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There may be no minimal non-σ-scattered

linear orders

Hossein Lamei Ramandi and Justin Tatch Moore

In this paper we demonstrate that it is consistent, relative to the
existence of a supercompact cardinal, that there is no linear or-
der which is minimal with respect to being non-σ-scattered. This
shows that a theorem of Laver, which asserts that the class of
σ-scattered linear orders is well quasi-ordered, is sharp. We also
prove that PFA+ implies that every non-σ-scattered linear order
either contains a real type, an Aronszajn type, or a ladder system
indexed by a stationary subset of ω1, equipped with either the lex-
icographic or reverse lexicographic order. Our work immediately
implies that CH is consistent with “no Aronszajn tree has a base
of cardinality ℵ1.” This gives an affirmative answer to a problem
due to Baumgartner.

1. Introduction

In [9], Laver verified a longstanding conjecture of Fräıssé: the countable
linear orders are well quasi-ordered by embeddability. That is to say if Li
(i <∞) is an infinite sequence of countable linear orderings, then there is an
i < j such that Li is embeddable into Lj . In fact, Laver proved the following
stronger result.

Theorem 1.1. [9] The class M of σ-scattered linear orders is well quasi-
ordered by embeddability.

Recall that a linear order is scattered if it does not contain an isomorphic
copy of the linear order (Q,≤) and is σ-scattered if it is a union of countably
many scattered suborders.

In the final paragraph of [9], Laver writes, “Finally, the question arises
as to how the order types outside of M behave under embeddability.” For
instance, is there a class of linear orders which is closed under taking sub-
orders, which properly includes the class of σ-scattered linear orders, and
which is well quasi-ordered by embeddability? Cast in another way, is there
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a non-σ-scattered linear order which embeds into all of its non-σ-scattered
suborders?

Already in [1], Baumgartner proved that it is consistent that any two
ℵ1-dense sets of reals are isomorphic; in fact this conclusion is a consequence
of the Proper Forcing Axiom (PFA). Here a linear order is κ-dense if all of
its intervals have cardinality κ. It is not difficult to show that any suborder
of R of cardinality ℵ1 is bi-embeddable with an ℵ1-dense set of reals and thus
in Baumgartner’s model, any set of reals of cardinality ℵ1 is minimal with
respect to being non-σ-scattered. On the other hand, it follows easily from
work of Dushnik and Miller [5] that the Continuum Hypothesis (CH) implies
that there are no minimal uncountable linear orders which are separable.
(In fact Dushnik and Miller show in ZFC that there is no minimal separable
linear order of cardinality continuum.)

The main result of this paper is that Theorem 1.1 is consistently sharp.

Theorem 1.2. If there is a supercompact cardinal, then there is a forcing
extension which satisfies CH in which there are no minimal non-σ-scattered
linear orders.

This result builds on work of Moore [13] and Ishiu-Moore [7]. In [13] it was
proved that it is consistent with CH that ω1 and −ω1 are the only min-
imal uncountable linear orderings. In fact, this conclusion is derived from
the conjunction of CH and a certain combinatorial consequence (A) of PFA.
Notice that if ω1 and −ω1 are the only minimal uncountable linear orders,
then any minimal non-σ-scattered linear order must have the property that
it does not contain an uncountable separable suborder or an Aronszajn sub-
order. Here an Aronszajn line is an uncountable linear order which does not
contain uncountable separable or scattered suborders.

In [7] it was proved that PFA+, a strengthening of PFA, implies that
every minimal non-σ-scattered linear order is either isomorphic to a set of re-
als of cardinality ℵ1 or else is an Aronszajn line. Moreover, Martinez-Ranero
[10], building on work of Moore [12] [14] proved that that PFA implies that
the class of Aronszajn lines is well quasi-ordered by embeddability. In [7], it
was pointed out that if the consequences of PFA+ needed to carry out the
analysis in that paper were consistent with the conjunction of (A) and CH,
then one could establish the consistency of “there are no minimal non-σ-
scattered linear orders.” In fact these consequence of PFA+ followed from a
weaker axiom CPFA+ which had been expected to be consistent with CH;
this was later refuted in [15]. The strategy of the present paper for proving
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Theorem 1.2 also utilizes the combination of (A) and CH, but involves a
re-examination of the hypotheses sufficient to obtain the results of [7].

In addition to proving Theorem 1.2, we will also establish a result con-
cerning the structure of non-σ-scattered linear orders under the assumption
of PFA+. Baumgartner proved in [3] that there exist non-σ-scattered linear
orders which do not contain real or Aronszajn types. His construction can
be described as the lexicographic ordering on a family {xα : α ∈ S} where
S ⊆ ω1 is stationary and xα is a cofinal strictly increasing ω-sequence in α
for each α in S. We will refer to such a linear ordering as a Baumgartner
type and we will refer to S as its index set.

Theorem 1.3. Assume PFA+ and let X ⊆ R have cardinality ℵ1 and C be
a Countryman line. If L is a non-σ-scattered linear order, then L contains
an isomorphic copy of one of the following linear orders: X, C, −C, a
Baumgartner type or its reverse.

The proof of Theorem 1.2 immediately yields the following result.

Theorem 1.4. It is consistent with CH that no Aronszajn tree has a base
of cardinality ℵ1.

Here a collection B of uncountable downward closed subtrees of an Aronszajn
tree T is called a base if whenever U is an uncountable downward closed
subtree of T , there is V ∈ B such that V ⊆ U . This answers a problem posed
in [2], where it is proved that every Aronszajn tree has a base of cardinality
ℵ1 after Levy collapsing an inaccessible cardinal to ℵ2.

The paper will be organized as follows. Section 2 will review some no-
tation, definitions, and results concerning linear orders. In Section 3 we will
prove Theorem 1.3. Section 4 contains the analysis needed to derive the con-
clusion of Theorem 1.2 from a list of axioms. Section 5 gives a proof that
the collection of axioms used in Section 4 is consistent. This section also
includes a proof of theorem 1.4 as a remark. The paper closes with some
open problems in Section 6.

2. Preliminaries

This section is devoted to some background and conventions on trees, lin-
early ordered sets and forcing axioms. More discussion can be found in [7],
[11], [13], [16] and [17]. We will also introduce two set-theoretic axioms (∗)
and (†) which will play an important role in the proofs of Theorem 1.2
and 1.3.
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We first recall the notion of a forcing axiom associated to a class of
partial orders.

Notation 2.1. If P is a class of partial orders, then by FA(P) we mean
the forcing axiom for the class P: whenever P is in P and D is a collection
of ℵ1-many dense subsets of P , there is a filter G ⊆ P which intersects all of
the dense sets in D. FA+(P) is the assertion that whenever P is in P, D is
a collection of ℵ1-many dense subsets of P , and Ṡ is a name for a stationary
subset of ω1, then there is a filter G ⊆ P which intersects all the dense sets
in D and satisfies that the set

{ξ ∈ ω1 : ∃p ∈ G(p 
 ξ̌ ∈ Ṡ)}

is stationary.

The following axiom is a consequence of FA+(σ-closed) and will play an
important role in our analysis of non-σ-scattered linear orders of cardinal-
ity ℵ1.

Definition 2.2. (†) is the assertion that if S ⊆ ω1 is stationary and for each
α ∈ S, Uα ⊆ α is open, then there a club E ⊆ ω1 such that for stationarily
many α ∈ S ∩ E there is an ᾱ < α such that either E ∩ (ᾱ, α) ⊆ Uα or E ∩
(ᾱ, α) ∩ Uα = ∅.

Let P be the poset consisting of all countable closed subsets of ω1, or-
dered by end extension and let Ė be the P -name for the union of the generic
filter. By using the arguments of [11], it is possible to show that if S ⊆ ω1 is
stationary and 〈Uα : α ∈ S〉 is as in the formulation of (†), then every con-
dition forces Ė satisfies the conclusion of (†) for 〈Uα : α ∈ S〉. In particular
FA+(σ-closed) implies (†). Moreover, (†) holds in the model obtained by
adding ℵ2 Cohen subsets of ω1 to a model of GCH. It should be noted that
while this shows that it is easy to obtain models of (†) and CH, it remains
an open problem whether the strengthening of (†) in which a relative club
of α ∈ S ∩ E are required to satisfy the conclusion is consistent with CH
(see [6]).

It will often be convenient to let, for each set X, θX denote the least
regular cardinal such that all finite iterates of the power set applied to X are
in H(θX), the collection of sets of hereditary cardinality less than θX . Let
E(X) denote the collection of all countable elementary submodels of H(θX)
which have X as an element.
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We will now recall a number of definitions from [7]. For a linearly ordered
set L we will use L̂ to denote the completion of L. Formally this is the set of
all Dedekind cuts of L with z identified with the cut {x ∈ L : x < z}. The
purpose of the following definitions is to abstractly recover the set of indices
from a Baumgartner type, purely from its order-theoretic properties.

Definition 2.3. Whenever L is a linearly ordered set and Z is some ar-
bitrary set we say that Z captures x ∈ L if there is a z ∈ Z ∩ L̂ such that
there is no element of Z ∩ L which is strictly in between z and x.

Fact 2.4. [7] Suppose L is a linear order and let λ be a regular cardinal
such that L̂ is in H(λ). If M is a countable elementary submodel of H(λ)
with L ∈M and x ∈ L̂rM , then M captures x if and only if there is a
unique z ∈ L̂ ∩M such that there is no element of M ∩ L which is strictly
in between x and z. In this case we say M captures x via z.

Definition 2.5. [7] If L is a linear order, define Γ(L) to be the set of all
countable subsets Z of L̂ such that for some x ∈ L, Z does not capture x.
(This is the relative complement of the set Ω(L) in [7].)

If B = 〈xα : α ∈ S〉 is a Baumgartner type and M is a countable ele-
mentary submodel of H(θ) for some regular cardinal θ ≥ ω2 with B ∈M ,
then M ∈ Γ(B) if and only if M ∩ ω1 ∈ S. This is because M captures all
elements of B except xδ, where δ = M ∩ ω1. So Γ(B) is equivalent to S
modulo the equivalence induced by the following quasi-order.

Definition 2.6. Let A,B be two collections of countable sets andX =
⋃
A,

Y =
⋃
B. we say B ≤ A if there is an injection ι : X → Y such that for club

many M in [Y ]ω, if M ∈ B then ι−1M is in A. We let B < A if B ≤ A but
not A ≤ B; A and B are equivalent if A ≤ B and B ≤ A.

The following results summarize the properties of the map L 7→ Γ(L)
and the quasi-order ≤.

Theorem 2.7. [7] A linear order L is not σ-scattered if and only if Γ(L)
is stationary.

Proposition 2.8. [7] If L0 and L are linearly ordered sets and L0 embeds
into L, then Γ(L0) ≤ Γ(L).

A key feature of Baumgartner types L is that it is always possible to
find a non-σ-scattered suborder L0 such that Γ(L0) < Γ(L). This is not
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always possible in the more general class of non-σ-scattered orders as the
next proposition shows.

Proposition 2.9. [7] If a linear order L contains a real or Aronszajn type,
then Γ(L) contains a club.

Definition 2.10. If L is a linear order and M is in E(L), then we say
that an element x of L is internal (respectively external) to M , if there is
a club E ⊆ [L̂]ω in M such that every (respectively no) element of E ∩M
captures x.

The next definition will play a central role in the proofs of our results. It
abstracts the property of Baumgartner types needed to allow us to decrease
Γ by thinning out the linear order.

Definition 2.11. A linear order L is said to be amenable if whenever M
is in E(L) and x ∈ L, then x is internal to M .

Observe that by Theorem 2.7, σ-scattered linear orders are amenable. It is
also true that Baumgartner types are amenable.

Proposition 2.12. [7] If L is a non-σ-scattered amenable linear order of
cardinality ℵ1 and S ⊆ Γ(L) is stationary, then there is a non-σ-scattered
L0 ⊆ L such that Γ(L0) ≤ S.

In particular, non-σ-scattered amenable linear orders of cardinality ℵ1

are not minimal. The next theorem shows that the existence of external el-
ements of a linear order characterizes the presence of either a real or Aron-
szajn suborder. In particular amenable linear orders do not contain real or
Aronszajn types.

Theorem 2.13. [7] The following are equivalent for a linear order L:

• L contains a real or Aronszajn type.

• There are M in E(L) and x ∈ L such that x is external to M .

We are now ready to formulate the other set-theoretic hypothesis which
will be needed in our analysis.

Definition 2.14. (∗) is the assertion that for every non-σ-scattered linear
order L there is a continuous ∈-chain 〈Mξ : ξ ∈ ω1〉 in E(L) such that:
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• the set of all ξ ∈ ω1 such that Mξ ∩ L̂ ∈ Γ(L) is a stationary set,

• L̂0 ⊆
⋃
ξ∈ω1

Mξ, where L0 = L ∩ (
⋃
ξ∈ω1

Mξ),

• for every ξ if Mξ ∩ L̂ ∈ Γ(L) then there is an x ∈ L0 such that Mξ does
not capture x.

Observe that if L0 ⊆ L are as in the statement of (∗), then L0 is also non-
σ-scattered. Thus (∗) implies every non-σ-scattered linear order contains
a non-σ-scattered suborder of cardinality ℵ1. Also, if we apply (∗) to a
linear order of cardinality at most ℵ1, then L ⊆

⋃
ξ∈ω1

Mξ and consequently

L̂ ⊆
⋃
ξ∈ω1

Mξ. This gives the following fact.

Fact 2.15. Assume (∗). If L is a linear order of cardinality at most ℵ1

which does not contain a real type, then |L̂| ≤ ℵ1.

In particular (∗) implies that CH is true. A consequence of the work in
[5] and [13] is that by iterating certain forcings over a model of CH, it is
possible to obtain a generic extension in which there is no minimal real or
Aronszajn type. We briefly review this result and recall some of the relevant
definitions and terminology. If T is an Aronszajn tree, then a subtree of T
is an uncountable downward closed subset of T .

Notation 2.16. If T is a tree, t ∈ T and α is an ordinal, then t � α is
defined to be t if α is greater than the height of t otherwise it is the unique
s ≤ t with height α.

Definition 2.17. A sequence 〈fα : α ∈ lim(ω1)〉 is called ladder system col-
oring if 〈dom(fα) : α ∈ ω1〉 is a ladder system and the range of each fα is
contained in ω.

Definition 2.18. If T is an ω1-tree, then a ladder system coloring 〈fα :
α ∈ lim(ω1)〉 can be T -uniformized if there is a subtree U of T and function
from φ : U → ω such that whenever height of u ∈ U is a limit ordinal α, fα
agrees with ξ 7→ φ(u � ξ) at all except for finitely many ξ ∈ dom(fα).

Definition 2.19. (A) is the assertion that every ladder system coloring
can be T -uniformized for every Aronszajn tree T .

The significance of (A) lies in the following theorem, along with the fact
that it is consistent with CH.
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Theorem 2.20. [13] Assume (A) and 2ℵ0 < 2ℵ1. There is no minimal
Aronszajn line.

In [13], a forcing QT,f̄ was introduced which T -uniformizes a given ladder
system coloring f̄ . We will recall the definition of this poset in Section 5 when
we need to analyze it, but for now we will simply summarize its important
properties.

While (<ω1)-properness and complete properness play a role in the proof
of the main result of this paper, they can be treated as black boxes via the
following results, along with the straightforward fact that σ-closed posets
are both (<ω1)-proper and completely proper.

Lemma 2.21. [13] For every ladder system coloring f̄ and Aronszajn tree
T , the forcing QT,f̄ is completely proper and (<ω1)-proper.

Theorem 2.22. [16] A countable support iteration of (<ω1)-proper, com-
pletely proper forcing is proper and does not introduce new real numbers.

We will also need the following iteration theorem of Shelah.

Theorem 2.23. [16, III.8.5] If the iterands of a countable support iteration
are proper and don’t add new uncountable branches to ω1-trees, then the
iteration is proper and does not add uncountable branches to ω1-trees.

3. A rough classification of non-σ-scattered orders

In [7] it was shown that under PFA+, every non-σ-scattered linear order con-
tains an amenable non-σ-scattered suborder of cardinality ℵ1. In this section
we prove that under a fragment of PFA+ every non-σ-scattered amenable
linear order contains a copy of a Baumgartner type or its reverse. Taken to-
gether, these results determines a basis for the class of non-σ-scattered linear
orders under PFA+: if X is any set of reals of cardinality ℵ1 and C is any
Countryman type, then any non-σ-scattered linear order must contain an
isomorphic copy of either X, C, −C, or a Baumgartner type of cardinality
ℵ1 or its reverse.

Theorem 3.1. Assume the conjunction of MAℵ1 and (†). If L is an amen-
able non-σ-scattered linear order of size ℵ1, then it contains a copy of a
Baumgartner type or its reverse.

First we will prove the following lemma.
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Lemma 3.2. Suppose that L is a an amenable linear order of cardinality
ℵ1. If 〈Mξ : ξ ∈ ω1〉 is a continuous ∈-chain of elements of E(L) which is in
N ∈ E(L) and N ∩ ω1 = δ, then Mδ and N capture the same elements of L.

Proof. First observe that by continuity of the ∈-chain and the fact that {ν ∈
ω1 : Mν ∩ ω1 = ν} is a club in N , Mδ ⊆ N and Mδ ∩ ω1 = δ. Next observe
that since L has cardinality ℵ1, N ∩ L = Mδ ∩ L and thus any element of L
captured by Mδ is captured by N . Now suppose that N captures x ∈ L and
let z ∈ L̂ ∩N be such that there is no element of N ∩ L which is strictly
in between x and z. Since L is amenable, there is a club E ⊆ [L̂]ω in Mδ

such that for all Z ∈Mδ ∩ E, Z captures x. Let λ ∈ θL ∩M0 be a regular
cardinal such that the powerset of [L̂]ω is in H(λ). Let M ∈ N be a countable
elementary submodel of H(λ) such that 〈Mξ ∩H(λ) : ξ ∈ ω1〉, E, and z

are in M . Observe that for sufficiently large ξ < δ, Mξ ∩ L̂ is in E and
if ν = M ∩ ω1 then L ∩M = Mν ∩ L. Notice that M captures x via z. Since
Mν ∩ L̂ is in E ∩Mδ, Mν also captures x. By Fact 2.4, it must be that z is
in Mν and hence Mδ. �

Proof of Theorem 3.1. Now let 〈Mξ : ξ ∈ ω1〉 be a continuous ∈-chain of ele-
ments of E(L). Since L is amenable it does not contain any real types, there
is a countable set Xξ ⊆ L such that if Mξ ∩ L ⊆ Xξ and if y ∈ L \Mξ, there
is a unique x ∈ Xξ \Mξ such that x 6= y. Let x : ω × ω1 → L be such that
for all ξ ∈ ω1, Xξ = {x(n,Mξ ∩ ω1) : n ∈ ω}. Now let 〈Nξ : ξ ∈ ω1〉 be a con-
tinuous ∈-chain of elements of E(L) such that 〈Mξ : ξ ∈ ω1〉 and x are in N0.
Note that there is a club of ξ in ω1 such that Mξ ∩ ω1 = ξ = Nξ ∩ ω1 and
hence Mξ and Nξ capture the same elements of L. Since Γ(L) is stationary,
then by applying the pressing down lemma there is a stationary set S0 ⊆ ω1,
an n ∈ ω, and a club E ⊆ [L̂]ω such that if ξ ∈ S0:

• Mξ ∩ ω1 = ξ = Nξ ∩ ω1;

• x(n, ξ) is not captured by Nξ;

• E is in Nξ and if Z is in Nξ ∩ E, then Z captures x(n, ξ).

Set yξ = x(n, ξ) for all ξ ∈ S0. Now it is easy to see that for all ξ and η in
S0, Nξ captures yη if and only if ξ 6= η.

Let zξ (ξ ∈ ω1) be an enumeration of all z ∈ L̂ for which there are η ∈ ω1

and α ∈ S0 such that Nη captures yα via z. We can assume without loss of
generality that this enumeration is in N0. For every α ∈ S0 define gα : α→
{zξ : ξ ∈ ω1} by letting gα(ξ) be the unique z ∈ Nξ such that Nξ captures
yα via z. Note that if gα(ξ) = zη then η ∈ α.
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Claim 3.3. The following are true for α, β ∈ S0:

1) {ξ ∈ α : gα(ξ) 6= gα(ξ + 1)} has order type ω and supremum α

2) If yα < yβ, then gα(ξ) ≤ gβ(ξ) for all ξ < min(α, β).

3) If α < β, then there is a ξ < α such that gα(ξ) 6= gβ(ξ).

4) If ξ < η < min(α, β) and gα(ξ) 6= gβ(ξ), then gα(η) 6= gβ(η).

Proof. First observe that for each α ∈ S0 and limit η ∈ α there is an η̄ ∈ η
such that gα � (η̄, η] is constant. On the other hand Nα does not capture
yα and therefore the set {ξ ∈ α : gα(ξ) 6= gα(ξ + 1)} must have ordertype ω
and supremum α. This proves (1); the remainder of the items follow easily
from (1) and the definitions. �

Define Cα to be the set of all ξ ∈ α such that zξ is in the range of gα and
equip the set {Cα : α ∈ S0} with the lexicographic order. For each α ∈ S0

let Uα = {ξ ∈ α : gα(ξ) < yα} and observe that Uα is an open subset of α.
So by (†) there is a stationary set S ⊆ S0 such that either

• for every α ∈ S and ξ ∈ S ∩ α, gα(ξ) > yα or,

• for every α ∈ S and ξ ∈ S ∩ α, gα(ξ) < yα.

Without loss of generality assume that for every α ∈ S and ξ ∈ α ∩ S, gα(ξ) >
yα. Define S′ to be the set of all elements of S which are limit points of ele-
ments of S.

Let Q be the set of all finite p ⊆ S′ such that whenever α 6= β are in p,
Cα <lex Cβ if and only if yα < yβ. We will prove that Q is c.c.c..

Suppose for a contradiction that X is an uncountable antichain in Q.
By applying the ∆-System Lemma and removing the root if necessary, we
may assume that X is pairwise disjoint and consists of elements of some
fixed cardinality n. Let M be an element of E(Q) such that X, L, x, 〈Nξ :
ξ ∈ ω1〉, 〈yξ : ξ ∈ S〉, and 〈zξ : ξ ∈ ω1〉 are all in M . Set δ = M ∩ ω1 and let
p = {α1, ..., αn} be in X such that δ < αi for all i ≤ n. Let ζ ∈ δ ∩ S be such
that:

• if i, j ≤ n, then gαi
� δ 6= gαj

� δ implies gαi
(ζ) 6= gαj

(ζ);

• the range of gαi
� ζ + 1 coincides with the range of gαi

� δ for each
i ≤ n (i.e. Cαi

∩ δ ⊆ ζ + 1 for each i ≤ n).

Notice that the existence of ζ follows from the observation that if gα(ξ) 6=
gβ(ξ), then gα(η) 6= gβ(η) for all η > ξ. By elementarity of M there exists a
p′ = {α′1, ..., α′n} in M ∩X such that:
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• for all i, j ≤ n, yαi
< yαj

if and only if yα′
i
< yα′

j
;

• if i ≤ n, then gαi
(ζ) = gα′

i
(ζ).

We will now show that p ∪ p′ ∈ Q. Let i, j ≤ n. There are two cases, de-
pending on whether gαi

(ζ) and gαj
(ζ) are the same. If gαi

(ζ) 6= gαj
(ζ), then

observe that gαj
(ζ) = gα′

j
(ζ) and

Cαi
∩ (ζ + 1) 6= Cαj

∩ (ζ + 1) = Cα′
j
∩ (ζ + 1).

Since p and p′ are both in Q, it follows that yαi
< yα′

j
is equivalent to

Cαi
<lex Cα′

j

If gαi
(ζ) = gαj

(ζ), then observe that gαi
� δ = gαj

� δ and thus that Cαi
∩

δ = Cαj
∩ δ. Observe that

gα′
j
� ζ = gαj

� ζ = gαi
� ζ

and that gαi
is constant on the interval [ζ, δ). Also, gα′

j
is not constant on

[ζ, δ) by Claim 3.3. Observe that there is a ξ ∈ S such that ζ < ξ < α′j and

gα′
j
(ξ) < gα′

j
(ζ) = gαj

(ζ) = gαj
(ξ) = gαi

(ξ)

It follows that yαi
> yα′

j
. On the other hand,

Cαi
∩ δ = Cαi

∩ (ζ + 1) = Cα′
j
∩ (ζ + 1) 6= Cα′

j
∩ δ

and consequently Cα′
j
<lex Cαi

. Since i, j ≤ n were arbitrary, p and p′ are
compatible and thus Q is c.c.c..

By applying MAℵ1 to the finite support product Q<ω of countably many
copies of Q, it is possible to find a partition of S into countably many
pieces such that whenever α and β are in the same piece of the partition,
Cα <lex Cβ if and only if yα < yβ. Since there is a piece of this partition
which is stationary, it shows that L contains a Baumgartner type. �

We finish this section by noting if we add a Cohen real r to a model of
ZFC, then Theorem 3.1 will not hold in the resulting generic extension. To
see this, suppose that r ∈ 2ω and 〈xξ : ξ ∈ lim(ω1)〉 is such that xξ : ω → ξ
is increasing and has cofinal range for each ξ. Define a linear ordering on
lim(ω1) by ξ <r η if and only if

xξ(n) < xη(n) is equivalent to r(n) = 0

where n is minimal such that xξ(n) 6= xη(n). It is left to the reader to check
that if S ⊆ lim(ω1) is stationary, then there is a comeager set of r such that
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(S,<r) contains both a copy of ω1 and of −ω1. Furthermore, if S is non-
stationary, then (S,<r) is σ-scattered and thus not a Baumgartner type.
On the other hand, it is not hard to show that every uncountable subset
of a Baugmartner type contains a copy of ω1; in particular, Baumgartner
types do not contain −ω1. Since every stationary subset of ω1 in the generic
extension by a Cohen real contains a ground model stationary set, this proves
the claim.

4. An axiomatic analysis of non-σ-scattered orders

In this section we will prove the following proposition.

Proposition 4.1. Assume (†) and (∗). If L is a non-σ-scattered linear
order which does not contain a real or Aronszajn type, then there is a non-
σ-scattered suborder L′ ⊆ L with Γ(L′) < Γ(L).

Proof. As noted in Section 2, (∗) implies that L contains a non-σ-scattered
suborder L0 such that L̂0 has cardinality ℵ1. We may therefore assume
without loss of generality that |L| = |L̂| = ℵ1. This implies, in particular
that if M and N are in E(L) and M ∩ ω1 = N ∩ ω1, then M ∩ L̂ = N ∩
L̂. If Z ⊆ L̂ is countable, let {x(n,Z) : n ∈ ω} ⊆ L be such that Z ∩ L ⊆
{x(n,Z) : n ∈ ω} and if y ∈ L \ Z, then there is an n such that no element
of L ∩ Z is between x(n,Z) and y. This is possible since L does not contain
a real type. Let 〈Nξ : ξ ∈ ω1〉 be a continuous ∈-chain in E(L) with the map
Z 7→ {x(n,Z) : n ∈ ω} in N0. Since L is not σ-scattered, there is an n ∈ ω
such that

S0 = {ξ ∈ ω1 : Nξ ∩ ω1 = ξ and Nξ does not capture x(n,Nξ ∩ L̂)}

is stationary. Fix such an n and set xξ = x(n,Nξ ∩ L̂). For each α ∈ S0

let Uα be the set of all ξ ∈ α such that Nξ captures xα. Clearly Uα is an
open subset of α so by (†) there is a stationary subset S ⊆ S0 and a club
E ⊆ ω1 such that for every α ∈ S there is an ᾱ ∈ α such that either E ∩
(ᾱ, α) ⊆ Uα or E ∩ (ᾱ, α) ∩ Uα = ∅. The second alternative can only happen
for at most nonstationary many α ∈ S, because L has no external element
by Theorem 2.13. By applying the Pressing Down Lemma and thinning S
down if necessary, we can assume that for every α, β ∈ S, Nα captures xβ if
and only if α 6= β.

Now let S′ ⊆ S be stationary such that S r S′ is also stationary and
define L′ = {xξ : ξ ∈ S′}. We will show that L′ is not σ-scattered and that
Γ(L′) < Γ(L).
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Fix an M ∈ E(L) which has 〈Nξ : ξ ∈ ω1〉, S, and S′ as elements and has
the property that M ∩ ω1 = δ ∈ S′. To show that L′ is not σ-scattered we
prove that M does not capture xδ in L′. Suppose for contradiction that M
captures xδ in L′ via z ∈ L̂ ∩M . By replacing L with −L if necessary, we
may assume that z < xδ. Let

A = {xξ : ξ ∈ S′ and z < xξ}.

Observe that A is in M and hence inf(A) is also in M . Since inf(A) ≤ xδ
and xδ is not in M , it follows that inf(A) < xδ. Since M does not capture
xδ in L, there is y ∈ L ∩M such that z ≤ inf(A) < y < xδ. By elementarity
of M , there is a ξ ∈ S′ ∩M such that z < xξ < y < xδ. But this contradicts
our assumption that M captures xδ in L′ via z.

To see that Γ(L) � Γ(L′) it suffices to show that the set of all M ∈ E(L)
which capture all elements of L′ but does not capture some elements of L
forms a stationary set. To this end let M ∈ E(L) with L′ ∈M and M ∩ ω1 ∈
S r S′ and observe that M does not capture xδ in L but it captures all
elements of L′. �

5. The consistency of the axioms

In this section we will prove that if there is a supercompact cardinal, then
there is a forcing extension with the same reals which satisfies (∗), (†), and
(A). By results of the previous section this will finish the proof of The-
orem 1.2. Our forcing construction will resemble the consistency proof of
PFA+ and will involve a countable support iteration of forcings which are
completely proper, (<ω1)-proper, and which do not add new uncountable
branches through ω1-trees. By results of Shelah discussed in the introduc-
tion, the resulting iteration will not introduce new reals or uncountable
branches through ω1-trees.

All of the iterands used in building the iteration will either be σ-closed
or else be of the following form.

Definition 5.1. [13] For an Aronszajn tree T and ladder system coloring
f̄ let QT,f̄ be the set of all conditions q = (φq,Uq) such that:

• φq is a function from Xq ⊆ T into ω such that Xq is a countable down-
ward closed subset of T which has a last level of height αq,

• if t ∈ Xq has limit height δ, fδ agrees with ξ 7→ φq(t � ξ) at all ξ ∈ Cα
except for finitely many ξ ∈ Cα.
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• Uq is a non-empty countable collection of pruned subtrees of T [n] for
some n.

• for every U ∈ Uq there is some σ ∈ U which is a subset of the last level
of Xq.

(T [n] is the collection of all weakly increasing n-tuples from some level of
T , regarded as a tree with the coordinatewise order.) We let p ≤ q, in Q if
Xp � αq = Xq, Uq ⊆ Up, and φp � Xq = φq.

Remark 5.2. A simplification of this type of forcings can be used to prove
Theorem 1.4. For an Aronszajn tree T let QT be the set of all conditions
as above forgetting the information about the ladder system coloring. More
precisely QT consists of all conditions q = (Xq,Uq) such that,

• Xq is a countable downward closed subset of T which has a last level
of height αq,

• Uq is a non-empty countable collection of pruned subtrees of T [n] for
some n.

• for every U ∈ Uq there is some σ ∈ U which is a subset of the last level
of Xq.

We let p ≤ q, in Q if Xp � αq = Xq, Uq ⊆ Up. It is easy to see that the forcing
QT,f̄ projects onto QT for every Aronszajn tree T , so by the work in [13],
QT is completely proper, < ω1-proper and satisfies proper isomorphism con-
dition. Now let P be the countable support iteration of all posets of QT of
length ω2 such that whenever T is an Aronszajn tree in some intermediate
model, QT is repeated in the iteration cofinally often. Let V be a model sat-
isfying 2ω = ω1 + 2ω1 = ω2, and let G be P-generic over V. Then it is easy
to see that ω2 is preserved and in V[G]

• 2ω = ω1 + 2ω1 = ω2,

• if T is an Aronszajn tree, there is a sequence 〈Vi : i ∈ ω2〉 of uncount-
able downward closed subtrees of T such that whenever i ∈ j, Vi con-
tains no subtree of Vj .

This proves Theorem 1.4.

The following lemma asserts that these forcings QT,f̄ do not add new
uncountable branches to ω1-trees.
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Lemma 5.3. Suppose T is Aronszajn and S is an ω1-tree, and f̄ is a ladder
system coloring. Then QT,f̄ does not add new uncountable branches to S.
Consequently, if L is a linear order of size ℵ1, then forcing with QT,f̄ does

not introduce new elements to L̂.

Proof. Let Q denote QT,f̄ and let ḃ be a Q-name which is forced by some
p ∈ Q to be an uncountable branch in S which is not in the ground model.
If q is in Q and σ is in T [n] for some n, then we say that σ is consistent with
q if the range of σ � αq is contained in Xq.

Let M ∈ E(Q) with p, ḃ ∈M and set δ = M ∩ ω1.

Claim 5.4. If σ ∈ T [n]
δ is consistent with p and s ∈ Sδ, then there is a

condition q ≤ p in M ∩Q such that q 
 š /∈ ḃ and such that σ is consistent
with q.

Proof. By Lemma 5.5 in [13] we can find a decreasing sequence 〈pk : k ∈ ω〉
in M such that:

• p0 = p,

• pk+1 decides ḃ � αpk ,

• σ is consistent with pk for all k,

• 〈pk : k ∈ ω〉 has a lower bound in M .

Thus without loss of generality we can assume that p forces š � α̌p ∈ ḃ.
Suppose for contradiction that for every q ≤ p in M ∩Q, if q 
 š 6∈ ḃ,

then σ is not consistent with q. Define W to be the set of all τ ∈ T [n]

which are compatible with σ � αp and such that there exists an s̄ ∈ Sht(τ)

compatible with s � αp and for all q ≤ p, if q 
 s̄ 6∈ ḃ and αq ≤ ht(τ), then
range(τ � αq) 6⊆ Xq. Since W is definable from parameters in M , it is in M .
Observe that W is downwards closed and that s witnesses that σ is in W .
Hence by elementarily of M , W is uncountable. Let U be the set of all τ ∈W
which have uncountably many extensions in W . Notice that σ � αp is in U
and thus p′ = (ϕp, Xp,Up ∪ {U}) is a condition in Q.

For each τ ∈ Uδ and t ∈ Sδ, let ϕ(τ, t) be the assertion: “whenever r ≤ p′
is (M,Q)-generic with range(τ) ⊆ Xr, r 
 ť ∈ ḃ.” Notice that if r is (M,Q)-
generic, then so is r � δ. It is easy to see that for every τ ∈Wδ there exists a
unique t ∈ Sδ which extends s � αp such that ϕ(τ, t). Moreover, observe that
if τ1 and τ2 are in Uδ and s1, s2 are such that φ(τ1, s1) and φ(τ2, s2), then
we can find an (M,Q)-generic condition r ≤ p′ which is consistent to both
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τ1 and τ2. This implies r 
 š1 = š2. Thus s ∈ Sδ satisfies that φ(τ, s) holds
for every τ ∈ Uδ.

We now claim that p′ 
 š′ ∈ ḃ for all s′ < s. Since such an s′ is necessarily
in M , by elementarity it suffices to show that if p′′ ≤ p′ is in M , then p′′

has an extension r which forces that š′ ∈ ḃ. Because Q is proper, p′′ has an
(M,Q)-generic extension r. Let τ ∈ Uδ be such that range(τ) ⊆ Xr. Since
r ≤ p′ and ϕ(τ, s′) holds, r 
 š′ ∈ ḃ. Thus we have established that p′ 
 š′ ∈
ḃ for all s′ < s. By elementarily, {t ∈ S : p′ 
 ť ∈ ḃ} is uncountable, which
implies that p′ decides ḃ, a contradiction. �

Returning to the main proof, by the claim we can find a condition p̄ ≤ p
such that p̄ 
 Sδ ∩ ḃ = ∅. �

Theorem 5.5. Assume there is a supercompact cardinal. Then there is
forcing extension in which (A), (†), and (∗) hold.

Proof. Let V be a ground model with a supercompact cardinal κ. By per-
forming some preparatory forcing if necessary, we may assume that CH is
true. Mimicking the consistency proof of PFA (see [4] or [8]), use a Laver
function ψ to build a countable support iteration 〈Pα, Q̇α : α ∈ κ〉 such that:

• Q̇α is a Pα-name in Vκ for a partial order which is either σ-closed or
of the form QṪ ,f̄ ;

• if ψ(α) is a Pα-name and p ∈ Pα forces that ψ(α) either σ-closed or of
the form QṪ ,f̄ , then p forces Q̇α = ψ(α).

Let G ⊆ Pκ be a V -generic filter. It is immediate that V [G] satisfies (A).
By Lemma 2.21 and Theorem 2.22 the iteration does not add new reals and
thus V [G] satisfies CH. By Lemmas 2.23 and 5.3, every final segment of the
iteration does not add new uncountable branches to ω1-trees. Arguing as in
[4], V [G] satisfies FA+(σ-closed) and in particular (†).

We will now show that (∗) holds in V [G]. Fix for a moment a non-
σ-scattered linear order L in V [G] and let Q be the set of all countable
continuous ∈-chains in E(L) ordered by end extension. It is obvious that Q
is σ-closed and easily verified that

Ṡ = {(ξ̌, q) : ξ ∈ dom(q) and q(ξ) ∩ L̂ ∈ Γ(L)}

is a Q-name for a stationary subset of ω1. Since Q is countably closed, it
does not add new elements to L̂. Thus if H ⊆ Q is a V [G]-generic filter, then
V [G][H] contains the desired witness to (∗) for L. Moreover, this witness is
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preserved in any further generic extension by a proper forcing in which L̂
does not gain new elements.

The proof that FA+(σ-closed) holds in V [G] can now be applied in this
situation to show that (∗) holds in V . The only difference is that while in the
verification of FA+(σ-closed) it is sufficient to know that the factor forcings
are proper, in our setting it is necessary to know that, additionally, the
factor forcings do not add new elements to the completions of linear orders.
As noted already, this follows from Lemmas 2.23 and 5.3. �

6. Open questions

We will conclude this paper by mentioning some open questions which are
natural in light of the results obtained here and in [7]. The first question is
closely related to a problem due to Galvin [3, Problem 4].

Question 6.1. Must every minimal non-σ-scattered linear order be a real
type nor an Aronszajn type?

Of course it is consistent that this question has positive answer (this was
first shown in [7]), but at present it seems possible that this question could
have a positive answer in ZFC. (Added in proof: the first author has shown
that this question can consistently have a negative answer.)

Question 6.2. Must every minimal non-σ-scattered linear order have car-
dinality ℵ1?

Notice that if κ > ℵ1 is a regular cardinal and L = {xα : α ∈ S} is a
ladder system indexed by a nonreflecting stationary set S ⊆ κ. consisting
of ordinals of countable cofinality, then the lexicographical ordering on L is
non-σ-scattered but has no σ-scattered suborder of cardinality ℵ1 (of course
this example fails to be minimal).

Finally, it is unclear whether Theorem 1.3 can be sharpened so that the
Baumgartner types are all realized as suborders of a single Baumgartner
type.

Question 6.3. Assume PFA+. If two Baumgartner types are indexed by
a common stationary subset of ω1, must there be a non-σ-scattered order
which embeds into both of them?
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