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An open adelic image theorem for motivic
representations over function fields

ANNA CADORET

Let F be a field and k a function field of positive transcendence
degree over F. Let S be a smooth, separated, geometrically con-
nected scheme of finite type over k. If F is quasi-finite or alge-
braically closed we show that for motivic representations of the
étale fundamental group 71(S) of S, ¢-Galois-generic points are
Galois-generic. This is a geometric variant of a previous result of
the author for representations of 71(S) on the adelic Tate mod-
ule of an abelian scheme A — S when the base field k is finitely
generated of characteristic 0. The procyclicity of the absolute Ga-
lois group of a quasi-finite field allows to reduce the assertion for
F finite to the assertion for I algebraically closed. The assertion
for I algebraically closed can then be deduced, using basically the
same arguments as in the case of abelian schemes, from maximality
results for the image of 71 (S) inside the group of Zs-points of its
Zariski-closure.

1. Introduction

Let k be a field of characteristic p > 0, S a smooth, separated, geometrically
connected scheme of finite type over k with generic point n and X — S a
smooth, proper morphism. For every s € S, fix a geometric point 5 over s and
an étale path from s to 7. For a prime ¢ # p, via the canonical isomorphism
(smooth-proper base change) H* (X5, Z /") ~ H* (X5, Z/¢"), the Galois rep-
resentation by transport of structure of m(s,s) on H*(X5,Z/¢") identifies
with the restriction of the representation of 71 (S, 7) on H* (X7, Z/£") via the
functorial morphism o : w1(s,s) — m1(S,5)>m1(S,7). So, from now on, we
omit base-points in our notation for étale fundamental groups and write

Hy = H* (X7, Z¢) /torsion, Ve := Hpe @ Q.
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Let

P - 7['1(5) — GL(Hgoo), Poo = Hpgoo : 7T1(S) — H GL(Hgoo) =: GL(HOO)
L#p L#p

denote the resulting representations and set I :=im(p7), ? = oo, £*°. For
s €5, also set p7 5 := pr 0 0s and Il7 ¢ :=im(p2 ), 7 = 00, £>°.

Following the terminology of [CK16], we say that s € S is ¢-Galois-generic
(with respect to pso) if Iy ¢ is open in Il and that s € S is Galois-generic
(with respect to poo) if Il s is open in Il.

Given a prime /¢, we say that a field F is £-non Lie semisimple if for every
quotient 71 (F) — I'p with I'; a f-adic Lie group, none of the non-zero Lie sub
algebra of Lie(I'y) is semisimple. Typical examples are algebraically closed
fields and quasi-finite fields (in particular, finite fields), which are ¢-non Lie
semisimple for every prime £, or p-adic fields, which are f-non Lie semisimple
for every prime £ # p.

Assume now that k is the function field of a smooth, separated, geometrically
connected scheme of finite type and dimension > 1 over a field F. The main
result of this note is

Theorem 1.1. AssumeF is £-non Lie semisimple. For a closed point s € S,
the following are equivalent.

1) s € S is {-Galois-generic;

2) s € S is Galois-generic.

In particular, when F is finite, this proves the abundance of closed Galois-
generic points. More precisely, we have

Corollary 1.2. Assume F is finite. Then

1) There exists an integer d > 1 such that there are infinitely many
(¢-)Galois-generic closed points s € S with [k(s) : k] < d.

2) Assume furthermore that S is a curve. Then all but finitely many s €
S(k) are (¢-)Galois-generic.

Proof. Assertion (1) follows from [S89), §10.6] while assertion (2) follows from
[A17, Thm. 1.3 (3)], since motivic representations are GLP. O
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Theorem [1.1] is a geometric variant of a previous result of the author for
representations of m(S) on the adelic Tate module of an abelian scheme
A — S when the base field k is finitely generated of characteristic 0. The
¢-non Lie semisimple’ property allows to reduce Theorem for F /-non
Lie semisimple to Theorem for ' algebraically closed (Lemma [2.2.3]).
Theorem [I.1] for F algebraically closed can then be deduced, following the
guidelines of [C15], from maximality results for IIy~ inside the group of Z,-
points of its Zariski-closure in GLy,.. For p = 0, the maximality result is
the same as the one used in [C15]; it relies on a group-theoretical result of
Nori ([N87]). For p > 0, the maximality result is due to Hui, Tamagawa and
the author ([CHT17]).

It is reasonable to expect that Theorem holds for k a number field
(hence, by Hilbert’s irreducibility theorem, for any finitely generated field
of characteristic 0). This should follow from variants with F-coefficients of
the Grothendieck-Serre-Tate conjectures.

Acknowledgments. The author is partly funded by the ANR project
ANR-15-CE40-0002-01. She thanks the referees for accurate comments,
which helped clarify the exposition of the paper. In a former version of this
note, Theorem was only stated for F finite or algebraically closed. One
of the referees pointed out that it should extend to quasi-finite fields. This
yields the author to observe that her proof was working, more generally, for
f-non Lie semisimple fields.

2. Proof
The implication ([1.1}2) = (|1.1}1) is straightforward. We prove the converse

implication. Fix a closed point s € S. Without loss of generality, we may
assume s € S(k).

2.1. Notation

Fix a smooth, separated, geometrically connected scheme U over F with
generic point ¢ such that there exists a model
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of

TN
X S k F
in the sense that we have a cartesian diagram

Su

VRN
U

I,
— -8 k=k()—>F

with X — & smooth, proper and § — U smooth, separated, geometrically
connected of finite type. In particular, the action of m(S), m(s) on H°
factor respectively through 7;(S) — m1(S) and m1(s) — 71 (U) so that

1. the groups Il,II, ; C GL(H?), 7 = 00,¢> identify with the images
of the motivic representations attached to the smooth proper morphisms
X — S and X xs, U — U respectively. We write, again,

p? 1 m(S) = GL(H?), p2s: m(U) = GL(H25), 7 = 00,0

for the corresponding representations and set

I == po(m1(Sg)), o5 := pos(m1(Uy)), 7 = o0, £
2.2.

We first reduce the assertion for F /-non Lie semisimple to the assertion for
[ algebraically closed.

The introduction of the property ‘/-non Lie semisimple’ comes from
2.2.1. Fact. The following equivalent assertions hold:
1) Lie(Ilp~) and Lie(f[goovs) are semisimple Lie algebras;

2) The Zariski closure of Oy~ and ﬂgoo78 in GLy,.. are semisimple alge-
braic groups.

Proof. Recall [2.1]1. Then 2) follows from comparison between étale and
singular cohomologies and [D71), Prop. (4.2.5), Thm. (4.2.6)] if p =0 and
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from [D80), Cor. 3.4.13, Cor. 1.3.9] if p > 0. The equivalence of 1) and 2)
follows from the general fact that if I C GL,(Qy) is a compact ¢-adic Lie
group whose Zariski closure G C GL;. g, is semi simple then II is open in
G(Qy); this boils down to the fact that a semi simple Lie algebra over Qy is
algebraic - see e.g. [S66, §1, Cor.]. O

2.2.2. We begin with an elementary observation (a partial snake lemma
in the category of profinite groups). Consider a commutative diagram of
profinite groups with exact lines

1
1:[/L
Assume the two left-hand vertical arrows are injective and the right-hand

vertical arrow is surjective. Then the canonical map I1/II' — II/IT is surjec-
tive and its fibers are isomorphic to IINII'/IT". In particular,

—=

T
g I 1

1) I’ 1T is open = II' C II is open.
2) II' C IT is open and I NII'/TI' is finite = II' C II is open.

2.2.3. Lemma.
1) f[oo’s C Ty is open = Il s C Il is open.

2) Fiz a prime { # p and assume I is -non Lie semisimple. Then Il s C
Iy~ is open = Iy~ o C Iy is open.

Proof. Since s € S(k), for 7 = 00, ¢> the canonical morphism H?ﬁ/ﬁ?,s —
IT, /11, is surjective and the short exact sequences of profinite groups

1 I, 1T, /I, —1
1 Iy« 175 Iy 5 /Tl s — 1

is of the form considered in 2.2.2. So 1) follows from 2.2.2.1) while 2) would
follow from 2.2.2.2) provided Ilje NIlpee 5/Ily ¢ is finite. This is where we



6 Anna Cadoret

use the assumption that F is f-non Lie semisimple. Indeed, we have
My N g g — Mpme N Mg /Tl < Mg o /Tpme 5 < 71 (F).

By Fact , the Lie algebra of ﬁgfo N Hgogs/l:[gooys is semisimple, being a
quotient of Lie(Ilge N1Ip 5) = Lie(Ils ). But this forces it to be 0, since F
is £-non Lie semisimple by assumption. O

Fix a prime ¢ # p, assume F is f-non Lie semisimple and s € S(k) is ¢-
Galois-generic. From .2), f[@oo’s C My is open. If Theorem holds
for I algebraically closed, this would imply l:[oo,s C I is open hence, from
1), T s C Il is open. This observation reduces Theorem for F
£-non Lie semisimple to Theorem for [ algebraically closed.

[2.2]3 So, from now on, we assume F is algebraically closed hence
ﬁ7 = IIo, ﬁ?7s = H?78, 7= Oo,foo, seSs.
2.3.

Fix a prime ¢y # p and assume s € S(k) is {p-Galois-generic. We want to
show s € S(k) is Galois-generic.

For every prime ¢ # p and profinite group I' appearing as a subquotient of
GL(Hy~), let T" C T denote the (normal) subgroup of I' generated by its
(-Sylow subgroups. Let &~, &/~ ¢ denote respectively the Zariski-closure
of Iy, Iy 5 in GLy,o . Write Gy and Gy , for the generic fibers of G-,
Gy s

2.3.1. Fact. The dimensions of Gy=, Gy~ s are independent of {(# p).

Proof. This follows from comparison between étale and singular cohomolo-
gies if p =0 and from [LaP95, Thm. 2.4] if p > 0. More precisely, [LaP95|
Thm. 2.4] implies that, if Y — C' is a smooth proper morphism with C' a
smooth, separated, geometrically connected curve over the algebraic closure
IF of IF,, then the dimension of the Zariski closure of the image of

m(C) — GL(H*(Yz, Qp))

is idependant of ¢. To apply this to the setting of (2.1l1), we need the gen-
eralization of [LaP95, Thm. 2.4] for C of arbitrary dimension. This can be
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deduced from the case of curves by Jouanolou’s version of Bertini’s theorem
[Jou83, Thm. 6.10, 2), 3)] and the smooth proper base change theorem. We
refer to the Claim in the proof of [CT17, Prop. 3.2] for details. O

Also, to prove Theorem we may freely replace U and S by connected
étale covers. In particular,

2.3.2. Fact. We may assume the following holds.
1 H[co _HEOO7 Hgoos ewsf0T€>>0

Hoo - Hg?gp HZOO 00,8 — Hg;gp HE‘X’ ,57
Gy, Gy~ s are connected for every prime £ # p;

w N

)
)
)
4) Ty = Gpoo (Zg)T, My = oo o(Zg) T for £>0;

Proof. Recall 2.1]1 and [2.2]3. Then 1) follows from [CTI7, Thm. 1.1] while
2) is [CT17, Cor. 4.6]. 3) follows from comparison between étale and singular
cohomologies if p = 0 and from [LaP95 Prop. 2.2] if p > 0. For 4), assume
first p = 0 (see [C15] §2.3] for details). Let II; C & (Fy) denote the image
of My~ wvia the reduction-modulo-¢ morphism &« (Zs) — Sy (F;). Then,
from [N87, Thm. 5.1], II, = II} = &= (Fy)* for £>> 0. This forces I~ =
Gy (Zy)" since, by [CI5, Fact 2.3, Lemma 2.4], &y (Z)T — Sy (Fp) T is
Frattini for £ > 0. Eventually, 4) for p > 0 is [CHT17, Thm. 7.3.2]. O

2.4.

We can now conclude the proof. From ([2.3.2/2), it is enough to show that
1) e s C Ilp is open for every prime € # p;
2) Iy s = g for £>> 0.

Since s € S(k) is £yp-Galois-generic, (]23_213) for £y ensures Gyx s = Gyee.

As Gy~ 5 is always a subgroup of Gy, Fact [2.3.1{ and (2.3.2/3) also ensure
Gy s = Gy hence G ; = ngoo for every prime ¢ # p. Then 1) follows from

-1 while 2 follows from (12.3.2} 4
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