈ (2,∞)× [12/5, 4] as in Lemma 4.9, and let η0 > 0 be given by the
lemma. Then

ε0 := −ε+ 3/2− 3/r − 1/q = −ε+ 1/q0 > 0,(4.45)

so by Lemma 4.7, for all ζ+ ∈ Ḣ1(R3) and for almost every ω ∈ Ω, we have
e−itHζω,1+ ∈ Xq,r

ε (I1). Moreover, since ζω,1+ ∈ H1(Rd) for almost every ω ∈ Ω,
we have

lim
T→∞

∥∥∥e−itHζω,1+

∥∥∥
X∞,30 (IT )

= 0(4.46)

by Lemma 4.1 together with the Sobolev embedding H1(R3) ⊂ L3(R3).
Therefore, for any η ∈ (0, η0) and for almost every ω ∈ Ω, there exists T > 0
such that

‖〈∇〉e−itHζω,1+ ‖Xq,r
ε (IT ) + ‖e−itHζω,1+ ‖X∞,30 (IT ) ≤ η,(4.47)

thus by Lemma 4.9, there exists a unique solution ζ ∈ C(IT ;B∗) to (4.21)
on IT satisfying

‖〈∇〉(ζ − e−itHζω,1+ )‖X∞,2ε (IT )∩Xq,r
ε (IT ) ≤ η.(4.48)

Applying the weighted Strichartz estimate once again to Ψ(ζ), we obtain the
same estimate on all the other admissible norms. In particular, it is scattering
in H1(R3) with the final-state ζω,1+ . Since u := g(z) ∈ C(IT ;H1(R3)) is a
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solution of (4.2) on IT , the global well-posedness in [3] implies that u is
extended uniquely to a global solution of (4.2) in C(R;H1(R3)). �

We can prove that v = U−1u1 + iu2 remains in the Strichartz space after
the extension of u to all t ∈ R, namely 〈∇〉v ∈ Lqt,locL

r
x(R× Rd), which is a

stronger condition than that implied by the global well-posedness for u(t) ∈
H1(R3). The detail is however omitted, since the main question in this paper
is the uniqueness, for which the weaker condition is better.
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