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Logarithmic vector fields for curve

configurations in P2 with

quasihomogeneous singularities

Hal Schenck, Hiroaki Terao, and Masahiko Yoshinaga

Let A =
⋃r

i=1 Ci ⊆ P2
C be a collection of plane curves, such that

each singular point of A is quasihomogeneous. We prove that if C
is an irreducible curve having only quasihomogeneous singularti-
ties, such that C ∩ A ⊆ Csm and every singular point of A ∪ C is
quasihomogeneous, then there is a short exact sequence relating the
OP2–module Der(− logA) of vector fields on P2 tangent to A to the
module Der(− logA ∪ C). This yields an inductive tool for study-
ing the splitting of the bundles Der(− logA) and Der(− logA ∪ C),
depending on the geometry of the divisor A|C on C.

1. Introduction

For a divisor Y in a complex manifold X, Saito [16] introduced the sheaves
of logarithmic vector fields and logarithmic one forms with pole along Y :

Definition 1.1. The module of logarithmic vector fields is the sheaf of
OX–modules

Der(− log Y )p = {θ ∈ DerC(X)|θ(f) ∈ 〈f〉},

where f ∈ OX,p is a local defining equation for Y at p. If {x1, . . . , xd} are lo-
cal coordinates at p ∈ X, then the Jacobian scheme JY (Y ) is defined locally
at p by {∂f/∂x1

, . . . , ∂f/∂xd
, f}.

Saito’s work generalized earlier work of Deligne [3], who studied the case
for Y a normal crossing divisor. In the setting of Definition 1.1, Der(− log Y )p
is the kernel of the evaluation map θ 7→ θ(f) ∈ OY,p, so there is a short exact
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sequence [12]

0 −→ Der(−log Y ) −→ TX −→ JY (Y ) −→ 0.

Saito shows that Der(− log Y )p is a free OX,p module iff there exist d ele-
ments

θi =

d∑
j=1

fij
∂

∂xj
∈ Der(− log Y )p

such that the determinant of the matrix [fij ] is a unit multiple of the local
defining equation for Y ; this is basically a consequence of the Hilbert-Burch
theorem. A much studied version of this construction occurs when Y ⊆ Pd
is a reduced hypersurface with IY = F ; V (F ) may also be studied as a
hypersurface in Cd+1.

Definition 1.2. For homogeneous F ∈ S = C[x0, . . . , xd] with IV (F ) = F ,
define D(V (F )) = {θ ∈ DerC(S)|θ(F ) ∈ 〈F 〉}.

Definition 1.2 is a global version of Definition 1.1, and plays a key role
[15] in the study of hyperplane arrangements. We first relate the two def-
initions. Since F is homogeneous, D(V (F )) is a graded S–module, with
associated sheaf D(V (F )) on Pd. The evaluation map D(V (F ))

ev→ S is de-
fined by ev(θ) = θ(F ); the kernel of ev is the syzygy module D0(V (F )) of
the Jacobian ideal JF = 〈∂F/∂x0

, . . . , ∂F/∂xd
〉. If F has degree n, then the

Euler vector field E =
∑
xi∂/∂xi satisfies ev(E) = E(F ) = nF , yielding a

surjection

D(V (F ))→ 〈F 〉 → 0,

and E generates a free summand S(−1) ⊆ D(V (F )), so

D(V (F )) ' D0(V (F ))⊕ S(−1) and D(V (F )) ' D0(V (F ))⊕O(−1).

The exact sequence

0 −→ D0(V (F )) −→ Sd+1 ev−→ S(n− 1) −→ S(n− 1)/JF −→ 0

shows that D(V (F )) is a second syzygy sheaf, so when d = 2, D(V (F ))
is a vector bundle on P2. Since the depth of D(V (F )) is at least two,
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D(V (F )) = Γ∗(D(V (F ))). Tensoring D(V (F )) with OPd(1) yields the com-
mutative diagram

0

��

0

��
0 // OPd // x0

.

.

.
xd


��

OPd // x0

.

.

.
xd


��

0

��
0 // D(V (F ))(1) //

��

Od+1
Pd (1)

γ //

��

OV (F )

��
0 // D(V (F ))(1)/OPd //

��

TPd //

��

OV (F )

��
0 0 0.

The map γ sends θ =
∑
fiei to

∑
fi∂/∂xi(F ) so γ takes the image of

D(V (F ))(1) onto JF (n). Hence,

(1.1) Der(− log V (F )) ' D(V (F ))(1)/OPd ' D0(V (F ))(1)

as sheaves on Pd. A major impetus in studying D(V (F )) comes from the
setting of hyperplane arrangements, and the isomorphism (1) was noted for
generic hyperplane arrangements in [13]. If F is a product of distinct (up to
scaling) linear forms, we write V (F ) = A. Terao’s theorem [20] shows that
in this setting, if D(A) is a free S–module, with D(A) ' ⊕S(−ai), then the
cohomology of the affine complement of A satisfies the formula∑

hi(Cd+1 \ A,Q)ti =
∏

(1 + ait).

1.1. Addition-Deletion theorems

A central tool in the study of hyperplane arrangements is an inductive
method due to Terao. For a hyperplane arrangementA =

⋃n
i=1Hi and choice

of hyperplane H = V (`H) ∈ A, set

A′ = A \H and A′′ = A|H .
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The collection (A′,A,A′′) is called a triple, and yields a left exact sequence

0 −→ D(A′)(−1)
·`H−→ D(A) −→ D(A′′).

Freeness of a triple is related via:

Theorem 1.3. [Terao, [21]] Let (A′,A,A′′) be a triple. Then any two of
the following imply the third

• D(A) ' ⊕ni=1S(−bi)

• D(A′) ' S(−bn + 1)⊕n−1i=1 S(−bi)

• D(A′′) ' ⊕n−1i=1 S(−bi)

For a triple with A ⊆ P2, [18] shows that after pruning the Euler deriva-
tions and sheafifying, there is an exact sequence

0 −→ D0
′(−1) −→ D0 −→ i∗D0

′′ −→ 0,

where i : H ↪→ P2; i∗D0
′′ ' OH(1− |A′′|). In [19], such a sequence is ob-

tained for line-conic arrangements, and [7] studies the situation for nodal
curves.

1.2. Statement of results

This paper is motivated by the following example:

Example 1.4. The braid arrangement A3 is free [22] andD(A3)'⊕3
i=1S(−i).

P

P

P

P

P

P

2

7

5

6

3
P

4

1

Figure 1: The A3-arrangement.
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The family of homogeneous cubic polynomials vanishing at the seven singu-
lar points of A3 is parameterized by a P2. A generic member C of this family
is smooth. A computer calculation shows A3 ∪C has quasihomogeneous sin-
gularities, and that D(A3 ∪C) is free, isomorphic to S(−1)⊕ S(−4)2. Our
main result is Theorem 1.6, which combined with Proposition 1.9 explains
why D(A3 ∪C) is free, and gives the degrees of the generators.

Definition 1.5. A quasihomogeneous triple (A, C,A ∪ C) consists of A =⋃
Ci with Ci and C = V (f) reduced, irreducible plane curves such that all

singulartities of A, C, and A ∪ C are quasihomogeneous, and A ∩ C ⊆ Csm.

Theorem 1.6. A quasihomogeneous triple with k = |C ∩ A| and C degree
n gives rise to a short exact sequence

0 −→ Der(− logA)(−n)
·f−→ Der(− logA ∪ C) −→ OC(D) −→ 0,

with OC(D) torsion free and deg(D) = χ(C)− k.

Remark 1.7. A check shows if θ ∈ Der(−logA), then f · θ satisfies Defini-
tion 1.2.

Remark 1.8. When C is smooth, OC(D) is the line bundle OC(−KC −R),
with R = (C ∩ A)red the reduced scheme of C ∩ A.

We prove the theorem in §3, and work out Example 1.4 in detail in §4. For
addition-deletion arguments, we will need

Proposition 1.9. Suppose 0 −→ A −→ B −→ C −→ 0 is an exact sequence
of graded S = k[x0, . . . , x2]–modules, with A and B rank two reflexive mod-
ules of projective dimension at most one. Then any two of the following
imply the third

1) A is free with generators in degrees {a, b}.

2) B is free with generators in degrees {c, d}.

3) C has Hilbert series tc+td−ta−tb
(1−t)3 .

Proof. That (1) and (2) imply (3) is trivial. If (1) and (3) hold and B is not
free, then pdim(B) = 1, so B has a minimal free resolution of the form

0 −→ F1 −→ F0 −→ B −→ 0.
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Note that

F1 = ⊕S(−ei) and F0 = ⊕S(−ei)⊕ S(−c)⊕ S(−d),

since by additivity the Hilbert series of B is tc+td

(1−t)n+1 . Without loss of general-
ity suppose d ≥ c. If the largest ei > d, then since the resolution is minimal,
no term of F1 can map to the generator in degree ei, which forces B to have
a free summand of rank one. Since B is reflexive of rank two this forces B
to be free.

Next suppose the largest ei = d. Since the Hilbert series of B is tc+td

(1−t)n+1 ,
B has a minimal generator of degree d. But then no element of F1 can be
a relation involving that generator, and again B has a free summand. This
obviously also works when the largest ei is less than d, and shows that (1)
and (3) imply (2). The argument that (2) and (3) imply (1) is similar. �

Remark 1.10. In arrangement theory, a vector bundle which splits as a
direct sum of line bundles is called free, and we follow this convention.

If Der(− logA) is free, then applying Γ∗ to the sequence of Theorem 1.6
yields a short exact sequence of modules, since H1(⊕OP2(ai)) = 0. Then
by Proposition 1.9, on P2 the freeness of Der(− logA ∪ C) follows if appro-
priate numerical conditions hold. In contrast to arrangements of rational
curves where the Hilbert series of Γ∗(OC(−KC −R)) depends only on the
degree of R (since C ' P1), for curves of positive genus the Hilbert series of
Γ∗(OC(−KC −R)) depends on subtle geometry.

2. Quasihomogeneous plane curves

Let C = V (Q) be a reduced (but not necessarily irreducible) curve in C2,
let (0, 0) ∈ C, and let C{x, y} denote the ring of convergent power series.

Definition 2.1. The Milnor number of C at (0, 0) is

µ(0,0)(C) = dimCC{x, y}/
〈
∂f

∂x
,
∂f

∂y

〉
.

To define µp for an arbitrary point p, we translate so that p is the origin.

Definition 2.2. The Tjurina number of C at (0, 0) is

τ(0,0)(C) = dimCC{x, y}/
〈
∂f

∂x
,
∂f

∂y
, f

〉
.
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Definition 2.3. A singularity is quasihomogeneous iff there exists a holo-
morphic change of variables so the defining equation becomes weighted ho-
mogeneous; f(x, y) =

∑
cijx

iyj is weighted homogeneous if there exist ra-
tional numbers α, β such that

∑
cijx

i·αyj·β is homogeneous.

In [17], Saito shows that if f is a convergent power series with isolated
singularity at the origin, then f is in the ideal generated by the partial
derivatives if and only if f is quasihomogeneous. We call an arrangement of
smooth curves quasihomogeneous if all singularities are quasihomogeneous;
as noted in §1.3 of [19], V (Q) ⊆ P2 is quasihomogeneous iff

deg(JQ) =
∑

p∈Sing(V (Q))

µp(Q).

Lemma 2.4. [[23], Theorem 6.5.1] Let X and Y be two reduced plane
curves with no common component, meeting at a point p. Then

µp(X ∪ Y ) = µp(X) + µp(Y ) + 2(X · Y )p − 1,

where (X · Y )p is the intersection number of X and Y at p.

Proposition 2.5. For a quasihomogeneous triple with A of degree m and
C degree n, the Hilbert polynomial HP(coker(f), t) of the cokernel of the
multiplication map

0 −→ D(A)(−n)/E
·f−→ D(A ∪ C)/E

is nt+ 7n−3n2

2 − k + β, where k = |C ∩ A| and β =
∑

p∈C µp(C).

Proof. By Equation 1.1 and the exact sequences

0 −→ D0(A ∪ C) −→ S3 −→ S(m+n−1) −→ S(m+n−1)/JA∪C −→ 0,

0 −→ D0(A)(−n) −→ S3(−n) −→ S(m−n−1) −→ S(m−n−1)/JA −→ 0,

it follows that

HP(D0(A ∪ C), t) = 3

(
t+ 2

2

)
−
(
t+ 1 +m+ n

2

)
+ deg(JA∪C)

HP(D0(A)(−n), t) = 3

(
t+ 2− n

2

)
−
(
t+ 1 +m− n

2

)
+ deg(JA),
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so that HP(D0(A ∪ C), t)−HP(D0(A)(−n), t) is equal to

deg(JA∪C)− deg(JA) + nt− n(2m+ 1) +
9n− 3n2

2
.

Since all singularities of C, A and A ∪ C are quasihomogeneous,

deg(JA∪C) =
∑

p∈Sing(A∪C)

µp(A ∪ C) and deg(JA) =
∑

p∈Sing(A)

µp(A).

If α is the sum of Milnor numbers of singular points of A not on C, and β
is the sum of the Milnor numbers on C, then

deg(JA∪C) = α+ β +
∑

p∈C∩A
µp(A ∪ C).

By Lemma 2.4, the previous quantity equals

α+ β +
∑

p∈C∩A
(µp(A) + 2(C · A)p − 1).

As deg(JA) = α+
∑

p∈C∩A µp(A) and | C ∩ A |= k, we obtain:

deg(JA∪C)− deg(JA) = 2
∑

p∈C∩A
(C · A)p − k + β.

By Bezout’s theorem,∑
p∈C∩A

(C · A) = mn, so deg(JA∪C)− deg(JA) = 2mn− k + β,

hence the Hilbert polynomial of the cokernel is

nt− n(2m+ 1) +
9n− 3n2

2
+ 2mn− k + β = nt− k + β +

7n− 3n2

2
.

�

Corollary 2.6. For the map

(2.1) 0 −→ Der(− logA)(−n)
·f−→ Der(− logA ∪ C)

the Hilbert polynomial of Γ∗(coker(f)) is nt− k + β + 9n−3n2

2 .

Proof. Proposition 2.5 and Equation (1). �
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3. Main Theorem

We prove Theorem 1.6. The first technical tool we need is a result stated by
Noether in [14], and proved by Hartshorne:

Theorem 3.1. [2.1, [10]]. Let C ⊆ P2 be an integral (possibly singular)
curve of degree n, and D a closed subscheme, with OC(D) the associated
torsion free sheaf on C. Then C has a dualizing sheaf KC ' OC((n− 3)H),
and h0(OC(D)) = deg(D) + 1− pa(C) as soon as deg(D) ≥ n(n− 3).

We will also need

Theorem 3.2. [7.1.1, [23]] Let C ⊆ P2 be an integral (possibly singular)
curve of degree n. Then

χ(C) = 3n− n2 +
∑
p∈C

µp(C).

We first show that the sheaf associated to the cokernel in Equation 2.1
is isomorphic to OC(D), where D is a divisor of degree 3n− n2 − k − β.
Consider the commuting diagram below

0

��

0

��

0

��
0 // Der(− logA)(−n) //

·f
��

TP2(−n) //

·f

��

JA(−n)(A)

·f
��

// 0

0 // Der(− logA ∪ C) //

��

TP2 //

��

JA∪C(A ∪ C)

��

// 0

0 // coker(f) //

��

TP2/f · TP2 //

��

JA∪C(A ∪ C)/Im(f) //

��

0

0 0 0

Exactness of the top two rows follows from the definition, and since TP2

is torsion free, the first two vertical maps ·f are inclusions. The rightmost
vertical map ·f is also an inclusion, because f is a nonzerodivisor on OA.
Exactness of the bottom row then follows from the snake lemma. The exact
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sequence

0 −→ S −→ S3(1) −→ Γ∗(TP2) −→ 0,

shows that the Hilbert polynomial of Γ∗(TP2/f · TP2) is 2nt+ 6n− n2. Since

TP2/f · TP2 ' TP2 ⊗OC ,

and TP2 ⊗OC is a locally free rank two OC–module, coker(f) is a torsion
free submodule of TP2 ⊗OC . By Corollary 2.6, the Hilbert polynomial of
Γ∗(coker(f)) is nt− k + 9n−3n2

2 + β, so coker(f) ' OC(D). To determine the
degree of D, we use Theorem 3.1 to compute

HP(Γ∗(coker(f)), t) = h0(OC(D + tH)), t� 0

= deg(D + tH) + 1− pa(C)

= deg(D) + nt+ 1− pa(C).

Equating this with the previous expression and using that 1− pa(C) =
3n−n2

2

deg(D) = 3n− n2 + β − k
= χ(C)− k.

where the second equality follows from Theorem 3.2. 2

Corollary 3.3. If C is smooth, then OC(D) ' OC(−KC −R).

Proof. Since OC(D) comes from the restriction of Der(− logA ∪ C) to C,
it must actually be a subbundle of TC , which by adjunction is isomorphic
to OC((3− n)H). For the same reason, sections must vanish at points of
A ∩ C, so that OC(D) ⊆ OC((3− n)H −R). The degree of this bundle is
3n− n2 − k, so equality holds. �

Remark 3.4. An elementary modification ([9], Definition 15) of vector
bundles is a short exact sequence 0→ A→ B → C → 0 with A and B rank
two vector bundles on a surface, and C a line bundle supported on a curve.
The argument above shows that when C is smooth, the left hand column of
the diagram above is an elementary modification.
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3.1. Castelnuovo-Mumford regularity

Theorem 1.6 yields bounds on the Castelnuovo-Mumford regularity of log-
arithmic vector bundles. For the remainder of the paper, we restrict to the
case where C is smooth, which is our primary interest.

Definition 3.5. A coherent sheaf F on Pd is j−regular iff H iF(j − i) = 0
for every i ≥ 1. The smallest number j such that F is j-regular is reg(F).

Lemma 3.6. With the hypotheses of Corollary 3.3,

reg(Der(− logA ∪ C)) ≤ max

{
reg(Der(− logA)) + n, 2n− 5 +

k

n

}
.

Proof. The short exact sequence

0 −→ Der(− logA)(−n) −→ Der(− logA ∪ C) −→ OC(−KC −R) −→ 0

gives a long exact sequence in cohomology, so if Der(− logA) is a-regular,
then

h1(Der(− logA)(a− 1)) = 0 = h2(Der(− logA)(a− 2)).

So if t− n− 1 ≥ a− 1 and t− n− 2 ≥ a− 2 we have that

h1(Der(− logA)(t− n− 1)) = 0 = h2(Der(− logA)(t− n− 2)).

This gives vanishings if t− n ≥ a, that is, if t ≥ reg Der(− logA) + n. The
result will follow if

h1OC((t− 1)H −KC −R) = h0OC((1− t)H + 2KC +R) = 0.

This holds if deg((1− t)H + 2KC +R) < 0, so using that KC = (n− 3)H,
it holds when

t > 2n− 5 +
k

n
The result follows. �

Proposition 3.7. With the hypotheses of Corollary 3.3, the Hilbert func-
tion of Γ∗OC(−KC −R) is nt+ 9n−3n2

2 − k for t > 2n− 5 + k
n , and zero if

t < n− 3 + k
n .

Proof. If t < n− 3 + k
n , then the degree of tH −KC −R is negative, so there

can be no sections, and the first part follows from Lemma 3.6. �
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4. Examples

Example 4.1. We analyze Example 1.4 in more detail. Since C is a cubic
curve, gC = 1 and KC ' OC . Since C meets every line of A in three points,
k = |C ∩ A| = 7. By Proposition 3.7, the Hilbert function of Γ∗OC(−KC −
R) is zero for t < 7

3 , and agrees with the Hilbert polynomial for t > 10
3 .

Applying Corollary 2.6 yields

t 0 1 2 3 4 5 6 7

h0(tH −KC −R) 0 0 0 ? 5 8 11 14

Now, H0((3H −R) consists of cubics through the seven singular points of
A, and this space has dimension 2, since C is itself one of the three cubics, so
is not counted. Thus, in this example the Hilbert polynomial 3t− 7 agrees
with the Hilbert function for t ≥ 3, and

HS(Γ∗OC(−KC −R), t) =
2t3 + t4

(1− t)2
=

2t3 − t4 − t5

(1− t)3
.

Terao’s result [22] on reflection arrangements shows

D(A3) ' S(−1)⊕ S(−2)⊕ S(−3),

so D0(A3(1)) ' S(−1)⊕ S(−2), which by Equation (1) is Γ∗(Der(−log A3)),
hence

Γ∗(Der(−log A3(−3))) ' S(−4)⊕ S(−5).

Taking global sections in Theorem 1.6 and applying Proposition 1.9, we find
that Γ∗(Der(−log A3 ∪C)) is free, with

HS(Γ∗(Der(−log A3 ∪C)), t) =
t4 + t5

(1− t)3
+

2t3 − t4 − t5

(1− t)3

=
2t3

(1− t)3
.

Example 4.2. The reflection arrangement B3 consists of the nine planes
of symmetry of a cube in R3. The intersection of B3 with the chart Uz
is below (this does not show the line at infinity z = 0). By [22] D(B3) '
S(−1)⊕ S(−3)⊕ S(−5).

This configuration has 13 singular points, so if the singularities were in
general position the quartics passing through the points would be parame-
terized by P1. But there are three quadruple points (the intersection of the
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Figure 2: The B3-arrangement.

three vertical lines with the line at infinity is not pictured), and each set of
lines through one of these points is a quartic vanishing on the singularities.
A computation shows that a generic quartic C in this net is smooth, and
that B3 ∪C is quasihomogeneous.

By Proposition 3.7, the Hilbert function of the module Γ∗OC(−KC −
R) is zero for t < 17

4 , and agrees with the Hilbert polynomial for t > 25
4 .

Applying Corollary 2.6, we have

t 4 5 6 7 8 9 10 11

h0(tH −KC −R) 0 ? ? 9 13 17 21 25

It remains to determineH0(tH −K −R) = H0((t− 1)H −R) for t ∈ {5, 6}.
The space H0(4H −R) consists of quartics through the thirteen singular
points of B3. As observed above, this space has dimension 3, but C itself is
one of the quartics, so h0(4H −R) = 2. A computer calculation shows that
h0(5H −R) = 5, so

HS(Γ∗OC(−KC −R), t) =
2t5 + t6 + t7

(1− t)2
=

2t5 − t6 − t8

(1− t)3
.

Since Γ∗(Der(−log B3)(−4))'S(−6)⊕ S(−8), taking global sections in The-
orem 1.6 and applying Proposition 1.9 shows Γ∗(Der(−log B3 ∪C)) is free,
with

HS(Γ∗(Der(−log B3 ∪C)), t) = HS(Γ∗(Der(−log B3)(−4)), t) +
2t5 − t6 − t8

(1− t)3

=
t6 + t8

(1− t)3
+

2t5 − t6 − t8

(1− t)3

=
2t5

(1− t)3
.
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Remark 4.3. In both Example 4.1 and 4.2, sing(A) = sing(A ∪ C). Exam-
ple 2.2 of [19] gives gives an example of rational curve arrangements where
Corollary 3.3 holds, but sing(A) 6= sing(A ∪ C).

Concluding remarks Our work raises a number of questions:

1) As noted, [22] shows D(A) is free for a reflection arrangement A. In
this case, is there always a smooth C with D(A ∪ C) free?

2) Is there a connection to the residue map and multiarrangements, as in
[24]?

3) Does this generalize to other surfaces? For the Hilbert polynomial
arguments to work, the surface should possess an ample line bundle.
More generally, does this generalize to higher dimensions? Note that
[19] shows the quasihomogeneous property will be necessary.

4) The Hilbert series of Γ∗OC(−KC −R) depends solely on a set of re-
duced points on a plane curve. If A =

⋃r
i=1 Yi with Yi reduced and ir-

reducible, can an iterated construction using linkage yield the Hilbert
series?

5) In [12], Liao gives a formula relating Chern classes of logarithmic vec-
tor fields to the Chern-Schwartz-MacPherson class of the complement,
showing that on a surface the two are equal exactly when the singular-
ities are quasihomogeneous, and in [1], Aluffi gives an explicit relation
between the characteristic polynomial of an arrangement and the Segre
class of the Jacobian scheme. Can one prove Theorem 1.6 using these
methods?
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