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Certifying a compact topological

4-manifold

Michael Freedman and Daniele Zuddas

We prove that compact topological 4-manifolds can be effectively
presented by a finite amount of data.

The present paper is aimed at proving the following theorem.

Theorem. Let M be a compact topological 4-manifold. There is a finite
data structure C (a finite number of bits) which provably specifies M up to
homeomorphism. We call C a “certificate” for M .

Background. Compact PL manifolds are manifestly specified by a finite
amount of data. Up through dimension 3 the categories Top, PL, and Diff
have the same objects so there is no issue of finding a certificate. For mani-
folds of dimension ≥ 5 the surgery exact sequence reduces the specification
of a structure S(P ) on a Poincaré space P to homotopy theory (normal
maps) and K-theoretic objects (the L-groups). A manifold structure (Top,
PL, or Diff) can be certified in principle by giving a cell structure for the
appropriate Poincaré space and an explicit solution for the homotopy and
L-group problems. In dimension 4 PL and Diff have the same objects so the
single open case is the question of a certificate for a compact topological
4-manifold.

Proof. An early theorem of Lashof [5] states that every noncompact con-
nected 4-manifold admits a smooth structure. We will freely switch between
smooth and PL language as we discuss smooth/PL manifolds of dimension
4 and 5. We use the language best suited to the construction at the moment;
there are no essential differences in those dimensions.

The broad outline of the proof is: (1) put a PL structure on M−, M
minus a point, and (2) come up with enough smooth/PL data to prove the
existence of a topologically flat 3-sphere cutting off the end of M−. The
certificate consists of the triangulation of a large, but finite, chunk of M−,
containing this S3. Then, cutting along S3 and gluing in B4 recovers the
homeomorphism type of M uniquely.
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68 M. Freedman and D. Zuddas

For the present, assume that M is connected and orientable. To start
we remove the Kirby-Siebenmann invariant ks which otherwise would cause
us an inconvenience at the end of the proof. If ks(M) = 0, let M− be the
compact manifold obtained from M by deleting the interior of a flat 4-ball
B4 ⊂ int(M). If ks(M) = 1, let M− be the compact manifold obtained from
M by deleting the interior ofK fromM , whereK is the compact contractible
4-manifold with boundary the Poincaré homology sphere. It is known that
the double of K is homeomorphic to S4 so K embeds in B4 ⊂M , thus we
have such a copy of K available to delete. In either case we have:

(1) ks(M−) = 0.

Let M−− be M− − {interior point}. By Lashof’s result [5], M−− has a
smooth structure extending the unique structure on its boundary; fix one.
Let D be its double along the entire boundary of M−− ,

(2) D = double(M−− ).

Note that D has two ends. We want to study (one of) these ends in the
least distracting context so we do finitely many 1-surgeries to turn D into a
simply connected D′. Note that D and D′ are smooth manifolds.

To do this: first do 1-surgeries in both copies of M−− to make them
simply connected. If M−− has b boundary components π1(D) will now be
a free group on b− 1 generators. Kill this group by surgery on doubles of
arcs joining each boundary component of M−− to some reference boundary
component. Now D′ is simply connected and may be assumed to still have
the structure of a double. Thus, it admits an orientation-reversing involution,
hence a Z2-action, which permutes the two halves. This extends over the end
compactification D of D′ (which, by construction, is a topological manifold).
In particular, D has zero signature and so its intersection form is indefinite
or null.

Therefore, the intersection form of D′ and of D is isomorphic to

(3)

(⊕
k

(
0 1
1 0

))⊕⊕
j

(
1 0
0 −1

).
This follows by Serre’s classification of integral unimodular indefinite sym-
metric bilinear forms [6].
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Certifying a 4-manifold 69

Since D is a double we have ks(D) = 0 but more importantly each half
of D, D/Z2 also has vanishing ks invariant:

(4) ks(D/Z2) = 0.

By the classification of compact 1-connected topological 4-manifolds [2]
(and compactifying product ends and the inverse operation) we see that

(5) D′ ∼=
top

#
k

(S2 × S2) # (#
j
CP 2) # (#

j
CP 2)− {2 pts}.

Denote the right hand side of (5) by E; it is endowed with the canonical
smooth structure. Observe that the smooth structure of E clearly extends
over the ends, while that of D′ may not be extendable.

We may consider D′ × [0, 1] and ask if it has a smooth structure agreeing
with D′ × [0, ε] at one end and E × (1− ε, 1] at the other. The obstruction
lies in

(6) H4

(
D′ × [0, 1], D′ × {0, 1};π3

(
Top

O

))
∼= π3

(
Top

O

)
∼= Z2.

The answer is: “Yes”. The obstruction precisely detects whether the cor-
responding ends of D′ and E have the same Rochlin invariant [2]. However
all four Rochlin invariants vanish—this is why we took the ks invariant of
M into account when defining M− (compare with line (4)). The fact we
are using: if X is a compact oriented topological spin 4-manifold of zero
signature (possibly with boundary) and X−S is a smoothing of X minus an
interior point, then:

(7) ks(X) = Rochlin(end X−S ).

Indeed, both sides of (7) can be identified with the stable obstruction in
H4(X, ∂X;π3(Top/PL)) ∼= Z2 to extend the smooth structure on ∂X over
X, see Kirby and Siebenmann [4]. In our situation, it is enough to take
X ⊂ D a small compact neighborhood of one end, which is bounded by a
smooth connected 3-manifold in D′, to obtain ks(X) = 0.

Let us denote such a smoothing of D′ × [0, 1] by N . Then, N is a smooth
proper h-cobordism from D′ to E. Fix a relative handle decomposition of
N . As usual, we cancel all 0, 1, 4, and 5 handles of N . Everything about N
can be read off from the “middle level” P , a cross-section of N above the
2-handles and below the 3-handles.
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70 M. Freedman and D. Zuddas

Inside M we see two collections of disjoint, locally finite, smooth spheres
A and B. A consists of the descending (attaching) 2-spheres of the 3-handles
and B the ascending (belt) 2-spheres of the 2-handles. Since N is a proper
h-cobordism, algebraically we may assume that A and B intersect as follows:

(8) Ai ·Bj = δij

and also by a lemma of Casson [1], up to finger moves we may assume that

(9) π1(P − (A ∪B)) ∼= 0.

But geometrically there are, in addition to the desired intersection points,
additional points which may be arranged in cancelling pairs, each pair on
a Whitney circle, and all Whitney circles bounding locally flat 2-disks con-
tained in disjoint smooth 6-stage Casson towers in P which meet A ∪B only
along the Whitney circle.

Definition. Fixing a gradient-like flow associated with a handle decompo-
sition in any category (Top, PL, or Diff), a generalized flow line is a minimal
closed invariant subset of the bidirectional flow (see Figure 1).

Now consider a smooth 3-sphere S3 cutting off one of the ends of E at
the top of the h-cobordism. S3 should be indeed very near an end, in that
we do not want any of the “generalized flow” lines leaving S3 to arrive in
a portion of D′ modified by the above finitely many 1-surgeries; all such
generalized flow lines should end in a part of D′ identified with a portion of
(one copy of) the original manifold M . Similarly, all generalized flow lines
through S3 should be disjoint from some fixed compact 2-complex T in D′

carrying H2(D
′;Z). Notice that such a 3-sphere exists topologically, but not

necessarily smoothly, also in D′. Our goal is to represent such a topologically
locally flat 3-sphere in D′ starting from the smooth sphere S3 ⊂ E.

We now identify a crucial subset Y ⊂ P of the middle level. Let A′ and
B′ be those spheres within A and B respectively whose generalized flow
lines meet S3 ⊂ E. If Ai ∈ A′ it is easy to see that Bi ∈ B′, however Bi ∈ B′
does not imply Ai ∈ A′ (the asymmetry comes from the fact S3 is at the
top of the h-cobordism). To correct this imbalance let A′′ be A′ union all
spheres in A which are duals of spheres in B′, i.e. Bj ∈ B′ ⇒ Aj ∈ A′′. Let
C be the union of all 6-stage Casson towers on all Whitney circles meeting
A′′ ∪B′. Note the Whitney circle might pair double points between A′′ ∪B′
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←↩ generalized

flow line2-handle

1-handle

Figure 1.

and A ∪B − (A′′ ∪B′). Now Y is defined as a closed regular neighborhood

Y = N (A′′ ∪B′ ∪ C) ⊂ P.

It is a key result [2] that every 6-stage Casson tower, a combinatorially
explicit object, contains a topological 2-handle H2

top, which is not an explicit
finitistic object. Y can be described with finite data but we are about to
use the topological Whitney disk W ⊂ H2

top, which is the core of H2
top, to

construct a flat 3-sphere cutting off an end of D′ and similarly cutting off
the end of M−− .

Up to this point all flow lines are smooth or PL. Now perform an ambient
topological isotopy of B′ within Y using the Whitney disks in the topological
2-handles within C to make A′′ and B′top, the isotoped B′, have geometric
δij intersection:

(10) |Ai ∩ (Btop)j | = δij

for all Ai ∈ A′′ and (Btop)j ∈ B′top.
After this isotopy the generalized flow lines in N are now topological,

not smooth, but now all generalized flow lines starting in S3 ⊂ E are either
intervals running from E to D′ or else meet E in topologically flat 2-disks.
This statement is the essence of the famous Morse cancellation lemma, and
sketched in two lower dimension, in Figure 1. Said another way, an ascending
sphere is punctured by its encounter with its dual (descending) sphere and
arrives at E, the top of N , as a flat 2-disk.

Our goal is that S3 should meet only ordinary (interval) flow lines. But
since the generalized flow lines it meets intersect E in finitely many disjoint
flat 2-disks it is easy to find an ambient topological isotopy of S3 to S′

where S′ now only meets ordinary interval flow lines. The union of these
ordinary flow lines is a topologically flat (S3 × [0, 1];S′, S′′) ⊂ (N ;E,D′).
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This constructs a topologically flat 3-sphere S′′ far out an end of D′ and
cutting off that end.

By placing S3 sufficiently near an end of E we have ensured that the
region in D′ related to it through generalized flow lines is nearer the end
than both the finitely many S2 ×D2’s added during surgery D → D′, and
the 2-complex T carrying H2(D

′;Z). This ensures that any topologically
flat 3-sphere in D′ lying within the generalized flow lines through Y and
which cuts off an end, cuts off a punctured contractible manifold from D′.
Homeomorphically this contractible manifold, since its boundary is a sphere,
must be a 4-ball B4 by the 4-dimensional topological Poincaré conjecture.
Moreover, S′′ can be identified with a locally flat sphere in M−− , still denoted
by S′′, that cuts off the end.

Claim. The manifold M can be uniquely recovered up to homeomorphism
as:

(11) M ∼=
top

M∗ ∪ (B4 or K) ∪B4

where M∗ is the compact component of M−− cut open along S′′, the first
“B4 or K” restores the bit removed at the beginning to ensure ks(M−) = 0
and the final B4 caps off S′.

The claim follows from two applications of the fact [2] that if J is a
compact contractible manifold then every homeomorphism of ∂J extends
to a homeomorphism of J , and moreover if J ′ is another contractible man-
ifold such that ∂J ∼= ∂J ′ then any homeomorphism ∂J → ∂J ′ extends to a
homeomorphism J → J ′. It is applied once to regluing B4 or K and once
to capping off the severed end of M−− with B4, ensuring that the result is
independent of the gluing homeomorphism.

To clarify the logic of the last step (gluing of B4): we have located S′′ so
far out the end of M−− that for homological and fundamental group reasons
it must bound a contractible manifold (hence a B4) in M−, once this is
known cutting out that 4-ball and gluing in another has no effect on the
topology of M−; the detailed location of S′′ is immaterial.

The finite “certificate” for the homeomorphism type of M consists of
the following pieces of information:

1) The initial binary choice: removal of B4 versus K from a ball in int(M)
to obtain M−

2) A triangulation of the complement of a small neighborhood of infinity
of the punctured M−− . The neighborhood should be sufficiently small
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that a collection of 1 and 2-cells presenting π1(M) and generating
a basis for the second homology H2(M ;Z) should exist outside the
neighborhood of infinity.

3) The portion of the smooth proper h-cobordism N consisting of the
generalized flow lines through a PL neighborhood of Y and of S3 ⊂ E.
This is a large enough piece of N to prove that the sphere S3 in E can
be isotoped to S′ and then pushed down to M−− inside D′.

This information suffices to reconstruct M up to homeomorphisms.
This completes the proof except for the nonorientable case. Assume M

is nonorientable and that the first Stiefel-Whitney class is classified by a
map f :

M RP∞

L RP∞−1.

f

By topological transversality [3] we may assume f is transverse toRP∞−1

with preimage a submanifold L. Let Q be M cut open along L. Then Q is
orientable and by the previous argument admits a certificate (1), (2), and
(3) as above. Now to this add a fourth term: 4) a description of the fixed
point free involution ι of L̃ so that L̃/ι = L, where L̃ is the boundary of a
tubular neighborhood of L in M . This is possible since L is a 3-manifold
and hence can be explicitly triangulated. Then M can be reconstructed as

M ∼=
top

Q/ι,

where the identifications by ι are within L̃. �
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