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On weight elimination for GLn(Qpf )

John Enns

We show that the modular Serre weights of a sufficiently generic
mod p Galois representation of an unramified p-adic field are them-
selves generic, and give precise bounds on the genericity, by ex-
tending previous work of Emerton, Gee and Herzig. Our bounds
are nearly optimal in some cases. We use this to improve recent
weight elimination theorems.

Let K/Qp be a finite extension with residue field k. Given a continuous Ga-
lois representation ρ̄ : GK → GLn(Fp), the mod p Langlands program hopes
to associate with it in a natural way a smooth admissible Fp-representation
of GLn(K), denoted Π(ρ̄) (or possibly a family of such representations). In
particular, associated with ρ̄ there should be the set Wconj(ρ̄) of isomorphism
classes of irreducible Fp-representations of GLn(k) consisting of the finitely
many constituents of the GLn(OK)-socle of Π(ρ̄). These are known as the
“Serre weights” of ρ̄. Because a mod p local Langlands correspondence re-
mains purely hypothetical except for the case n = 2, K = Qp (see [1] for an
overview), the definition of Wconj(ρ̄) remains conjectural. On the other hand,
when K is unramified the papers [4] and [3] define a set of regular weights
W ?(ρ̄), and it is predicted that the set of regular weights in Wconj(ρ̄) should
be a subset of W ?(ρ̄), and coincide with W ?(ρ̄) when ρ̄ is semisimple. Here
regularity is a genericity condition; see Section 1 below for the definition.

When ρ̄ is the local part at p of a global automorphic mod p Galois
representation r̄, we can define a concrete set of weights W (ρ̄), called the
set of modular Serre weights of ρ̄ using automorphic forms attached to r̄.
This set is what has traditionally been the subject of “Serre weight conjec-
tures” in the literature. It a priori depends on the choice of globalization r̄,
but the expected local-global compatibility between mod p local Langlands
and spaces of automorphic forms means that it should in fact be equal to
Wconj(ρ̄). There has been much recent progress in proving weight elimina-
tion theorems in these global situations. These results typically say that
Wgen(ρ̄) ⊆W ?(ρ̄) where Wgen(ρ̄) is defined to be the subset of W (ρ̄) con-
sisting of modular weights satisfying some fixed genericity condition. (Thus
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54 John Enns

“weight elimination” refers to eliminating weights as possibilities for modu-
lar weights of ρ̄). See for example the main results of [2] and [8].

The purpose of this paper is to provide a method for improving these
results by a priori eliminating all non-generic weights when K = Qpf is un-
ramified and ρ̄ is generic, thus allowing one to replace Wgen(ρ̄) by W (ρ̄) in
the aforementioned weight elimination theorems. Our main result (Theo-
rem 8) states that if ρ̄ is sufficiently generic then all weights in W (ρ̄) are
also sufficiently generic, and gives precise bounds. In fact the bounds we
give are nearly optimal in a precise sense when f = 1 (see Remark 10). The
proof involves a generalization of techniques from [2]. Roughly speaking the
idea is to relate modularity of Serre weights to the existence of lifts of ρ̄
with prescribed p-adic Hodge-theoretic properties. In fact, we axiomatize
the necessary relationship between Serre weights and lifts in Section 1, and
in Section 2 we prove an abstract weight elimination theorem (Theorem 8)
assuming this axiom. In Section 3 as an application we show that the ax-
iom holds in the global situation considered in [2] and [8] and consequently
our result improves the main weight elimination theorems in both of those
papers.

Notation

Throughout we fix a prime p. In order for our main result (Theorem 8)
to not be vacuous, we must eventually assume p ≥ 2n+ 5, where n is the
dimension of the Galois representation in question. We often speak of δ-
genericity, whether of Serre weights or Galois representations. Whenever this
is mentioned, it is understood that δ is a positive integer at most (p− 1)/2.

If K/Qp is a finite extension we denote its ring of integers by OK , its
residue field by k, and its maximal unramified subextension by K0. By ωn :
IK → k× we denote the standard character of the inertia group of K of
niveau n ∈ N. Throughout, E is a sufficiently large finite extension of Qp

which serves as the coefficient field for our representations. Its ring of integers
is denoted OE and its residue field by F. We denote the Teichmüller lift
F× → O×E by a tilde x 7→ x̃. We tacitly fix a choice of embedding σ0 : k ↪→ F
and write ωn also for the composition IK → F×. None of our results depend
on this choice. Let Q̄p denote a fixed algebraic closure of E, having ring
of integers Z̄p and residue field Fp. We normalize the local reciprocity map
K× → Gal(K̄/K)ab so that it takes uniformizers to geometric Frobenius
elements. We also write ωn for either of the characters of the same name
above thought of as characters of O×K via the local reciprocity map. In this
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On weight elimination for GLn(Qpf ) 55

way, if K0 is degree f then ωf : k× → F× is just the map induced by the
embedding σ0.

If ρ : GK → GLn(E) is a potentially semistable representation, we de-
fine its associated Weil-Deligne representation WD(ρ) as in [2]. An inertial
type is a representation IK → GLn(E) with open kernel that extends to a
representation of the Weil group WK . We say that ρ as above has inertial
type τ if WD(ρ)|IK = τ . We normalize the definition of Hodge-Tate weights
so that the cyclotomic character has Hodge-Tate weight {−1}.

Let T denote the standard diagonal torus in Resk/Fp
(GLn), and R the

standard root system with simple roots ∆ corresponding to the Borel sub-
group of upper triangular matrices. If k has degree f over Fp we choose an

isomorphism (Resk/Fp
(GLn))Fp

∼=
∏f−1
j=0 GLn,Fp

by having the jth factor cor-

respond to the field embedding σp
−j

0 : k ↪→ Fp. We write X(T ) for the char-
acter group of T , which we identify with (Zn)f via the previous isomorphism,
and define the p-restricted weights of T to be X1(T ) = {λ ∈ X(T ) | 〈λ, α∨〉 ∈
[0, p− 1] ∀α ∈ ∆} and X0(T ) = {λ ∈ X(T ) | 〈λ, α∨〉 = 0 ∀α ∈ R+} which
are identified with {(λj)f−1

j=0 ∈ (Zn)f |λij − λ
i+1
j ∈ [0, p− 1]} and {(λj)f−1

j=0 ∈
(Zn)f |λj = (aj , . . . , aj)} respectively. We let π : X(T )→ X(T ) denote the
automorphism that sends (λj)j to (λj+1)j .

If V is a finite length representation then V ss denotes its semisimplifi-
cation. If d ≥ 1 we set ed = pd − 1. We often consider p-adic expansions of
the form

∑d−1
j=0 αjp

j . The indices on the coefficients αj are considered to be
defined cyclically modulo d, so for example αd = α0.

1. Preliminaries and the weight elimination axiom

Let k/Fp be of degree f as in the Notation section. Isomorphism classes
of irreducible Fp-representations of GLn(k), known informally as weights,
are naturally parametrized by X1(T )/(p− π)X0(T ) (see Lemma 9.2.3 of
[3]). We write F (λ) for the weight corresponding to λ = (λ0

j , . . . , λ
n−1
j )f−1

j=0 ∈
X1(T ). Observe that the differences λij − λ

i+k
j for k ≥ 1 are independent of

the choice of representative λ, so the following definition makes sense.

Definition 1. Let F be a weight for GLn(k). We say that F is regular if it
is of the form F (λ) where λij − λ

i+1
j ≤ p− 2 for each i, j. We say that F is δ-

generic if it is of the form F (λ) where λij − λ
i+k
j ∈ [δ, p− 1− δ] mod p− 1

for each i, j and k ≥ 1. Note that 1-generic implies regular.

Most weights are δ-generic, in the sense that if f, n and δ are fixed, the
proportion of weights for GLn(k) that are δ-generic approaches 1 as p→∞.
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We next recall some consequences of the classification of mod p Galois
representations. Let K0 be the unramified extension of Qp of degree f (what
follows holds without the unramified assumption but our results require it)
having residue field k. A continuous semisimple representation ρ̄ : GK0

→
GLn(Fp) is a direct sum

⊕N
i=0 ρ̄i where ρ̄i : GK0

→ GLni
(Fp) is irreducible;∑N

i=0 ni = n. Each ρ̄i|IK0
will be of the form ωmi

nif
⊕ ωqmi

nif
⊕ · · · ⊕ ωq

ni−1mi

nif

where qni−1
qa−1 - mi for any a|ni. We may write mi =

∑nif−1
j=0 xijp

j where the

digits are uniquely specified by stipulating that xij ∈ [0, p− 1], not all equal
to p− 1. The result of multiplying mi by q is to shift the index j by f , so
the multiset of digits {xij , xij+f , . . . , xij+(ni−1)f} is uniquely determined by
ρ̄i. Hence ρ̄ uniquely determines a multiset of n integers

Sj(ρ̄) = {x0
j , . . . , x

0
j+(n0−1)f , x

1
j , . . . , x

1
j+(n1−1)f , . . . , x

N
j , . . . , x

N
j+(nN−1)f}

for each 0 ≤ j ≤ f − 1.

Definition 2. If S = {s0, . . . , sn−1} is a multiset of integers in [0, p− 1], we
say that S is δ-generic if sa − sb ∈ [δ, p− 1− δ] mod p− 1 for each a 6= b.
This implies that the elements of S are distinct if δ ≥ 1.

Let ρ̄ : GK0
→ GLn(Fp) be a continuous representation. We say that ρ̄

is δ-generic if for each 0 ≤ j ≤ f − 1 the multiset Sj(ρ̄
ss) is δ-generic.

This is simply Definition 3.7 of [8] made explicit. As before, most con-
tinuous Galois representations are δ-generic.

Next we recall the categories of p-adic Hodge theoretic data we need.
Let K = K0((−p)1/ef ).

Definition 3. Let r be a nonnegative integer ≤ p− 2. We refer to Sec-
tion 3.2 of [2] for the definition of a Breuil module over F of height r
with descent data from K to K0. These form a category F− BrModrdd.
For us, it matters only that an object of this category is in particular
a free (k ⊗Fp

F)[u]/uep-module M with an action of Gal(K/K0) obeying
g((α⊗ β)uim) = ((ωf (g)iα)⊗ β)uim for α ∈ k, β ∈ F, g ∈ Gal(K/K0) and
m ∈M , where ωf : GK0

→ k× denotes the extension of ωf : IK0
→ k× send-

ing g to g((−p)1/ef )/(−p)1/ef mod p.
We refer to Definition 2.2.1 of [6] for the definition of a Breuil submodule

of an object M of F− BrModrdd. Again, for us it only matters that a Breuil
submodule of M is in particular a sub-(k ⊗Fp

F)[u]/uep-module preserved by
the action of Gal(K/K0).
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There is a rank-preserving covariant functor T rst from F− BrModrdd to
the category of continuous F-representations of GK0

. See Section 2.2 of [6]
and note that the same functor in [2] is written T ∗,rst .

The following theorem gathers some of the results about Breuil modules
that we need.

Theorem 4. Suppose ρ : GK0
→ GLn(E) is a continuous representation

such that ρ|GK
is semistable with Hodge-Tate weights contained in [−r, 0],

and ρ has inertial type
⊕n

i=1 χi where χi : IK0
→ O×E . Let ρ̄ be the re-

duction of any GK0
-stable lattice in ρ. Then there is an object M of F−

BrModrdd with T rst(M) ∼= ρ̄ having a (k ⊗Fp
F)[u]/uep-basis (vi)

n
i=1 on which

Gal(K/K0) acts as g · vi = (1⊗ χ̄i(g))vi. Moreover, if ρ̄0 ⊆ ρ̄ is a subrepre-
sentation, then there exists a Breuil submodule M0 ⊆M such that T rst(M0) ∼=
ρ̄0.

Proof. All statements except the last follow from Proposition 3.3.1 of [2].
The last statement follows from Proposition 2.3.5 of [6]. �

In the statement of the theorem, we refer to a Breuil module having a basis
as claimed as being of type

⊕n
i=1 χ̄i.

Next we present a general lemma to be used later. The first part is well
known, but we lacked a reference for the second part so we have given a
proof.

Lemma 5. Let E/Qp be a finite extension and ρ a continuous representa-
tion of a compact group G on an n-dimensional E-vector space. Then

1) There exists a stable OE-lattice in ρ, and the semisimplification of
the reduction modulo p of any stable OE-lattice is independent of the
choice of lattice.

2) After extending coefficients (by a finite amount depending only on n)
there exists a stable OE-lattice whose reduction modulo p is semisimple.

Proof. It is well-known that the existence of a stable OE-lattice follows from
continuity and the compactness of G and the statement about independence
of the lattice follows from the Brauer-Nesbitt theorem (see for example
Corollary 2.4.8 of [9]). We now prove the second part. Suppose that Λ is
a G-stable lattice and ρ̄0 ⊆ ρ̄ := Λ/$E is a subrepresentation. Let e1, . . . , en
be an OE-basis of Λ which reduces to a basis of ρ̄ such that e1, . . . , ek is

a basis of ρ̄0. Then after extending coefficients to E′ = E(ω
1/2
E ), consider
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the lattice Λ′ generated by $
−1/2
E e1, . . . , $

−1/2
E ek, ek+1, . . . , en. One easily

sees that Λ′ is G-stable and that Λ′/$E′
∼= ρ̄0 ⊕ ρ̄/ρ̄0. The claim follows by

iterating this argument. �

Finally we introduce the weight elimination axiom. It will be satisfied
in the application we consider in Section 3, where it is a consequence of
local-global compatibility at p for automorphic forms on a definite unitary
group. It is the crux of the entire method.

Axiom (WE). Let ρ̄ : GK0
→ GLn(Fp) be a continuous representation and

let W (ρ̄) be a set of weights of GLn(k). We say that W (ρ̄) satisfies the weight
elimination axiom if whenever F ∈W (ρ̄) is a Jordan-Hölder constituent of

the principal series representation Ind
GLn(k)
Bn(k) (

⊕n−1
i=0 ω

ξi
f ) with ξi ∈ Z, ρ̄ has

a potentially semistable lift ρ : GK0
→ GLn(E) with Hodge-Tate weights in

[−n+ 1, 0] and inertial type
⊕n−1

i=0 ω̃
ξi
f for some sufficiently large E.

Remark 6. In fact this axiom is weaker than what holds in our applica-
tions. For example, in the case of definite unitary groups in Section 3 we
in fact know that the lift is potentially crystalline with parallel Hodge-Tate
weights (−n+ 1, . . . ,−1, 0). This likely could be used to improve the main
result; see Remark 10 below.

2. Weight elimination

In this section we explain the weight elimination method. From now on
assume that p ≥ n+ 1. Let K0 be as in the previous section.

Proposition 7. Let ρ : GK0
→ GLn(E) be a potentially semistable repre-

sentation with Hodge-Tate weights in [−n+ 1, 0] and inertial type
⊕n−1

s=0 ω̃
ξs
f ,

and write ξs =
∑f−1

j=0 ξ
s
jp
j where ξsj ∈ [0, p− 1] (not all = p− 1 for fixed s).

Let n = n0 + · · ·+ nN be the partition determined by ρ̄ss. Then

ρ̄ss|IK0
=

N⊕
i=0

(
ωθinif

⊕ ωqθinif
⊕ · · · ⊕ ωq

ni−1θi
nif

)

with θi =
∑nif−1

j=0 (ξ
s(i,j)
j + aij)p

j where aij , s(i, j) ∈ [0, n− 1].

Proof. We use Theorem 4 along with the description of rank 1 Breuil mod-
ules in Lemma 3.3.2 of [2]. Note that ρ becomes semistable overK0((−p)1/ef ).
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Choose some ni and consider ρ|(K0)ni
where (K0)ni

denotes the unramified
extension of K0 of degree ni. It becomes semistable over

Kni
= (K0)ni

((−p)1/enif ),

so by Theorem 4 and Lemma 5 there is an object M of F− BrModn−1
dd

with descent data from Kni
to (K0)ni

having type
⊕n−1

s=0 ω̃
ξs
f such that

Tn−1
st (M) = ρ̄ss|G(K0)ni

. Let ρ̄i be the irreducible summand of ρ̄ss correspond-
ing to ni. By the classification of mod p Galois representations, there is a
character χ ⊆ ρ̄ss|G(K0)ni

such that ρ̄i = χ⊕ χq ⊕ · · · ⊕ χqni−1

. Let N ⊆M
be a rank 1 Breuil submodule such that Tn−1

st (N) = χ.
By Lemma 3.3.2 of [2] (the classification of rank 1 Breuil modules)

there is a basis n of N such that g ∈ Gal(Kni
/(K0)ni

) acts via g · n =∑nif−1
j=0 (ωnif (g)κj ⊗ 1)εjn for some integers κj , where kni

denotes the residue
field of Kni

and εj ∈ kni
⊗Fp

F is the idempotent corresponding to the em-

bedding σp
−j

0 : kni
↪→ F. Moreover, there are integers rj ∈ [0, (n− 1)enif ]

with rj ≡ pnif−1κj+1 − κj mod enif such that

Tn−1
st (N)|I(K0)ni

= ω
κ0+ 1

enif

∑nif−1

j=0 rjpnif−j

nif
.

As F[Gal(Kni
/(K0)ni

)]-modules, we have

nif−1⊕
j=0

ω
p−jκj

nif
= N/u ↪→M/u =

(
n−1⊕
s=0

ωξsf

)⊕nif

=

(
n−1⊕
s=0

ω
(1+···+qni−1)ξs
nif

)⊕nif

.

It follows that for each 0 ≤ j ≤ nif − 1 we have κj ≡ pj(1 + · · ·+ qni−1)ξsj
mod enif for some 0 ≤ sj ≤ n− 1.

Using this, we calculate that pnif−1κj+1 − κj ≡
∑nif−1

t=0 (ξ
sj+1

t−j − ξ
sj
t−j)p

t

mod enif . (The lower index on the ξ∗∗ is still defined modulo f .) Because
for fixed j we have ξ

sj+1

t−j − ξ
sj
t−j ∈ [−p+ 1, p− 1] for all t, with not all being

−p+ 1 or p− 1, it follows from the bound on rj that we may write

rj =

nif−1∑
t=0

(ξ
sj+1

t−j − ξ
sj
t−j)p

t + bjenif

with bj ∈ [0, n− 1]. Finally, with some effort we calculate that

κ0 +
1

enif

nif−1∑
j=0

rjp
nif−j ≡

nif−1∑
j=0

ξ
snif−j

j pj +

nif−1∑
j=0

bjp
nif−j mod enif .
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Relabelling aij = bnif−j and setting s(i, j) = snif−j , we obtain

χ|I(K0)ni
= ω

∑nif−1

j=0 (ξ
s(i,j)
j +ai

j)pj

nif
.

Repeating this argument for each 0 ≤ i ≤ N we arrive at the statement
of the proposition. �

We now present the main result.

Theorem 8. Let ρ̄ : GK0
→ GLn(Fp) be a continuous Galois representation

and let W (ρ̄) be a set of weights for which Axiom (WE) holds. If ρ̄ is δ-
generic with δ ≥ 2n+ 1 then all weights in W (ρ̄) are (δ − 2n)-generic. In
particular, if ρ̄ is (2n+ 1)-generic then all weights in W (ρ̄) are regular. If
f = 1 and δ ≥ n+ 2 then all weights in W (ρ̄) are (δ − (n+ 1))-generic.

Proof. Write

ρ̄ss|IK0
=

N⊕
i=0

ωmi

nif
⊕ ωqmi

nif
⊕ · · · ⊕ ωq

ni−1mi

nif

where mi =
∑nif−1

j=0 xijp
j with xij ∈ [0, p− 1] as in the paragraph preceding

Definition 2. Suppose that F (λ) ∈W (ρ̄) is a modular weight of ρ̄. It follows
from Frobenius reciprocity and Lemma 2.3 of [5] that F (λ) is always a

quotient of Ind
GLn(k)
Bn(k)

(⊗n−1
s=0 ω

∑f−1
j=0 λ

s
f−jp

j

f

)
. Write

f−1∑
j=0

λsf−jp
j ≡

f−1∑
j=0

ξsjp
j mod ef

with ξsj ∈ [0, p− 1] (not all equal to p− 1 for fixed s), and observe that d-
genericity of F (λ) for any d ≥ 1 is implied by (d+ n− 1)-genericity of the
multisets {ξsj}0≤s≤n−1 for each fixed j. To see this, write λsf−j = ξsj + pusj −
usj−1 for some integers {usj}

0≤s≤n−1
0≤j≤f−1 using Lemma 9 below. Then for k ≥ 1

we have

λsf−j − λs+kf−j = ξsj − ξs+kj + p(usj − us+kj )− (usj−1 − us+kj−1).

The left hand side of this equation lies in [0, (n− 1)(p− 1)] and ξsj − ξ
s+k
j ∈

[−p+ 1, p− 1], not all equal to −p+ 1 or p− 1 for fixed s, k. We deduce
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from this that usj − u
s+k
j ∈ [0, n− 1] for all s, j and k ≥ 1. It follows that if

{ξsj}0≤s≤n−1 is (d+ n− 1)-generic then for each s, j and k ≥ 1 we have

λsf−j − λs+kf−j ∈ [d+ n− 1, p− 1− (d+ n− 1)] + [−n+ 1, n− 1] mod p− 1

which gives the claim. We also mention that if f = 1 then d-genericity of
F (λ) is implied by d-genericity of the multiset {ξs0}0≤s≤n−1 since in this case
we automatically have λs0 − λ

s+k
0 ≡ ξs0 − ξ

s+k
0 mod p− 1.

Now by the weight elimination axiom, ρ̄ has a potentially semistable lift

with Hodge-Tate weights in [−n+ 1, 0] and inertial type
⊕n−1

s=0 ω̃
∑f−1

j=0 ξ
s
jp

j

f .
From Proposition 7 we deduce an equality

mi =

nif−1∑
j=0

xijp
j ≡

nif−1∑
j=0

(ξ
s(i,j)
j + aij)p

j mod enif

where aij ∈ [0, n− 1], for each 0 ≤ i ≤ N . We get from Lemma 9 below that

ξ
s(i,j)
j = xij + tijp− tij−1 − aij

for some integers {tij}
0≤i≤N
0≤j≤nif−1. Because ξ

s(i,j)
j + aij − xij ∈ [−p+ 1, p+ n−

2] for each i and j, and are not all = −p+ 1 for a fixed i, we must have tij ∈
[0, 1] (recall that the assumption of (n+ 2)-genericity in particular implies
p ≥ 2n+ 5 here).

We now use these equations to prove genericity. Fix an index 0 ≤ j ≤
f − 1. Let 0 ≤ i, i′ ≤ N , 0 ≤ d ≤ ni − 1 and 0 ≤ d′ ≤ ni′ − 1 be such that
either i 6= i′ or else d 6= d′. Then

ξ
s(i,j+df)
j − ξs(i

′,j+d′f)
j = ξ

s(i,j+df)
j+df − ξs(i

′,j+d′f)
j+d′f

= xij+df − xi
′

j+d′f + (tij+df − ti
′

j+d′f )p

− (tij−1+df − ti
′

j−1+d′f )− (aij+df − ai
′

j+d′f )

∈ [δ, p− 1− δ] + [−1, 1]

− [−1, 1]− [−n+ 1, n− 1] mod p− 1.

It follows that the multiset {ξs(i,j+df)
j }0≤i≤N0≤d≤ni−1 is (δ − (n+ 1))-generic. In

particular since δ ≥ n+ 2, it consists of n distinct elements and therefore
must coincide with the multiset {ξsj}0≤s≤n−1. We conclude that {ξsj}0≤s≤n−1

is (δ − (n+ 1))-generic for each j and it follows from the first paragraph
that F (λ) is (δ − 2n)-generic. If f = 1 then we instead conclude that F (λ)
is (δ − (n+ 1))-generic. �
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The lemma that follows was used in the above proof.

Lemma 9. Let αj be integers, 0 ≤ j ≤ d− 1. We have

d−1∑
j=0

αjp
j ≡ 0 mod ed

iff αj = tjp− tj−1 for some integers {tj}d−1
j=0, and if this holds then

d−1∑
j=0

αjp
j = td−1ed.

Proof. Elementary. �

Remark 10. Theorem 8 is nearly optimal (at least in the case f = 1) in the
sense that the best possible theorem of this form would give (δ − (n− 1))-
genericity of the modular weights. This is because one may check that the
predicted weight set W ?(ρ̄) always contains weights whose genericity is n− 1
less than the genericity of ρ̄.

In order to optimize Theorem 8 one would likely need an improved ver-
sion of Proposition 7 that gives more information about the aij . For exam-
ple, using the fact that in practice the Hodge-Tate weights of the lift of ρ̄
are exactly (−n+ 1, . . . ,−1, 0) (see the proof of Proposition 12), one might
be able to show something like {aij}

0≤i≤N
0≤j≤ni−1 = {−n+ 1, . . . ,−1, 0}. Then a

more careful combinatorial analysis in the proof of Theorem 8 would give an
improved result. We did not pursue this as the relevant p-adic Hodge theory
results were not readily available.

3. Applications

In this section we briefly explain how Theorem 8 applies in the global setting
of definite unitary groups of rank n considered in the papers [2, 7, 8].

We first recall the relevant aspects of the global set-up. The reader is
pointed to Section 4.2.2 of [7] (which in turn builds from Section 7.1 of
[2]) for more details. Let F be a totally imaginary CM number field with
maximal totally real subfield F+ 6= Q. Let c be the non-identity element of
Gal(F/F+) and assume that all primes of F+ dividing p split in F and are
unramified. We write Σ+

p and Σp for the places of F+ (resp. F ) lying above
p. For each place v ∈ Σ+

p , choose a place w ∈ Σp lying above it, so that v
splits as wwc in F . Write F+

p = F ⊗Q Qp and OF+,p = OF+ ⊗Z Zp.
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Let G be a reductive group over F+ quasi-split at all finite places, that
is an outer form of GLn and which splits over F . Also assume that G(F+

v ) ∼=
Un(R) at each place v|∞ of F+. We fix a choice of model G of G defined over
OF+ such that GO

F
+
v

is reductive for all places v of F+ that split in F . For

any such place v and w|v we have an isomorphism iw : G(F+
v )

∼−→ GLn(Fw)
which restricts to an isomorphism

iw : G(OF+
v

)
∼−→ GLn(OFw

).

A Serre weight for G is an isomorphism class of an irreducible Fp-
representation of G(OF+,p) =

∏
v|p G(OF+

v
). Via the (choice of places w and)

isomorphisms iw we identify the set of Serre weights for G with the set of tu-
ples (Fv)v∈Σ+

p
where each Fv = F (λv) is a Serre weight for GLn(kw) as in Sec-

tion 1 (the tuple (Fv)v∈Σ+
p

corresponds to the representation
⊗

v∈Σ+
p
F (λv) ◦

iw). All Serre weights for G are of this form and two such are equivalent iff
the factors F (λv) are equivalent for each v. We make the obvious definitions
in this regard: a Serre weight F for G is called regular or δ-generic if each Fv
is according to the definitions in Section 1. These definitions do not depend
on the choices of w.

Let W be any finitely generated Z̄p-module with an action of G(OF+,p).
If U ≤ G(A∞,pF+ )× G(OF+,p) is a compact open subgroup then the space of
algebraic automorphic forms on G with level U and coefficients in W is
denoted S(U,W ). It is the space of functions f : G(F+)\G(A∞F+)→W such
that f(gu) = u−1

p · f(g) for all g ∈ G(A∞F+) and u ∈ U , where up denotes the
image of u under the projection U → G(OF+,p). We say that the level U is
unramified at a place v which splits in F if U = G(OF+

v
)× Uv.

Each space S(U,W ) has an action of certain abstract Hecke algebras TP
consisting of Hecke operators at places in P where P is any set of places of
F which is a subset of finite complement of the set of places w′ of F such
that w′|F+ splits in F , w′ - p, and U is unramified at w′|F+ . The details of
the definition don’t matter so we again refer the reader to [7]. A continu-
ous global Galois representation r̄ : GF → GLn(Fp) gives rise to a unique
maximal ideal mr̄ ≤ TP for each P such that r̄ is unramified at all places
in P.

We now fix a continuous irreducible representation r̄ : GF → GLn(Fp).

Definition 11. Let V be a Serre weight for G. We say that r̄ is automorphic
of weight V , or that V is a weight of r̄, if there exists a compact open
U ≤ G(A∞,pF+ )× G(OF+,p) unramified at p, and a set P as above such that r̄
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is unramified at all places in P, such that S(U, V )mr̄
6= 0. The set of weights

of r̄ is denoted W (r̄). We say that r̄ itself is automorphic if W (r̄) 6= ∅.

Now we finally make the connection with the method developed in the
previous section. Assume the representation r̄ is automorphic. From now on,
fix a choice of preferred place v|p in F+ with residue field kw of cardinality
pf . Fix any weight V =

⊗
v′|p Fv′ of r̄ and write V ′ =

⊗
v′|p,v′ 6=v Fv′ . Then

define

W (r̄|GFw
) = {Weights F (λ) of GLn(kw) |F (λ)⊗ V ′ ∈W (r̄)}.

Proposition 12. The weight set W (r̄|GFw
) satisfies Axiom (WE).

Proof. This follows from the proof of Proposition 4.2.5 of [7], which in fact
gives the stronger result that the lift is potentially crystalline with parallel
Hodge-Tate weights (−n+ 1, . . . ,−1, 0). �

Corollary 13. Theorem 7.5.5 of [2] holds if we replace Wgen(r̄) by W (r̄)
and assume that r̄|GFw

is 10-generic for all places w|p of F . Theorem 7.5.6
of [2] holds if we replace Wgen(r̄) by W (r̄) and “r̄ modular of some strongly
generic Serre weight” by “r̄ modular” if we assume that r̄|GFw

is 12-generic
for all places w|p of F .

Proof. If the Galois representation is 10-generic, then Theorem 8 says that
all weights in W (r̄) are 6-generic in our sense. This implies that they are
generic in the sense of [2], so Wgen(r̄) = W (r̄), which proves the first claim.
If the Galois representation is 12-generic then all weights in W (r̄) are 8-
generic which implies that they are strongly generic in the sense of [2], and
this proves the second claim. �

Corollary 14. Under the assumption that r̄ is 9-generic at all places above
p, Theorem 7.8 of [8] holds with Welim(r̄) replaced by W (r̄) and with the
assumption “r̄ automorphic of some reachable Serre weight” by just “r̄ au-
tomorphic”.

Proof. By Proposition 12 and Theorem 8 the assumption of 9-genericity
implies that all modular weights are “reachable” in the terminology of [8],
so Welim(r̄) = W (r̄). See Remark 7.10 of [8]. �
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